
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2008

High Performance Reconfigurable Computing for Linear Algebra: High Performance Reconfigurable Computing for Linear Algebra:

Design and Performance Analysis Design and Performance Analysis

Junqing Sun
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Sun, Junqing, "High Performance Reconfigurable Computing for Linear Algebra: Design and Performance
Analysis. " PhD diss., University of Tennessee, 2008.
https://trace.tennessee.edu/utk_graddiss/349

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268770745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_graddiss%2F349&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Junqing Sun entitled "High Performance

Reconfigurable Computing for Linear Algebra: Design and Performance Analysis." I have

examined the final electronic copy of this dissertation for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, with a major in Electrical Engineering.

Gregory D. Peterson, Major Professor

We have read this dissertation and recommend its acceptance:

Olaf O. Storaasli, Donald W. Bouldin, Jack Dongarra, Xiaorui Wang

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Junqing Sun entitled “High Performance
Reconfigurable Computing for Linear Algebra: Design and Performance Analysis.” I have
examined the final electronic copy of this dissertation for form and content and recommend
that it be accepted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy, with a major in Electrical Engineering.

 Gregory D. Peterson

Gregory D. Peterson, Major Professor

We have read this dissertation
and recommend its acceptance:

 Olaf O. Storaasli

 Donald W. Bouldin

 Jack Dongarra

 Xiaorui Wang

Accepted for the Council:

 Carolyn R. Hodges

Carolyn R. Hodges, Vice Provost and
Dean of the Graduate School

High Performance Reconfigurable Computing for Linear Algebra:

Design and Performance Analysis

A Dissertation
Presented for the

Doctor of Philosophy
Degree

The University of Tennessee, Knoxville

Junqing Sun
May 2008

 ii

Copyright© 2007 by Junqing Sun
All rights reserved.

 iii

ACKNOWLEDGEMENTS

I wish to thank the many people who helped me achieve my doctorate in Electrical

Engineering. I would especially thank my major advisor, Dr. Gregory D. Peterson. He

introduced me into this interesting field – computer architecture. Without his continual trust,

support and instructive guidance, this work would not have been possible. I would like to

thank Dr. Olaf O. Storaasli for his wisdom, insight, and broad knowledge in the field of

scientific computing and matrix solvers. I also would like to thank Dr. Don Bouldin, Dr.

Jack Dongarra and Dr. Wang for their exceptional support of my research and serving on

my committee.

Special thanks go to my colleagues and friends - Yu Bi, Shaoyu Liu, Saumil Merchant,

Akila Gothandaraman, Junkyu Lee and Depeng Yang - for sharing the knowledge and

happiness in our lab. I also wish to thank Collin B. McCurdy and Richard Barrett of ORNL

for useful discussions on computer architecture and matrix algorithms.

This work was partially supported by the University of Tennessee Science Alliance, and

the ORNL Laboratory Director’s Research and Development program.

 iv

ABSTRACT

Field Programmable Gate Arrays (FPGAs) enable powerful performance acceleration for

scientific computations because of their intrinsic parallelism, pipeline ability, and flexible

architecture. This dissertation explores the computational power of FPGAs for an important

scientific application: linear algebra. First of all, optimized linear algebra subroutines are

presented based on enhancements to both algorithms and hardware architectures.

Compared to microprocessors, these routines achieve significant speedup. Second,

computing with mixed-precision data on FPGAs is proposed for higher performance.

Experimental analysis shows that mixed-precision algorithms on FPGAs can achieve the

high performance of using lower-precision data while keeping higher-precision accuracy

for finding solutions of linear equations. Third, an execution time model is built for

reconfigurable computers (RC), which plays an important role in performance analysis and

optimal resource utilization of FPGAs. The accuracy and efficiency of parallel computing

performance models often depend on mean maximum computations. Despite significant

prior work, there have been no sufficient mathematical tools for this important calculation.

This work presents an Effective Mean Maximum Approximation method, which is more

general, accurate, and efficient than previous methods. Together, these research results help

address how to make linear algebra applications perform better on high performance

reconfigurable computing architectures.

 v

TABLE OF CONTENTS

1 INTRODUCTION..1

1.1 MOTIVATION...1
1.2 STATEMENT OF APPROACH...1

1.2.1 Reconfigurable BLAS (RBLAS) Library ...1
1.2.2 Performance Evaluation...2

1.3 CONTRIBUTIONS..3
1.4 OUTLINE OF DOCUMENTS ...5

2 BACKGROUND AND RELATED WORK ..6

2.1 LINEAR ALGEBRA ON FPGAS...6
2.1.1 Related Work ...6

2.2 MIXED-PRECISION ALGORITHMS..9
2.2.1 Introduction ..9
2.2.2 Performance on Traditional CPUs ..10

2.3 HYBRID SYSTEM PERFORMANCE MODELING ...11
2.3.1 Performance Modeling ..11
2.3.2 Mean Maximum Estimation ..11

2.4 DEVELOPMENT ENVIRONMENT...12
2.4.1 Software Environment ...12
2.4.2 Reconfigurable Computers ..13

2.5 CONCLUSIONS ...14

3 RECONFIGURABLE PROCESSOR DESIGN FOR LINEAR ALGEBRA..............15

3.1 SPMXV ...15
3.1.1 SpMxV on FPGAs...16
3.1.2 Sparse Matrix Storage Format...17
3.1.3 Framework and Basic Design..18
3.1.4 Complete Design..22
3.1.5 Implementation Results and Comparison ...27
3.1.6 Potential Improvements ...29
3.1.7 Performance ...31

3.2 MATRIX FACTORIZATION..38
3.2.1 LU Decomposition Design on FPGAs..38
3.2.2 Pivoting ..42
3.2.3 Implementation Results ...44

3.3 HYBRID DIRECT SOLVER ..44
3.4 CONCLUSION...47

4 MIXED-PRECISION LINEAR SOLVER ON FPGAS...49

4.1 MIXED-PRECISION ALGORITHM FOR DIRECT SOLVER ...49
4.1.1 Iterative Refinement...49
4.1.2 Error Analysis ..50

 vi

4.2 PERFORMANCE ON FPGAS ...52
4.3 A RECONFIGURABLE MIXED-PRECISION DIRECT SOLVER54
4.4 PERFORMANCE SUMMARY..58

5 DESIGN ON CRAY XD1 ...60

5.1 CRAY XD1 INTRODUCTION...60
5.1.1 Architecture Overview...60
5.1.2 RapidArray Interconnect ...60
5.1.3 HDL Development Flow ...61

5.2 HYBRID DIRECT SOLVER ON CRAY XD1..62
5.2.1 Hardware Architecture...62
5.2.2 System Hierarchy...63
5.2.3 Implementation Results and Performance Comparison64

5.3 CONCLUSION...67

6 PERFORMANCE EVALUATION...68

6.1 PERFORMANCE METRICS ..68
6.2 FPGA PERFORMANCE ANALYSIS ...69

6.2.1 Performance Modeling for LU Factorization on FPGAs71
6.3 RECONFIGURABLE SINGLE NODE MODEL ..77
6.4 RECONFIGURABLE PARALLEL COMPUTING MODEL...80
6.5 LOAD IMBALANCE ANALYSIS ...83
6.6 SUMMARY ...84

7 EFFECTIVE MEAN MAXIMUM APPROXIMATION METHOD..........................86

7.1 PERFORMANCE MODEL ..86
7.2 EMMA METHOD ...89

7.2.1 EMMA Method for i.i.d. Random Variables..89
7.2.2 Mathematical Proof and Extensions..92
7.2.3 EMMA Method for Heterogeneous Distribution..98

7.3 UTILIZATION OF EMMA METHOD ...100
7.3.1 Logic Simulation Applications..101

7.4 EXECUTION TIME FOR TASK GRAPHS...105
7.5 EXTENSION TO DEPENDENT TASKS ..107

7.5.1 Associated Tasks..108
7.5.2 Sharing Common Paths ...109

7.6 CONCLUSIONS..110

8 CONCLUSIONS AND FUTURE WORK ...111

8.1 CONCLUSIONS ...111
8.2 FUTURE WORK..113

LIST OF REFERENCES ...115

VITA ...123

 vii

LIST OF TABLES

TABLE 3-1: COMPARISON OF ADDER TREE AND SUMMATION CIRCUIT..................................28
TABLE 3-2: CHARACTERISTICS OF SSF ON XC2VP70-7 ..28
TABLE 3-3: DOUBLE FLOATING POINT DESIGN COMPARISON WITH [11]29
TABLE 3-4: COMPARISON ON 64 BIT AND 32/64 BIT MIXED INTEGER SSF.............................31
TABLE 3-5: TEST MATRICES [21] ..35
TABLE 3-6: LU DECOMPOSITION IMPLEMENTATION WITH PIVOTING ON XC2VP50-7..........45
TABLE 3-7: LU DECOMPOSITION IMPLEMENTATION WITHOUT PIVOTING ON XC2VP50-7 ...46
TABLE 4-1: AVERAGE REFINEMENT ITERATIONS FOR A CUSTOMIZED FORMAT (S15E7).......53
TABLE 4-2: AVERAGE REFINEMENT ITERATIONS FOR DIFFERENT DATA FORMATS...............53
TABLE 4-3: CHARACTERISTICS OF A MULTIPLIER ON XC4LX160-10 (USING DSP48S)........55
TABLE 4-4: CHARACTERISTICS OF A MULTIPLIER ON XC4LX160-10 (USING SLICES)56
TABLE 4-5: CHARACTERISTICS OF AN ADDER ON XC4LX160-10..57
TABLE 7-1: SUBSET PARAMETERS...99
TABLE 7-2: SUBSET PARAMETERS...99
TABLE 7-3: EXPERIMENTAL CIRCUIT COLLECTIONS [62] [63] ...102

 viii

LIST OF FIGURES

FIGURE 2-1: ITERATIVE REFINEMENT TECHNIQUE FOR LINEAR EQUATIONS............................9
FIGURE 3-1: ROW BLOCKED COMPRESSED ROW STORAGE (RBCRS)18
FIGURE 3-2: DATA PATH AND FRAMEWORK OF SSF ..19
FIGURE 3-3: SIGNALS FOR PROCESSING ELEMENTS (PES) ..20
FIGURE 3-4: STATE DIAGRAM OF RESULT CONTROLLER..21
FIGURE 3-5: STRUCTURE ON CRAY XD1 FPGA [16]..22
FIGURE 3-6: DATA FLOW FOR PIPELINED ACC CIRCUIT ..23
FIGURE 3-7: ADDER TREE USED FOR PIPELINED ADDERS ..24
FIGURE 3-8: DATA FLOW FOR ADDER TREE ...24
FIGURE 3-9: REDUCED SUMMATION CIRCUIT ...26
FIGURE 3-10: DATA FLOW FOR SUMMATION CIRCUIT..26
FIGURE 3-11: RESULT CONTROLLER FOR SUMMATION CIRCUIT ..27
FIGURE 3-12: OVERHEAD PERCENTAGE..36
FIGURE 3-13: PERCENTAGE OF ACHIEVABLE PERFORMANCE...36
FIGURE 3-14: SPEED UP OF OUR DESIGN OVER 2.8 GHZ PENTIUM 437
FIGURE 3-15: BASE DIAGRAM FOR DIRECT LU DECOMPOSITION ..39
FIGURE 3-16: LU DESIGN OPERATION STAGES...40
FIGURE 3-17: MATRIX MAPPING ON FPGAS ..40
FIGURE 3-18: PE DATA FLOW CONFIGURATION AT SUB-MATRIX MODIFICATION STAGE.....41
FIGURE 3-19: LU DESIGN OPERATION STAGES WITH PIVOTING ...43
FIGURE 3-20: BASE DIAGRAM FOR DIRECT LU DECOMPOSITION WITH PIVOTING43
FIGURE 3-21: A HYBRID STRUCTURE FOR DIRECT SOLVER ...47
FIGURE 4-1: DIRECT SOLVER WITH ITERATIVE REFINEMENT ...50
FIGURE 4-2: STRUCTURE FOR MIXED-PRECISION DIRECT SOLVER ..58
FIGURE 5-1: CRAY XD1 FPGA ORGANIZATION [50] ...62
FIGURE 5-2: HYBRID MIXED-PRECISION DIRECT SOLVER ON CRAY-XD1.............................63
FIGURE 5-3: HYBRID MIXED-PRECISION DIRECT SOLVER ON CRAY-XD1.............................64
FIGURE 5-4: PERFORMANCE COMPARISON OF LU DESIGN ..65
FIGURE 5-5: EXECUTION TIME FOR MIXED-PRECISION DIRECT SOLVERS..............................66
FIGURE 5-6: SPEEDUP OF LU AND DIRECT SOLVER OVER A 2.2GHZ OPTERON67
FIGURE 6-1: COMPLETE STATES FOR LU FACTORIZATION ...72
FIGURE 6-2: TEST AND MODEL PERFORMANCE ..75
FIGURE 6-3: LU PERFORMANCE COMPARISON ...76
FIGURE 6-4: SOLVER PERFORMANCE COMPARISON..76
FIGURE 6-5: RELATIVE TIME ON PIVOTING...77
FIGURE 6-6: SYNCHRONOUS ITERATIVE ALGORITHM ON A SINGLE RC NODE.......................79
FIGURE 6-7: SYNCHRONOUS ITERATIVE ALGORITHM ON MULTIPLE RC NODES81
FIGURE 7-1: TIMING OF A SYNCHRONOUS ITERATIVE ALGORITHM ...87
FIGURE 7-2: EMV BY DIFFERENT METHODS FOR GAUSSIAN DISTRIBUTIONS91
FIGURE 7-3: EMV BY MC SIMULATION AND EMMA (BINOMIAL DISTRIBUTION).................92
FIGURE 7-4: CDF VALUES AT MEAN MAXIMUM POINT FOR EXTREME DISTRIBUTIONS96
FIGURE 7-5: APPROXIMATION ERROR FOR DIFFERENT DISTRIBUTIONS97
FIGURE 7-6: EMMA WITH DIFFERENT CONSTANTS ..98

 ix

FIGURE 7-7: EMV FROM MC SIMULATION AND EMMA FOR HETEROGENEOUS ENVIRONMENT
(GAUSSIAN DISTRIBUTION WITH DIFFERENT PARAMETERS)..100

FIGURE 7-8: EMV FROM MC SIMULATION AND EMMA FOR HETEROGENEOUS ENVIRONMENT
(MIXED DISTRIBUTIONS) ..101

FIGURE 7-9: IDEAL VS. ANALYTIC SPEEDUP WITHOUT COUNTING TIME FOR SYNCHRONIZATION,
COMMUNICATION AND OVERHEADS ..104

FIGURE 7-10: SIMPLIFIED COST FUNCTION FOR FINDING OPTIMAL PROCESSOR NUMBER......105
FIGURE 7-11: SERIAL AND PARALLEL TASK GRAPHS...106
FIGURE 7-12: TASK GRAPH WITH COMMON PATHS (A) AND ITS INDEPENDENT COUNTERPART

(B)..110

 1

1 Introduction

1.1 Motivation
In our time, the traditional Von Neumann computer architecture faces significant

challenges that may result in new computing paradigms. CPU-centric computers are forced

to invest more power and area on the cache hierarchy to bridge the widening gap between

CPU and main memory performance. Meanwhile, heat dissipation and other problems

caused by high clock rates make it increasingly difficult to continue the CPU frequency

improvement rate. Due to these reasons, current computer architects struggle to fully utilize

the exploding chip capacity brought by modern Integrated Circuit (IC) technology.

Matrix operations are widely applied in many applications such as the finite element

method, linear system solvers and partial differential equation solvers. However, these

applications usually cannot achieve good performance on traditional computers because

most of the CPU time is spent on moving big matrices into and out of main memory rather

than on computations.

Field Programmable Gate Arrays (FPGAs) show great potential for Reconfigurable

Computing. With their rapid increase in gate capacity and frequency, FPGAs can now

outperform microprocessors for both integer and floating point operations [6]. Many

computationally intensive algorithms achieve significant speedup on FPGAs [7] [8]. We

investigate the feasibility of utilizing FPGAs for linear algebra because of its potential

importance in scientific computing.

1.2 Statement of Approach

1.2.1 Reconfigurable BLAS (RBLAS) Library

The BLAS (Basic Linear Algebra Subroutines) provide standard building blocks for

performing basic vector and matrix operations. Because of their efficiency, portability, and

 2

wide availability, BLAS are commonly used in the development of high quality linear

algebra software such as LAPACK [1]. To explore the potential performance of linear

algebra on reconfigurable computers, we implement BLAS kernels onto FPGAs which

target the Cray XD-1 supercomputer at the Oak Ridge National Laboratory (ORNL).

Practical application of reconfigurable computing depends on efficient system integration

to effectively utilize these high-speed accelerators to improve overall performance.

Although many results from small FPGA-based systems are promising, overall

performance is often limited by the I/O bandwidth [9]. The best way to integrate FPGA

accelerators into a balanced computing system remains an open problem [10]. Our FPGA

designs utilize deeply pipelined structures to maximize throughput. Due to frequent data

movement in matrix operations, a data streaming architecture is used and control signals

are simplified to reduce the overhead during system integration.

Lower-precision data requires less hardware resources and usually has higher performance

(speed) on modern computer architectures. On the other hand, certain data precision is

usually required by specific applications to obtain numeric convergence or result accuracy.

Mixed-precision algorithms utilize lower-precision data formats for most computations,

and higher-precision data format only when necessary. Mixed-precision algorithms can be

applied to linear algebra to simultaneously achieve both higher performance and required

accuracy [14]. Our work explores this approach using FPGAs, which offer more flexible

data formats compared to traditional computers. We analyze floating point performance on

FPGAs for different precision data formats, design mixed-precision architectures, and give

performance analysis.

1.2.2 Performance Evaluation

Performance analysis is important in understanding computer efficiency and potentially to

determine the best mapping of applications to reconfigurable resources. There are three

broad classes of performance evaluation techniques: measurement, simulation, and

analytical modeling [74]. Measurement is probably the most accurate approach, but the

system to measure must be implemented and available. This technique also cannot predict

 3

system performance or analyze different system configurations. Simulation provides

visibility and controllability to the architecture simulated [75]. However, the very low

performance is an unavoidable drawback. A big system can rarely be exhaustively

simulated because of the exploding behavior states. Another problem for simulation is that

general conclusions cannot be drawn from a single simulation because the performance is

usually sensitive to collections of parameters. The large number of simulations that may be

required for statistically significant results may take a very long time. Analytical modeling

involves building a mathematic model for the system at the desired the level of details. The

main advantage of analytical modeling is that it can allow exploration of the performance

of a system before its construction. At the same time, a closed form analytic model greatly

helps to adopt mathematic tools for performance analysis, such as sensitivity analysis,

optimization, and load schedule.

Reconfigurable computing based on FPGAs has already shown great potential in

accelerating scientific computations. However, such factors as long communication time

can degrade overall system performance. Performance modeling provides a very important

tool to predict execution time, decide optimal load mapping, and schedule in reconfigurable

computing. We are interested in building a performance model for reconfigurable

computing in a parallel environment which is common for large scientific applications.

1.3 Contributions
This dissertation proposes to use reconfigurable computing for high performance linear

algebra computations. To achieve this goal, we develop high performance circuits and

algorithms on FPGAs and analyze our designs by building accurate execution time models.

This dissertation contributes both hardware/software implementations and theoretical

derivations including:

• Development of an innovative FPGA architecture for sparse matrix vector

multiplication with significant speedup over traditional CPUs.

 4

• Development of high performance and cost efficient circuits for high performance

linear algebra on FPGAs.

• Implementation of an innovative LU decomposition architecture on FPGAs with

significant speedup over CPUs.

• The first to utilize mixed data format in sparse matrix vector multiplication on FPGAs

and successfully achieve higher performance than single data format design.

• The first to propose hardware architectures for pivoting algorithm on FPGAs using

HDL code.

• The first to utilize both a CPU and a FPGA for high performance linear direct solver by

developing an innovative hybrid direct solver.

• The first to implement LU decomposition with pivoting on a Cray-XD1 supercomputer

and give performance analysis.

• The first to explore the performance of FPGA based floating point linear direct solvers

in different data formats and therefore point out the importance of using

lower-precision data formats to obtain high performance.

• The first to develop mixed-precision direct solvers on FPGAs which achieves the high

performance of lower-precision data formatting without any loss of accuracy.

• Development of an accurate performance models for LU decomposition on FPGAs.

Extend performance models in previous work to new reconfigurable computing

systems.

• Development and proof of mathematical theorems on properties of maximum random

variables. Successfully utilize these theorems to improve the accuracy and efficiency of

performance modeling. Point out potential applications of these mathematical results.

 5

1.4 Outline of Documents
This chapter introduces motivations, approaches, and contributions of this dissertation.

More detailed background of our work is described in Chapter 2. We introduce our high

performance linear algebra design on FPGAs in Chapter 3. The performance of these

designs is improved by using mixed-precision algorithms and architectures in Chapter 4.

We implement our design on Cray-XD1 supercomputer and give performance analysis in

Chapter 5. Chapter 6 develops performance models for reconfigurable computers and

analyzes our design and architectures. In chapter 7 we derive mathematical tools for

maximum random variables and use them for improve our performance models. We

conclude this dissertation and point out future work in chapter 8.

 6

2 Background and Related Work

This chapter introduces previous work related to this dissertation. First of all, we introduce

floating point operations on FPGAs from which we can determine the performance of

floating point linear algebra. Second, we are interested in the development of parameterized

linear algebra subroutines on FPGAs. Some related FPGA designs for linear algebra are

discussed. Third, we introduce a mixed data format algorithm and implementation on CPUs

which will be extended to our FPGA designs for high performance in following chapters.

To analyze and optimize our design, we build performance models for reconfigurable

computing. Therefore, we introduce some related backgrounds and point out an important

problem affecting the accuracy of parallel computing models. Finally, we describe the

FPGA development environment and give conclusions.

2.1 Linear Algebra on FPGAs

2.1.1 Related Work

Floating Point IP Cores

Floating point data format is widely used in scientific computing. Previous work shows that

the peak floating-point performance of FPGAs has surpassed that of CPUs and will soon

have an order of magnitude advantage [6]. To exploit the floating point advantage of

FPGAs, many researchers and commercial vendors provide floating point IP cores on

FPGAs. Xilinx has included pipelined floating point operators in its ISE tools [18]. The

data format and pipeline depth can be parameterized when configuring the operators. Some

operators, such as multipliers, can be built both from combinational logic slices and more

efficient embedded circuits, such as the built-in 18x18 multipliers for Virtex II and DSP48

for Virtex 4 FPGAs. Other floating point IP cores can also be found in academic research

groups [32] and [33].

Sparse Matrix Vector Multiplication (SpMxV)

 7

Sparse matrix-vector multiplication (SpMxV), Axy = , is one of the most important

computation kernels in scientific computing, such as iterative linear equation solvers, least

square and eigenvalue solvers [2]. In this computation kernel, matrix A is a large sparse

matrix and x is a dense vector. To save storage and computational resources, usually only

the nonzero elements of matrix A are stored and computed. Pointers are necessary to store

the sparsity structure but also degrade memory operation efficiency. This is because the

vector ‘ x ’ is addressed by pointers during computation and possibly loses spatial locality

in the cache-memory hierarchy. Furthermore, utilizing pointers requires additional load

operations and memory traffic. Despite numerous efforts to improve SpMxV performance

on microprocessors [3], [4], [5], these algorithms rely heavily on the matrix sparsity

structures and the computer architectures, typically resulting in degraded performance on

irregular matrices.

Several FPGA designs for SpMxV have been reported before. Zhuo and Prasanna designed

an adder tree based SpMxV implementation for double precision floating point that accepts

any size of matrices in general compressed row storage (CRS) format. ElGindy and Shue

proposed SpMxV on FPGAs for fixed point data [19]. DeLorimier and DeHon arranged the

processing elements (PEs) in a bidirectional ring to compute the equation xAy i= , where

A is a square matrix while i is an integer. The design they proposed reduces the I/O

bandwidth requirement greatly by sharing the results between PEs. Because local memories

are used to store the matrix and intermediate results, the matrix size is limited by the

on-chip memory [12]. El-kurdi et al proposed a streaming architecture for finite element

method matrices [13].

Matrix Factorization

Matrix factorization is widely used to solve linear equations, while LU decomposition is

the most commonly used method for matrix factorization. For some common data

processing algorithms, wireless sensor networks require efficient LU decomposition

running on resource-constraint senor nets [35].

 8

Significant previous work addresses this important computational kernel on hardware.

Daga described a block LU decomposition algorithm and corresponding architecture [36].

Govindu developed circular linear array architecture on FPGAs and achieved a 10% - 60%

reduction in energy over that of a traditional CPU [36]. Those two designs assume the

matrix is non-singular and no pivoting is needed. For a matrix of size nn× this design

requires n PEs, with each PE consisting of a multiplier and an adder. One of the PEs is

specialized for the division computation and has just a divider. To avoid the data

dependencies and fill the deep pipelines of floating point units, multiple matrices are

required to be interleaved in the FPGAs and operated alternatively. Zhuo et al improved

this design by increasing parallelism through more PEs and achieved higher GFLOPS

performance than a 2.2 GHz AMD Opteron processor by using a Virtex-II Pro FPGA [38].

Wang developed parallel LU factorization for power systems [39]. Kim built a systolic

array architecture for LU decomposition which needs 2/2n PEs for a nn× matrix.

Each PE has two multiplier-subtractor units [40]. All these previous designs assume that

target matrices are positive definite and no pivoting is required. Although pivoting will

complicate control logic, it increases the numeric stability of LU decomposition. Therefore,

we will consider hardware architecture for pivoting. Turkington et al proposed to use high

level language for LU decomposition algorithm with pivoting [87]. Handel C used in [87]

directly maps high level codes to FPGA hardware without considering specific hardware

architecture. This approach brings great convenience but also loses significant performance

compared to HDL based hardware design.

Because of the importance of linear algebra in scientific computing and embedded systems,

it is important to develop hardware accelerators for linear algebra subroutines. Previous

work has shown the potential of using FPGAs. However, many problems still left unsolved,

such as high performance architectures and algorithms, matrix storage optimization for

FPGAs, system interfaces, high performance algorithms, and performance evaluation.

 9

2.2 Mixed-Precision Algorithms

2.2.1 Introduction

Iterative refinement for the solution of linear equations has been extensively studied to

improve the accuracy of linear systems’ solutions [42]. As shown in Figure 2-1, once the

equation at step 1 is solved, the solution can be refined through an iterative procedure. In

each of the iterations, the residual is computed based on the solution at the previous

iteration (step 4); a correction is computed as in step 5 by using the computed residual; and

finally this correction is applied in step 6 for the updated solution.

The common use of iterative refinement consists of performing all arithmetic operations

with the same precision (either single or double precision floating point on traditional

CPUs). Langou et al investigated the application of mixed-precision, iterative refinement

where the most computationally expensive steps, 1 and 5, are performed in single precision

floating point and steps 4 and 6 are performed in double precision floating point [14].

Strzodka and Göddeke explored similar algorithms for iterative solvers [43], [44], and [45].

The error analysis for mixed-precision iterative refinement shows that this approach can

achieve the same accuracy as full double precision arithmetic provided that the matrix is

not too badly conditioned [14].

converge
kk

zxx
rAz

Axbr

k
bAx

kkk

kk

kk

until

repeat

:8
1:7

:6
:5

:4
:3

1:2
:1

1

1
1

1
0

+←
+←

←

−←

=
←

−

−

−

−

Figure 2-1: Iterative Refinement Technique for Linear Equations

 10

2.2.2 Performance on Traditional CPUs

Previous work reveals that on many current processors, the performance of 32 bit floating

point arithmetic may be significantly higher than 64 bit floating point arithmetic due to

many factors [41]. First of all, many processors increase their throughput by using vector

instructions. For example, the Intel IA-32/IA-64 and AMD Opteron families have the SSE2

instruction set; the Motorola, Freescale, and IBM PowerPC has the AltiVec unit. For SSE2,

a vector unit can complete four single precision operations every clock cycle but only two

for double precision [14]. Secondly, data movement is cut in half for single precision data

compared to double. This helps performance by reducing memory traffic across the bus and

enabling larger blocks of the user’s data to fit into cache.

In mixed-precision iterative refinement algorithms, the computationally expensive steps (1

and 5) are performed very fast in single precision arithmetic while the steps requiring

double precision accuracy (4 and 6) are typically less computationally demanding. Langou

et al explored the single/double mixed-precision iterative refinement algorithm and

achieved promising results on multiple architectures. There are limitations to the success of

this process, such as when the conditioning of the problem exceeds the reciprocal of the

accuracy of the single precision computations. In that case, the double precision algorithm

should be used.

Single/double mixed-precision iterative algorithms take advantage of the higher

performance of single precision arithmetic on hardware while achieving the accuracy of

double precision. FPGAs have flexible data formats. Shorter formats can result in higher

frequency, lower memory/bus requirements, and reduced energy consumption. Exploring

mixed-precision iterative algorithms is desirable for both high performance computing and

resource-constrained embedded systems.

 11

2.3 Hybrid System Performance Modeling

2.3.1 Performance Modeling

Execution time modeling plays an important role in understanding system performance.

Given certain computation loads and resources, the execution time of each processor can be

modeled as a random variable while the overall system time is determined by the last

processor completing its task [52]. For example, Peterson and Chamberlain built a model

for networked workstations [52], [64]. The overall execution time consists of three parts:

parallel work, serial work, and overhead. Smith extended this work to consider the impact

of reconfigurable computing devices in shared, high performance reconfigurable systems

[75].

2.3.2 Mean Maximum Estimation

In modeling parallel applications, the execution time for each processor can be represented

by variables iX [52]. Due to the effects of synchronization, estimation of the system

execution time depends on calculating the expectation of maximum value

(EMV))(max 1 i
N
i XE = [52]. Unfortunately, the solution in closed form usually cannot be

derived for this term. This problem becomes much more challenging for heterogeneous

environments, where the execution time for different processors has different distributions.

Due to its importance in parallel computation modeling, many researchers have tried

various kinds of methods for this problem.

Monte Carlo (MC) methods can be used to compute EMV with any initial distributions.

However, it has no analytical expression and the computation load is unaffordable for most

of the evaluations. The use of order statistics is first suggested for analyzing parallel

program performance by Weide [65]. For independent identically distributed (i.i.d.)

random variables with known distribution functions, extreme theory [66] [67] can

approximate the distribution of extremes. The approximation becomes exact as the number

of random variables increases. The drawback is that to derive the mean maximum by using

extreme theory is usually difficult. Further, extreme theory cannot derive asymptotical

extreme distribution functions for many distributions.

 12

Agrawal [57] evaluates the performance of synchronous logic circuits simulation by

applying a Binomial distribution to determine the number of events at each processor. The

number of active gates at each time stop which needs to be simulated for each processor is

random distributed. Order statistics are used to calculate the expectation of the execution

time when the number of gates is equally distributed to each processor. In this case, the

processor loads are independent and identically distributed binomial random variables. For

the imbalanced case of uneven work distribution, processors are divided into different

subsets. The processors in the same subset are identically loaded, so the order statistics can

be applied to calculate the expectation of execution time for each subset. Because there is

no analytical method for the non-identical random variables, the maximum subset

execution time is considered as the overall execution time [57].

Despite all the previous efforts above, this problem of calculating EMV is still unsolved

after decades. First of all, current methods cannot accurately compute the expectation of the

maximum variables (EMV) for heterogeneous initial distributions. Secondly, even when

the initial random variables are i.i.d., current methods cannot cover all the commonly

applied distributions in parallel computing or are not accurate enough. MC simulation can

be general and accurate enough for all distributions. However, its expensive computational

requirements are usually unacceptable in large scale parallel computation performance

evaluation. Furthermore, MC simulation cannot provide an analytical form for this problem,

which is important for sensitivity analysis and optimization of the execution time.

This dissertation presents an innovative approximation method for this problem, where

EMV is calculated by very convenient functions. Compared to previous work, this

approach is more general, accurate, and computationally efficient.

2.4 Development Environment

2.4.1 Software Environment

Optimal FPGA development requires knowledge of electric circuits. After an algorithm is

analyzed and converted into logic blocks by the developers, hardware description

 13

languages, such as VHDL and Verilog, can be used to describe the logic. With the help of

tools, the VHDL or Verilog scripts can be compiled, synthesized, and then mapped to

hardware logic units.

VHDL and Verilog provide detailed control over the circuit design, but also require

hardware expertise, which is usually not familiar to software engineers. Due to the potential

of FPGAs in scientific computations, several high level languages were developed for the

convenience of high-level users. For example, SRC’s IMPLICIT+EXPLICIT™

ARCHITECTURE has both implicit (CPU) and explicit (FPGA) computation engines [31].

It allows programmers to use both C and FORTRAN. The compiler generates a unified

executable to run on the CPU and FPGA. The compiler extracts parallelism and generates

pipelined logic initiated in the FPGA chip. It also generates all the required interface code

to manage the movement of data to and from the FPGA, and to coordinate the CPU with

the logic running in the FPGA [31]. VIVA is a graphical language developed by Starbridge

Systems [30]. Programmers can easily describe an algorithm by placing and connecting

computation unit icons in a graphic environment. VIVA provides an extensively optimized

library for different scientific computations [30]. Other commercial vendors such as

Mitrion [78] and Xilinx [18] also provide tools to convert high level languages to hardware.

2.4.2 Reconfigurable Computers

Many supercomputer vendors have noticed the potential power of FPGAs and developed

machines by utilizing FPGAs. The Cray-XD1 has up to 6 FPGA chips on each chassis as

application accelerators [16]. The SGI RASC technology based on FPGAs enabled

dramatic application acceleration compared to traditional servers [29]. The Hypercomputer

from Starbridge Systems uses FPGAs as the computation engine and achieves competitive

performance with traditional supercomputers [30]. Other companies that provide

reconfigurable computer architectures include SRC [31], DRC [80], XtremeData [79], and

Nallatech [28].

 14

2.5 Conclusions
This chapter introduces previous work and problems of high performance reconfigurable

computing for linear algebra. The consistently improving FPGA capacity and development

environment make FPGAs very attractive for computational intensive computations.

Although many efforts have been delivered, how to utilize FPGAs for high performance

linear algebra is still an unsolved problem. In the next chapter, we will introduce our FPGA

design for some linear algebra subroutines. Further performance improvement and analysis

will also be introduced in following chapters.

 15

3 Reconfigurable Processor Design for Linear Algebra

Because of the parallelism inherent in most many matrix algorithms, reconfigurable

accelerators can achieve higher peak performance than microprocessors. However, due to

the frequent memory movement in matrix operations, especially sparse matrix operations,

the system performance is heavily affected by memory bandwidth and overheads in real

applications. Therefore, effectively integrating FPGA accelerators to computation systems

is important for the overall system performance. In this chapter, we introduce our

reconfigurable matrix computation design. System performance is optimized with both

matrix algorithms and hardware architectures.

3.1 SpMxV
We introduce an innovative SpMxV solver for FPGAs (SSF). Because the hardware does

not need to change for different matrices, the initialization time is minimized and the

system integration complexity is reduced. The storage format plays an important role in

SpMxV and affects the performance of optimization algorithms. We use the common

format, Compressed Row Storage (CRS), for our FPGA design [15]. Our design requires

the multiplicand vector x to be stored in the FPGA local memory. Large matrices and

vectors are divided into sub blocks. In contrast to traditional Block CRS (BCRS) format,

our matrix storage format is optimized for FPGA accelerators. As explained later, this

format is compatible with algorithms using BCRS but reduces requirements for both I/O

bandwidth and computational resources.

Because floating point adders are usually deeply pipelined to achieve high frequency,

accumulating floating point data is normally difficult in digital design. We propose an

accumulation circuit for SpMxV. By taking the advantage of the data flow, we design an

innovative summation circuit which has low resource requirements and simple control

logic.

 16

3.1.1 SpMxV on FPGAs

In general, the SpMxV computation Axy = is defined as:

∑ =
=

N

j jjii xay
0 , , (Mi ≤≤0) (3-1)

where A is an NM × matrix, while y and x are 1×M and N×1 vectors,

respectively. For efficiency, most sparse matrix algorithms and storage formats only

operate on nonzero elements. For each nonzero element, there are two floating point

operations (one add and one multiply). By convention, we assume A has nzn nonzero

elements. All the elements of A and x in storage have to be moved into the FPGA, while

computed results for y have to be moved out of the FPGAs. Because of the pointers used

in storage formats, the indices for matrix A also need to be moved into FPGA local

memories. Suppose there are pn pointers needed. If we assume data sizes for A, x, y, and

pointers are the same, the total I/O requirement is at least:

pnzIO nnmnn +++= (3-2)

Because of the loss of locality and limited memory size, matrix and vector data may have

to be moved multiple times on traditional microprocessor-memory architectures. In our

SSF design, I/O time is hidden by overlapping with computations to reduce the overall time.

The time used to preload the data onto the FPGA is denoted as InitT , which also includes

hardware initialization and data formatting. We denote syncT as the time for the FPGA to

synchronize with the host, and overheadT for other overheads. The overall time spent on

FPGA accelerators is thus

overheadsyncinitIOcomp TTTTTT +++=),max((3-3)

In equation (3-3), the computation time compT is the only part doing matrix multiplication

operations. However, SSF cores also have tremendous I/O demands. To improve the

 17

overall performance, we need to overlap the I/O operations with computations as much as

possible. At the same time, synchronization and overhead needs to be minimized.

3.1.2 Sparse Matrix Storage Format

The CRS format makes no assumptions about the sparsity structure of the matrix and has

no unnecessary elements stored [15]. In the CRS format, 3 vectors are needed: the “val”

vector stores subsequent nonzeros of the matrix in row order; the integer vector “col” stores

the column indices of the elements in the “val” vector; while the integer vector “len” stores

the number of nonzero elements of each row in the original matrix. As an example,

consider the matrix A defined by

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−

−

=

06085
00090
00001
60010
00302

A

The CRS format for this matrix is then specified by the arrays given below:

Val: 2, -3, -1, 6, 1, 9, 5, 8, 6

Col: 0, 2, 1, 4, 0, 1, 0, 1, 3

Len: 2, 2, 1, 1, 3

In our design, the multiplicand vector needs to be loaded into FPGAs. The maximum

matrix size that can be fit into FPGA chips is restricted by the on-chip memory size. Big

matrices need to be divided into sub-matrices. Our matrix division format is shown in

Figure 3-1. The matrix is divided into stripes along the rows. Each stripe is then divided to

sub-matrices (shown in dashed lines). The sub-matrices having only zeros are neither

stored nor computed. We refer to this format as Row Blocked CRS (RBCRS).

 18

During the computation, sub-matrices in the same stripe are assigned to the same FPGA

accelerator. Note that the elements required from vector x will differ for each stripe based

on the sparsity structure. The vector x is kept in the FPGA off-chip memory, and part of

it (jx) is loaded before computing jij xA . Note that the result jij xA is not sent out after

being computed, but is stored in the FPGA and added with the result from the next

sub-matrix vector multiplication in the same row. For example, the result of 020 xA × will

be stored in the FPGA to add with the result of 121 xA × . After all the matrices in a row are

computed, the result 2y is read out. This approach saves I/O bandwidth and

computational resources.

3.1.3 Framework and Basic Design

This section introduces our basic design for the SSF and the framework when used in

software applications. In the basic design, we discuss the design for integers. Because the

integer adders have latency of one clock cycle, the accumulation circuit can be built with a

simpler pipelined structure. The summation circuit can also be simply implemented by

using an adder. The basic design can also be made to support floating point data, but at a

lower performance. The design for deeply pipelined floating point operators is more

complicated because of the read after write hazard discussed in the next section.

For all the designs, we assume the matrices and vectors are too large to be accommodated

in the FPGA on-chip memory. The algorithm may be executed by multiple FPGAs

working in parallel. Without loss of generality, we assume each PE computes the

sub-matrices in one stripe. To illustrate the matrix mapping in practical implementations,

we briefly introduce the structure on the Cray XD-1.

Figure 3-1: Row Blocked Compressed Row Storage (RBCRS)

y0
y1
y2

x
A00

A10

0
0

A20

A11

0

0
0

A21

 19

Basic Design and Interfaces

Figure 3-2 shows the basic design of our SSF core and the framework for applications. The

application program stores the matrix in Blocked CRS format. The matrix manager feeds

sub-matrices to the SSF core in CRS format and reads back the values of iy . The

application program may read back all the syi from different FPGAs to determine the

result y .

In our design, each PE is a pipeline consisting of a multiplier, adder, and result adder.

FIFO1 is used as a buffer for intermediate results. The data for “val” and “col” are

imported into the PE synchronously. The multiplicand vector jx is preloaded into the

FPGA and addressed by “col”. Because there is a one clock cycle latency to read data from

Block RAM (BRAM), a buffer is inserted for “val” before the multipliers. An illustration

of the signals is shown in Figure 3-3. At the end of “col”, there is one data for Row ID in

the sub-matrix. It is used to address the result BRAM and stored into FIFO 2. Zeros are

inserted when there is a stall signal or when waiting for the I/O to feed the next rows. The

M
at

rix
 M

an
ag

erM
at

rix
 S

to
ra

ge

Ap
pl

ic
at

io
n

P
ro

gr
am

R
es

ul
t C

on
tro

lle
r

R
es

ul
t B

R
A

M

M
ux

S
um

m
at

io
n

C
irc

ui
t

Figure 3-2: Data Path and Framework of SSF

 20

signal “valid” is set when “val” and “col” data are being imported. It is also used to control

the components: multiplier, adder, FIFO1, and FIFO2.

Suppose row i of a sub-matrix is being imported. The PE computes nzn values, one for

each nonzero for the row, and stores the resulting data into FIFO1. The summation circuit

adds the results from the PEs with the data in the result BRAM addressed by data read from

FIFO2. Note that the data in the result BRAM are from previous sub-matrices.

To maximally utilize the data input bandwidth, all the components in the PEs are

synchronized with the pipelined data by using the signal “valid”. Some intermediate signals

are produced to tell when the components have valid inputs and outputs. Most of these

signals can be produced by adding appropriate delays to the signal “valid”. For example,

the “input valid” signal for a multiplier is produced by adding one clock cycle delay to the

signal “valid”. The “write enable” signal for FIFO1 is set for one clock cycle when the

result for one row is accumulated. The “stall” signal is set if FIFO1 is close to full. When a

stall is issued, zeroes are inserted as inputs while the “valid” signal does not change. If a

row is being imported, the multipliers and accumulators operate on inserted zeros and will

have no affect on the results. Note that the data already in the pipelines of multipliers and

ACC circuits still need to be computed and stored into FIFO1. Therefore, FIFO1 needs to

have certain free space when a stall signal is issued. The size of the free space should be

bigger than half of the total pipeline stages of an adder and a multiplier.

The Result Controller checks the “empty” signal of all the FIFOs. If the FIFO is not empty,

the result will be read out and added to the corresponding value in Result BRAM. The row

Figure 3-3: Signals for Processing Elements (PEs)

 21

ID is read out at the same time as the data address. The purpose of using the adder is to sum

the results from all sub-matrices in the same stripe as explained in section 2.1. The result

BRAM will be read and cleared when all the sub-matrices in the same line (for example iA2)

are computed.

In the basic SSF design, it takes 7 clock cycles for the Result Controller to read from one

PE. The state diagram of the Result Controller is shown in Figure 3-4. The result of a row

is stored in FIFOs and read out by the Result Controller. A stall signal is issued when a

FIFO becomes full. To avoid the shared summation circuit becoming the bottle neck, its

operation time should be able to be overlapped by I/O or computation time. As discussed

later, multiple summation circuits can be used in parallel to increase the throughput.

The structure of our design on the Cray XD-1 is shown in Figure 3-5. The Matrix

Manager feeds the data to the SSF core. Sub-matrices and vectors are loaded to the QDR

memories on different blades. During the execution of applications, the host processor

sends the matrices/vectors addresses and the “start execution” request to the FPGA through

the RapidArray Transport (RT) interface IP core [16]. The host continues its execution after

it receives the acknowledge signal from the FPGAs. Each FPGA then starts to operate on

Figure 3-4: State Diagram of Result Controller

 22

its sub-matrices. The results are then written to QDR memories and a completion signal is

sent back to the processor node. When completion signals are received from all the

FPGAs, the host node retrieves the final matrix results.

3.1.4 Complete Design

Pipelined ACC Circuit

Pipelined floating point operators can be used to improve the frequency of our design.

However, the accumulator cannot be simply built as in the basic design because of read

after write data hazards. The dataflow for a 5-stage pipelined floating point adder is shown

in Figure 3-6. The hashed blocks are inserted zeros, which come when the valid signal is

zero (invalid). The second row shows the outputs of this circuit. There are three problems

in this circuit:

1. The output is not accumulated into one data as in the integer design. For example, the

first row has 6 numbers with a summation of 21. The circuit gives 5 outputs we should

use (2, 3, 4, 5, and 7).

2. The data is added to the output of previous rows. For example, 8, 9 and 10 are added

to 3, 4 and 7.

3. To solve the first problem, we can use 5 registers to store the last 5 outputs of each row.

However, these registers will have results from previous rows when the current row is

Figure 3-5: Structure on Cray XD1 FPGA [16]

 23

short. For example, if 5 registers are used to store the outputs from the second row, the

data should be captured when 13 (the correct output is 9) comes out. However, 5, 7 and

2 are also stored because the data stream to be accumulated is too short.

To solve the data hazards mentioned above, we design an ACC circuit with one pipelined

floating point adder. One of the inputs, (a), is connected to the output of multiplier and

works as the input for the ACC circuit. The last 5 outputs of the adder are stored in 5

registers to work as the output of the ACC circuit. The correct outputs from our design are

also in Figure 3-6, where the blocks in grey are data stored in registers. For example, 8 and

9 are stored in two registers as the output of 8 and 9 in the first line. The other 3 registers

have just zeros.

Adder Tree

For pipelined adders with L clock cycle latency, L outputs will be stored into FIFO1 to

add with the data in the result BRAM. One way to solve this problem is to add these L

outputs by an adder tree. Suppose L is equal to 4, we need to add 4 data from the FIFO

and 1 data from the result BRAM. For these 5 inputs, an adder tree with 3 levels and 4

adders are needed as shown in Figure 3-7. If the number of inputs is not a power of two,

shifters with latency L can be used in an adder tree to take the place of adders to save

resources.

For our design with double precision data, 12 outputs from the FIFO and 1 data from the

result BRAM need to be added. We use 12 floating point adders to build the adder tree,

which costs 25% of the total slices of a Xilinx XC2VP70 FPGA. The data flow of the adder

tree used in our design is shown in Figure 3-8.

Figure 3-6: Data Flow for Pipelined ACC Circuit

 24

Figure 3-7: Adder Tree Used for Pipelined Adders

Figure 3-8: Data Flow for Adder Tree

 25

In Figure 3-8, the rectangles represent data. The numbers in rectangles are the clock cycles

when that data is available. The dashed line is a FIFO with a latency of 24 clock cycles.

The final result comes out 48 clock cycles after the inputs are available, so it is very

important to capture the output at the right clock cycle. We input the row ID and write

enable signal to two shifters with depth of 48 at clock 0. They will come out with the result

at clock 48 to be used as the address and write enable signal for the result BRAM.

Reduced Summation Circuit

Because of the large adder tree, we propose a reduced summation circuit as shown in

Figure 3-9. The idea is to reduce the number of adders by importing just two data each

clock cycle. The data coming out first is stored in a buffer and computed with the next. By

inserting a certain number of buffers between the adders and taking advantage of the data

flow, we designed a summation circuit for this function without control logic. For our

double precision design, 4 adders and 7 buffers are used in total. 16 registers are used to

store the data from the FIFO, the result Block RAM, and 3 zeros to fill the pipeline for

correctness. This will be explained later in the data flow.

The data flow here is more complicated than in the adder tree, as shown in Figure 3-10.

The data in a row are added by the same adder in serial, while buffers are used to delay the

intermediate data for the appropriate time. For example, the datum on clock 12 should be

added to that on clock 13, so a buffer needs to be added before adder 1. We can see that the

data on clock cycle 18 does not have a counterpart for the addition operation. We pad with

zeros to obtain the correct sum. The shaded rectangles are inserted zeros. Figure 3-11

shows that the final result can be captured 55 clock cycles after the data is available in the

buffer. In our design, a “Write Enable” signal for the result BRAM is stored to a shifter

with length of 55 at clock 0. When the “Write Enable” comes out of the shifter, the final

result will also be ready.

 26

Figure 3-9: Reduced Summation Circuit

Figure 3-10: Data Flow for Summation Circuit

 27

The Result Controllers of these two circuits are very similar. Because of their long latency,

the Result Controller does not wait for the result and write to the result BRAM. Instead, we

insert the row ID and write enable signals to be written into shifters at clock cycle 0. If the

three outputs of these two circuits are connected to corresponding pins of the result BRAM,

the data should be written automatically.

The Result Controllers for the summation circuit and adder tree have just 5 states. However,

the summation circuit needs 8 clock cycles to compute 16 data for each PE, so the time on

each PE is 8 clock cycles. On the other hand, the adder tree can compute for each PE per

clock cycle, but is slowed down by the Result Controller. The Result Controller for the

adder tree can be further improved by adding control logic behind the FIFOs in each PE.

Table 3-1 compares the summation circuit and adder tree.

3.1.5 Implementation Results and Comparison

We implemented our SSF design by using Xilinx ISE and EDK 8.1 [18]. ModelSim and

Chipscope [18] are used for verification and debugging. For mathematic operations, we use

Xilinx IP cores which follow the IEEE 754 standard and that can also be customized [18].

Considering the limited size of the FPGAs, we use a summation circuit for the floating

point design. The BRAM size for ix , iy are 1024. The adders and multipliers are

Add Check
FIFO

Not EMPTY

Read
Row ID,

FIFO

Shift
PE

FIFO EMPTY

Idle

Summation Circuit Ready

Write
Buffer

/FIFO output available
/Result Bram Address Updated

Summation Circuit
not Ready

Figure 3-11: Result Controller for Summation Circuit

 28

provided by Xilinx [18]. To compare our results with previously reported designs [11], we

target the Xilinx XC2VP70-7, which is similar to the devices our platforms have. The

characteristics are summarized in Table 3-2.

The slice usage and the frequency of our design are dominated by the mathematic operators,

while the effect from control logic is almost negligible. If high speed floating point

operators are used, the speed of our design can be improved accordingly. Our design can

easily adapt to different data formats by simply replacing IP cores. The only change for the

control logic is the latency of operators and the interface width, which are defined as a

variable in the VHDL. Our design is deeply pipelined. Ignoring I/O bandwidth limitations

and communication overheads, two floating point or integer operations (one addition and

one multiplication) can be done per clock cycle by each PE.

Previously reported work describes an implementation that achieves 2340 MIPS at 28.57

MHz frequency by using 3 multipliers [19]. However, that design is for fixed point data.

The closest related work is [11], which develops an adder-tree-based design for double

precision floating point numbers. A reduction circuit is used in their design to sum up the

Table 3-1: Comparison of Adder Tree and Summation Circuit

Design Number of Adders Latency (clock cycles)

Adder Tree 12 48

Summation 4 55

Table 3-2: Characteristics of SSF on XC2VP70-7

Design 64 bit Integer Single FP Double FP

Achievable 175MHz 200MHz 165MHz

Slices 8282 (25%) 10528 (31%) 24129 (72%)

BRAMs 36 (10%) 50 (15%) 92 (28%)

MULT18X18 128 (39%) 32 (9%) 128 (39%)

 29

floating points. Because the frequency is mostly dependent on the floating point operations

for both designs, the achievable speed is similar in these two designs if the same

mathematical IP cores are used. When 8 multipliers are utilized, both designs achieve a

peak performance of 16 floating point operation per clock cycle. Table 3-3 compares our

design with the data reported in [11] when 8 multipliers are used for each. Their design

uses high performance floating point cores with clock latencies of 19 for the adder and 12

for the multiplier. The number of adders depends on the size of the reduction circuit, which

changes with different matrices. For the test matrices in [11], the size of reduction circuit is

7. Our approach accepts any input matrices with no hardware changes required. There is no

a priori analysis on the matrix or extra hardware initialization time needed for our design.

For the tree-based design [11], zeros need to be padded when the number of nonzero in a

row is not a multiple of the number of multipliers. To reduce the overhead caused by zero

padding, [11] uses a technique called merging. As the PE number increases, the tree based

design will face a choice between high overhead and complicated control logic [11]. Our

design scales very easily and without increased overheads.

3.1.6 Potential Improvements

Parallelism: Reducing Summation Circuit Latency

In our design, the summation circuit is shared by all the PEs to add the data from the FIFOs

and the result BRAM. When the design scales up, care must be taken that it will not

become the bottleneck of the whole pipeline. That is, the time the result adder uses to

Table 3-3: Double Floating Point Design Comparison with [11]

Design Design in [11] SSF

Frequency 160Mhz 160Mhz

Adders 7+7 (Reduction Circuit) 12

Multipliers 8 8

 30

transport data should be overlapped by communication or computation time. There are 3

Result Adder circuits discussed here: reduced summation circuit, adder tree, and a

one-clock-cycle latency adder, which take 8, 5, and 7 clock cycles to operate on each PE.

We analyze this problem by considering the reduced summation circuit because it takes the

most time. We compare the time the I/O and the summation circuit needs to transport data

when each PE has 1 row. For a design with 8 PEs, the time needed by the result adder to

transport data is 6488 =× clock cycles.

The communication time is decided by the I/O bandwidth and matrix sparsity. On the Cray

XD-1, the peak speed for the bus between FPGA chip and QDR II RAM is 1.6GB/s in each

direction [16]. Suppose the matrix sparsity is 1% and sub-matrix size is 1000 by 1000.

Then on average, there are 10 double precision floating point data (8 Bytes) for “val” and

10 integer pointer data (2 Bytes) for each “col”, that is 100 Bytes per row. Even assuming

the I/O bandwidth can be fully utilized with no other communication overheads, the

communication time for the double precision floating point design is at least

836.1/1658100 ≈×× GMHz clock cycles for a design with 8 engines. The overhead for 8

PEs needs extra 86.1/165810 =×× GMHz clock cycles and results in a total of 83+8=91

clock cycles.

If more PEs are implemented, the time spent by both the result adder and I/O operations

increases linearly. Therefore, the I/O is the bottleneck instead of the adder tree under the

conditions above. If the sub-matrix size increases, the time spent on I/O will increase

accordingly. Therefore, the summation circuit has less possibility to become the bottleneck.

If faster I/O is used, the time for I/O will be smaller and may not overlap the time for the

summation circuit. Multiple summation circuits can work in parallel to increase the

throughput until is the time on summation circuit can be overlapped by the communication

or computation time.

Using Mixed Data Format for SSF

Given that I/O time is the performance bottle neck, reducing data transfer time will

improve overall performance. We try to increase the performance of SSF by applying

 31

shorter data formats as much as possible. The potential impact on performance is explained

here by a simple example. Suppose 32-bit integers can provide sufficient resolution for the

matrices and vectors given. The output data could be bigger and 64 bit integers are needed.

Instead of using 64 bit data for both input and output data, we can use two different data

formats: 32 bits for input and 64 bits for the output. Table 3-4 shows a mixed data format

design has higher frequency, lower latency, and less I/O bandwidth and resources.

3.1.7 Performance

Performance Model for SSF Accelerator

In our design, the time for moving “val” and “col” into the FPGA is overlapped with the

computation time. When a sub-matrix is being computed, the multiplicand vector ix for

the next matrices can be loaded. The I/O time on ix (1≥i) can be overlapped, so it is not

counted here. The time for initialization and synchronization should also be counted, so the

total time spent by the SSF core is

overheadsyncinitIOcomp TTTTTT +++=),max((3-4)

Table 3-4: Comparison on 64 bit and 32/64 bit Mixed Integer SSF

Design 32/64 bit Mixed 64 bit

Achievable Frequency 183Mhz 175Mhz

Slices 3475 (10%) 8282 (25%)

BRAMs 20 (6%) 36 (10%)

MULT18X18 32 (9%) 128 (39%)

Multiplier Latency 4 cycles 6 cycles

I/O Bandwidth Requirement 8.8GB/s 14GB/s

 32

In equation (3-4), the real computational work only contributes compT to the total time. To

increase overall performance, we need to overlap the communication time and reduce the

initialization and synchronization time besides reducing compT .

compT is determined by the frequency and number of computational engines. We assume

F floating point operations are executed per second. The communication time is limited

by the host memory bandwidth and by the I/O bus speed. Suppose the bandwidth for each

I/O bus is IOB and that the matrix A and vector y are transported by separate I/O buses. To

compute a nonzero element, both its value and pointer have to be moved into FPGA. The

time spent on the FPGA accelerator is thus

overheadsyninit
IO

nz TTT
B

datawidthcoldatawidthvaln
F
n

T nz +++
+×

=)
)(

,
2

max(
**

 (3-5)

Where *
nzn is the total number of nonzero elements for all sub-matrices assigned to a

FPGA accelerator.

To minimize equation (3-4) and (3-5), we have discussed several approaches to accelerate

the computation: increasing the frequency and number of PEs to improve F ; optimizing

the matrix mapping to reduce I/O operations; making the design general to all different

matrices so no hardware initialization or preparation on inputs is required; designing a

simple interface which only needs a start signal and matrix/vector address; and not

requiring any participation of the host during the computation.

We still need to discuss the block RAM size. The effect from the block size of ix is a

double edged sword. The overheads in our design mainly come from the one clock cycle

control signal between rows. Therefore increasing the block size of ix reduces the ratio of

overheads by having more nonzero elements in each row. However, it also results in a

longer initialization time for loading 0x . The result BRAM size determines the number of

rows of sub-matrices, which affects the number of nonzero elements of sub-matrices.

 33

Under certain sparsity, the I/O time to move sub vectors jx can be overlapped with a big

enough result BRAM size.

For very larges matrices, many sub-matrices will be assigned to a FPGA. initT in our

design comes from loading ox and can be ignored in that case. The synchronization time

with hosts is also just a function call, so we can also neglect syncT for simplicity. For the

double precision design, the data width is 8 Bytes. Because of the limited size of sub

matrices, the pointer width is 2 Bytes. So equation (3-5) becomes:

)
10

,
2

max(
**

B
n

F
n

T nznz< (3-6)

If unlimited resources are assumed, F is also infinite. Then the achievable MFLOPS

performance is limited by B.

5/
/10

22
B

Bn
n

T
n

MFLOPS
z

zz =<= (3-7)

The floating point operations F take advantage of both the frequency and capacity of

FPGAs and result in 4 times improvement every two years [6]. However to build a

balanced system, the number of PEs is limited not just by chip capacity but also I/O

bandwidth. For double precision floating point as discussed before, the maximum number

of PEs that can be supported by the I/O bandwidth is a function of the I/O bandwidth B and

the frequency fFPGA:

Number of PE
FPGAFPGA f
B

f
B

102
5/

=≤ (3-8)

Equation (3-8) shows that the number of PEs required for a computation system is

constrained I/O bandwidth. If the I/O bandwidth of a system is 1GB/s and SSF runs at 100

MHz, only 1 PE is required to achieve the best performance.

 34

Comparison with Previous Work

To the best of our knowledge, the work in [11] reports the highest previous performance

for SpMxV on FPGAs. Given the same size design as shown in Table 3-2, we have similar

peak performance and I/O requirements. However, our design does not need to change the

hardware for different matrices, so the initialization and synchronization time is shorter.

We also do not suffer from either high overheads or very complicated control logic when

the system scales. For large matrices, the results from the design [11] are just for

sub-matrices and need to be summed up for the final result. Our design allows storing the

immediate result in the FPGA and computes the final result without this additional I/O

operation requirement.

Comparison with Microprocessors

In our design, the overhead mainly comes from the one clock cycle between continuous

rows. The number of these overhead clock cycles is decided by the total number of

sub-rows. The initialization time is for preloading sub vector 0X . Both of these overheads

can be found precisely in simulation. The synchronization time is affected by the interface

and API between host and FPGA chip. Our design needs a few synchronization signals,

such as “start”, “complete” and “start addresses” of the matrices/vectors. The

synchronization time is neglected at this point. We test our design on matrices from

different fields as shown in Table 3-5. All these matrices come from Tim Davis’ Matrix

Collection [21]. They are roughly ordered by increasing irregularity. The percentage of

overheads in the test matrices is shown in Figure 3-12.

We compare the performance of our design with microprocessors. Our design utilizes 8

PEs at 165 MHz frequency. The required memory bandwidth is 13.2 GB/s, which can be

provided by current technology. For example, BenBLUE-V4 provides 16GB/s memory

bandwidth [28]. We take a conservative performance estimation by deducting 40% off the

peak performance for control overhead of the high speed memory interface [6], [11]. The

achievable percentage of performance is shown in Figure 3-13.

 35

Table 3-5: Test Matrices [21]

ID Matrix Area Size (N) Nonzeros (Nnz) Sparsity (%)

1 Crystk02 FEM Crystal 13965 968583 0.5

2 Crystk03 FEM Crystal 24695 1751178 0.29

3 Stat96v1 linear programming 5995 x 197472 588798 0.05

4 nasasrb Structure analysis 54870 2677324 0.09

5 raefsky4 Buckling problem 19779 1328611 0.34

6 Ex11 3D steady flow 16614 1096948 0.4

7 rim FEM fluid mechanics 22560 1014951 0.2

8 goodwin FEM fluid mechanics 7320 324784 0.61

9 dbic1 linear programming 43200 x 226317 1081843 0.01

10 Rail4284 Railways 4284 × 1092610 11279748 0.24

 36

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

1 2 3 4 5 6 7 8 9 10
Test Matrices

O
ve

rh
ea

d
P

er
ce

nt
ag

e

Figure 3-12: Overhead Percentage

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

1 2 3 4 5 6 7 8 9 10
Test Matrices

P
er

ce
nt

ag
e

of
 A

ch
ie

va
bl

e
P

er
fo

rm
an

ce

Figure 3-13: Percentage of Achievable Performance

 37

To test the software performance on a microprocessor, we use OSKI, which has achieved

significant speedups by using techniques such as register and cache blocking [20]. The

machine is a dual 2.8GHz Intel Pentium 4 with 16KB L1, 512KB L2 Cache and 1GB

memory.

The speedup of our design over the 2.8 GHz Pentium 4 is shown in Figure 3-14. Our

design performs better than the Pentium 4 on matrices with irregular sparsity structures.

This is because the overhead of our design depends on the number of nonzero elements per

row of sub-matrices but is not affected by their sparsity structure.

The high performance of our SSF design relies in the reduced overhead, deep pipeline, and

a parallel architecture. First, SSF fully controls data required for computations and

therefore avoids the high penalty of cache misses in traditional CPUs. Second, SSF uses a

deeply pipelined architecture and maximally reduce idle pipeline stages. Third, multiple

PEs are implemented in SSF to achieve parallelism.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10
Test Matrices

Sp
ee

up
 o

ve
r P

4
2.

8
G

Hz

Figure 3-14: Speed Up of Our Design over 2.8 GHz Pentium 4

 38

3.2 Matrix Factorization

3.2.1 LU Decomposition Design on FPGAs

LU decomposition is a widely used matrix factorization algorithm. It transforms a square

matrix A into a lower triangular matrix L and an upper matrix U with A=LU. The elements

of A, L, and U can be denoted as yxa , , yxl , , and yxu , , respectively. As shown in the

following steps, the Dolittle algorithm for LU does the elimination column by column from

left to right. It results in a unit lower triangular matrix and an upper triangular matrix which

can use the storage of the original matrix A [15]. This algorithm requires 32 3 / n floating

point operations.

Step 1: Column Normalization. The elements 0,xa in the first column below the

diagonal element 0,0a are divided by 0,0a .

Step 2: Sub-matrix Modification. The product of 0,xl and the row vector xa ,0 (also

xu ,0), is computed and subtracted from each row of the sub-matrix yxa , , where

(1,1 −≤≤ nyx).

Step 3: Steps 1 and 2 are recursively applied to the new sub-matrix generated in step 2.

During the thk iteration, kxl , and yku , (1,1 −≤≤+ nyxk) are generated. The iterations

stop when 1−= nk .

When matrix A is not positive definite, columns could be divided by a small number or

even zeros, and cause inaccuracy. To avoid this problem, partial pivoting is applied to swap

columns in sub-matrices. We first assume matrix A is positive definite and no pivoting is

needed to compare to current LU design on FPGAs. Partial pivoting will be discussed in

the next section.

 39

As shown in Figure 3-15, our design mainly consists of a divider, a column buffer, and p

PEs. In each PE there is a multiplier, an adder, and local memory. The maximum number

of PEs and their local memory size are limited by available resources of the FPGA chip.

The process to complete LU decomposition by our design has 4 stages: matrix input,

column normalization, sub-matrix modification, and completion. As shown in the LU

algorithm, stage 2 “column normalization” and 3 “sub-matrix modification” are executed

iteratively until the sub-matrix becomes a scalar. To fully fill the deep pipelines of floating

point units, a streaming architecture is used. Initially matrix A is stored in the PEs’ local

memory. In each stage, data flow out of the memory, through the arithmetic engines for

computation, and finally return back to the memory. According to the LU decomposition

algorithm, the data path configurations are different for different stages. To maximally

reuse these expensive floating point units and memory, high speed switches are used to

change the connection between these components for different stages.

At the “matrix read stage”, the input data and address ports of the PE local memory are

connected to the PEs’ local memory input ports. These local memories appear to the host as

a big memory block by address mapping. The matrix is striped to PEs by columns with

Figure 3-15: Base Diagram for Direct LU Decomposition

 40

column jpn +/ stored in PE j as shown in Figure 3-17. Because the sub-matrices

become smaller and smaller in the iterative stages, such a storage format ensures that the

sub-matrices are evenly distributed among the PEs for parallel computation. Without loss

of generality, we assume the matrix size is an integer multiple of PE number.

During the “column normalization” stage, the column “ 0col ” flows out of its local PE

storage, through the divider, to compute 0,00, / aak (10 −≤< nk). The computed results

0l are stored in the column buffer and the appropriate PE’s local memory at the same time.

In the “sub-matrix modification” stage, yxyx ala ,00,, − needs to be computed for

1,1 −≤≤ nyx . The data flow configuration inside a PE is shown in Figure 3-18. 0l flows

out of column buffer and trough all the multipliers in the PEs simultaneously. At the same

time, its address flows through the PEs’ local memory to address yxa , and yoa , by

Figure 3-16: LU Design Operation Stages

0 1 2 3 4 0 1 2 3 4

Figure 3-17: Matrix Mapping on FPGAs

 41

inserting proper delays. All PEs perform sub-matrix update simultaneously in this stage. In

each clock cycle, one floating point addition and multiplication are executed for each PE.

Because multiple columns are stored in one PE, column 0l should also circulate multiple

times until all the columns are updated.

Design analysis: If the few overheads due to the control flow are not counted, the proposed

design completes LU decomposition in approximately pn 3/3 . Just n words are needed for

the storage besides the original matrix’s own space.

Proof: In iteration k (10 −<≤ nk), the sub-matrix size is n-k. The clock cycles needed by

the divider to compute xkl , (1−<≤ nxk) is)1(−− kn , while that for multiplication and

subtraction is 2)1(2 −− kn . So the total divider operation is ∑ −=−
=

1
1 2/)1(n

x nnx and that

for multiplication and subtraction is 21
1

32 3/22 nnxn
x −∑ =−
= . Because the multiplication

and subtraction are overlapped and computed by p PEs in parallel, so the total time is

pnpnnnn 3/2/)3/2(2/)1(323 ≈−+− . The addition and multiplication floating point

Figure 3-18: PE Data Flow Configuration at Sub-matrix Modification Stage

 42

operations for LU decomposition are in order of O(2n3/3). More accurate execution time

analysis for LU decomposition is discussed in chapter 6.

3.2.2 Pivoting

When zeroes exist on sub-matrix diagonals, elements will be divided by zeros in the LU

decomposition algorithm discussed above. At the same time because computers have to use

certain precisions, relatively small values on sub-matrix diagonals will possibly cause big

accumulated numeral errors [81]. Pivoting is a process performed on a matrix to increase

numerical stability. The element 0,0a used in “column normalization” stage is called a

pivot element. The row having the pivot element is called the pivot row. There are

numerous pivoting methods discussed in the literature. We list some of them here to give a

general idea.

(1) Trivial Pivoting. The trivial pivoting strategy is as follows. Locate the first row j below

0 in which 00, ≠ja and then switch rows j and 0. This will result in a new element

00,0 ≠a , which is a nonzero pivot element.

(2) Partial Pivoting. The partial pivoting strategy is as follows. If 00,0 =a , locate row j

(j>0) that has the maximum absolute value in column 0 and then switch rows j and 0. This

will result in a new element 00,0 ≠a , which is a relatively big pivot element. In partial

pivoting, only row permutations are employed. The strategy is to switch the largest entry in

the pivot column to the diagonal.

(3) Total Pivoting. The total pivoting strategy is as follows. Locate row j (j>0) and

column k (k>0) where element jia , has the biggest absolute value. Then first switch rows

0 and j and second switch column 0 and k. This will result in a new pivot

element 00,0 ≠a . This is also called “complete pivoting” or “maximal pivoting.” Here both

row and column permutations are permitted. The strategy is to switch the largest entry in

the part of the matrix that we have not yet progressed to the diagonal.

 43

Compared to other strategies, partial pivoting effectively reduces numerical errors without

large computational overheads. Therefore it is employed in the hardware design here. As

shown in Figure 3-19, pivoting is performed after a new matrix is imported or each time

when a sub-matrix is completely updated. A column normalization operation is executed

after pivoting to avoid dividing column 0 by zeroes or relatively small numbers.

The system diagram with partial pivoting is shown in Figure 3-20. During the “pivoting”

stage, the first sub-matrix column is streamed out from the PEs to the pivoting arbiter,

which compares the pivot element with other values in this column. If the pivot element is

the biggest value in the column, no pivoting is required. Therefore the state machine

transfers to the next stage “column normalization” directly. If the pivoting arbiter finds a

value in column 0 bigger than the pivot element, a pivoting operation has to be performed.

The biggest element in column 0 is the new pivot element, while the row that has the new

pivot element will be the new pivot row. Because matrix A is stored in the PEs’ local

Figure 3-19: LU Design Operation Stages with pivoting

R
ow

 b
uf

fe
r

P
iv

ot
in

g
Ar

bi
te

r

Figure 3-20: Base Diagram for Direct LU Decomposition with pivoting

 44

memories by column, a row of matrix A is distributed in all PEs. The values in the old and

new pivot row are exchanged in all PEs simultaneously. The pivoting buffer is used to

temperately store the old pivot row when exchanging two rows.

3.2.3 Implementation Results

We implement the LU design on Xilinx FPGA XC2VP50-7 FPGA, which is used on the

Cray-XD1 supercomputer as an application accelerator. Table 3-6 and Table 3-7 give

implementation results with and without pivoting, respectively. When the same number of

PEs and same size of maximum matrix size are implemented for double and single

precision, the latter costs less than half of the slices, BRAMs, and embedded 18x18

multipliers. By using a similar number of total slices, a Xilinx XC2VP50 FPGA can

accommodate 8 PEs for double, 16 PEs for s31e8, and 32 PEs for s16e7. At this case,

s31e8 and s16e7 can hold larger matrix sizes than double precision. The achievable

frequencies are tested from a Cray-XD1 supercomputer. The specific design for the

Cray-XD1 and execution time performance will be discussed in Chapter 5.

3.3 Hybrid Direct Solver
LU decomposition is widely used for direct solution of linear systems. Suppose matrix A is

factored to a lower triangular matrix L and upper triangular matrix U. The linear system

becomes bLUx = . It is equivalent to solve two linear equations bLy = and yUx = .

Since L and U are triangular matrices, y and x can further be solved by forward and

backward substitutions.

 45

Table 3-6: LU Decomposition Implementation with Pivoting on XC2VP50-7

Design Double (s52e11) Single (s23e8) s31e8 s16e7

Number of PEs 8 8 16 32

Maximum size 128 128* 128 256

Achievable Frequency 120MHz 135MHz 130MHz 140MHz

Slices 21044 (89%) 9091 (38%) 20356 (86%) 20907 (88%)

BRAMs 84 (36%) 42 (18%) 84 (36%) 130 (56%)

MULT18X18 128 (55%) 32 (13%) 64 (27%) 32(13%)

• A larger matrix size can be accommodated

 46

Table 3-7: LU Decomposition Implementation without Pivoting on XC2VP50-7

Design Double (s52e11) Single (s23e8) s31e8 s16e7

Number of PEs 8 8 16 32

Maximum size 128 128* 256 256

Achievable Frequency 120MHz 135MHz 130MHz 140MHz

Slices 20422(86%) 7737 (32%) 19070(80%) 19575(82%)

BRAMs 68 (29%) 34 (14%) 148 (63%) 97(41%)

MULT18X18 128 (55%) 32 (13%) 64 (27%) 32(13%)

• A larger matrix size can be accommodated

 47

1,1
2

0 ,111

1,100,111

0,000

/)(

/)(
/

−−
−

= −−− ∑−=

−=

=

nn
n

j jjnnn lylby

lylby
lby

L
 (3-9)

0,0
1

1 ,000

2,211,222

1,111

/)(

/)(
/

uxuyx

uxuyx
uyx

nj jj

nnnnnn

nnnn

∑ −=

−−−−−−

−−−−

−=

−=

=

L

-n
 (3-10)

Equations (3-9) and (3-10) could be implemented on FPGAs, but complicated control logic

is required to achieve fine parallelism. Furthermore, the division operation of each iteration

cannot be parallelized and also requires an expensive floating point divider. On the other

hand, the computational complexity for equations (3-9) and (3-10) is)(2nO , while that for

the LU decomposition is)(3nO . Therefore, we propose to explore LU decomposition on

FPGAs but leave the forward and backward substitutions on the CPU as shown in Figure

3-21.

3.4 Conclusion
The first design for our RBLAS library is an innovative SpMxV FPGA design with overall

system performance addressed. First, we introduce an improvement for traditional BCRS,

which results in lower I/O requirements and less overhead. Secondly, we propose an

Figure 3-21: A Hybrid Structure for Direct Solver

 48

efficient multiplication accumulation circuit for pipelined floating points by taking

advantage of the data flow. Compared to previous work, our design has higher peak

performance, lower memory requirements, better scalability, and does not need to

reconfigure hardware for different matrices.

The second design is an LU decomposer on FPGAs. To maximally utilize the floating point

units, flexible interconnections are implemented by using high speed switches. During each

stage, the data is streamed out of memory and then through floating point units. The results

are computed and flowed back to the memory. For non positive definite matrices, the LU

algorithm requires partial pivoting which involves complicated control logic design. This is

the first HDL design implementing partial pivoting architecture for LU decomposition on

FPGAs.

Based on the LU design, we propose a hybrid structure for a direct solver. The LU

decomposition has a computation complexity of)(3nO , so it is mapped to FPGAs for

fined parallel computation. The forward and backward substitutions have just)(2nO

computational complexity but require expensive floating point units and complicated

control logic, so are left in the CPU.

 49

4 Mixed-Precision Linear Solver on FPGAs

Floating point linear equation solvers are widely used in scientific computations such as the

finite element method (FEM) and partial differential equation solvers. For the purpose of

algorithm convergence and accuracy, a double precision data format is often used in

software codes for these algorithms. Recently research has targeted to accelerating these

applications on FPGAs and achieved promising results. To achieve speedup via parallelism,

FPGA designs require multiple floating point units to be implemented. However due to

their very high resource cost, current FPGAs can only accommodate a very limited number

of double precision floating point units.

Shorter formats on FPGAs usually result in higher frequency and lower resource

consumption. Meanwhile using smaller data sizes also helps to reduce the bus traffic.

Therefore, it makes a lot of sense to use shorter and shorter formats for higher performance

when the accuracy allows. For example, fixed point data are widely used in digital signal

processing to take the place of floating point units. The problem for these approaches is that

the accuracy is usually decreased. Therefore, analysis must be performed to guarantee that

the lower-precision data format is accurate enough for certain applications. We propose to

explore mixed-precision data algorithms on FPGAs, which can achieve higher performance

by adopting lower-precision data formats without losing accuracy [14].

4.1 Mixed-Precision Algorithm for Direct Solver

4.1.1 Iterative Refinement

Suppose matrix A can be factorized as LUPA = with partial pivoting, where L is a

lower triangular matrix, U is an upper triangular matrix, and P is a permutation matrix

used for pivoting. The direct solver with iterative refinement is shown in Figure 4-1, where

refinement loops are taken to improve the accuracy based on the available solution.

Demmel pointed out that the iterative refinement process is similar to Newton’s method

 50

applied to f(x) = b - Ax. If all the computations were done exactly, it would be done in one

step [42].

The idea of this mixed-precision algorithm is that the factoring PA=LU, and the triangular

solver PbLUx = are computed in lower-precision; while the residual and updating of the

solution will be computed in higher-precision. This approach was analyzed by Wilkinson

[46] and Moler [47], who showed that this algorithm produces a computed solution correct

to the working precision, provided matrix A is not too ill–conditioned. Demmel [48]

pointed out that the behavior of the method depends strongly on the accuracy with which

the residual is computed.

The potential performance gain of using the mixed-precision algorithm lies in that the

computation on factorization is)(3nO and dominates the runtime of the algorithm in

Figure 4-1. The other steps, including triangular solver, residual computation, and the

solution update, are just)(2nO . Furthermore, shorter data formats usually reduce the

memory bandwidth requirement.

4.1.2 Error Analysis

Previous work addressed error analysis of iterative refinement techniques. Higham derived

error bounds for fixed precision iterative refinement [82]. For single/double

mixed-precision iterative refinement executing the refinement in double precision

arithmetic, [82] gives error bounds in single precision. Stewart gives an error analysis of

Factorize A to LU: PA=LU.
Sove LUx=Pb
while (r is too big & maximum loop not reached)

r=b-Ax
Solve Ly=Pr
Solve Uz=y
x=x+z

end

Figure 4-1: Direct Solver with Iterative Refinement

 51

iterative refinement [49]. Langou et al derived the results from [49] and give error bounds

in double precision for a single/double mixed-precision algorithm with iterative refinement

performed in double precision arithmetic [14]. The result in [14] reveals that a

mixed-precision algorithm can achieve the same accuracy as with higher-precision,

provided that the matrix is not too badly conditioned.

Data formats utilized in our design are much more flexible than single and double precision,

so we extend the results of [14] for iterative refinement methods performed in general

high/low mixed-precision arithmetic. We consider mixed-precision iterative refinement

algorithms in Figure 2-1 which execute steps 3 and 5 in higher-precision εhigh but the other

steps in lower-precision εlow. If the matrix A is not too-ill conditioned with respect to the

lower-precision arithmetic, that is ψk(n)κ(A) εlow<1, from the results in [14], we have

B
k

k
B

k

k

xA
Axb

xA
Axb

βα +
⋅

−
⋅≤

⋅

−

+

+

1

1 (4-1)

where αB and βB are of the form,

lowBB An εκψα)()(= (4-2)

and

highBB n ερβ)(= (4-3)

ψk(n), ψB(n) and ρB(A) are small functions of n explicitly defined in [14]. αB is depends on

κ(A) and εlow, which are the condition number of the matrix A and the implemented

lower-precision. αB indicates the convergence rate. βB depends on the higher-precision used

εhigh, and determines the limiting accuracy of the algorithm. At convergence, the following

exists:

 52

high
lowB

B

BB
k

k

k

An
n

xA
Axb

ε
εκψ

ρ

αβ

)()(1
)(

)1(lim 1

−
=

−=
⋅

− −

∞→
 (4-4)

This indicates that the same normwise accuracy is achieved for the mixed-precision

algorithm as for the higher-precision.

4.2 Performance on FPGAs
Given the fact that FPGAs have much more flexible data formats than traditional

processors, it is valuable to find out the data formats optimal for both accuracy and

performance. More specifically, simpler and shorter data formats help to increase the

frequency and reduce resource cost and bus bandwidth requirements. On the other hand,

using lower-precision for LU factorization might require more refinement iterations and

may even fail to converge. As an example, we test the convergence and iteration loops of a

mixed-precision direct solver using double precision (s52e11) and a customized format

(s16e8). The refinement stops either when the solver achieves the accuracy of the double

precision algorithm or there are more than 30 iterations. The latter is considered to be a

failure of convergence. Table 4-1 shows the results tested on 100 random matrices. When

the problem size increases, we observe that more iteration loops are required. Note that for

large problems, the refinement takes a very small percentage ()(/)(32 nOnO) of the overall

time, so a small increase in the number of iterations will have little performance impact. In

Table 4-2, we tested the number of iterations required for different data formats for same

matrices shown in Table 4-1. The data precision is decided by the mantissa, so the

exponent is not listed in Table 4-2. The number of iterations increases from right to left and

from top to bottom, with convergence failures at the lower left.

 53

Table 4-1: Average Refinement Iterations for a Customized Format (s15e7)

Problem size (n) Average condition number Average iterations Variance

128 913 4 0.24

256 1818 5.1 0.48

512 4017 6.1 3.36

1024 6196 6.3 5.16

2048 9407 9.3 12.21

4096 22425 13.3 22.6

Table 4-2: Average Refinement Iterations for Different Data Formats

Mantissa Bits

Problem Size
12 16 23 31 48 52

128 8.9 4 2 1 1 0

256 11.1 5.1 2.1 1 1 0

512 19.7 6.1 2.5 1 1 0

1024 28 6.3 2.6 1 1 0

2048 - 9.3 3 1.3 1 0

4096 - 13.3 3.1 1.43 1 0

 54

Modern FPGAs utilize embedded circuits for higher performance. One example is the

embedded DSP48 blocks in the Xilinx Virtex 4 FPGA families. Because each DSP48 can

be configured as an 18 by 18 multiplier (including sign bit), data formats wider than 18 bits

require multiple embedded units. Therefore, designs using embedded multipliers might

result in significant resource savings by selecting suitable data formats, such as those

highlighted in Table 4-3. All frequency reports here come from Xilinx place and route tools,

with the Place and Route Effort Level high. If we assume all the DSP48s are configured as

multipliers, the GFLOPs performance can be computed by multiplying the number of

multipliers available and the frequency. Table 4-4 and Table 4-5 show the characteristics of

implementing one multiplier or one adder by using slices. To compute the FPGA GFLOPs

performance for adders and multipliers, we assume only 70% of the slices can be

configured as multipliers or adders, the rest are used for other circuits and routing. This is a

reasonable assumption according to previous linear algebra designs on FPGAs [27].

We find that the FPGA GFLOPs performance increases significantly by using shorter data

formats. One reason is that shorter data formats reduce the resource cost and therefore more

floating point operators can be implemented. At the same time, shorter formats reduce the

memory space and bus bandwidth. This is crucial to linear algebra applications, which

usually require frequent data movements. Finally, using shorter formats also reduces the

latency of floating operators, which is also an important factor for the performance of linear

algebra design.

4.3 A Reconfigurable Mixed-Precision Direct Solver
The direct solver we proposed can be used for the mixed-precision algorithm as shown in

Figure 4-2. A lower-precision version of the matrix A is moved from the CPU main

memory to the FPGA for LU decomposition. The CPU computes the solution using

lower-precision LU matrices but computes the residual and updates the solution in

higher-precision.

 55

Table 4-3: Characteristics of a Multiplier on XC4LX160-10 (Using DSP48s)

Data Formats DSP48s Frequency (MHz) Latency GFLOPs

s52e11 (double) 16/96 237 21 1.42

s51e11 16/96 238 21 1.43

s50e11 9/96 245 19 2.61

s34e8 9/96 289 14 3.08

s33e8 4/96 292 9 7.01

s23e8 (single) 4/96 339 9 8.14

s17e8 4/96 370 9 8.88

s16e8 1/96 331 6 31.78

s16e7 1/96 352 6 33.79

s13e7 1/96 336 6 32.26

 56

Table 4-4: Characteristics of a Multiplier on XC4LX160-10 (Using slices)

Data Formats Slices Frequency (MHz) Latency GFLOPs

s52e11 (double) 1392/67584 184 9 6.25

s51e11 1368/67584 184 9 6.36

s50e11 1326/67584 191 9 6.81

s34e8 656/67584 199 8 14.35

s33e8 644/67584 207 8 15.21

s23e8 (single) 388/67584 286 8 34.87

s17e8 274/67584 265 7 45.75

s16e8 237/67584 283 7 56.49

s16e7 233/67584 257 7 52.18

s13e7 185/67584 343 7 87.71

 57

Table 4-5: Characteristics of an Adder on XC4LX160-10

Data Formats Slices Frequency (MHz) Latency GFLOPs

s52e11 (double) 778/67584 235 12 14.29

s51e11 772/67584 239 12 14.65

s50e11 754/67584 245 12 15.37

s34e8 531/67584 278 12 24.77

s33e8 510/67584 268 12 24.86

s23e8 (single) 380/67584 287 11 35.73

s17e8 314/67584 278 11 41.88

s16e8 301/67584 309 11 48.57

s16e7 293/67584 266 11 42.95

s13e7 244/67584 287 10 55.65

 58

4.4 Performance Summary
The execution time of our design in Figure 4-2 consists of four parts: the time for the LU

decomposition, iterative refinement, forward/backward triangular solver, and

communication. As we discussed before, the clock cycles required for our LU design is

pn 3/3 , where p is the number of PEs. The frequency f of the LU decomposition design

depends heavily on the data formats. The communication time is associated by the data

movements between the FPGA and the CPU main memory, so it is determined by the

matrix size (2n), data width (w), and bus bandwidth (busB). Finally, the time for iterative

refinement depends on the number of iterations (refI) and the time for each loop (refT). So

the total time can be described as:

refreftri
bus

refinementtricommLUmixed

TITw
B

n
pf

n
TTTTT

+++=

+++=
22 2

3
 (4-5)

Using a smaller data format could significantly increase the number of PEs and the

frequency and reduce the data width, so the first two terms will be greatly decreased. On

the other hand, the number of refinement iterations would likely increase as shown in Table

4-2. Because refT is relatively small, the impact from the third term is dominated by the

first two terms. The computation for the triangular solver is O(n2) which is much less than

Figure 4-2: Structure for Mixed-Precision Direct Solver

 59

for the LU decomposition. The architecture for this mixed-precision solver on the

Cray-XD1 supercomputer will be introduced in Chapter 5.

 60

5 Design on Cray XD1

This chapter describes the implementation our hybrid direct solver on the Cray-XD1

supercomputer which utilize FPGAs as application processors. First, we introduce a general

architecture and development background for the Cray-XD1 supercomputer. Second, both

hardware and software implementations of our hybrid direct solver on the Cray-XD1

supercomputer are introduced. The performance of the hybrid solver is also tested and

compared to CPUs.

5.1 CRAY XD1 Introduction

5.1.1 Architecture Overview

The Cray XD-1 supercomputer incorporates reconfigurable computing devices as

accelerators to deliver significant speedup of targeted applications [16]. The basic

architectural unit of the Cray XD1 system is the Cray XD1 chassis, which can contain one

to six compute blades. Each compute blade includes two 64-bit AMD Opteron processors

configured as a two-way symmetric multiprocessor (SMP) that runs Linux. 1 to 8 GB DDR

can be assigned to each compute processor. FPGAs can be adopted as coprocessors by

adding an expansion module on the compute blade. Processors, FPGAs, and memory

within a chassis and between chasses are linked by a high-speed switch fabric called the

RapidArray interconnect. Besides the main memory, each FPGA module contains four

QDR II SRAMs as high-speed storage. The programmable clock enables the user to set the

speed of the FPGAs [50]. The Cray XD1 machine at ORNL (Tiger) has 12 chasses

containing 144 Opteron processors and 6 Xilinx XC2VP50-7 FPGAs .

5.1.2 RapidArray Interconnect

The high-bandwidth, low-latency RapidArray interconnect is the central organizing

construct of the Cray XD1, which enables the system to avoid bus bottlenecks and

shared-resource contention. The Cray RapidArray Transport (RT) core provides the

 61

RapidArray fabric interface to an FPGA design. To facilitate different applications, the RT

core has two interfaces: fabric request and user request. The fabric request interface issues

read/write requests from the rest of the Cray system to the user logic, while conversely the

user request processes requests from the user logic. Currently the Cray XD1 only supports

access to the local processor. The RT interface provides a 64-bit interface at a maximum

speed of 200 MHz, which yields a bandwidth of 1.6GB/sec for simultaneous transmit and

receive. For applications with heavy data movement, the RT core provides data bursts,

which can be up to 64 bytes per request [50], [51].

The FPGA is accessible via a 128 MB region of the HyperTransport I/O address space.

Any HyperTransport read/write from the SMP to this region is directed to the RT interface

of the FPGA which passes them on to the user logic. The Cray XD1 provides API

functions for processors to communicate with FPGA applications. More specifically, it

supports both SMP-initiated requests and FPGA-initiated requests. The SMP can initiate

requests in two ways: I/O mapped access and read/write functions. The main difference lies

in that the I/O mapped access takes advantage of “write combining”, which improves the

performance of write accesses from the SMP to the FPGA by combining multiple write

accesses into a single HyperTransport packet [50].

5.1.3 HDL Development Flow

The Cray XD1 uses standard development processes and tools for FPGA development.

FPGA IP cores are used to provide the interface between user applications and Cray

System. As mentioned before, the RT core provides the interface between user application

and the RapidArray, while the QDR core is used for connecting the user application and the

QDR II SRAMs. These IP cores need to be integrated with the user design during the

FPGA implementation process. The binary file from place and route needs to be converted

to a Cray-proprietary format file by adding frequency and other information before

downloading to the FPGAs. A typical application on the Cray XD1 is illustrated in Figure

5-1. The top-level VHDL file contains several logic components: user application, RT core,

QDR core, and a user-programmable clock generator.

 62

5.2 Hybrid Direct Solver on Cray XD1

5.2.1 Hardware Architecture

As shown in Figure 5-2, the hybrid solver top level architecture consists of the RT Client,

Register Interface, and LU Interface block. QDR memory is not used in this application, so

QDR core is disabled to save resources and power. The RT Core is a standard IP block

provided by Cray to enable communication with other devices over the RapidArray fabric.

The Register Interface block provides a set of readable and writeable interface registers,

which are used to communicate between host and LU decomposition kernels. The LU

Interface block contains all function units for LU decomposition. The LU Interface block

appears to the host processor as a large block of memory. Appropriate internal BRAMs are

mapped to the User Interface ports by internal control logic according to different operation

stages. For example, all PEs’ local BRAMs are combined as a big memory block when the

matrix is transported from main memory to the FPGA local memory. Addresses of PEs are

properly arranged so that the input matrix is mapped into all PEs by columns as shown in

Figure 3-17. The Decoder block in the LU Interface is used to interpret signals between the

Register Interface and LU Interface.

Figure 5-1: Cray XD1 FPGA Organization [50]

 63

For our direct solver design, the original matrices are located in the processor main

memory. The complete matrix is moved into the FPGA for LU decomposition and then

moved back to the main memory after the required operations are completed.

5.2.2 System Hierarchy

The hybrid solver is co-designed in C and VHDL. C is used for the host programs, while

VHDL configures the hardware for the FPGA accelerator. The Cray FPGA API library is

utilized to communicate between the C program and FPGA kernel. The file hierarchy is

shown in Figure 5-3. The top level of the software program is a hybrid solver, which has

LU decomposition and forward/backward solvers in double precision. When a matrix is

assigned to the FPGA accelerator, the hybrid solver calls FPGA interface functions to

communicate with the FPGA hardware. Test matrices are stored in separate files and can be

loaded by the hybrid solver’s I/O functions. The software also provides functions to record

matrix solver and performance analysis results such a number of iterations or execution

time.

The final binary file to configure the FPGA accelerator is “top.bin.ufp”, which combines

the FPGA configure file “top.bin” and Cray configuration file “ufphdr”. The file “ufphdr”

provides Cray Part Number and FPGA frequency information. The top level logic design is

in “user_app.vhd”which includes several components: LU Interface, Register Interface,

LU decomposition on FPGA

Register interface
reg

reg
decoder reg

LU interface
LU decomposer

address

RT client

access state Resp

Req

wren

Application on CPU

HyperTransport

Higher-precision
(CPU)

Lower-precision
(FPGA)

1
2 3

4
Rt_Resp

Rt_Req
Forward/backward solvers

Iterative refinements

PEj

BRAM

X
Column
Buffer

+
PEp-1PE0

Divider
reg

Figure 5-2: Hybrid Mixed-Precision Direct Solver on Cray-XD1

 64

and RT Client. The system uses a parameterized design. All Cray parameters are included

in “user_pkg.vhd”, while parameters for LU decomposer are included in “LU_pkg.vhd”.

5.2.3 Implementation Results and Performance Comparison

The hardware implementation results for LU decomposition are listed in Chapter 3. Other

logic circuits for Cray IP cores total around 5% extra slices. No previous FPGA designs for

LU decomposition have considered mixed-precision data formats, so we just compare our

double precision design with previous work. In [39] LU decomposition is implemented on

multiple processors on a FPGA, and its architecture is very different from ours. The

architecture in [40] limits the problem size by the number PEs, and cannot scale to big

matrices. [38] improves the design of [36], and implements the LU algorithm using circuits

as with our work. In both [38] and our work, the matrix size is not limited by the number of

PEs but by BRAM size. Block LU decomposition algorithms can be used for large matrices

which exceed the FPGA on-chip BRAM size. If we target our work onto Xilinx

XC2VP100 to compare our results to [38], 18 PEs can be implemented. Therefore our

design is very similar to [38] as far as resource cost. However, unlike [38] our design

implements pivoting algorithm which requires some additional slices.

Figure 5-3: Hybrid Mixed-Precision Direct Solver on Cray-XD1

 65

Our work accelerates the performance of direct solvers by mapping LU decomposition onto

FPGAs and taking advantage of the high performance of lower-precision arithmetic.

Therefore we first test the performance of our LU decomposition designs with different

data formats. As shown in Figure 5-4, the LU decomposition execution time for

lower-precision designs is much less than for higher-precision designs.

The test matrices here are randomly generated with all elements following a Gaussian

distribution as shown in Table 4-1 and Table 4-2. As shown in equation (4-5), the

execution time for our mixed-precision solver consists of four components: LU

decomposition, iterative refinement, forward/backward triangular solver, and

communication. The average execution time for randomly generated matrices is shown in

Figure 5-5. As expected, the time for both LU computation and communication is reduced

rapidly for lower-precision arithmetic. On average, this approach requires 1 refinement

iteration for s33e8 and 4 iterations for s16e7 format. The execution time for

backward/forward solvers and iterative refinement occupies a small portion of the complete

direct solver algorithm, but appear relatively long in Figure 5-5. The reasons are that the

0

200

400

600

800

1000

1200

64 96 128

Matrix size

Ex
ec

ut
io

n
tim

e
(u

s)
s16e7
s31e8

double

Figure 5-4: Performance comparison of LU design

 66

time for LU decomposition is significantly reduced by using our FPGA accelerator. The

time on iterative refinements will become relatively small when matrix sizes increase.

Finally, we compare the performance of our design to software executing on CPUs. For

software, we implement the LU decomposition algorithm in C. As shown in Figure 5-6, our

double precision LU decomposer achieves 2x speedup over 2.2GHz Opteron processors.

Lower-precision designs have higher performance by taking advantage of both more

parallelism and higher frequency. The LU decomposer using s16e7 data format achieves

about 8x speedup over software. By taking advantage of the high performance of the

lower-precision LU decomposer, our mixed-precision direct solver achieves roughly 3x

speedup over CPUs. The performance of the lower-precision design s16e7 is about 3 times

faster for LU decomposition and 1.6 times faster for matrix solver than for the double

precision design.

For large matrices, the execution time of the triangular solver and iterative refinement will

require a smaller percentage in Figure 5-5. Previous work also shows that a FPGA-based

LU decomposer achieves higher performance for larger matrices. For example, design 2 in

[38] achieves 2GFLOPs for 100x100 matrices, but the performance increases to 4GFLOPs

for 1000x1000 matrices. According to Amdahl’s law [85], the high performance of our

0
200
400
600
800

1000
1200
1400
1600

double s31e8 s16e7

Data types for LU on FPGAs

tim
e

(u
s)

Refinement

triangular solvers

communication

LU

Figure 5-5: Execution Time for Mixed-Precision Direct Solvers

 67

lower-precision LU design will make more impact on the overall performance as problem

size increases. Therefore, we expect even higher speedup of our mixed-precision design for

large matrices.

5.3 Conclusion
This chapter introduces the Cray XD1 architecture and the implementation of our hybrid

direct solver design. Our experimental results show that the FPGA based LU decomposer

design has higher performance than a 2.2 GHz Opteron processor. Due to the large size of

double precision floating point units, we cannot achieve high parallelism on FPGAs for

them due to resource constraints. On the other hand, our lower-precision LU decomposition

design has much higher performance. Test results show that mixed-precision design on

FPGAs can achieve significantly higher performance without losing accuracy.

.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

double s31e8 s16e7
Data types for LU decomposition on FPGAs

Sp
ee

du
p

LU

Solver

Figure 5-6: Speedup of LU and direct solver over a 2.2GHz Opteron

 68

6 Performance Evaluation

Due to power consumption, heat dissipation, and other reasons, it is increasingly difficult

for the IC industry to keep up with Moore’s Law. Therefore combining parallel clusters

with FPGA application processors for high performance computing has gathered wide

interest. For example, Cray supercomputers integrate computation blades by using fast

interconnections. FPGA application processors can be adapted to Opteron processor based

blades by adding expansion modules.

This chapter introduces FPGA application accelerators for high performance computing

systems and gives performance analysis. First of all, the execution time of algorithms

mapped on FPGAs is investigated. A clock cycle accurate analytic model is also introduced

for the execution time on FPGAs. Due to the difficulty in developing FPGA application

accelerators, an analytic model brings great convenience by enabling designers to analyze

and predict the performance of FPGA applications on various platforms. Secondly, the

framework of FPGA-enhanced computing system is introduced. For reconfigurable

computers, the overall performance is affected by factors such as the attributes of

microprocessors, FPGAs, memory, and interconnects. These factors are investigated by

building a reconfigurable computing system performance model. Finally, we extend this

model to parallel computing systems. Our performance model brings an important tool to

optimize program development, predict the performance, and investigate high performance

computer architectures.

6.1 Performance Metrics
To compare reconfigurable computing systems to traditional computers, speedup is an

important metric. The basic definition of speedup is the execution time of applications on a

serial processor over that of the investigated computing systems. For the heterogeneous

parallel computing systems discussed in this dissertation, we define speedup as the shortest

time of programs on a single microprocessor over that on a parallel computing system. If

 69

the execution time on a single processor is serialR and that on a parallel computing system

is parallelR , the speedup can be described by the following equation.

parallel

serial

R
R

Speedup = (6-1)

Heterogeneous parallel computers shorten parallel execution time by using a combination

of multiple microprocessors and FPGAs. Even inside an FPGA application processor,

multiple processing elements (PEs) are usually implemented. Using more parallel

processing units reduces the computation load on each unit but also increases resource cost

and parallel overhead. It is valuable to evaluate the speedup brought by each processing

unit. Efficiency is another important metric for parallel computing systems, and is define as

speedup over the number of processing units p.

pR
R

p
speedupEfficiency

parallel

serial

⋅
== (6-2)

6.2 FPGA Performance Analysis
In general, applications mapped onto hardware consist of serial and parallel parts. FPGA

accelerators speed up the parallel parts of algorithms by employing parallel multiple

processing units (PEs). The number of PEs is usually limited by hardware resources. Our

deeply pipelined architecture also allows many FPGA applications to overcome the

performance of CPUs with much higher frequency. For example, the LU factorization

design in this work using 8 PEs at 120MHz has higher performance than a 2.2 GHz

Opteron CPU. One important reason for FPGA application processors to achieve higher

performance is that the FPGA design utilizes deeply pipelined architecture and therefore

has less idle cycles. A pipeline cannot achieve peak performance unless all the pipeline

stages are filled. This is the “latency of pipelines”. For an L stage pipeline, the latency is

also L. In common parallel architectures for FPGA application accelerators, the total cycles

 70

of the critical path consists at least 3 parts: serial time serialc , parallel time parallelc , and

pipeline latency latencyc . In practice, there are other overheads such as control logic cycles,

and register/BRAM latencies. We include these overheads in overheadc . Since FPGAs are

usually used as accelerators for microprocessors, data and control signals have to be

transferred between the host and FPGAs. The clock cycles for communication can be

represented by commc . Therefore, the clock cycles of FPGAs can be represented as:

overheadcommlatencyparallelserialFPGA cccccC ++++= (6-3)

The central logic of a hardware design is commonly implemented as state machines. A

large design usually has many states. For an application that has S states with deterministic

length tasks, the total cycles are the summation of cycles for all the states.

)(,,1 ,,, ioverheadicomm
S
i ilatencyiparalleliserialFPGA cccccC ++∑ ++= = (6-4)

Now we analyse the clock cycles required by an application. Suppose the application needs

itaskC , clock cycles if parallelism is not considered. itaskC , has parallelizable and non

prrallelizable (serial) parts.

iparalleliserialitask CCC ,,, += (6-5)

For a specific application, the execution time is decided by both the total clock cycles and

frequency. If p PEs can be implemented for the parallel tasks and the frequency is f, the

total execution time becomes:

f

ccc
p

C
C

R
ioverheadcomm

S
i ilatency

iparallel
iserial

FPGA

)(,1 ,
,

, ++∑ ++
=

=

 (6-6)

 71

6.2.1 Performance Modeling for LU Factorization on FPGAs

Our FPGA-based LU decomposer accelerates the LU factorization algorithm by employing

a deeply pipelined architecture and multiple parallel PEs. Chapter 5 introduces a matrix

decomposer on the Cray-XD1 supercomputer which requires the complete input matrix to

be fit into the FPGA on-chip memory. Some applications might require larger matrices. In

this case, input matrices can be stored in the QDR memory located beside the FPGA.

Considering the limited resources on current platforms and the difficulty of developing

reconfigurable accelerators, it is very valuable to predict the performance of this design for

bigger matrices before hardware development. A performance model for this design helps

to predict performance for different inputs and optimize future hardware architecture.

Due to the dynamic sub-matrix sizes and various matrix operations in the LU factorization

algorithm, the FPGA-based LU decomposer requires complicated hardware logic. Figure

3-19 gives the main stages for the LU decomposer with pivoting. These stages are divided

into multiple sub-states for hardware state machines. For example, the “column

normalization” stage in Figure 3-19 is divided into two sub-states “column normalization”

and “normalization delay”. The former state normalizes the column by a floating point

divider, while the latter fills idle cycles and therefore avoids data hazards during the time

caused by the floating point divider. Assuming the floating point divider has a latency of

dividerL , the total clock cycles for the complete “column normalization” stage for a k by k

sub-matrix is dividerLk + . If the input matrix has a size of n by n, the LU decomposition

algorithm has n-1 iterations, in which n-1 sub-matrices with size n to 2 are processed.

Considering overheads introduced by BRAM operations, BRAML , the total number of

clock cycles for column normalization is:

divider

n
k BRAMdividerionnormalizat

L
LLkc

1)-(n4)-n/27/2(n
)3(

2
2

++=
∑ ++= = (6-7)

 72

Pi
vo

tin
g

un
ne

ce
ss

ar
y

C
ur

re
nt

 su
b-

m
at

rix
co

m
pl

et
ed

Figure 6-1: Complete States for LU Factorization

 73

As introduced in chapter 3, the “sub-matrix update” stage is to update the value of yxa , by

yxyx ala ,00,, − , where yxa , is the element in the sub-matrices and 0,xl is the element in

the normalized column. A sub-matrix in this design is updated by column simultaneously

by all PEs. Because multiple columns are stored in a one PE’s local memory as shown in

Figure 3-17, the data stream in the column buffer needs to flow through the PEs multiple

times with one column updated each time. For a sub-matrix with size k, k values are

updated for each column. The column stream needs to circulate ⎣ ⎦ 1/)1(+− pk times,

where p is the number of PEs and ⎣ ⎦pk /)1(− is to calculate the integer part of (k-1)/p.

For an n by n matrix, there are n-1 sub-matrices totally with size reducing from n to 2. The

states “Matrix update start”, “Matrix update idle1”, and “Matrix update idle2” are to

initialize address registers and insert idle clock cycles for reading BRAMs. Each of these 3

states costs 1 clock cycle. Considering BRAM latencies, the total clock cycles for the

sub-matrix update computation part is:

∑ +−++= =
n
k BRAMcomputeupdate pkLkc 2)1]/)1)([(33((6-8)

The “Sub-matrix update” stage has the most computations among four stages in Figure

3-19. It is divided into 8 sub-states for parallelism in Figure 6-1. As shown in Figure 3-17,

the data path is deeply pipelined in the “sub-matrix update” stage. When a column is fed

into the pipeline, the output will come out after the delay of the pipeline. The depth of this

pipeline is equal to the latency of a floating point multiplier and adder, which can be

represented by addermult LL + . Our design hides this latency between iterations of columns.

But the “Matrix update complete” state has to wait for addermult LL + clock cycles to avoid

data hazards. There is also a 1-clock-cycle overhead due to control logic. “Matrix update

start”, “Matrix update idle1”, “Matrix update idle2”, and “Matrix update complete” need to

be executed in n-1 iterations for a matrix decomposition algorithm as shown in Figure 6-1.

Therefore the clock cycles for the “sub-matrix update” stage totals:

 74

)1)(1()1]/)1)([(6(
)1)(1(

2 ++−+∑ +−+=
++−+=

= addermult
n
k

addermultcomputeupdateupdate
LLnpkk

LLncc (6-9)

Pivoting has 9 total states. For a sub-matrix of size k, the “pivoting maximum value” state

costs k clock cycles to find maximum value and 1 clock cycle overhead. The function of

“Pivoting store pivot row”, “Pivoting update pivot row”, and “Pivoting Update max row”

states is to exchange 2 rows in all PEs simultaneously by using temporary buffers and

requires 3n/p clock cycles. The other 4 states take 1 clock cycle each. Note that pivoting

might not be executed depending on the results from the “Pivoting judgment” state.

Assume the probability to execute pivoting is pivotp , the total number of clock cycle for

pivoting for all sub-matrices are:

)52/92/()/)123((
)1()1(3)/)1)(13((
)1()1(3)/)1)(13((

22
2

2

−++−−=
∑ ++−+−+=
∑ ++−+−+=

=

=

nnppnn
kknppnn

knppnnc

pivot

n
kpivot

n
kpivotpivoting

 (6-10)

According to Figure 6-1, there are still some states not counted. The “Address

initialization”, “Address initialization idle”, “Register update 1” and “Register update 2”

cost 1 clock cycle per iteration. Considering BRAM read latency, the total time for LU

decomposer on FPGA with frequency f is:

fncccT updateionnormalizatpivotingLU /))1(4(−+++= (6-11)

Model Validation and Performance Prediction

We validate the clock cycle accurate performance model in equation (6-11) by comparing

with our test results on the Cray-XD1 supercomputer. Figure 6-2 shows the execution time

predicted by our performance model agrees remarkably with real test results. This

performance model is very valuable to predict the performance of our design for different

matrices and on different platforms.

For large matrices which cannot fit in FPGA on-chip memories, we propose to use QDR

memory on the Cray-XD1 supercomputer. The Cray-XD1 supports 4 QDR memory banks.

 75

Each QDR memory can be used as PE local memory for a single or multiple PEs. For

future architectures, each PE should have a separate QDR memory bank for the purpose of

high I/O bandwidth. We compare LU execution time speedup from our model with

software codes on an Opteron processor of Cray-XD1 supercomputer in Figure 6-3. For

software, we use C.

Linear solvers take advantage of the high performance lower-precision LU decomposition

and increase the accuracy by iterative refinement. The required refinement iteration loops

are listed in Table 4-2. We plot the GFLOPs performance of linear solvers in Figure 6-4. It

is easy to see that mixed-precision solvers achieve higher speedups for large matrices. This

is because LU decomposition dominates the execution time for large matrices.

One advantage of our LU decomposition design over previous work [36] [38] [39] [40] is

that our work implements the pivoting algorithm in hardware which greatly improves the

numeric properties of LU decomposition algorithms. For non-positive-definite matrices,

pivoting must be implemented to prevent matrix entries from being divided by zeros. As

shown in Figure 6-1, the pivoting algorithm costs almost half of the states in our design.

0

200

400

600

800

1000

1200

64 96 128

Matrix Size

Ex
ec

ut
io

n
Ti

m
e

(u
s) 8PE Double Cray-XD1

8PE Double Model
16PE s31e8 Cray-XD1
16PE s31e8 Model
32PE s16e7 Cray-XD1
32PE s16e7 Model

Figure 6-2: Test and Model Performance

 76

LU Decomposition Speedup

0

5

10

15

20

25

30

128 256 512 1024 2048 4096

Matrix Size

Sp
ee

du
p

ov
er

 a
n

O
pt

er
on double

S31e8
s16e7

Figure 6-3: LU Performance Comparison

Solver Speedup

0
2
4
6
8

10
12
14
16
18

128 256 512 1024 2048 4096

Matrix Size

Sp
ee

du
p

ov
er

 a
n

O
pt

er
on double

S31e8
s16e7

Figure 6-4: Solver Performance Comparison

 77

Figure 6-5 gives the relative execution time for pivoting. We observe that the percentage of

time on pivoting decreases with matrix size. This is reasonable because the computational

complexity of pivoting is O(n2) while that of the complete LU decomposition is O(n3). We

also notice that the pivoting algorithm costs a higher percentage of time for lower-precision

data formats. The reason is that lower-precision designs have more PEs, but compared to

other parts of the LU decomposition algorithm, the pivoting algorithm can not take good

advantage of parallelism. An accurate estimate of the relative time required for pivoting can

be derived by equations (6-10) and (6-11).

6.3 Reconfigurable Single Node Model
For FPGA-enhanced computers, we start our performance analysis with a single

reconfigurable computing (RC) node running a synchronous iterative algorithm (SIA).

Restricting the analysis to a single node helps us to investigate the interactions between

hosts and FPGA application processors before expanding to a parallel computing analysis.

Relative Time on Pivoting

0

5

10

15

20

25

128 256 512 1024 2048 4096

Matrix Size

P
er

ce
nt

ag
e

(%
)

double
s31e8
s16e7

Figure 6-5: Relative Time on Pivoting

 78

As shown in Figure 6-6 (a), we assume the program segment we are interested has I

similar iterations as shown in Figure 6-6 (a). A reconfigurable node could have multiple

microprocessors and FPGA hardware accelerators. The program kernel to be accelerated

can be parallelized and assigned to both microprocessors and FPGAs as shown in Figure

6-6 (b). Smith proposed a similar block diagram for reconfigurable nodes [76]. Because of

the new multi-core technology and its wide application on supercomputers, we consider a

reconfigurable node with multiple microprocessors.

For an iteration i , the time for initialization and reconfiguration can be denoted as iinitt ,

and iconft , ; the communication time is denoted as icommt , ; the serial time cannot be

accelerated is iserialt , ; the accelerated program kernel is run both on m microprocessors for

time ijswt ,, (mj ≤≤1) and n FPGAs for time ijhwt ,, (nj ≤≤1) respectively. We

include iinitt , , iconft , and other overheads in ioverheadt , . The execution time of the SIA is

determined by that of the critical path, so the runtime, RCR , for I iterations is:

∑ +++= =
≤≤≤≤

I
i ioverheadicommijhwnjijswmjiserialRC tttttR 1 ,,,,1,,1,)))(max),(maxmax(((6-12)

Since all the iterations are similar in SIA, we are interested in a typical iteration. The

parallel time on hardware and software can be described by random variables [53]. The

time spent on serial execution, communication, and overheads can be represented as serialt ,

commt , and overheadt . Now RCR becomes the expectation of Equation (6-12).

)))](max),(max[max((
])[][))](max),(max[max(][(

,1,1

,1,1

overheadcommjhwnjjswmjserial

overheadcommjhwnjjswmjserialRC

ttttEtI
tEtEttEtEIR

+++=

+++=

≤≤≤≤

≤≤≤≤ (6-13)

Time jswt , in equation (6-13) is decided by the computational load and microprocessor

computation capability. The former can be deterministic or stochastic depending on

specific applications, while the latter is affected by such factors as microprocessor speed,

I/O, and memory.

 79

op
t
io
n
al

Figure 6-6: Synchronous Iterative Algorithm on a Single RC Node

 80

In a shared computing environment, software execution time is also affected by

background load which can be described by a parameter [76]. The software execution time

jswt , can be modeled as a random variable, whose parameters can be decided by tests on

platforms, simulation, or analytical modeling [76]. Time jhwt , is determined by the tasks

and the FPGA application accelerator performance. Because the FPGA application

processor is usually a dedicated system, jhwt , is usually deterministic for deterministic

tasks.

On a single processor, the execution time is the summation of the serial time serialt , total

software time ∑ =
m
j jswt1 , , and total hardware time j

n
j jhwt σ⋅∑ =1 , . Note that the execution

times for the same algorithm on hardware and software are different. jσ represents

hardware speedup over software for algorithms mapped on FPGA j. Now the speedup of

the reconfigurable computing system over a single processor is defined as the execution

time on a single processor over that on the reconfigurable computing systems:

overheadcommjhwnjjswmjserial

j
n
j jhw

m
j jswserial

RC
RC

ttttEt
ttt

R
R

Speedup

+++

⋅∑+∑+
=

=

≤≤≤≤

==

))](max),(max[max(
)()(

,1,1

1 ,1 ,

1

σ (6-14)

6.4 Reconfigurable Parallel Computing Model
We now expand our analysis to parallel computers which utilize multiple nodes for high

performance. The system diagram is shown in Figure 6-7. Computational tasks are divided

into multiple nodes which are enhanced by FPGA application accelerators. We still

consider SIA algorithms for the multiple node analysis, and assume each node has similar

tasks. The total execution time is equal to the last RC node to finish its tasks plus the

communication time and serial software time which cannot be divided into multiple nodes.

For a system with p nodes, the execution time is:

 81

 Node i

Master Serial

Node Serial

FPGA
Configuration

Setup

FPGA
Initialization

Communication

SW HW HW

Communication

End

op
t
i
on
a
l

t
hw,1

t
ncomm

t
init

t
conf

t
ncomm

SW
t
nserial

thw,ni

SW
t
sw,mi

t
sw,1

Parallel Kernel

Node Serial

Master Serial

Node 1 Node p

Communication

SW

Communication

SW

tmcomm

t
mserial

t
mcomm

t
mserial

Figure 6-7: Synchronous Iterative Algorithm on Multiple RC Nodes

 82

∑ +++= =
≤≤

I
i imoverheadimcommjRCpjimserialP ttRtR 1 ,,,1,))(max((6-15)

Where imserialt , , imcommt , , and imoverheadt , are serial execution time, communication time,

and overhead to manage all the parallel nodes. As with the single node analysis, all

iterations of the SIA are similar. Therefore the serial software time, communication time,

and overhead time in equation (6-15) are the same for all iterations. Now the parallel

execution time becomes:

)))(max((,1 moverheadmcommjRCpjmserialP ttREtIR +++=
≤≤

 (6-16)

If we plug in the execution time model for single nodes and assume each node has m and

n identical processors and FPGAs, equation (6-16) becomes

)))
)))(max),(max(max((max((

1

moverheadmcommnoverheadncomm

hwnswmnserialpjmserialP

tttt
ttEtEtIR

++++

++=
≤≤ (6-17)

Where inserialt , , incommt , , and inoverheadt , are internal serial execution time, communication

time, and overhead inside nodes. Equation (6-17) is,

)
)))))(max),(max(max((max((

moverheadmcommnoverheadncomm

hwnswmpnserialmserialP

tttt
ttEEttIR

++++

++=
 (6-18)

If a program is executed on a single processor, the execution time is equal to serial

execution time on microprocessors mserialt plus the software and hardware execution time

on all nodes. The time of each node also consists of serial time, parallel time on multiple

processors, and parallel time on FPGAs. Considering the hardware speedup factorσ , the

execution time a single processor is:

))((1 hwswnserialmserial tntmtptIR ⋅⋅+⋅++= σ (6-19)

 83

The speedup is defined as the execution time on a single processor over that on a parallel

system.

p

hwswnserialmserial

p
p R

tntmtptI
R
R

Speedup
)((1 ⋅⋅+⋅++

==
σ

 (6-20)

The efficiency is defined as the speedup over the number of nodes to evaluate the

contribution to performance improvement from each node.

p

hwswnserialmserial

p
p Rp

tntmtptI
Rp

R
Efficiency

⋅
⋅⋅+⋅++

=
⋅

=
))((1 σ

 (6-21)

6.5 Load Imbalance Analysis
Having developed performance models for RC systems, we now look at more detailed

factors affecting the model’s accuracy. In previous analysis we assume dedicated systems,

identical processors, and equal load distributions. To extend our models to more general

cases, we try to remove these assumptions.

In a shared resource environment, processor cycles are shared by multiple programs. The

computational loads caused by distributed applications are called application load, while

those caused by other users or system programs are called background load [76] [52].

Imbalance of both application and background loads will cause performance degradation.

For a processor j in parallel systems, Peterson and Smith used a factor jjj βγη ⋅= to

describe load imbalance. Here γ and β are both integers, and respectively represent

background and application imbalance. Peterson discusses generalized models γ and β

where are non intergers [88]. The parameter γ represents extra time spent by a shared

resource processor over that of a dedicated processor. If time units spent by a processor j

on background and application loads are jl and 1, then the background imbalance factor

jγ is 1+jl . The application imbalance parameter jβ represents the load units on

 84

processor j. Assuming the average loads on processors are B , then Bj /β is the

application imbalance scale factor for processor j . The imbalance factor can be described

by random variables with a distribution function:

)()()(1 α
γαββγη α

kPPkP j
k

jjjj =∑ ==== = (6-22)

where 0)(==
α

γ kP j , if
α
k is not an integer [76] [52].

In heterogeneous environments, processors have different computation capabilities. If

processor j requires time jδ per unit time, and a baseline processor requires time ω

for the same job, then

ω
δ

βγη j
jjj ⋅⋅= (6-23)

Because FPGA application processors are usually dedicated systems, we do not consider

background imbalance for FPGAs. For simplicity, we also assume the computational

capabilities for all FPGAs are identical in this dissertation. If applications are deterministic,

the execution time on FPGAs is also deterministic. In a homogeneous environment, the

execution time on a parallel RC system in equation (6-24) becomes:

)
)))))(max),(max(max((max((

moverheadmcommnoverheadncomm

hwnswmpnserialmserialP

tttt
ttEEttIR

++++

⋅++= η
 (6-24)

6.6 Summary
In this chapter, we develop performance models for FPGA application processors, single

RC nodes, and parallel RC systems running SIA algorithms. The performance models we

propose effectively help to predict and optimize the performance of algorithms on new

 85

platforms. The calculation of mean maximum such as in equation (6-24) is a difficult

problem in analytic model computations. This dissertation focuses on improving the

accuracy of performance models by proposing an efficient mean maximum calculation

method, so other factors such as load imbalance models are just briefly introduced. We

introduce the mean maximum calculation problem in the next chapter.

 86

7 Effective Mean Maximum Approximation Method

As introduced in chapter 2, the mean maximum calculation remains as an unsolved

statistics problem for years and affects the accuracy and efficiency for parallel computing

models. This chapter presents an analytical method with extreme values to approximate the

expectation of the maximum of random variables for both homogeneous and heterogeneous

initial distributions. Compared to previous methods, it is more accurate, computationally

effective, and generalizable to probability distributions. Our method provides a powerful

mathematical tool to improve the accuracy and efficiency of parallel computation modeling

and task graph analysis.

7.1 PERFORMANCE MODEL
Synchronous iterative algorithms are widely used in optimization, discrete-event simulation,

solution to partial differential equations, Gaussian elimination and matrix inversion, finite

element methods, Fast Fourier Transforms, and many others [52]. Synchronous iterative

algorithms repeatedly execute a computation, with an explicit synchronization of the tasks

and exchange of data performed at the end of each computation (iteration). At the end of

each of the iterations, processors reach a barrier synchronization and await the arrival of the

other processors before continuing. Figure 7-1 illustrates a typical synchronous iterative

application.

The runtime of synchronous iterative algorithms can be described by a simplified

performance model. When the algorithm has I iterations and there are P processors, the

execution time PR can be modeled as [52]:

∑ ⎥⎦
⎤

⎢⎣
⎡ ++=

= ≤≤

I

i
ioverheadparjiparallelPjiserialP tttR

1
,_,,1, max (7-1)

 87

Here iserialt , represents the amount of time to complete serial calculations (operations that

are not or cannot be parallelized) in the thi iteration. Similarly, each processor j completes

some portion of the parallel computations for iteration i, requiring time jiparallelt ,, .

Processors completing early sit idle waiting for the barrier synchronization operation, so

)(max ,,1 jiparallelpj t≤≤ gives the time required for the last processor to complete iteration i .

Parallel processing typically results in some additional overhead ioverheadpart ,_ . Operations

such as the barrier synchronization are included in this term.

We here assume all iterations require roughly the same amount of computation (the

statistics for all iterations are the same). Therefore, we only need to consider the

computations required for a “typical” iteration. The overall execution time can then be

modeled as:

[] []

⎟
⎠
⎞

⎜
⎝
⎛ +⎥⎦

⎤
⎢⎣
⎡+=

∑ ⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡+=

≤≤

= ≤≤

overheadparjparallelPjserial

I

i
ioverheadparjiparallelPjiserialP

ttEtI

tEtEtER

_,1

1
,_,,1,

max

max
 (7-2)

Where serialt and overheadpart _ are the average time needed to complete serial and parallel

overhead tasks. The mean of the maximum))((max ,1 jparallelpj tE ≤≤ describes the mean

Figure 7-1: Timing of a synchronous iterative algorithm

 88

time required for the last processor to complete its parallel computations. The terms serialt ,

overheadpart _ , and jparallelt , can be found by measurement or simple calculation.

To compute the execution time in equation (7-2), we calculate the expectation for the

maximum parallel execution time per iteration. Although this problem can be computed by

numerical or analytical methods, an analytical solution is very helpful for performance

analysis and optimization. Let s be the random variable)(max ,1 jparallelpj t≤≤ . If the

individual runtimes are identically independently distributed (i.i.d.), the distribution

function of the extreme distribution s is:

P
tS sFsF

jparallel
))(()(

,
= (7-3)

The density function of s is:

)())((
))((

)(

,,

,

,
1

))((1

))((

sfsFP
sFP

sf

jparalleljparallel

jparallelt

jparallel

S

t
P

t

ds
sFdP

t

ds
sFd

S

−

−

=
=

=

(7-4)

The expected maximum is then:

∫=
∫=

−b
a t

P
t

b
a S

dssfsFsP
dsssfsE

jparalleljparallel
)())((

)()(

,,

1 (7-5)

Where a and b are the lower and upper bounds of random variable s. The mean

maximum in equation (7-5) could be analytically solved for some simple distributions.

However numerical methods often have to be used. The resulting computational load to

find the mean maximum is unacceptable for many applications, such as dynamic load

balancing and scheduling.

 89

Extreme theory [66] could approximate the mean maximum when the initial random

variables are i.i.d. and follow certain distributions. For normally distributed random

variables with mean µ and variance 2σ :

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+
−+≈

≤≤

2
1

2
1

2
1

)ln2()ln2(2
4lnlnln)ln2(

]max[,1

mm
mm

tE jparallelPj

γπσµ (7-6)

Where γ is Euler’s constant (0.5772).

Extreme theory gives asymptotic approximations as the number of random variables grows,

but it can only work for certain distributions. To find a general and effective extreme mean

maximum approximation for parallel performance evaluation, we introduce our expectation

of mean maximum approximation (EMMA) method in the next section.

7.2 EMMA METHOD

7.2.1 EMMA Method for i.i.d. Random Variables

To quickly and accurately compute the mean maximum of random variables as presented

before, we introduce the EMMA method for i.i.d. tasks. For simplicity, we give the

conclusions without explanation first. The mathematical proofs and extensions of the

method are described in the next part.

Method I: Let iX (ni ≤≤1) be i.i.d. random variables, and i
n
in XY 1max == .

Then ϕ≈≤ n
ni))E(YP(X , where)(nYE is the mean of nY and ϕ is a constant taken

as 0.57. If iX has distribution function iF with inverse function 1−
iF , then)(nYE can

be approximated by)(11 n
iF ϕ− .

According to this theorem, equation (7-5) can simply be calculated by

 90

57.0)))((())((
,

== P
tS SEFSEF

jparallel
 (7-7)

)57.0()(
1

,

1 P
jparalleltFSE −= (7-8)

Compared to previous work, this theorem gives a much more effective approach for the

EMV problem. By using 57.0=ϕ , the EMMA method replaces the complicated extreme

distribution forms in order statistics. Mathematical explanation and proof will be given in

the next part.

Example 1: Gaussian distribution.

Assume iX (ni ≤≤1) are i.i.d. Gaussian random variables with mean µ , variance 2σ ,

and i
n
in XY 1max == . Here, we take 30=µ and 92 =σ . For each value of n, we use a

random number generator in MATLAB to produce the n Gaussian random variables and

find the maximum value. We repeat this operation 500 times and compute the expectation

by taking the average of these 500 maximum values. MATLAB provides reverse

distribution functions for many distributions. For the Gaussian distribution, the

approximated mean maximum)(nYE for each n can be simply computed as:

30+3*sqrt(2)*erfinv(2*((0.57)^(1/n))-1), where erfinv is the inverse error function for the

Gaussian distribution.

In Figure 7-2, we compare the EMMA results to extreme theory [58] and MC simulations.

Figure 7-2 shows that EMV from the EMMA theorem accurately agrees with the MC

simulation results. We repeated the above experiment many times and change the values of
2σ , and n. We observed that EMMA approximates the simulation results consistently and

accurately.

 91

Example 2: Binomial distribution.

Binomial is another common distribution used in computer performance modeling. For

example, in parallel logic simulation, the number of gates to be simulated at a time step on

each processor may follow a binomial distribution [53] [54]. Assume iX (ni ≤≤1) is

binomially distributed with parameters M=5000 and p=0.02 (activity level in logic gate

simulation). By using methods similar to example 1, we illustrate implementing EMMA for

i.i.d. binomial distributions. The result is compared to MC simulation in Figure 7-3. The

approximation accuracy increases with the number of random numbers. There are some

exceptions, which is because the inverse function of the binomial distribution is discrete

while the MC simulation gives continuous real numbers.

For both Gaussian and binomial distributions, the EMMA method gives results similar to

MC simulation. Note that the approximation becomes more accurate when the number of

random numbers grows. We compared EMMA and MC simulation for many commonly

used distributions with arbitrary parameters, and observed promising results in all tests.

0 10 20 30 40
31

32

33

34

35

36

37

Number of Initial Random Variables (n)

E
M

V
MC Simulation
EMMA
Extreme Theory

Figure 7-2: EMV by different methods for Gaussian distributions

 92

7.2.2 Mathematical Proof and Extensions

It is well known in order statistics that there are three types of distributions for extreme

values: type I, type II, and type III [58]. These three types of distributions cover the

asymptotic extreme distributions for most initial distributions. Most common initial

distributions, such as normal, exponential, and Rayleigh distributions belong to type I. Here

we explain the EMMA method by using the properties of extreme distributions.

Theorem 1: For a Type I distributions with mean nµ and cumulative distribution

function)(⋅
nYF , the following property exists: 57.0)(≈nYn

F µ .

Proof: For a Type I distribution, the probability density function (PDF) and cumulative

distribution function (CDF) for the maximum values are [58]:

() ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −
−−

−
−=

k
y

k
y

k
yf

nY
αα expexp1 (7-9)

0 5 10 15 20
95

100

105

110

115

120

Number of Initial Random Numbers

E
M

V

MC Simulation
EMMA

Figure 7-3: EMV by MC simulation and EMMA (Binomial distribution)

 93

() ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −
−−=

k
yyF

nY
αexpexp

(7-10)

The mean of this distribution above is:

kn γαµ += (7-11)

Where γ is the Euler-Mascheroni constant. Substituting nµ into the CDF function, we

get

()
()[]

57.0
expexp

)(expexp

≈
−−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+
−−=

γ

αγαµ
k
kF nYn

(7-12)

Theorem 2: For a Type II distribution with parameters nv and k, let nµ and)(⋅
nYF be

the mean and cumulative distribution function. The following property exists:

57.0)(→
∞→

n
k

Yn
F µ

Proof: For a Type II distribution, the probability density function (PDF) and cumulative

distribution function (CDF) for the maximum random variable are [58]:

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

+ k
n

k
n

n
Y y

v
y

v
v
kyf

n
exp

1

 (7-13)

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

k
n

Y y
v

yF
n

exp (7-14)

Where nv is the characteristic largest value of the initial random variables and k is the

shape parameter (k/1 is a measure of dispersion). The mean for this distribution is:

 94

)11(kvnn −Γ=µ (7-15)

Where)(⋅Γ is the gamma function. Substituting nµ into the CDF function, we get

()

57.0
)11(

1exp

)11(
exp

→
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Γ

−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Γ

−=

∞→

∞→∞→
k

k

k

n

n

k
n

k
Y

k

kv
v

F
n
µ

(7-16)

In order statistics, Type I and Type II are the extreme distributions for the initial

distributions unlimited in the directions of the relevant extremes. In contrast, Type III

represents the limiting distribution for initial distributions with a finite upper bound or

lower bound value. For execution time modeling, we are only interested in upper bounds.

Theorem 3: For Type III distribution with parameters nw and k, let nµ and)(⋅
nYF be

the mean and cumulative distribution function. The following property exists:

57.0)(→
∞→

n
k

Yn
F µ

Proof: For Type III distribution, the PDF and CDF for the maximum random variables are

[58]:

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
=

− k

n

k

nn
Y w

y
w
y

w
kyf

n ω
ω

ω
ω

ω
exp

1

 (7-17)

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
k

n
Y w

yyF
n ω

ωexp (7-18)

 95

Where nw is the characteristic largest value of the initial random variables, k is the shape

parameter (k/1 is a measure of dispersion of nX), and ω is the upper bound value of the

initial distributions. The mean for this distribution is:

)11()(kwnn +Γ−−= ωωµ (7-19)

Where)(⋅Γ is the gamma function. By substituting nµ into the CDF function, we get

[]
57.0

))11((exp

))11()((exp)(

→

+Γ−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+Γ−−−
−=

∞→

∞→∞→
k

k

k

n

n

k
n

k
Y

k
w

kwF
n ω

ωωωµ

(7-20)

Figure 7-4 plots the CDF value at the mean point nµ for three types of extreme

distributions. It is always roughly 0.57 for Type I. With the growth of parameter k, the CDF

values for Type II and Type III converge very quickly to 0.57 from above and below,

respectively.

Based on the theorems above, we derive the following result.

Theorem 4: The CDF at the mean point for Type I is always 0.57. For Type II and III, it

converges to 0.57 quickly with the shape parameter k.

By theorem 1 to 3, we derive the EMMA method from this theorem for i.i.d. initial

distributions, whose extreme distributions meet the following sufficient conditions:

1. Type I, or

2. Type II/III with shape parameter k not too small,

For both Type II and III in extreme theory, the parameter k is the shape parameter, which is

normally an increasing function of n and converges to a constant when n approaches

 96

infinity. Figure 7-5 gives the approximation error on some commonly used distributions.

Because of a lack of analytical methods for EMV computation for most of these

distributions here, we compare EMMA with MC simulation. The results are shown when

the processor number is 5, 50, and 500. Note that the approximation becomes more

accurate as the number of processors n increases.

For completeness, we now consider distributions that do not meet these two conditions. As

with Figure 7-4, if for some certain initial distribution, the parameter k converges to a small

value for a certain distribution, then a constant different than 0.57 should be used for ϕ to

achieve more accurate approximation. However, if a certain approximation error can be

tolerated, the constant 0.57 can still be used for simplicity. That is, the EMMA method is

robust to parameter k. We describe this property by constructing a distribution converging

to type III with shape parameter 2=k .

Example 3: Assume an initial distribution function has CDF and PDF as:

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Shape Parameter k

C
D

F
V

al
ue

 o
n

M
ea

n
P

oi
nt

Type I
Type II
Type III

Figure 7-4: CDF values at mean maximum point for extreme distributions

 97

2)10/)10((1)(xxFX −−= ; ax ≤≤0 (7-21)

50/)10()(xxf X −= (7-22)

This distribution is type III, the asymptotic form for the maximum value is:

])10/)10((exp[)(2ynyF
nY −−= (7-23)

With the parameters 2=k and 10=ω . The mean is

)/5.01(10 n
nY πµ −= (7-24)

The shape parameter k is very small and the related CDF value at the mean maximum

point)(nX n
F µ is around 0.46 in Figure 7-4. By extreme theory and the deduction of

Theorem III, we know the EMMA method can accurately approximate the mean maximum

for this distribution by taking the constant ϕ as 0.46. In this case, we are interested in the

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%
1.80%
2.00%

Gaussian Exponential Binomial Poisson Rayleigh Geometric

Distributions

Ap
pr

ox
im

at
io

n
Er

ro
r

n=5

n=50

n=500

Figure 7-5: Approximation Error for Different Distributions

 98

approximation error when ϕ is given as 0.57. Figure 7-6 plots the approximation from

EMMA method when ϕ is 0.46 and 0.57.

Figure 7-6 shows that for a type III distribution with small shape parameter k, which does

not meet the sufficient conditions, the EMMA method with constant 0.57 also follows the

trend very well, but with a little bigger approximation error when the number of parallel

processors n is low.

7.2.3 EMMA Method for Heterogeneous Distribution

Method 2: Let D be a set of independent random variables that can be divided into m

mutually exclusive subsets iD (mi ≤≤1). For each iD , there are in i.i.d. random

variables jiX , (inj ≤≤1). Let)max(, jin XY = (mi ≤≤1 and inj ≤≤1) for all the

probability events. Then∏=
≈≤

m

i
n

ni,j .))E(YP(X i

1
570 , where)(nYE is the mean of nY . If

jiX , (inj ≤≤1) has distribution function iF , then)(nYE can be approximated by solving

the function: ϕ∏ =
≈

m

i
n

ni
i))(E(YF

1
, where ϕ is a constant usually taken as 0.57.

0 50 100 150 200
7

7.5

8

8.5

9

9.5

Number of Initial Random Numbers

E
M

V

Phi=0.46

Phi=0.57

Figure 7-6: EMMA with different constants

 99

The above is an extension of method 1 to non-identical independent random variables.

Note that different subsets do not need to have the same kind of distribution in this method.

This extends EMMA for heterogeneous computing environments. Using method 2 to find

EMV requires solving an implicit function where numerical methods can be used.

We illustrate method 2 using a collection of Gaussian distributions. Assume there are three

subsets, each with identically distributed random variables. The parameters are shown in

Table 7-1.

In Figure 7-7, we assume each subset has the same number of tasks. The X-axis is the

number of tasks for each subset. We can see the EMV by Method 2 agrees with MC

simulation. The EMV values for each subset are also given by MC simulation. They are all

below under the overall mean maximum as expected. Because of a lack of analytical

methods to calculate EMV for non-identical random variables, the largest execution time

for individual subsets historically has been used as the overall execution time [57]. Figure

7-7 shows that this method can result in around ten percent error even when there are just

three subsets of tasks.

Table 7-1: Subset Parameters

Parameter Subset 1 Subset 2 Subset 3

Mean 40 45 50

Standard Deviation 12 9 6

Table 7-2: Subset Parameters

 Subset 1 Subset 2 Subset 3

Distributions Gaussian Gaussian Exponential

Parameters 12,40 == σµ 9,45 == σµ 30=µ

 100

We validate method 2 with various combinations of commonly used distributions and find

accurate approximation results for all of them. Figure 7-8 approximates the execution time

when the tasks have different distributions as shown in Table 7-2.

Note that the parameter for Subset 3 stands for mean, instead of the parameter (one over

mean) normally used in the density function of an exponential distribution.

The X-axis in Figure 7-8 represents the number of processors per subset. We assume each

subset has the same number of processors for simplicity. In this example, subset 3 is

dominant and determines the mean maximum, which is also very accurately approximated

by EMMA.

7.3 Utilization of EMMA Method
The EMMA method provides an accurate and general mathematic tool for execution time

approximation in parallel computing. It is also convenient for analysis of other

characteristics of the system, such as speedup and optimal processor configuration. This

0 20 40 60 80 100 120
45

50

55

60

65

70

Number of Initial Random Numbers per Subset

E
M

V
MC Simulation
Subset 1
Subset 2
Subset 3
EMMA

Figure 7-7: EMV from MC simulation and EMMA for heterogeneous environment

(Gaussian distribution with different parameters)

 101

section describes using the EMMA method to analyze the system performance for some

test cases.

7.3.1 Logic Simulation Applications

Logic simulation is widely used to verify modern VLSI system design before fabrication.

As the number of gates per VLSI chip increases, the simulation time becomes an important

issue. We now apply the model (1) and Method 1 into an example of logic simulation.

An efficient logic simulation of circuits is possible by the event-driven method, where node

voltages are represented by discrete values and their changes are restricted to discrete

points in time [55] [61]. The gates are modeled as functions to manipulate signals applied

to their inputs and produce output signals. There is a finite delay for the gate operation

depending on different gate types. On each clock cycle, plenty of the gates are inactive

because their input signals remain unchanged. In the event-driven method, only the active

gates are simulated. For each of the iterations, the activities of all the gates are independent

and take roughly the same computational effort. Table 7-3 shows the active gates for some

experimental circuits.

0 50 100 150 200
40

60

80

100

120

140

160

180

Number of Initial Random Variables per Subset

E
M

V

MC Simulation
Subset 1
Subset 2
Subset 3
EMMA

Figure 7-8: EMV from MC simulation and EMMA for heterogeneous environment

(mixed distributions)

 102

For the event-driven method on parallel processors, tasks (gates) can be statically assigned

to processors with an approximately equal amount per processor. Due to the static

allocation of gates to the processors, the number of potential active gates for each processor

represents a set of random variables. If we assume that the probability of each gate being

active at a given time is the same and that the gates are independent, then the random

variables representing the number of active gates for each processor is independent and

identically distributed given each processor has the same number of gates to simulate. At

the end of each of the iterations, the processors synchronize, share signal updates, and

proceed to the next iteration.

We first discuss the speedup characteristics of problems with stochastic execution time.

The time used for synchronization and communication are neglected for simplicity. Now,

equation (7-2) is simplified as:

⎥⎦
⎤

⎢⎣
⎡⋅=

≤≤
jparallelPjP tEIR ,1

max (7-25)

Assume the multiplier circuit is simulated on 5 parallel processors with 1000 gates per

processor. If 0.02 is picked as the average activity, the number of active gates per processor

in (51 ≤≤ i) is binomially distributed with parameters 1000 and 0.02. That is,

)02.0,1000(~ Bni .

Table 7-3: Experimental Circuit Collections [62] [63]

Circuits Gate count Average activity

CKT2 1754 0.03

8080 3439 0.001-0.005

Multiplier 5000 0.01-0.02

 103

Assume the computational effort for simulating each gate is one time unit and 300

iterations are needed. The expected execution time can be derived by equation (7-8), where

the function -1F is now the inverse function for binomial distribution:

)57.0(300 5
1

,

1−⋅=
jparalleltP FR (7-26)

By using inverse Binomial distribution function, we get the expected execution time is

7800=PR .

If the simulation runs on a single processor, the execution time is

30600)57.0(300 1
1

,

1
1 =⋅= −

jparalleltFR (7-27)

Note that 1-
t parallel,j

F is now the inverse function for binomial distribution)02.0,5000(B .

The speedup is:

92.3
7800

30600

1
===

R
RSpeedup P (7-28)

where we can see the parallel speedup cannot achieve the ideal even when the time on

synchronization, communication, and overhead are not counted. The reason is for parallel

computation on multiple processors:

[]jparalleljparallelPj
tEtE ,,1

max >⎥⎦
⎤

⎢⎣
⎡

≤≤
 (7-29)

Assume this simulation task is assigned to various numbers of processors. Figure 7-9 plots

the speedup with the number of processors. This example demonstrates that for problems

with stochastic execution time on each processor, the speedup can never achieve the ideal

due to application load imbalance.

 104

In practice, the synchronization and communication time cannot be neglected in many

cases and can be modeled as a function of the processor number [73]. The following will

introduce a method for finding the optimal processor number to achieve the minimum

execution time by using the EMMA method.

For simplicity, we assume that the time for synchronization and communication is linear in

the number of processor, that is, for equation (7-1):

()1,_ −= Pkt ioverheadpar (7-30)

Where k is a constant and taken as 2 in this example. Equation (7-2) becomes:

()⎟
⎠
⎞

⎜
⎝
⎛ −+⎥⎦

⎤
⎢⎣
⎡+=

≤≤
12max ,1

PtEtIR jparallelPjserialP
 (7-31)

After taking away the constants I and serialt , which will not affect our optimization results,

the cost function to minimize the execution time can be simplified as:

0 2 4 6 8 10
0

2

4

6

8

10

Number of Processors (P)

S
pe

ed
up

Analytic Speedup
Ideal Speedup

Figure 7-9: Ideal vs. analytic speedup without counting time for synchronization,

communication and overheads

 105

()12max ,1
−+⎥⎦

⎤
⎢⎣
⎡=

≤≤
PtEC jparallelPj

 (7-32)

By using the EMMA method, we can easily plot this equation as shown in Figure 7-10. The

optimal point is where the value of the cost function C has the smallest value. In this

particular case, the cost function has similar value when the processor number is 6, 7, or 8.

If other factors like economics are considered, 6 would be expected to be the best selection.

7.4 Execution Time for Task Graphs
A task graph is often used to describe program execution. Plenty of research addressed how

to analyze the execution time of task graphs [67]. In this section, we discuss the analysis of

complicated task graphs by using the EMMA method. For simplicity, some results from

probability are cited without proof.

Precondition 1: Let nXX L1 be random variables and ∑ =
=

n

i iXX
1

, then

∑ =
=

n

i iXEXE
1

)()(.

0 5 10 15 20
30

40

50

60

70

80

90

100

110

Number of Processors

V
al

ue
 o

f C
os

t F
un

ct
io

n
C

Figure 7-10: Simplified cost function for finding optimal processor number

 106

This precondition is well known in probability theory, which says that the mean of the sum

is equal to the sum of the mean. For a task graph in Figure 7-11 (a), the overall structure of

the task graph is serial, where each phase could be parallel tasks. In such a paragraph, the

overall execution time is equal to the sum of the execution time for all phases. For phases

having parallel tasks, the mean execution time of that phase can be computed by the

EMMA method.

For the task graph shown in Figure 7-11 (b), the middle path consists of a series of tasks.

To apply the EMMA method, we consider the overall task graph is parallel, so the

distribution functions for all paths are required. We discuss finding the distribution for the

sum of serial tasks in the following.

Precondition 2: Let),,1(niX i L= be a normal random variable with mean iµ and

variance 2
iσ , ∑ =

=
n

i iXX
1

. Then X is still a normal random variable with mean

∑ =
=

n

i i1
µµ and variance ∑=

=
n

i i1
22 σσ .

Since the Gaussian distribution is often used to model the running time, it is important that

the distribution can be accurately calculated for the sum of Gaussian distributions.

Unfortunately, there are no such nice properties for other distributions. However, the

Figure 7-11: Serial and parallel task graphs

 107

distribution can also be approximated according to the central limit law for those

non-Gaussian distributions.

Precondition 3: Let),,1(niX i L= be independent and iiXE µ=)(, 2)(iiXVar σ= .

Assume ∞<+)||(sup 2 ε
j

j
XE for some 0>ε . Let ∑ =

=
n

i iXX
1

, then X converges to

a Gaussian random variable with mean ∑ =
=

n

i i1
µµ and variance ∑ =

=
n

i i1
22 σσ .

The proof of precondition 3 can be found in [58]. Once the distribution functions of all the

parallel paths are available, the overall execution time in Figure 7-11 (b) can be computed

by using the EMMA method for heterogeneous cases. It might not be accurate to apply the

central limit law when the number of serial processes is small. A more accurate method is

to compute the distribution formula for the sum of random variables. However, it is usually

very complicated.

7.5 Extension to Dependent Tasks
For parallel computation performance evaluations, independence is usually assumed for

simplicity. However, dependencies usually exist because of many reasons. First of all, the

tasks can be dependent themselves. For example, in logic gate simulation, the active gates

might be related. Secondly, for some parallel computer architectures, the parallel programs

have to share some common hardware and create dependencies. Thirdly, some tasks might

be dependent by sharing a common path. The communication and synchronization will also

bring dependencies. It is very difficult to quantify the dependencies, so normally the

dependencies are just neglected for simplicity. For example, for task graphs with common

tasks, Madala approximates the execution time by assuming task path independence [67].

It is necessary to analyze the inaccuracy caused by assuming independence. In this part, we

will discuss dependences among parallel tasks. We use the timing model in Figure 7-1.

 108

7.5.1 Associated Tasks

For parallel programs with dependences, the EMMA method can be applied by neglecting

the dependencies. The following part will discuss the result in this case for associated

parallel tasks. Associated tasks imply that increasing the load of one task will impact that of

the others. An example is that the number of active logic gates increases simultaneously

on different parts of a circuit. A precise definition for association is the following [70]:

Definition 1: Random variables nXX ,,1 L are associated if

() ()[] 0,cov ≥∆Γ XX (7-33)

For all pairs of increasing binary functionsΓ and∆ .

It is well known in the theory of reliability that if iX (ni ≤≤1) are associated random

variables, then [70] [71]

[] []∏
=

≤≥≤≤
n

i
in yXPyXyXP

1
1 ,,L (7-34)

Let i
n
in XY 1max == , then

() []∏
=

≥
n

i
XY yFyF

in
1

 (7-35)

Corollary 1: For dependent associated parallel tasks, the result from the EMMA theory by

ignoring dependence is an upper bound of the real mean of the maximum.

Proof: according to theorem 4, the mean of the maximum can be computed by:

() 57.0)(=nY YEF
n

 (7-36)

From equation (7-35), we have

 109

[] 57.0)(
1

≤∏
=

n

i
nX YEF

i
 (7-37)

If we compute the mean of the maximum by ignoring the dependence, we consider both

sides in equation (7-37) as equal. That is, we compute by using

[] 57.0)(
1

=∏
=

n

i
nX YF

i
 (7-38)

Since the function sum and cumulative distribution function are both non-decreasing, the

computed results are bigger than or equal to the actual values. The equality is achieved

when the random variables are mutually independent.

7.5.2 Sharing Common Paths

The dependence addressed in corollary 1 could also be caused by sharing a common path.

Note that although the dependence caused by sharing a common path meets the definition

of association, corollary 1 cannot be applied because of synchronization effects.

For example, assume the sub tasks in Figure 7-12 represented by cycles are identical. The

running time of each subtask is Gaussian distributed with mean 30 and variance 9. By

applying the EMMA method, the mean execution time for phase 1, 3, and 5 in task graph (a)

is computed to be 34.033. Therefore the overall average runtime can be calculated as

34.033+30+34.033+30+34.033=162.099. For task graph (b), the running time distribution

for each path is Gaussian distributed with mean 150 and variance 45, so the overall average

execution time is 159.227. MC simulation results also agree to the results from EMMA.

This example shows that if we compute the execution time of task graph (a) as 5

independent paths as in task graph (b), the result is less than the actual value. This does not

conflict with corollary 1. The reason is that task graph (a) cannot be simply considered as a

dependent counterpart of the task in graph (b), because phases 1, 3, and 5 need to be

synchronized before proceeding to the next phase and this synchronization costs extra time.

Some previous work argued the execution time in task graph (b) is the upper bound of its

 110

counterpart with common paths (a) [71]. Here is an opposite example that disproves this

claim. Hence, by applying the EMMA technique, we can account for these effects.

7.6 CONCLUSIONS
Accurate performance modeling of parallel applications faces difficulties due to the

challenge of finding EMV. Despite significant previous work, the problem is still unsolved

for decades, especially for heterogeneous computing. Our work can be considered as an

extension of Extreme Theory, especially to heterogeneous distributions. By exploiting

extreme value properties, we propose the EMMA method that is capable of finding fast,

accurate approximations for parallel execution time in both homogeneous and

heterogeneous environments. We present a mathematical proof and comparisons to MC

simulation which demonstrate the accuracy and generality of our method. EMMA can

significantly improve the accuracy and efficiency of parallel computation modeling.

Methodologies are also proposed to simplify the task graph analysis. We extend EMMA to

interdependent tasks and evaluate the effect of dependencies. Further work could focus on

applying the EMMA method onto different performance model and task graphs.

Figure 7-12: Task graph with common paths (a) and its independent counterpart (b)

 111

8 Conclusions and Future Work

While traditional CPUs struggle to keep up with Moore’s law, new heterogeneous

computing systems show potential for high performance scientific computing. This

dissertation explores high performance reconfigurable computer architectures for linear

algebra applications. First of all, we develop application-specific processors for linear

algebra, which can be implemented on supercomputers as accelerators. Various linear

algebra algorithms and architectures are discussed for high performance matrix

computation on FPGAs. Secondly, execution time models are developed for both FPGA

accelerators and reconfigurable computing systems to better understand the performance

our systems. Finally this dissertation proposes an important statistics theory, which greatly

increases the accuracy and convenience of parallel computing system performance

modeling.

8.1 Conclusions
We have developed application-specific processors for high performance linear algebra on

FPGAs. The linear algebra subroutines we explore in this dissertation include sparse matrix

multiplication and a dense matrix direct solver. To achieve high performance matrix

computations, various matrix algorithms and hardware architectures circuits are proposed.

Our sparse matrix multiplication solver can achieve 20 times speedup over contemporary

CPUs and the performance depends less on matrix structure. On traditional CPUs, sparse

matrix operations are normally inefficient because of frequent data movements. Our

architecture achieves high performance by taking advantage of several factors. First, we

propose an innovative sparse matrix storage format to reduce data movement overhead.

Second, high performance data and control paths are utilized such as multiplication

accumulator, adder tree, and summation circuits. Third, our streaming architecture greatly

reduces idle cycles in data path pipelines.

 112

Our direct solver on FPGAs achieves significant speedup over CPUs by using a hybrid

architecture. Since LU decomposition is the dominant part of direct solvers, it is mapped

onto FPGAs for fast computation. On the other hand, triangular solvers are implemented on

CPUs to save resources and development time because these computations are a mush

smaller fraction of serial execution time. The overall performance of our hybrid direct

solvers is improved by an innovative LU decomposition circuitry on FPGAs, which

computes LU decomposition on several parallel PEs. Our LU decomposition design is also

the first work to include the pivoting algorithm for a high performance design implemented

with a hardware description language.

Due to the high cost of double-precision floating point units, we propose to use a

mixed-precision algorithm and architecture for high performance linear algebra. In our

architecture, lower-precision floating point is used as much as possible for higher

performance, while higher-precision floating point is utilized only when necessary. For

linear direct solvers, a mixed-precision refinement algorithm is employed to achieve high

accuracy for final results. Theoretical analysis and experimental results show that our

mixed-precision direct solver successfully takes advantage of the higher performance of

lower-precision floating point units without loss of accuracy.

We target our linear solvers on Cray-XD1 supercomputers for performance analysis.

Cray-XD1 supercomputers consist of many computation nodes connected by a high speed

interconnect. FPGAs can be connected to computation nodes by Hyper Transport as

application-specific processors. Our implementation on the Cray-XD1 supercomputer

includes the development for both FPGAs and the host programs. Our test results show that

the performance of linear algebra can be greatly improved on Cray-XD1 supercomputers

by using FPGAs.

Execution time models are important for understanding the system performance, mapping

tasks, and optimizing architecture. First of all, we build performance models for

application-specific processors on FPGAs by dividing computation time into several

categories: parallel time, serial time, communication time, and overheads. Because the

 113

circuit activities can be clock cycle accurately predicted, our FPGA performance model has

very high accuracy. By analyzing performance models with different parameters, we are

able to accurately estimate the performance of our design on different architectures.

We further build performance models for single FPGA-enhanced computation nodes and

parallel computing systems, where the overall execution time is determined by both FPGAs

and the host processors. The execution time on host processors is affected by application

load imbalance. At the same time, background loads also increase execution time in shared

resource computational environments. We evaluate these factors by using different

parameters.

One difficulty in parallel performance modeling is to compute the expectation of the

maximum of a set of random variables. Previous methods including extreme theory and

other estimation methods are either not general or accurate enough. We propose an

efficient mean maximum approximation (EMMA) method which accurately approximates

the mean maximum by using very simple formulas. The EMMA method also provides an

important tool for complicated task graph analysis.

8.2 Future Work
Our work shows the potential of using FPGAs for high performance linear algebra and

provides performance analysis tools. Future work includes exploration of more hardware

architectures, enhancing performance models, and finding applications of the EMMA

theory.

First of all, we show the potential of high performance linear algebra on FPGAs by

developing sparse matrix vector multiplication and dense direct solvers. Similar linear

algebra computation kernels can be developed for a host of other applications. For example,

by taking advantage of our sparse matrix vector multiplication circuits, it should be easy to

develop iterative solvers on FPGAs. Because of the limited size of our FPGA chips, the

triangular solvers are implemented on processors in our work. When larger FPGAs are

 114

used in the future, triangular solvers can be merged onto FPGAs to increase the

performance of our direct solvers.

Mixed-precision algorithms and architectures are very interesting. We point out the

potential of using mixed-precision architectures on FPGAs for high performance. Future

work includes developing mixed-precision algorithms and architectures for other

applications and platforms. This dissertation mainly explores the execution time of

mixed-precision architectures. Since mixed-precision designs require less resources and are

faster, we also expect better power efficiency. Further study of such power-related issues

remains to be investigated.

Our performance models focus on computation. Other factors such as I/O performance can

be included in our model if applications require. Heterogeneous systems show great

potential for high performance computing. Based on our performance models for a

reconfigurable computer, heterogeneous computing system performance models can also

be easily extended.

Finally, the EMMA theory provides an important tool for mean maximum calculations.

This dissertation successfully derives mathematical forms and proofs for the EMMA theory.

Future work should focus on applying the EMMA theory to various applications such as

task graph analysis and schedule optimization.

 115

List of References

 116

List of References

[1] J. Dongarra, “Basic Linear Algebra Subprograms Technical Forum Standard”,
International Journal of High Performance Applications and Supercomputing, 16(1)
(2002), pp. 1--111, and International Journal of High Performance Applications and
Supercomputing, 16(2) (2002), pp. 115--199.

[2] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1992.

[3] O. O. Storaasli. “Performance of NASA Equation Solvers on Computational
Mechanics Applications,” 37-th SDM Conf., AIAA-96-1505, Vol. 3, pp. 1213–1223.

[4] A. Pinar and M. T. Heath. “Improving Performance of Sparse Matrix-Vector
Multiplication,” Supercomputing, November 1999.

[5] E.-J. Im, K. A. Yelick. “Optimizing Sparse Matrix Computations for Register Reuse
in Sparsity”. International Conference on Computational Science, 2001.

[6] K. D. Underwood. “FPGAs vs. CPUs: Trends in peak floating-point performance,”
ACM International Symposium on Field Programmable Gate Arrays, February 2004.

[7] Y. Bi, G. D. Peterson, L. Warren, and R. Harrison, “Hardware Acceleration of
Parallel Lagged-Fibonacci Pseudo Random Number Generation,” ERSA, June 2006.

[8] R. Scrofano and V. K. Prasanna. “Computing Lennard-Jones Potentials and Forces
with Reconfigurable Hardware,” ERSA, June 2004.

[9] J. L. Tripp, A.A. Hanson, M. Gokhale, and H.S. Mortveit. “Partitioning Hardware
and Software for Reconfigurable Supercomputing Applications: A Case Study,”
Supercomputing, November 2005.

[10] K. Underwood, S. Hemmert, and C. Ulmer. “Architectures and APIs: Assessing
Requirements for Delivering FPGA Performance to Applications,” Supercomputing,
November 2006.

[11] L. Zhuo and V. K. Prasanna. “Sparse matrix-vector multiplication on FPGAs,”
FPGA, February, 2005.

[12] M. deLorimier and A. DeHon. “Floating-Point Sparse Matrix-Vector Multiply for
FPGAs,” FPGA, February, 2005.

 117

[13] Y. El-kurdi, W. J. Gross, and D. Giannacopoulos. “Sparse Matrix-Vector
Multiplication for Finite Element Method Matrices on FPGAs,” FCCM, April 2006.

[14] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and J. Kurzak, “Mixed
Precision Iterative Refinement Techniques for the Solution of Dense Linear
Systems,” International Journal of High Performance Computer Applications,
Volume 21 Number 4, Winter 2007, pp 457-466, ISSN 1094-3420.

[15] R. Barrett, Templates for the solution of Linear Systems: Building Blocks for Iterative
methods, 2nd Edition. SLAM, Philadelphia, PA, 1994.

[16] Cray Inc. http://www.cray.com

[17] Digilent Inc. http://www.digilentinc.com

[18] Xilinx Inc. http://www.xilinx.com

[19] H. A. ElGindy and Y. L. Shue. “On Sparse Matrix-Vector Multiplication with
FPGA-based System,” 10th IEEE Symposium on Field-Programmable Custom
Computing Machines, April 2002.

[20] R. Vuduc, J. Demmel, K. Yelick. “OSKI: A library of automatically tuned sparse
matrix kernels,” SciDAC 2005, Journal of Physics: Conference Series, June 2005.

[21] T. Davis, University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices, NA Digest, 92(42), October 16,
1994, NA Digest, 96(28), July 23, 1996, and NA Digest, 97(23), June 7, 1997.

[22] O. O. Storaasli, “Compute Faster without CPUs: Engineering Applications on
NASA's FPGA-based Hypercomputers,” Technical Symposium on Reconfigurable
Computing with FPGAs, Manchester UK, February 2005.

[23] J. Sobieski and O.O. Storaasli, “Computing at the Speed of Thought,” Aerospace
America, Oct. 2004, pp. 35-38.

[24] O. O. Storaasli, “Engineering Applications on NASA's FPGA-based
Hypercomputer,” MAPLD, September, 2004.

[25] O. O. Storaasli, “Computing Faster without CPUs: Scientific Applications on a
Reconfigurable, FPGA-based Hypercomputer,” MAPLD Conference, September,
2003.

[26] O. O. Storaasli, R. C. Singleterry, and S. Brown, “Scientific Computations on a
NASA Reconfigurable Hypercomputer,” MAPLD. September, 2002.

 118

[27] J. Sun, G. Peterson, O.O. Storaasli, “Sparse Matrix-vector Multiplication Design on
FPGAs”, the 15th IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), CA, April, 2007.

[28] Nallatech Inc. http://www.nallatech.com

[29] Sgi Inc. www.sgi.com

[30] Starbridge Inc. www.starbridgesystems.com

[31] SRC Computers Inc. www.srccomp.com

[32] G. Govindu, R. Scrofano and V. K. Prasanna, “A Library of Parameterizable
Floating-Point Cores for FPGAs and Their Application to Scientific Computing,”
The 2005 International Conference on Engineering of Reconfigurable Systems and
Algorithms, June 2005.

[33] X. Wang, M. Leeser, and H. Yu, “A parameterized floating-point library applied to
Multispectral image clustering,” MAPLD, September 2004.

[34] Y. Dou, S. Vassiliadis, G. Kuzmanov, G. N. Gaydadjiev, “64-bit floating-point
FPGA matrix multiplication,” FPGA, 2005.

[35] Z.H. Kamal, A. Gupta, L. Lilien, and A. Khokhar, “Classification using Efficient LU
Decomposition in Sensornets,” wireless sensor network, 2006.

[36] V. Daga, G. Govindu, S. Gangadharpalli, V. Sridhar, and V. K. Prasanna, “Efficient
Floating-point Based Block LU Decomposition on FPGAs,” ERSA, June 2004.

[37] Gokul Govindu, Seonil Choi, Viktor K. Prasanna, Vikash Daga, Sridhar
Gangadharpalli, and V. Sridhar, “A High-Performance and Energy-efficient
Architecture for Floating-point based LU Decomposition on FPGAs,” RAW, April
2004.

[38] Ling Zhuo, Viktor K. Prasanna, “High-Performance and Parameterized Matrix
Factorization on FPGAs,” FPL, Madrid, Spain, August 2006.

[39] X. Wang and S.G. Ziavras, “Parallel LU Factorization of Sparse Matrices on
FPGA-Based Configurable Computing Engines,” Concurrency Computation: Prac.
Expei., Vol. 16, No. 4, April 2004.

[40] DaeGon Kim, Sanjay V. Rajopadhye, “An Improved Systolic Architecture for LU
Decomposition,” IEEE 17th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2006.

 119

[41] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov, “Using Mixed
Precision for Sparse Matrix Computations to Enhance the Performance while
Achieving 64-bit Accuracy,” Accepted in ACM TOMS, to appear in December 2008
issue.

[42] J. W. Demmel, “Applied Numerical Linear Algebra,” SIAM Press, 1997.

[43] R. Strzodka and D. Göddeke, “Mixed precision methods for convergent iterative
schemes,” EDGE, North Carolina, May 2006.

[44] R. Strzodka and D. Göddeke, “Pipelined mixed precision algorithm on FPGAs for
fast and accurate PDE solvers from low precision componets,” IEEE Proceedings on
Field-Programmable Custom Computing Machines, IEEE Computer Society Press,
may 2006.

[45] D. Göddeke, R. Strzodka, and S. Turek, “Accelerating Double Precision FEM
simulations with GPUs,” ASIM, Sep 2005.

[46] J. H. Wilkinson, “The Algebraic Eigenvalue Problem,” Oxford, U.K.: Clarendon,
1965.

[47] C. B. Moler, “Iterative Refinement in Floating Point,” J. ACM (2) (1967) 316–321.

[48] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J. Riedy, “Error
Bounds from Extra Precise Iterative Refinement,” Technical Report No.
UCB/CSD-04-1344, LAPACK Working Note 165, August 2004.

[49] G. W. Stewart, Introduction to Matrix Computations. Academic Press, New York,
1973.

[50] Cray, Inc., “Cray XD1 FPGA Development,” 2005.

[51] Cray, Inc., “Design of Cray XD1™ RapidArray Transport Core”, 2005.

[52] G. D. Peterson and R. D. Chamberlain, “Parallel Application Performance in a
Shared Resource Environment,” IEE Distributed Systems Engineering Journal,
August 1996.

[53] G. D. Peterson and R. D. Chamberlain, “Beyond Execution Time: Expanding the Use
of Performance Models,” IEEE Parallel & Distributed Technology, 2(2): 37-49,
11994.

[54] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving
Problems on Concurrent Processors, Volume I, Prentice Hall, 1988.

 120

[55] M. L. Bailey, Jr. J. V. Briner, and R. D. Chamberlain. “Parallel Logic Simulation of
VLSI Systems,” ACM Computing Surveys, 26(3): 255--294, September 1994.

[56] R. D. Chamberlain, “Parallel logic simulation of VLSI systems,” Proceedings of the
32nd ACM/IEEE conference on Design automation conference, p.139-143, June
12-16, 1995, San Francisco, California, United States.

[57] V. D. Agrawal and S. T. Chakraadhar, “Performance analysis of synchronized
iterative algorithm on multiprocessor systems,” IEEE Trans. Parallel and
Distributed Systems, VOL. 3, NO. 6, 739-745, Nov. 1992.

[58] J. Jacod and P. Protter, Probability Essentials. Springer, 2000.

[59] R. -D. Reiss, Approximate Distributions of Order Statistics with Applications to
Nonparametric Statistics. Springer, 1989.

[60] S. S. Gupta, "Selection and ranking procedures and order statistics for the binomial
distribution," in Classical and Contagious Discrete Distributions, G. P. Patil, Ed.
Calcutta: Statistical Publishing Society, 1965, pp. 219-230.

[61] K.T. Cheng and V. D. Agrawal, Unified Methods for VLSI Simulation and Test
Generation. Boston: Kluwer Academic, 1989.

[62] P. Agrawal, “Concurrency and communication in hardware simulators,” IEEE Trans.
on Computer Aided Design, vol. CAD-5, pp. 617-623, Oct. 1986.

[63] L. Soule and T. Blank, “Statistics for parallelism and abstraction level in digital
simulation,” in Proc. 24th ACM/IEEE Design Automat. Conf., 1987, pp. 588-591.

[64] G. D. Peterson and R. D. Chamberlain, “Sharing Networked Workstations: A
Performance Model,” 6th IEEE Symposium on Parallel and Distributed Processing,
pp. 308-315, Dallas, TX, October 1994.

[65] B. W. Weide, “Analytic Models to Explain the Anomalous Behavior of Parallel
Programs,” In International Conference on Parallel Processing, pp. 183-187, 1981.

[66] A.H. –S. Ang and W. H. Tang, Probability Concepts in Engineering Planning and
Design Vol. II. Rainbow Bridge, 1984.

[67] S. Madala and J. B. Sinclair, “Performance of Synchronous Parallel Algorithms with
Regular Structures,” IEEE Transactions on Parallel and Distributed Systems, 2(1):
105-116, January 1991.

[68] J. T. Robinson, “Some analysis techniques for asynchronous multiprocessor
algorithms,” IEEE Trans. Software Eng., vol. SE-5, pp. 24-31, Jan. 1979.

 121

[69] H. A. David, Order Statistics. New York: Wiley, 1981.

[70] R. E. Barlow and F. Proschan, “Statistical Theory of Reliability and Life Testing,”
New York: hold 1975.

[71] Nihal Yazici-Pekergin and Jean-Marc Vincent, “Stochastic Bounds on Execution
Times of Parallel Programs,” IEEE Trans. on Software Eng., vol. 17, No. 10, Oct.
1991.

[72] J. Sun and G. D. Peterson, “Effective Execution Time Estimation of Heterogeneous
Parallel Computing,” PDCS, Sep, 2006.

[73] M. A. Driscoll and W. R. Daasch, “Accurate Predictions of Parallel Program
Execution Time,” Journal of Parallel and Distributed Computing. Vol. 25, No. 1,
Feb, 1995.

[74] Hu, L. and Gorton, I., “Performance Evaluation for Parallel Systems: A Survey,”
UNSWCSE-TR-9707, pp. -56, Sydney, Australia, 1997.

[75] Kant, K., “Introduction to Computer System Performance Evaluation New York,”
McGraw-Hill, Inc., 1992.

[76] Melissa C. Smith and Gregory D. Peterson, “Parallel Application Performance on
Shared High Performance Reconfigurable Computing Resources,” Performance
Evaluation, 60(1-4): 107-125, 2005.

[77] J. Sun, G. Peterson, O.O. Storaasli, “Mapping Sparse Matrix-Vector Multiplication
on FPGAs,” RSSI, 2007.

[78] Mitrion inc. http://www.mitrion.com/

[79] Xtremedata inc. http://www.xtremedatainc.com/

[80] DRC Computer inc. http://www.drccomputer.com/

[81] G. H. Golub, C. F. Loan, Matrix Computations. 3rd edition, Johns Hopkins, 1996.

[82] N. J. Higham, Accuracy and Stability of Numerical Algorithms. 2nd Edition, SIAM
Press, 2002.

[83] H. Bowdler, R. Martin, G. Peters, and J. Wilkinson. “Handbook series linear algebra:
Solution of real and complex systems of linear equations,” Numerische Mathematic,
8: 217-234, 1966.

 122

[84] J. Demmel, M. Heath, and H. van der Vorst, “Parallel numerical linear algebra,” in
Acta Numerica, p111-198, Cambridge University Press, Cambridge, UK, 1993.

[85] Amdahl, G. M., “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities,” In AFIPS Conference Proceedings, pp. 483-485,
1967, Reston, VA.

[86] J. Sun, “Obtaining High Performance via Lower-Precision FPGA Floating Point
Units,” Supercomputing, Reno NV, Nov. 2007.

[87] K. Turkington, K. Masselos, G. A. Constantinides, P. Leong, “FPGA Based
Acceleration of the Linpack Benchmark: A High Level Code Transformation
Approach,” FPL, Aug. 2006.

[88] G. D. Peterson, “Parallel Application Performance on Shared, Heterogeneous
Workstations,” Ph.D. dissertation, Washington University, Missouri, 1994.

 123

Vita

Junqing Sun was born in Jiangsu, China. He received his B.S. and M.S. degrees from

Tongji University, China in 2001 and 2004. He was ranked the top out of 70 students in his

class for his undergraduate and granted “Best 100 Students of Tongji University”. He was

certified as an “Advanced Programmer” by the Chinese Ministry of Information Industry.

Junqing Sun completed his Ph.D. with a cumulative GPA of 4.0 from The University of

Tennessee, Knoxville in 2007. He won the first place award for the ACM Student Research

Competition at Supercomputing 2007. He was also selected as a member of American

Academic Honor Society Phi Kappa Phi. He filed one patent application during his

graduate school.

	High Performance Reconfigurable Computing for Linear Algebra: Design and Performance Analysis
	Recommended Citation

	Microsoft Word - sun-phd-dissertation-final.doc

