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ABSTRACT 
 

Field Programmable Gate Arrays (FPGAs) enable powerful performance acceleration for 

scientific computations because of their intrinsic parallelism, pipeline ability, and flexible 

architecture. This dissertation explores the computational power of FPGAs for an important 

scientific application: linear algebra. First of all, optimized linear algebra subroutines are 

presented based on enhancements to both algorithms and hardware architectures. 

Compared to microprocessors, these routines achieve significant speedup. Second, 

computing with mixed-precision data on FPGAs is proposed for higher performance. 

Experimental analysis shows that mixed-precision algorithms on FPGAs can achieve the 

high performance of using lower-precision data while keeping higher-precision accuracy 

for finding solutions of linear equations. Third, an execution time model is built for 

reconfigurable computers (RC), which plays an important role in performance analysis and 

optimal resource utilization of FPGAs. The accuracy and efficiency of parallel computing 

performance models often depend on mean maximum computations. Despite significant 

prior work, there have been no sufficient mathematical tools for this important calculation. 

This work presents an Effective Mean Maximum Approximation method, which is more 

general, accurate, and efficient than previous methods. Together, these research results help 

address how to make linear algebra applications perform better on high performance 

reconfigurable computing architectures. 
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1 Introduction 

1.1 Motivation 
In our time, the traditional Von Neumann computer architecture faces significant 

challenges that may result in new computing paradigms. CPU-centric computers are forced 

to invest more power and area on the cache hierarchy to bridge the widening gap between 

CPU and main memory performance. Meanwhile, heat dissipation and other problems 

caused by high clock rates make it increasingly difficult to continue the CPU frequency 

improvement rate. Due to these reasons, current computer architects struggle to fully utilize 

the exploding chip capacity brought by modern Integrated Circuit (IC) technology.  

Matrix operations are widely applied in many applications such as the finite element 

method, linear system solvers and partial differential equation solvers. However, these 

applications usually cannot achieve good performance on traditional computers because 

most of the CPU time is spent on moving big matrices into and out of main memory rather 

than on computations.  

Field Programmable Gate Arrays (FPGAs) show great potential for Reconfigurable 

Computing. With their rapid increase in gate capacity and frequency, FPGAs can now 

outperform microprocessors for both integer and floating point operations [6]. Many 

computationally intensive algorithms achieve significant speedup on FPGAs [7] [8]. We 

investigate the feasibility of utilizing FPGAs for linear algebra because of its potential 

importance in scientific computing.  

1.2 Statement of Approach 

1.2.1 Reconfigurable BLAS (RBLAS) Library 

The BLAS (Basic Linear Algebra Subroutines) provide standard building blocks for 

performing basic vector and matrix operations. Because of their efficiency, portability, and 
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wide availability, BLAS are commonly used in the development of high quality linear 

algebra software such as LAPACK [1]. To explore the potential performance of linear 

algebra on reconfigurable computers, we implement BLAS kernels onto FPGAs which 

target the Cray XD-1 supercomputer at the Oak Ridge National Laboratory (ORNL).  

Practical application of reconfigurable computing depends on efficient system integration 

to effectively utilize these high-speed accelerators to improve overall performance. 

Although many results from small FPGA-based systems are promising, overall 

performance is often limited by the I/O bandwidth [9]. The best way to integrate FPGA 

accelerators into a balanced computing system remains an open problem [10]. Our FPGA 

designs utilize deeply pipelined structures to maximize throughput. Due to frequent data 

movement in matrix operations, a data streaming architecture is used and control signals 

are simplified to reduce the overhead during system integration.  

Lower-precision data requires less hardware resources and usually has higher performance 

(speed) on modern computer architectures. On the other hand, certain data precision is 

usually required by specific applications to obtain numeric convergence or result accuracy. 

Mixed-precision algorithms utilize lower-precision data formats for most computations, 

and higher-precision data format only when necessary. Mixed-precision algorithms can be 

applied to linear algebra to simultaneously achieve both higher performance and required 

accuracy [14]. Our work explores this approach using FPGAs, which offer more flexible 

data formats compared to traditional computers. We analyze floating point performance on 

FPGAs for different precision data formats, design mixed-precision architectures, and give 

performance analysis.  

1.2.2 Performance Evaluation 

Performance analysis is important in understanding computer efficiency and potentially to 

determine the best mapping of applications to reconfigurable resources. There are three 

broad classes of performance evaluation techniques: measurement, simulation, and 

analytical modeling [74]. Measurement is probably the most accurate approach, but the 

system to measure must be implemented and available. This technique also cannot predict 
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system performance or analyze different system configurations. Simulation provides 

visibility and controllability to the architecture simulated [75]. However, the very low 

performance is an unavoidable drawback. A big system can rarely be exhaustively 

simulated because of the exploding behavior states. Another problem for simulation is that 

general conclusions cannot be drawn from a single simulation because the performance is 

usually sensitive to collections of parameters. The large number of simulations that may be 

required for statistically significant results may take a very long time. Analytical modeling 

involves building a mathematic model for the system at the desired the level of details. The 

main advantage of analytical modeling is that it can allow exploration of the performance 

of a system before its construction. At the same time, a closed form analytic model greatly 

helps to adopt mathematic tools for performance analysis, such as sensitivity analysis, 

optimization, and load schedule.  

Reconfigurable computing based on FPGAs has already shown great potential in 

accelerating scientific computations. However, such factors as long communication time 

can degrade overall system performance. Performance modeling provides a very important 

tool to predict execution time, decide optimal load mapping, and schedule in reconfigurable 

computing. We are interested in building a performance model for reconfigurable 

computing in a parallel environment which is common for large scientific applications. 

1.3 Contributions  
This dissertation proposes to use reconfigurable computing for high performance linear 

algebra computations. To achieve this goal, we develop high performance circuits and 

algorithms on FPGAs and analyze our designs by building accurate execution time models. 

This dissertation contributes both hardware/software implementations and theoretical 

derivations including:   

• Development of an innovative FPGA architecture for sparse matrix vector 

multiplication with significant speedup over traditional CPUs. 
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• Development of high performance and cost efficient circuits for high performance 

linear algebra on FPGAs. 

• Implementation of an innovative LU decomposition architecture on FPGAs with 

significant speedup over CPUs. 

• The first to utilize mixed data format in sparse matrix vector multiplication on FPGAs 

and successfully achieve higher performance than single data format design. 

• The first to propose hardware architectures for pivoting algorithm on FPGAs using 

HDL code.  

• The first to utilize both a CPU and a FPGA for high performance linear direct solver by 

developing an innovative hybrid direct solver. 

• The first to implement LU decomposition with pivoting on a Cray-XD1 supercomputer 

and give performance analysis. 

• The first to explore the performance of FPGA based floating point linear direct solvers 

in different data formats and therefore point out the importance of using 

lower-precision data formats to obtain high performance. 

• The first to develop mixed-precision direct solvers on FPGAs which achieves the high 

performance of lower-precision data formatting without any loss of accuracy. 

• Development of an accurate performance models for LU decomposition on FPGAs. 

Extend performance models in previous work to new reconfigurable computing 

systems. 

• Development and proof of mathematical theorems on properties of maximum random 

variables. Successfully utilize these theorems to improve the accuracy and efficiency of 

performance modeling. Point out potential applications of these mathematical results. 



 5 
 

1.4 Outline of Documents  
This chapter introduces motivations, approaches, and contributions of this dissertation. 

More detailed background of our work is described in Chapter 2. We introduce our high 

performance linear algebra design on FPGAs in Chapter 3. The performance of these 

designs is improved by using mixed-precision algorithms and architectures in Chapter 4. 

We implement our design on Cray-XD1 supercomputer and give performance analysis in 

Chapter 5. Chapter 6 develops performance models for reconfigurable computers and 

analyzes our design and architectures. In chapter 7 we derive mathematical tools for 

maximum random variables and use them for improve our performance models. We 

conclude this dissertation and point out future work in chapter 8. 
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2 Background and Related Work 

This chapter introduces previous work related to this dissertation. First of all, we introduce 

floating point operations on FPGAs from which we can determine the performance of 

floating point linear algebra. Second, we are interested in the development of parameterized 

linear algebra subroutines on FPGAs. Some related FPGA designs for linear algebra are 

discussed. Third, we introduce a mixed data format algorithm and implementation on CPUs 

which will be extended to our FPGA designs for high performance in following chapters. 

To analyze and optimize our design, we build performance models for reconfigurable 

computing. Therefore, we introduce some related backgrounds and point out an important 

problem affecting the accuracy of parallel computing models. Finally, we describe the 

FPGA development environment and give conclusions. 

2.1 Linear Algebra on FPGAs 

2.1.1 Related Work 

Floating Point IP Cores 

Floating point data format is widely used in scientific computing. Previous work shows that 

the peak floating-point performance of FPGAs has surpassed that of CPUs and will soon 

have an order of magnitude advantage [6]. To exploit the floating point advantage of 

FPGAs, many researchers and commercial vendors provide floating point IP cores on 

FPGAs. Xilinx has included pipelined floating point operators in its ISE tools [18]. The 

data format and pipeline depth can be parameterized when configuring the operators. Some 

operators, such as multipliers, can be built both from combinational logic slices and more 

efficient embedded circuits, such as the built-in 18x18 multipliers for Virtex II and DSP48 

for Virtex 4 FPGAs. Other floating point IP cores can also be found in academic research 

groups [32] and [33].  

Sparse Matrix Vector Multiplication (SpMxV) 
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Sparse matrix-vector multiplication (SpMxV), Axy = , is one of the most important 

computation kernels in scientific computing, such as iterative linear equation solvers, least 

square and eigenvalue solvers [2]. In this computation kernel, matrix A is a large sparse 

matrix and x is a dense vector. To save storage and computational resources, usually only 

the nonzero elements of matrix A are stored and computed. Pointers are necessary to store 

the sparsity structure but also degrade memory operation efficiency. This is because the 

vector ‘ x ’ is addressed by pointers during computation and possibly loses spatial locality 

in the cache-memory hierarchy. Furthermore, utilizing pointers requires additional load 

operations and memory traffic. Despite numerous efforts to improve SpMxV performance 

on microprocessors [3], [4], [5], these algorithms rely heavily on the matrix sparsity 

structures and the computer architectures, typically resulting in degraded performance on 

irregular matrices. 

Several FPGA designs for SpMxV have been reported before. Zhuo and Prasanna designed 

an adder tree based SpMxV implementation for double precision floating point that accepts 

any size of matrices in general compressed row storage (CRS) format. ElGindy and Shue 

proposed SpMxV on FPGAs for fixed point data [19]. DeLorimier and DeHon arranged the 

processing elements (PEs) in a bidirectional ring to compute the equation xAy i= , where 

A  is a square matrix while i  is an integer. The design they proposed reduces the I/O 

bandwidth requirement greatly by sharing the results between PEs. Because local memories 

are used to store the matrix and intermediate results, the matrix size is limited by the 

on-chip memory [12]. El-kurdi et al proposed a streaming architecture for finite element 

method matrices [13].  

Matrix Factorization 

Matrix factorization is widely used to solve linear equations, while LU decomposition is 

the most commonly used method for matrix factorization. For some common data 

processing algorithms, wireless sensor networks require efficient LU decomposition 

running on resource-constraint senor nets [35].  
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Significant previous work addresses this important computational kernel on hardware. 

Daga described a block LU decomposition algorithm and corresponding architecture [36]. 

Govindu developed circular linear array architecture on FPGAs and achieved a 10% - 60% 

reduction in energy over that of a traditional CPU [36]. Those two designs assume the 

matrix is non-singular and no pivoting is needed. For a matrix of size nn×  this design 

requires n PEs, with each PE consisting of a multiplier and an adder. One of the PEs is 

specialized for the division computation and has just a divider. To avoid the data 

dependencies and fill the deep pipelines of floating point units, multiple matrices are 

required to be interleaved in the FPGAs and operated alternatively. Zhuo et al improved 

this design by increasing parallelism through more PEs and achieved higher GFLOPS 

performance than a 2.2 GHz AMD Opteron processor by using a Virtex-II Pro FPGA [38]. 

Wang developed parallel LU factorization for power systems [39]. Kim built a systolic 

array architecture for LU decomposition which needs 2/2n  PEs for a nn×  matrix. 

Each PE has two multiplier-subtractor units [40]. All these previous designs assume that 

target matrices are positive definite and no pivoting is required. Although pivoting will 

complicate control logic, it increases the numeric stability of LU decomposition. Therefore, 

we will consider hardware architecture for pivoting. Turkington et al proposed to use high 

level language for LU decomposition algorithm with pivoting [87]. Handel C used in [87] 

directly maps high level codes to FPGA hardware without considering specific hardware 

architecture. This approach brings great convenience but also loses significant performance 

compared to HDL based hardware design. 

Because of the importance of linear algebra in scientific computing and embedded systems, 

it is important to develop hardware accelerators for linear algebra subroutines. Previous 

work has shown the potential of using FPGAs. However, many problems still left unsolved, 

such as high performance architectures and algorithms, matrix storage optimization for 

FPGAs, system interfaces, high performance algorithms, and performance evaluation.  
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2.2 Mixed-Precision Algorithms  

2.2.1 Introduction 

Iterative refinement for the solution of linear equations has been extensively studied to 

improve the accuracy of linear systems’ solutions [42]. As shown in Figure 2-1, once the 

equation at step 1 is solved, the solution can be refined through an iterative procedure. In 

each of the iterations, the residual is computed based on the solution at the previous 

iteration (step 4); a correction is computed as in step 5 by using the computed residual; and 

finally this correction is applied in step 6 for the updated solution. 

The common use of iterative refinement consists of performing all arithmetic operations 

with the same precision (either single or double precision floating point on traditional 

CPUs). Langou et al investigated the application of mixed-precision, iterative refinement 

where the most computationally expensive steps, 1 and 5, are performed in single precision 

floating point and steps 4 and 6 are performed in double precision floating point [14]. 

Strzodka and Göddeke explored similar algorithms for iterative solvers [43], [44], and [45]. 

The error analysis for mixed-precision iterative refinement shows that this approach can 

achieve the same accuracy as full double precision arithmetic provided that the matrix is 

not too badly conditioned [14].  
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Figure 2-1: Iterative Refinement Technique for Linear Equations 
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2.2.2 Performance on Traditional CPUs 

Previous work reveals that on many current processors, the performance of 32 bit floating 

point arithmetic may be significantly higher than 64 bit floating point arithmetic due to 

many factors [41]. First of all, many processors increase their throughput by using vector 

instructions. For example, the Intel IA-32/IA-64 and AMD Opteron families have the SSE2 

instruction set; the Motorola, Freescale, and IBM PowerPC has the AltiVec unit. For SSE2, 

a vector unit can complete four single precision operations every clock cycle but only two 

for double precision [14]. Secondly, data movement is cut in half for single precision data 

compared to double. This helps performance by reducing memory traffic across the bus and 

enabling larger blocks of the user’s data to fit into cache.  

In mixed-precision iterative refinement algorithms, the computationally expensive steps (1 

and 5) are performed very fast in single precision arithmetic while the steps requiring 

double precision accuracy (4 and 6) are typically less computationally demanding. Langou 

et al explored the single/double mixed-precision iterative refinement algorithm and 

achieved promising results on multiple architectures. There are limitations to the success of 

this process, such as when the conditioning of the problem exceeds the reciprocal of the 

accuracy of the single precision computations. In that case, the double precision algorithm 

should be used. 

Single/double mixed-precision iterative algorithms take advantage of the higher 

performance of single precision arithmetic on hardware while achieving the accuracy of 

double precision. FPGAs have flexible data formats. Shorter formats can result in higher 

frequency, lower memory/bus requirements, and reduced energy consumption. Exploring 

mixed-precision iterative algorithms is desirable for both high performance computing and 

resource-constrained embedded systems. 
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2.3 Hybrid System Performance Modeling 

2.3.1 Performance Modeling 

Execution time modeling plays an important role in understanding system performance. 

Given certain computation loads and resources, the execution time of each processor can be 

modeled as a random variable while the overall system time is determined by the last 

processor completing its task [52]. For example, Peterson and Chamberlain built a model 

for networked workstations [52], [64]. The overall execution time consists of three parts: 

parallel work, serial work, and overhead. Smith extended this work to consider the impact 

of reconfigurable computing devices in shared, high performance reconfigurable systems 

[75].   

2.3.2 Mean Maximum Estimation 

In modeling parallel applications, the execution time for each processor can be represented 

by variables iX  [52]. Due to the effects of synchronization, estimation of the system 

execution time depends on calculating the expectation of maximum value 

(EMV) )(max 1 i
N
i XE =  [52]. Unfortunately, the solution in closed form usually cannot be 

derived for this term. This problem becomes much more challenging for heterogeneous 

environments, where the execution time for different processors has different distributions. 

Due to its importance in parallel computation modeling, many researchers have tried 

various kinds of methods for this problem.  

Monte Carlo (MC) methods can be used to compute EMV with any initial distributions. 

However, it has no analytical expression and the computation load is unaffordable for most 

of the evaluations. The use of order statistics is first suggested for analyzing parallel 

program performance by Weide [65]. For independent identically distributed (i.i.d.) 

random variables with known distribution functions, extreme theory [66] [67] can 

approximate the distribution of extremes. The approximation becomes exact as the number 

of random variables increases. The drawback is that to derive the mean maximum by using 

extreme theory is usually difficult. Further, extreme theory cannot derive asymptotical 

extreme distribution functions for many distributions. 
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Agrawal [57] evaluates the performance of synchronous logic circuits simulation by 

applying a Binomial distribution to determine the number of events at each processor. The 

number of active gates at each time stop which needs to be simulated for each processor is 

random distributed. Order statistics are used to calculate the expectation of the execution 

time when the number of gates is equally distributed to each processor. In this case, the 

processor loads are independent and identically distributed binomial random variables. For 

the imbalanced case of uneven work distribution, processors are divided into different 

subsets. The processors in the same subset are identically loaded, so the order statistics can 

be applied to calculate the expectation of execution time for each subset. Because there is 

no analytical method for the non-identical random variables, the maximum subset 

execution time is considered as the overall execution time [57]. 

Despite all the previous efforts above, this problem of calculating EMV is still unsolved 

after decades. First of all, current methods cannot accurately compute the expectation of the 

maximum variables (EMV) for heterogeneous initial distributions. Secondly, even when 

the initial random variables are i.i.d., current methods cannot cover all the commonly 

applied distributions in parallel computing or are not accurate enough. MC simulation can 

be general and accurate enough for all distributions. However, its expensive computational 

requirements are usually unacceptable in large scale parallel computation performance 

evaluation. Furthermore, MC simulation cannot provide an analytical form for this problem, 

which is important for sensitivity analysis and optimization of the execution time. 

This dissertation presents an innovative approximation method for this problem, where 

EMV is calculated by very convenient functions. Compared to previous work, this 

approach is more general, accurate, and computationally efficient.  

2.4 Development Environment 

2.4.1 Software Environment 

Optimal FPGA development requires knowledge of electric circuits. After an algorithm is 

analyzed and converted into logic blocks by the developers, hardware description 
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languages, such as VHDL and Verilog, can be used to describe the logic. With the help of 

tools, the VHDL or Verilog scripts can be compiled, synthesized, and then mapped to 

hardware logic units. 

VHDL and Verilog provide detailed control over the circuit design, but also require 

hardware expertise, which is usually not familiar to software engineers. Due to the potential 

of FPGAs in scientific computations, several high level languages were developed for the 

convenience of high-level users. For example, SRC’s IMPLICIT+EXPLICIT™ 

ARCHITECTURE has both implicit (CPU) and explicit (FPGA) computation engines [31]. 

It allows programmers to use both C and FORTRAN. The compiler generates a unified 

executable to run on the CPU and FPGA. The compiler extracts parallelism and generates 

pipelined logic initiated in the FPGA chip. It also generates all the required interface code 

to manage the movement of data to and from the FPGA, and to coordinate the CPU with 

the logic running in the FPGA [31]. VIVA is a graphical language developed by Starbridge 

Systems [30].  Programmers can easily describe an algorithm by placing and connecting 

computation unit icons in a graphic environment. VIVA provides an extensively optimized 

library for different scientific computations [30]. Other commercial vendors such as 

Mitrion [78] and Xilinx [18] also provide tools to convert high level languages to hardware.   

2.4.2 Reconfigurable Computers 

Many supercomputer vendors have noticed the potential power of FPGAs and developed 

machines by utilizing FPGAs. The Cray-XD1 has up to 6 FPGA chips on each chassis as 

application accelerators [16]. The SGI RASC technology based on FPGAs enabled 

dramatic application acceleration compared to traditional servers [29]. The Hypercomputer 

from Starbridge Systems uses FPGAs as the computation engine and achieves competitive 

performance with traditional supercomputers [30]. Other companies that provide 

reconfigurable computer architectures include SRC [31], DRC [80], XtremeData [79], and 

Nallatech [28]. 
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2.5 Conclusions 
This chapter introduces previous work and problems of high performance reconfigurable 

computing for linear algebra. The consistently improving FPGA capacity and development 

environment make FPGAs very attractive for computational intensive computations. 

Although many efforts have been delivered, how to utilize FPGAs for high performance 

linear algebra is still an unsolved problem. In the next chapter, we will introduce our FPGA 

design for some linear algebra subroutines. Further performance improvement and analysis 

will also be introduced in following chapters. 
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3 Reconfigurable Processor Design for Linear Algebra 

Because of the parallelism inherent in most many matrix algorithms, reconfigurable 

accelerators can achieve higher peak performance than microprocessors. However, due to 

the frequent memory movement in matrix operations, especially sparse matrix operations, 

the system performance is heavily affected by memory bandwidth and overheads in real 

applications. Therefore, effectively integrating FPGA accelerators to computation systems 

is important for the overall system performance. In this chapter, we introduce our 

reconfigurable matrix computation design. System performance is optimized with both 

matrix algorithms and hardware architectures.       

3.1 SpMxV 
We introduce an innovative SpMxV solver for FPGAs (SSF). Because the hardware does 

not need to change for different matrices, the initialization time is minimized and the 

system integration complexity is reduced. The storage format plays an important role in 

SpMxV and affects the performance of optimization algorithms. We use the common 

format, Compressed Row Storage (CRS), for our FPGA design [15]. Our design requires 

the multiplicand vector x to be stored in the FPGA local memory.  Large matrices and 

vectors are divided into sub blocks. In contrast to traditional Block CRS (BCRS) format, 

our matrix storage format is optimized for FPGA accelerators. As explained later, this 

format is compatible with algorithms using BCRS but reduces requirements for both I/O 

bandwidth and computational resources. 

Because floating point adders are usually deeply pipelined to achieve high frequency, 

accumulating floating point data is normally difficult in digital design. We propose an 

accumulation circuit for SpMxV. By taking the advantage of the data flow, we design an 

innovative summation circuit which has low resource requirements and simple control 

logic.  
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3.1.1 SpMxV on FPGAs 

In general, the SpMxV computation Axy =  is defined as: 

∑ =
=

N

j jjii xay
0 , , ( Mi ≤≤0 ) (3-1)

where A is an NM ×  matrix, while y  and x  are 1×M  and N×1  vectors, 

respectively. For efficiency, most sparse matrix algorithms and storage formats only 

operate on nonzero elements. For each nonzero element, there are two floating point 

operations (one add and one multiply). By convention, we assume A has nzn  nonzero 

elements. All the elements of A and x  in storage have to be moved into the FPGA, while 

computed results for y  have to be moved out of the FPGAs. Because of the pointers used 

in storage formats, the indices for matrix A also need to be moved into FPGA local 

memories. Suppose there are pn  pointers needed. If we assume data sizes for A, x, y, and 

pointers are the same, the total I/O requirement is at least:  

pnzIO nnmnn +++=  (3-2)

Because of the loss of locality and limited memory size, matrix and vector data may have 

to be moved multiple times on traditional microprocessor-memory architectures. In our 

SSF design, I/O time is hidden by overlapping with computations to reduce the overall time. 

The time used to preload the data onto the FPGA is denoted as InitT , which also includes 

hardware initialization and data formatting. We denote syncT  as the time for the FPGA to 

synchronize with the host, and overheadT  for other overheads. The overall time spent on 

FPGA accelerators is thus 

overheadsyncinitIOcomp TTTTTT +++= ),max(  (3-3)

In equation (3-3), the computation time compT  is the only part doing matrix multiplication 

operations. However, SSF cores also have tremendous I/O demands. To improve the 
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overall performance, we need to overlap the I/O operations with computations as much as 

possible. At the same time, synchronization and overhead needs to be minimized. 

3.1.2 Sparse Matrix Storage Format 

The CRS format makes no assumptions about the sparsity structure of the matrix and has 

no unnecessary elements stored [15]. In the CRS format, 3 vectors are needed: the “val” 

vector stores subsequent nonzeros of the matrix in row order; the integer vector “col” stores 

the column indices of the elements in the “val” vector; while the integer vector “len” stores 

the number of nonzero elements of each row in the original matrix.  As an example, 

consider the matrix A  defined by 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−

−

=

06085
00090
00001
60010
00302

A  

The CRS format for this matrix is then specified by the arrays given below: 

Val:  2, -3, -1, 6, 1, 9, 5, 8, 6 

Col:  0, 2, 1, 4, 0, 1, 0, 1, 3 

Len:  2, 2, 1, 1, 3 

 

In our design, the multiplicand vector needs to be loaded into FPGAs. The maximum 

matrix size that can be fit into FPGA chips is restricted by the on-chip memory size. Big 

matrices need to be divided into sub-matrices. Our matrix division format is shown in 

Figure 3-1. The matrix is divided into stripes along the rows. Each stripe is then divided to 

sub-matrices (shown in dashed lines). The sub-matrices having only zeros are neither 

stored nor computed. We refer to this format as Row Blocked CRS (RBCRS). 
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During the computation, sub-matrices in the same stripe are assigned to the same FPGA 

accelerator. Note that the elements required from vector x  will differ for each stripe based 

on the sparsity structure. The vector x  is kept in the FPGA off-chip memory, and part of 

it ( jx ) is loaded before computing jij xA . Note that the result jij xA  is not sent out after 

being computed, but is stored in the FPGA and added with the result from the next 

sub-matrix vector multiplication in the same row. For example, the result of 020 xA ×  will 

be stored in the FPGA to add with the result of 121 xA × . After all the matrices in a row are 

computed, the result 2y  is read out. This approach saves I/O bandwidth and 

computational resources.   

3.1.3 Framework and Basic Design 

This section introduces our basic design for the SSF and the framework when used in 

software applications. In the basic design, we discuss the design for integers. Because the 

integer adders have latency of one clock cycle, the accumulation circuit can be built with a 

simpler pipelined structure. The summation circuit can also be simply implemented by 

using an adder. The basic design can also be made to support floating point data, but at a 

lower performance. The design for deeply pipelined floating point operators is more 

complicated because of the read after write hazard discussed in the next section.  

For all the designs, we assume the matrices and vectors are too large to be accommodated 

in the FPGA on-chip memory. The algorithm may be executed by multiple FPGAs 

working in parallel. Without loss of generality, we assume each PE computes the 

sub-matrices in one stripe. To illustrate the matrix mapping in practical implementations, 

we briefly introduce the structure on the Cray XD-1.   

 
 
 
 
 

Figure 3-1: Row Blocked Compressed Row Storage (RBCRS) 
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Basic Design and Interfaces 

Figure 3-2 shows the basic design of our SSF core and the framework for applications. The 

application program stores the matrix in Blocked CRS format. The matrix manager feeds 

sub-matrices to the SSF core in CRS format and reads back the values of iy . The 

application program may read back all the syi  from different FPGAs to determine the 

result y . 

In our design, each PE is a pipeline consisting of a multiplier, adder, and result adder. 

FIFO1 is used as a buffer for intermediate results. The data for “val” and “col” are 

imported into the PE synchronously. The multiplicand vector jx  is preloaded into the 

FPGA and addressed by “col”. Because there is a one clock cycle latency to read data from 

Block RAM (BRAM), a buffer is inserted for “val” before the multipliers. An illustration 

of the signals is shown in Figure 3-3. At the end of “col”, there is one data for Row ID in 

the sub-matrix. It is used to address the result BRAM and stored into FIFO 2. Zeros are 

inserted when there is a stall signal or when waiting for the I/O to feed the next rows. The 
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Figure 3-2: Data Path and Framework of SSF 
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signal “valid” is set when “val” and “col” data are being imported. It is also used to control 

the components: multiplier, adder, FIFO1, and FIFO2.  

Suppose row i  of a sub-matrix is being imported. The PE computes nzn  values, one for 

each nonzero for the row, and stores the resulting data into FIFO1. The summation circuit 

adds the results from the PEs with the data in the result BRAM addressed by data read from 

FIFO2. Note that the data in the result BRAM are from previous sub-matrices.  

To maximally utilize the data input bandwidth, all the components in the PEs are 

synchronized with the pipelined data by using the signal “valid”. Some intermediate signals 

are produced to tell when the components have valid inputs and outputs. Most of these 

signals can be produced by adding appropriate delays to the signal “valid”. For example, 

the “input valid” signal for a multiplier is produced by adding one clock cycle delay to the 

signal “valid”. The “write enable” signal for FIFO1 is set for one clock cycle when the 

result for one row is accumulated. The “stall” signal is set if FIFO1 is close to full. When a 

stall is issued, zeroes are inserted as inputs while the “valid” signal does not change. If a 

row is being imported, the multipliers and accumulators operate on inserted zeros and will 

have no affect on the results. Note that the data already in the pipelines of multipliers and 

ACC circuits still need to be computed and stored into FIFO1. Therefore, FIFO1 needs to 

have certain free space when a stall signal is issued. The size of the free space should be 

bigger than half of the total pipeline stages of an adder and a multiplier.  

The Result Controller checks the “empty” signal of all the FIFOs. If the FIFO is not empty, 

the result will be read out and added to the corresponding value in Result BRAM. The row 

 
 

Figure 3-3: Signals for Processing Elements (PEs) 
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ID is read out at the same time as the data address. The purpose of using the adder is to sum 

the results from all sub-matrices in the same stripe as explained in section 2.1. The result 

BRAM will be read and cleared when all the sub-matrices in the same line (for example iA2 ) 

are computed. 

In the basic SSF design, it takes 7 clock cycles for the Result Controller to read from one 

PE. The state diagram of the Result Controller is shown in Figure 3-4. The result of a row 

is stored in FIFOs and read out by the Result Controller. A stall signal is issued when a 

FIFO becomes full. To avoid the shared summation circuit becoming the bottle neck, its 

operation time should be able to be overlapped by I/O or computation time. As discussed 

later, multiple summation circuits can be used in parallel to increase the throughput.  

The structure of our design on the Cray XD-1 is shown in Figure 3-5.  The Matrix 

Manager feeds the data to the SSF core. Sub-matrices and vectors are loaded to the QDR 

memories on different blades.  During the execution of applications, the host processor 

sends the matrices/vectors addresses and the “start execution” request to the FPGA through 

the RapidArray Transport (RT) interface IP core [16]. The host continues its execution after 

it receives the acknowledge signal from the FPGAs.  Each FPGA then starts to operate on 

 
 

Figure 3-4: State Diagram of Result Controller 
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its sub-matrices. The results are then written to QDR memories and a completion signal is 

sent back to the processor node.  When completion signals are received from all the 

FPGAs, the host node retrieves the final matrix results. 

3.1.4 Complete Design 

Pipelined ACC Circuit 

Pipelined floating point operators can be used to improve the frequency of our design. 

However, the accumulator cannot be simply built as in the basic design because of read 

after write data hazards. The dataflow for a 5-stage pipelined floating point adder is shown 

in Figure 3-6. The hashed blocks are inserted zeros, which come when the valid signal is 

zero (invalid). The second row shows the outputs of this circuit. There are three problems 

in this circuit: 

1. The output is not accumulated into one data as in the integer design. For example, the 

first row has 6 numbers with a summation of 21. The circuit gives 5 outputs we should 

use (2, 3, 4, 5, and 7).  

2.  The data is added to the output of previous rows. For example, 8, 9 and 10 are added 

to 3, 4 and 7.  

3. To solve the first problem, we can use 5 registers to store the last 5 outputs of each row. 

However, these registers will have results from previous rows when the current row is 

 
Figure 3-5: Structure on Cray XD1 FPGA [16] 
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short. For example, if 5 registers are used to store the outputs from the second row, the 

data should be captured when 13 (the correct output is 9) comes out. However, 5, 7 and 

2 are also stored because the data stream to be accumulated is too short.  

To solve the data hazards mentioned above, we design an ACC circuit with one pipelined 

floating point adder. One of the inputs, (a), is connected to the output of multiplier and 

works as the input for the ACC circuit. The last 5 outputs of the adder are stored in 5 

registers to work as the output of the ACC circuit. The correct outputs from our design are 

also in Figure 3-6, where the blocks in grey are data stored in registers. For example, 8 and 

9 are stored in two registers as the output of 8 and 9 in the first line. The other 3 registers 

have just zeros. 

Adder Tree  

For pipelined adders with L  clock cycle latency, L  outputs will be stored into FIFO1 to 

add with the data in the result BRAM. One way to solve this problem is to add these L  

outputs by an adder tree. Suppose L  is equal to 4, we need to add 4 data from the FIFO 

and 1 data from the result BRAM. For these 5 inputs, an adder tree with 3 levels and 4 

adders are needed as shown in Figure 3-7. If the number of inputs is not a power of two, 

shifters with latency L  can be used in an adder tree to take the place of adders to save 

resources. 

For our design with double precision data, 12 outputs from the FIFO and 1 data from the 

result BRAM need to be added. We use 12 floating point adders to build the adder tree, 

which costs 25% of the total slices of a Xilinx XC2VP70 FPGA. The data flow of the adder 

tree used in our design is shown in Figure 3-8.  

 
 

Figure 3-6: Data Flow for Pipelined ACC Circuit 
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Figure 3-7: Adder Tree Used for Pipelined Adders 
 
 
 

 
 

Figure 3-8: Data Flow for Adder Tree 
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In Figure 3-8, the rectangles represent data. The numbers in rectangles are the clock cycles 

when that data is available. The dashed line is a FIFO with a latency of 24 clock cycles. 

The final result comes out 48 clock cycles after the inputs are available, so it is very 

important to capture the output at the right clock cycle. We input the row ID and write 

enable signal to two shifters with depth of 48 at clock 0. They will come out with the result 

at clock 48 to be used as the address and write enable signal for the result BRAM.  

Reduced Summation Circuit 

Because of the large adder tree, we propose a reduced summation circuit as shown in 

Figure 3-9. The idea is to reduce the number of adders by importing just two data each 

clock cycle. The data coming out first is stored in a buffer and computed with the next. By 

inserting a certain number of buffers between the adders and taking advantage of the data 

flow, we designed a summation circuit for this function without control logic. For our 

double precision design, 4 adders and 7 buffers are used in total. 16 registers are used to 

store the data from the FIFO, the result Block RAM, and 3 zeros to fill the pipeline for 

correctness. This will be explained later in the data flow. 

The data flow here is more complicated than in the adder tree, as shown in Figure 3-10. 

The data in a row are added by the same adder in serial, while buffers are used to delay the 

intermediate data for the appropriate time. For example, the datum on clock 12 should be 

added to that on clock 13, so a buffer needs to be added before adder 1. We can see that the 

data on clock cycle 18 does not have a counterpart for the addition operation. We pad with 

zeros to obtain the correct sum. The shaded rectangles are inserted zeros. Figure 3-11 

shows that the final result can be captured 55 clock cycles after the data is available in the 

buffer. In our design, a “Write Enable” signal for the result BRAM is stored to a shifter 

with length of 55 at clock 0. When the “Write Enable” comes out of the shifter, the final 

result will also be ready. 
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Figure 3-9: Reduced Summation Circuit 

 
 

 
 

Figure 3-10: Data Flow for Summation Circuit 
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The Result Controllers of these two circuits are very similar. Because of their long latency, 

the Result Controller does not wait for the result and write to the result BRAM. Instead, we 

insert the row ID and write enable signals to be written into shifters at clock cycle 0. If the 

three outputs of these two circuits are connected to corresponding pins of the result BRAM, 

the data should be written automatically.  

The Result Controllers for the summation circuit and adder tree have just 5 states. However, 

the summation circuit needs 8 clock cycles to compute 16 data for each PE, so the time on 

each PE is 8 clock cycles. On the other hand, the adder tree can compute for each PE per 

clock cycle, but is slowed down by the Result Controller. The Result Controller for the 

adder tree can be further improved by adding control logic behind the FIFOs in each PE. 

Table 3-1 compares the summation circuit and adder tree. 

3.1.5 Implementation Results and Comparison 

We implemented our SSF design by using Xilinx ISE and EDK 8.1 [18]. ModelSim and 

Chipscope [18] are used for verification and debugging. For mathematic operations, we use 

Xilinx IP cores which follow the IEEE 754 standard and that can also be customized [18]. 

Considering the limited size of the FPGAs, we use a summation circuit for the floating 

point design. The BRAM size for ix , iy  are 1024. The adders and multipliers are 
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Figure 3-11: Result Controller for Summation Circuit 
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provided by Xilinx [18]. To compare our results with previously reported designs [11], we 

target the Xilinx XC2VP70-7, which is similar to the devices our platforms have. The 

characteristics are summarized in Table 3-2.  

The slice usage and the frequency of our design are dominated by the mathematic operators, 

while the effect from control logic is almost negligible. If high speed floating point 

operators are used, the speed of our design can be improved accordingly. Our design can 

easily adapt to different data formats by simply replacing IP cores. The only change for the 

control logic is the latency of operators and the interface width, which are defined as a 

variable in the VHDL. Our design is deeply pipelined. Ignoring I/O bandwidth limitations 

and communication overheads, two floating point or integer operations (one addition and 

one multiplication) can be done per clock cycle by each PE.  

Previously reported work describes an implementation that achieves 2340 MIPS at 28.57 

MHz frequency by using 3 multipliers [19]. However, that design is for fixed point data. 

The closest related work is [11], which develops an adder-tree-based design for double 

precision floating point numbers. A reduction circuit is used in their design to sum up the 

Table 3-1: Comparison of Adder Tree and Summation Circuit 
 

Design Number of Adders Latency (clock cycles) 

Adder Tree 12 48 

Summation 4 55 

 
 

Table 3-2: Characteristics of SSF on XC2VP70-7 
 

Design 64 bit Integer Single FP Double FP 

Achievable 175MHz 200MHz 165MHz 

Slices 8282 (25%) 10528 (31%) 24129 (72%) 

BRAMs 36 (10%) 50 (15%) 92 (28%) 

MULT18X18 128 (39%) 32 (9%) 128 (39%) 
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floating points. Because the frequency is mostly dependent on the floating point operations 

for both designs, the achievable speed is similar in these two designs if the same 

mathematical IP cores are used. When 8 multipliers are utilized, both designs achieve a 

peak performance of 16 floating point operation per clock cycle. Table 3-3 compares our 

design with the data reported in [11] when 8 multipliers are used for each. Their design 

uses high performance floating point cores with clock latencies of 19 for the adder and 12 

for the multiplier. The number of adders depends on the size of the reduction circuit, which 

changes with different matrices. For the test matrices in [11], the size of reduction circuit is 

7. Our approach accepts any input matrices with no hardware changes required. There is no 

a priori analysis on the matrix or extra hardware initialization time needed for our design. 

For the tree-based design [11], zeros need to be padded when the number of nonzero in a 

row is not a multiple of the number of multipliers. To reduce the overhead caused by zero 

padding, [11] uses a technique called merging. As the PE number increases, the tree based 

design will face a choice between high overhead and complicated control logic [11]. Our 

design scales very easily and without increased overheads.  

3.1.6 Potential Improvements 

Parallelism: Reducing Summation Circuit Latency  

In our design, the summation circuit is shared by all the PEs to add the data from the FIFOs 

and the result BRAM. When the design scales up, care must be taken that it will not 

become the bottleneck of the whole pipeline. That is, the time the result adder uses to 

Table 3-3: Double Floating Point Design Comparison with [11] 
 

Design Design in [11] SSF 

Frequency 160Mhz 160Mhz 

Adders 7+7 (Reduction Circuit) 12 

Multipliers 8 8 
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transport data should be overlapped by communication or computation time. There are 3 

Result Adder circuits discussed here: reduced summation circuit, adder tree, and a 

one-clock-cycle latency adder, which take 8, 5, and 7 clock cycles to operate on each PE. 

We analyze this problem by considering the reduced summation circuit because it takes the 

most time. We compare the time the I/O and the summation circuit needs to transport data 

when each PE has 1 row. For a design with 8 PEs, the time needed by the result adder to 

transport data is 6488 =×  clock cycles.  

The communication time is decided by the I/O bandwidth and matrix sparsity. On the Cray 

XD-1, the peak speed for the bus between FPGA chip and QDR II RAM is 1.6GB/s in each 

direction [16]. Suppose the matrix sparsity is 1% and sub-matrix size is 1000 by 1000. 

Then on average, there are 10 double precision floating point data (8 Bytes) for “val” and 

10 integer pointer data (2 Bytes) for each “col”, that is 100 Bytes per row. Even assuming 

the I/O bandwidth can be fully utilized with no other communication overheads, the 

communication time for the double precision floating point design is at least 

836.1/1658100 ≈×× GMHz  clock cycles for a design with 8 engines. The overhead for 8 

PEs needs extra 86.1/165810 =×× GMHz clock cycles and results in a total of 83+8=91 

clock cycles.   

If more PEs are implemented, the time spent by both the result adder and I/O operations 

increases linearly. Therefore, the I/O is the bottleneck instead of the adder tree under the 

conditions above. If the sub-matrix size increases, the time spent on I/O will increase 

accordingly. Therefore, the summation circuit has less possibility to become the bottleneck. 

If faster I/O is used, the time for I/O will be smaller and may not overlap the time for the 

summation circuit. Multiple summation circuits can work in parallel to increase the 

throughput until is the time on summation circuit can be overlapped by the communication 

or computation time.  

Using Mixed Data Format for SSF  

Given that I/O time is the performance bottle neck, reducing data transfer time will 

improve overall performance. We try to increase the performance of SSF by applying 
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shorter data formats as much as possible. The potential impact on performance is explained 

here by a simple example. Suppose 32-bit integers can provide sufficient resolution for the 

matrices and vectors given. The output data could be bigger and 64 bit integers are needed. 

Instead of using 64 bit data for both input and output data, we can use two different data 

formats: 32 bits for input and 64 bits for the output. Table 3-4 shows a mixed data format 

design has higher frequency, lower latency, and less I/O bandwidth and resources.  

3.1.7 Performance  

Performance Model for SSF Accelerator 

In our design, the time for moving “val” and “col” into the FPGA is overlapped with the 

computation time. When a sub-matrix is being computed, the multiplicand vector ix  for 

the next matrices can be loaded. The I/O time on ix ( 1≥i ) can be overlapped, so it is not 

counted here. The time for initialization and synchronization should also be counted, so the 

total time spent by the SSF core is 

overheadsyncinitIOcomp TTTTTT +++= ),max(  (3-4)

Table 3-4: Comparison on 64 bit and 32/64 bit Mixed Integer SSF 
 

Design 32/64 bit Mixed 64 bit 

Achievable Frequency 183Mhz 175Mhz 

Slices 3475 (10%) 8282 (25%) 

BRAMs 20 (6%) 36 (10%) 

MULT18X18 32 (9%) 128 (39%) 

Multiplier Latency 4 cycles 6 cycles 

I/O Bandwidth Requirement 8.8GB/s 14GB/s 
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In equation (3-4), the real computational work only contributes compT  to the total time. To 

increase overall performance, we need to overlap the communication time and reduce the 

initialization and synchronization time besides reducing compT .  

compT  is determined by the frequency and number of computational engines. We assume 

F  floating point operations are executed per second.  The communication time is limited 

by the host memory bandwidth and by the I/O bus speed. Suppose the bandwidth for each 

I/O bus is IOB  and that the matrix A and vector y are transported by separate I/O buses. To 

compute a nonzero element, both its value and pointer have to be moved into FPGA. The 

time spent on the FPGA accelerator is thus 

overheadsyninit
IO

nz TTT
B

datawidthcoldatawidthvaln
F
n

T nz +++
+×

= )
)(

,
2

max(
**

 (3-5)

Where *
nzn  is the total number of nonzero elements for all sub-matrices assigned to a 

FPGA accelerator.  

To minimize equation (3-4) and (3-5), we have discussed several approaches to accelerate 

the computation: increasing the frequency and number of PEs to improve F ; optimizing 

the matrix mapping to reduce I/O operations; making the design general to all different 

matrices so no hardware initialization or preparation on inputs is required; designing a 

simple interface which only needs a start signal and matrix/vector address; and not 

requiring any participation of the host during the computation.  

We still need to discuss the block RAM size. The effect from the block size of ix  is a 

double edged sword. The overheads in our design mainly come from the one clock cycle 

control signal between rows. Therefore increasing the block size of ix  reduces the ratio of 

overheads by having more nonzero elements in each row. However, it also results in a 

longer initialization time for loading 0x . The result BRAM size determines the number of 

rows of sub-matrices, which affects the number of nonzero elements of sub-matrices. 
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Under certain sparsity, the I/O time to move sub vectors jx  can be overlapped with a big 

enough result BRAM size.  

For very larges matrices, many sub-matrices will be assigned to a FPGA. initT  in our 

design comes from loading ox  and can be ignored in that case. The synchronization time 

with hosts is also just a function call, so we can also neglect syncT  for simplicity. For the 

double precision design, the data width is 8 Bytes. Because of the limited size of sub 

matrices, the pointer width is 2 Bytes. So equation (3-5) becomes: 

)
10

,
2

max(
**

B
n

F
n

T nznz<  (3-6)

If unlimited resources are assumed, F is also infinite. Then the achievable MFLOPS 

performance is limited by B.  

5/
/10

22
B

Bn
n

T
n

MFLOPS
z

zz =<=  (3-7)

The floating point operations F take advantage of both the frequency and capacity of 

FPGAs and result in 4 times improvement every two years [6]. However to build a 

balanced system, the number of PEs is limited not just by chip capacity but also I/O 

bandwidth. For double precision floating point as discussed before, the maximum number 

of PEs that can be supported by the I/O bandwidth is a function of the I/O bandwidth B and 

the frequency fFPGA: 

Number of PE 
FPGAFPGA f
B

f
B

102
5/

=≤  (3-8)

Equation (3-8) shows that the number of PEs required for a computation system is 

constrained I/O bandwidth. If the I/O bandwidth of a system is 1GB/s and SSF runs at 100 

MHz, only 1 PE is required to achieve the best performance. 
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Comparison with Previous Work 

To the best of our knowledge, the work in [11] reports the highest previous performance 

for SpMxV on FPGAs. Given the same size design as shown in Table 3-2, we have similar 

peak performance and I/O requirements. However, our design does not need to change the 

hardware for different matrices, so the initialization and synchronization time is shorter. 

We also do not suffer from either high overheads or very complicated control logic when 

the system scales. For large matrices, the results from the design [11] are just for 

sub-matrices and need to be summed up for the final result. Our design allows storing the 

immediate result in the FPGA and computes the final result without this additional I/O 

operation requirement.  

Comparison with Microprocessors 

In our design, the overhead mainly comes from the one clock cycle between continuous 

rows. The number of these overhead clock cycles is decided by the total number of 

sub-rows. The initialization time is for preloading sub vector 0X . Both of these overheads 

can be found precisely in simulation. The synchronization time is affected by the interface 

and API between host and FPGA chip. Our design needs a few synchronization signals, 

such as “start”, “complete” and “start addresses” of the matrices/vectors.  The 

synchronization time is neglected at this point. We test our design on matrices from 

different fields as shown in Table 3-5. All these matrices come from Tim Davis’ Matrix 

Collection [21]. They are roughly ordered by increasing irregularity. The percentage of 

overheads in the test matrices is shown in Figure 3-12. 

We compare the performance of our design with microprocessors. Our design utilizes 8 

PEs at 165 MHz frequency. The required memory bandwidth is 13.2 GB/s, which can be 

provided by current technology. For example, BenBLUE-V4 provides 16GB/s memory 

bandwidth [28]. We take a conservative performance estimation by deducting 40% off the 

peak performance for control overhead of the high speed memory interface [6], [11]. The 

achievable percentage of performance is shown in Figure 3-13.  
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Table 3-5: Test Matrices [21] 
 

ID Matrix Area Size (N) Nonzeros (Nnz) Sparsity (%)

1 Crystk02 FEM Crystal 13965 968583 0.5 

2 Crystk03 FEM Crystal 24695 1751178 0.29 

3 Stat96v1 linear programming 5995 x 197472 588798 0.05 

4 nasasrb Structure analysis 54870 2677324 0.09 

5 raefsky4 Buckling problem 19779 1328611 0.34 

6 Ex11 3D steady flow 16614 1096948 0.4 

7 rim FEM fluid mechanics 22560 1014951 0.2 

8 goodwin FEM fluid mechanics 7320 324784 0.61 

9 dbic1 linear programming 43200 x 226317 1081843 0.01 

10 Rail4284 Railways 4284 × 1092610 11279748 0.24 
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Figure 3-12: Overhead Percentage 
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Figure 3-13: Percentage of Achievable Performance 



 37 
 

To test the software performance on a microprocessor, we use OSKI, which has achieved 

significant speedups by using techniques such as register and cache blocking [20]. The 

machine is a dual 2.8GHz Intel Pentium 4 with 16KB L1, 512KB L2 Cache and 1GB 

memory.  

The speedup of our design over the 2.8 GHz Pentium 4 is shown in Figure 3-14. Our 

design performs better than the Pentium 4 on matrices with irregular sparsity structures. 

This is because the overhead of our design depends on the number of nonzero elements per 

row of sub-matrices but is not affected by their sparsity structure. 

The high performance of our SSF design relies in the reduced overhead, deep pipeline, and 

a parallel architecture. First, SSF fully controls data required for computations and 

therefore avoids the high penalty of cache misses in traditional CPUs. Second, SSF uses a 

deeply pipelined architecture and maximally reduce idle pipeline stages. Third, multiple 

PEs are implemented in SSF to achieve parallelism.  
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Figure 3-14: Speed Up of Our Design over 2.8 GHz Pentium 4 
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3.2 Matrix Factorization 

3.2.1 LU Decomposition Design on FPGAs 

LU decomposition is a widely used matrix factorization algorithm. It transforms a square 

matrix A into a lower triangular matrix L and an upper matrix U with A=LU. The elements 

of A, L, and U can be denoted as yxa , , yxl , , and yxu , , respectively. As shown in the 

following steps, the Dolittle algorithm for LU does the elimination column by column from 

left to right. It results in a unit lower triangular matrix and an upper triangular matrix which 

can use the storage of the original matrix A [15]. This algorithm requires 32 3  / n  floating 

point operations.  

Step 1: Column Normalization. The elements 0,xa  in the first column below the 

diagonal element 0,0a  are divided by 0,0a . 

Step 2: Sub-matrix Modification. The product of 0,xl  and the row vector xa ,0  (also 

xu ,0 ), is computed and subtracted from each row of the sub-matrix yxa , , where 

( 1,1 −≤≤ nyx ).  

Step 3: Steps 1 and 2 are recursively applied to the new sub-matrix generated in step 2. 

During the thk  iteration, kxl ,  and yku ,  ( 1,1 −≤≤+ nyxk ) are generated. The iterations 

stop when 1−= nk . 

When matrix A is not positive definite, columns could be divided by a small number or 

even zeros, and cause inaccuracy. To avoid this problem, partial pivoting is applied to swap 

columns in sub-matrices. We first assume matrix A is positive definite and no pivoting is 

needed to compare to current LU design on FPGAs. Partial pivoting will be discussed in 

the next section. 
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As shown in Figure 3-15, our design mainly consists of a divider, a column buffer, and p  

PEs. In each PE there is a multiplier, an adder, and local memory. The maximum number 

of PEs and their local memory size are limited by available resources of the FPGA chip.  

The process to complete LU decomposition by our design has 4 stages: matrix input, 

column normalization, sub-matrix modification, and completion. As shown in the LU 

algorithm, stage 2 “column normalization” and 3 “sub-matrix modification” are executed 

iteratively until the sub-matrix becomes a scalar. To fully fill the deep pipelines of floating 

point units, a streaming architecture is used. Initially matrix A is stored in the PEs’ local 

memory. In each stage, data flow out of the memory, through the arithmetic engines for 

computation, and finally return back to the memory. According to the LU decomposition 

algorithm, the data path configurations are different for different stages. To maximally 

reuse these expensive floating point units and memory, high speed switches are used to 

change the connection between these components for different stages.  

At the “matrix read stage”, the input data and address ports of the PE local memory are 

connected to the PEs’ local memory input ports. These local memories appear to the host as 

a big memory block by address mapping. The matrix is striped to PEs by columns with 

 
 

Figure 3-15: Base Diagram for Direct LU Decomposition 
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column jpn +/  stored in PE j  as shown in Figure 3-17. Because the sub-matrices 

become smaller and smaller in the iterative stages, such a storage format ensures that the 

sub-matrices are evenly distributed among the PEs for parallel computation. Without loss 

of generality, we assume the matrix size is an integer multiple of PE number. 

During the “column normalization” stage, the column “ 0col ” flows out of its local PE 

storage, through the divider, to compute 0,00, / aak  ( 10 −≤< nk ). The computed results 

0l  are stored in the column buffer and the appropriate PE’s local memory at the same time. 

In the “sub-matrix modification” stage, yxyx ala ,00,, −  needs to be computed for 

1,1 −≤≤ nyx . The data flow configuration inside a PE is shown in Figure 3-18. 0l  flows 

out of column buffer and trough all the multipliers in the PEs simultaneously. At the same 

time, its address flows through the PEs’ local memory to address yxa ,  and yoa ,  by 

 
 

Figure 3-16: LU Design Operation Stages 
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Figure 3-17: Matrix Mapping on FPGAs 
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inserting proper delays. All PEs perform sub-matrix update simultaneously in this stage. In 

each clock cycle, one floating point addition and multiplication are executed for each PE. 

Because multiple columns are stored in one PE, column 0l  should also circulate multiple 

times until all the columns are updated.  

Design analysis: If the few overheads due to the control flow are not counted, the proposed 

design completes LU decomposition in approximately pn 3/3 . Just n words are needed for 

the storage besides the original matrix’s own space.   

Proof: In iteration k ( 10 −<≤ nk ), the sub-matrix size is n-k. The clock cycles needed by 

the divider to compute xkl ,  ( 1−<≤ nxk ) is )1( −− kn , while that for multiplication and 

subtraction is 2)1(2 −− kn . So the total divider operation is ∑ −=−
=

1
1 2/)1(n

x nnx  and that 

for multiplication and subtraction is 21
1

32 3/22 nnxn
x −∑ =−
= . Because the multiplication 

and subtraction are overlapped and computed by p  PEs in parallel, so the total time is 

pnpnnnn 3/2/)3/2(2/)1( 323 ≈−+− . The addition and multiplication floating point 

 
 

Figure 3-18: PE Data Flow Configuration at Sub-matrix Modification Stage 
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operations for LU decomposition are in order of O(2n3/3). More accurate execution time 

analysis for LU decomposition is discussed in chapter 6.  

3.2.2 Pivoting 

When zeroes exist on sub-matrix diagonals, elements will be divided by zeros in the LU 

decomposition algorithm discussed above. At the same time because computers have to use 

certain precisions, relatively small values on sub-matrix diagonals will possibly cause big 

accumulated numeral errors [81]. Pivoting is a process performed on a matrix to increase 

numerical stability. The element 0,0a  used in “column normalization” stage is called a 

pivot element. The row having the pivot element is called the pivot row. There are 

numerous pivoting methods discussed in the literature. We list some of them here to give a 

general idea. 

(1) Trivial Pivoting.  The trivial pivoting strategy is as follows.  Locate the first row j below 

0 in which  00, ≠ja  and then switch rows j and 0.  This will result in a new element 

00,0 ≠a , which is a nonzero pivot element. 

(2) Partial Pivoting.  The partial pivoting strategy is as follows. If 00,0 =a ,  locate row j 

(j>0) that has the maximum absolute value in column 0 and then switch rows j and 0.  This 

will result in a new element 00,0 ≠a ,  which is a relatively big pivot element. In partial 

pivoting, only row permutations are employed. The strategy is to switch the largest entry in 

the pivot column to the diagonal.  

(3) Total Pivoting.  The total pivoting strategy is as follows.  Locate row j (j>0) and 

column k (k>0) where element jia ,  has the biggest absolute value. Then first switch rows 

0 and j and second switch column 0 and k.   This will result in a new pivot 

element  00,0 ≠a .  This is also called “complete pivoting” or “maximal pivoting.” Here both 

row and column permutations are permitted. The strategy is to switch the largest entry in 

the part of the matrix that we have not yet progressed to the diagonal. 
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Compared to other strategies, partial pivoting effectively reduces numerical errors without 

large computational overheads. Therefore it is employed in the hardware design here. As 

shown in Figure 3-19, pivoting is performed after a new matrix is imported or each time 

when a sub-matrix is completely updated. A column normalization operation is executed 

after pivoting to avoid dividing column 0 by zeroes or relatively small numbers.  

The system diagram with partial pivoting is shown in Figure 3-20. During the “pivoting” 

stage, the first sub-matrix column is streamed out from the PEs to the pivoting arbiter, 

which compares the pivot element with other values in this column. If the pivot element is 

the biggest value in the column, no pivoting is required. Therefore the state machine 

transfers to the next stage “column normalization” directly. If the pivoting arbiter finds a 

value in column 0 bigger than the pivot element, a pivoting operation has to be performed. 

The biggest element in column 0 is the new pivot element, while the row that has the new 

pivot element will be the new pivot row. Because matrix A is stored in the PEs’ local 

 
 

Figure 3-19: LU Design Operation Stages with pivoting 
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Figure 3-20: Base Diagram for Direct LU Decomposition with pivoting 
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memories by column, a row of matrix A is distributed in all PEs. The values in the old and 

new pivot row are exchanged in all PEs simultaneously. The pivoting buffer is used to 

temperately store the old pivot row when exchanging two rows.  

3.2.3 Implementation Results  

We implement the LU design on Xilinx FPGA XC2VP50-7 FPGA, which is used on the 

Cray-XD1 supercomputer as an application accelerator. Table 3-6 and Table 3-7 give 

implementation results with and without pivoting, respectively. When the same number of 

PEs and same size of maximum matrix size are implemented for double and single 

precision, the latter costs less than half of the slices, BRAMs, and embedded 18x18 

multipliers. By using a similar number of total slices, a Xilinx XC2VP50 FPGA can 

accommodate 8 PEs for double, 16 PEs for s31e8, and 32 PEs for s16e7. At this case, 

s31e8 and s16e7 can hold larger matrix sizes than double precision. The achievable 

frequencies are tested from a Cray-XD1 supercomputer. The specific design for the 

Cray-XD1 and execution time performance will be discussed in Chapter 5. 

3.3 Hybrid Direct Solver 
LU decomposition is widely used for direct solution of linear systems. Suppose matrix A is 

factored to a lower triangular matrix L and upper triangular matrix U. The linear system 

becomes bLUx = . It is equivalent to solve two linear equations bLy =  and yUx = . 

Since L and U are triangular matrices, y and x can further be solved by forward and 

backward substitutions.  
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Table 3-6: LU Decomposition Implementation with Pivoting on XC2VP50-7 
 

Design Double (s52e11) Single (s23e8) s31e8 s16e7 

Number of PEs 8 8 16 32 

Maximum size 128 128* 128 256 

Achievable Frequency 120MHz 135MHz 130MHz 140MHz 

Slices 21044 (89%) 9091 (38%) 20356 (86%) 20907 (88%) 

BRAMs 84 (36%) 42 (18%) 84 (36%) 130 (56%) 

MULT18X18 128 (55%) 32 (13%) 64 (27%) 32(13%) 

• A larger matrix size can be accommodated 
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Table 3-7: LU Decomposition Implementation without Pivoting on XC2VP50-7 
 

Design Double (s52e11) Single (s23e8) s31e8 s16e7 

Number of PEs 8 8 16 32 

Maximum size 128 128* 256 256 

Achievable Frequency 120MHz  135MHz 130MHz 140MHz 

Slices 20422(86%) 7737 (32%) 19070(80%) 19575(82%) 

BRAMs 68 (29%) 34 (14%) 148 (63%) 97(41%) 

MULT18X18 128 (55%) 32 (13%) 64 (27%) 32(13%) 

• A larger matrix size can be accommodated 
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Equations (3-9) and (3-10) could be implemented on FPGAs, but complicated control logic 

is required to achieve fine parallelism. Furthermore, the division operation of each iteration 

cannot be parallelized and also requires an expensive floating point divider. On the other 

hand, the computational complexity for equations (3-9) and (3-10) is )( 2nO , while that for 

the LU decomposition is )( 3nO . Therefore, we propose to explore LU decomposition on 

FPGAs but leave the forward and backward substitutions on the CPU as shown in Figure 

3-21.  

3.4 Conclusion 
The first design for our RBLAS library is an innovative SpMxV FPGA design with overall 

system performance addressed. First, we introduce an improvement for traditional BCRS, 

which results in lower I/O requirements and less overhead. Secondly, we propose an 

 
 

Figure 3-21: A Hybrid Structure for Direct Solver 
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efficient multiplication accumulation circuit for pipelined floating points by taking 

advantage of the data flow.  Compared to previous work, our design has higher peak 

performance, lower memory requirements, better scalability, and does not need to 

reconfigure hardware for different matrices.  

The second design is an LU decomposer on FPGAs. To maximally utilize the floating point 

units, flexible interconnections are implemented by using high speed switches. During each 

stage, the data is streamed out of memory and then through floating point units. The results 

are computed and flowed back to the memory. For non positive definite matrices, the LU 

algorithm requires partial pivoting which involves complicated control logic design. This is 

the first HDL design implementing partial pivoting architecture for LU decomposition on 

FPGAs. 

Based on the LU design, we propose a hybrid structure for a direct solver. The LU 

decomposition has a computation complexity of )( 3nO , so it is mapped to FPGAs for 

fined parallel computation. The forward and backward substitutions have just )( 2nO  

computational complexity but require expensive floating point units and complicated 

control logic, so are left in the CPU. 
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4 Mixed-Precision Linear Solver on FPGAs 

Floating point linear equation solvers are widely used in scientific computations such as the 

finite element method (FEM) and partial differential equation solvers. For the purpose of 

algorithm convergence and accuracy, a double precision data format is often used in 

software codes for these algorithms. Recently research has targeted to accelerating these 

applications on FPGAs and achieved promising results. To achieve speedup via parallelism, 

FPGA designs require multiple floating point units to be implemented. However due to 

their very high resource cost, current FPGAs can only accommodate a very limited number 

of double precision floating point units.     

Shorter formats on FPGAs usually result in higher frequency and lower resource 

consumption. Meanwhile using smaller data sizes also helps to reduce the bus traffic. 

Therefore, it makes a lot of sense to use shorter and shorter formats for higher performance 

when the accuracy allows. For example, fixed point data are widely used in digital signal 

processing to take the place of floating point units. The problem for these approaches is that 

the accuracy is usually decreased. Therefore, analysis must be performed to guarantee that 

the lower-precision data format is accurate enough for certain applications. We propose to 

explore mixed-precision data algorithms on FPGAs, which can achieve higher performance 

by adopting lower-precision data formats without losing accuracy [14]. 

4.1 Mixed-Precision Algorithm for Direct Solver 

4.1.1 Iterative Refinement 

Suppose matrix A  can be factorized as LUPA =  with partial pivoting, where L is a 

lower triangular matrix, U is an upper triangular matrix, and P  is a permutation matrix 

used for pivoting. The direct solver with iterative refinement is shown in Figure 4-1, where 

refinement loops are taken to improve the accuracy based on the available solution. 

Demmel pointed out that the iterative refinement process is similar to Newton’s method 
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applied to f(x) = b - Ax. If all the computations were done exactly, it would be done in one 

step [42].   

The idea of this mixed-precision algorithm is that the factoring PA=LU, and the triangular 

solver PbLUx =  are computed in lower-precision; while the residual and updating of the 

solution will be computed in higher-precision. This approach was analyzed by Wilkinson 

[46] and Moler [47], who showed that this algorithm produces a computed solution correct 

to the working precision, provided matrix A is not too ill–conditioned. Demmel [48] 

pointed out that the behavior of the method depends strongly on the accuracy with which 

the residual is computed.  

The potential performance gain of using the mixed-precision algorithm lies in that the 

computation on factorization is )( 3nO  and dominates the runtime of the algorithm in 

Figure 4-1. The other steps, including triangular solver, residual computation, and the 

solution update, are just )( 2nO . Furthermore, shorter data formats usually reduce the 

memory bandwidth requirement.  

4.1.2 Error Analysis 

Previous work addressed error analysis of iterative refinement techniques. Higham derived 

error bounds for fixed precision iterative refinement [82]. For single/double 

mixed-precision iterative refinement executing the refinement in double precision 

arithmetic, [82] gives error bounds in single precision. Stewart gives an error analysis of 

Factorize A to LU: PA=LU.
Sove LUx=Pb
while (r is too big & maximum loop not reached)

r=b-Ax
Solve Ly=Pr
Solve Uz=y
x=x+z

end
 

 
Figure 4-1: Direct Solver with Iterative Refinement 
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iterative refinement [49]. Langou et al derived the results from [49] and give error bounds 

in double precision for a single/double mixed-precision algorithm with iterative refinement 

performed in double precision arithmetic [14]. The result in [14] reveals that a 

mixed-precision algorithm can achieve the same accuracy as with higher-precision, 

provided that the matrix is not too badly conditioned. 

Data formats utilized in our design are much more flexible than single and double precision, 

so we extend the results of [14] for iterative refinement methods performed in general 

high/low mixed-precision arithmetic. We consider mixed-precision iterative refinement 

algorithms in Figure 2-1 which execute steps 3 and 5 in higher-precision εhigh but the other 

steps in lower-precision εlow. If the matrix A is not too-ill conditioned with respect to the 

lower-precision arithmetic, that is ψk(n)κ(A) εlow<1, from the results in [14], we have 

B
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k
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k
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where αB and βB are of the form, 

lowBB An εκψα )()(=  (4-2)

and  

highBB n ερβ )(=  (4-3)

ψk(n), ψB(n) and ρB(A) are small functions of n explicitly defined in [14]. αB is depends on 

κ(A) and εlow, which are the condition number of the matrix A and the implemented 

lower-precision. αB indicates the convergence rate. βB depends on the higher-precision used 

εhigh, and determines the limiting accuracy of the algorithm. At convergence, the following 

exists: 
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This indicates that the same normwise accuracy is achieved for the mixed-precision 

algorithm as for the higher-precision. 

4.2 Performance on FPGAs 
Given the fact that FPGAs have much more flexible data formats than traditional 

processors, it is valuable to find out the data formats optimal for both accuracy and 

performance. More specifically, simpler and shorter data formats help to increase the 

frequency and reduce resource cost and bus bandwidth requirements. On the other hand, 

using lower-precision for LU factorization might require more refinement iterations and 

may even fail to converge. As an example, we test the convergence and iteration loops of a 

mixed-precision direct solver using double precision (s52e11) and a customized format 

(s16e8). The refinement stops either when the solver achieves the accuracy of the double 

precision algorithm or there are more than 30 iterations. The latter is considered to be a 

failure of convergence. Table 4-1 shows the results tested on 100 random matrices. When 

the problem size increases, we observe that more iteration loops are required. Note that for 

large problems, the refinement takes a very small percentage ( )(/)( 32 nOnO ) of the overall 

time, so a small increase in the number of iterations will have little performance impact. In 

Table 4-2, we tested the number of iterations required for different data formats for same 

matrices shown in Table 4-1. The data precision is decided by the mantissa, so the 

exponent is not listed in Table 4-2. The number of iterations increases from right to left and 

from top to bottom, with convergence failures at the lower left. 
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Table 4-1: Average Refinement Iterations for a Customized Format (s15e7) 
 

Problem size (n) Average condition number Average iterations  Variance

128 913 4 0.24 

256 1818 5.1 0.48 

512 4017 6.1 3.36 

1024 6196 6.3 5.16 

2048 9407 9.3 12.21 

4096 22425 13.3 22.6 

 

Table 4-2: Average Refinement Iterations for Different Data Formats 
 

Mantissa Bits

Problem Size 
12 16 23 31 48 52 

128 8.9 4 2 1 1 0 

256 11.1 5.1 2.1 1 1 0 

512 19.7 6.1 2.5 1 1 0 

1024 28 6.3 2.6 1 1 0 

2048 - 9.3 3 1.3 1 0 

4096 - 13.3 3.1 1.43 1 0 
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Modern FPGAs utilize embedded circuits for higher performance. One example is the 

embedded DSP48 blocks in the Xilinx Virtex 4 FPGA families. Because each DSP48 can 

be configured as an 18 by 18 multiplier (including sign bit), data formats wider than 18 bits 

require multiple embedded units. Therefore, designs using embedded multipliers might 

result in significant resource savings by selecting suitable data formats, such as those 

highlighted in Table 4-3. All frequency reports here come from Xilinx place and route tools, 

with the Place and Route Effort Level high. If we assume all the DSP48s are configured as 

multipliers, the GFLOPs performance can be computed by multiplying the number of 

multipliers available and the frequency. Table 4-4 and Table 4-5 show the characteristics of 

implementing one multiplier or one adder by using slices. To compute the FPGA GFLOPs 

performance for adders and multipliers, we assume only 70% of the slices can be 

configured as multipliers or adders, the rest are used for other circuits and routing. This is a 

reasonable assumption according to previous linear algebra designs on FPGAs [27].  

We find that the FPGA GFLOPs performance increases significantly by using shorter data 

formats. One reason is that shorter data formats reduce the resource cost and therefore more 

floating point operators can be implemented. At the same time, shorter formats reduce the 

memory space and bus bandwidth. This is crucial to linear algebra applications, which 

usually require frequent data movements. Finally, using shorter formats also reduces the 

latency of floating operators, which is also an important factor for the performance of linear 

algebra design. 

4.3 A Reconfigurable Mixed-Precision Direct Solver 
The direct solver we proposed can be used for the mixed-precision algorithm as shown in 

Figure 4-2. A lower-precision version of the matrix A  is moved from the CPU main 

memory to the FPGA for LU decomposition. The CPU computes the solution using 

lower-precision LU matrices but computes the residual and updates the solution in 

higher-precision. 
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Table 4-3: Characteristics of a Multiplier on XC4LX160-10 (Using DSP48s) 
 

 
Data Formats DSP48s Frequency ( MHz) Latency GFLOPs 

s52e11 (double) 16/96 237 21 1.42 

s51e11 16/96 238 21 1.43 

s50e11 9/96 245 19 2.61 

s34e8 9/96 289 14 3.08 

s33e8 4/96 292 9 7.01 

s23e8 (single) 4/96 339 9 8.14 

s17e8 4/96 370 9 8.88 

s16e8 1/96 331 6 31.78 

s16e7 1/96 352 6 33.79 

s13e7 1/96 336 6 32.26 



 56 
 

Table 4-4: Characteristics of a Multiplier on XC4LX160-10 (Using slices) 
 

 

 

 

Data Formats Slices Frequency ( MHz) Latency GFLOPs 

s52e11 (double) 1392/67584 184 9 6.25 

s51e11 1368/67584 184 9 6.36 

s50e11 1326/67584 191 9 6.81 

s34e8 656/67584 199 8 14.35 

s33e8 644/67584 207 8 15.21 

s23e8 (single) 388/67584 286 8 34.87 

s17e8 274/67584 265 7 45.75 

s16e8 237/67584 283 7 56.49 

s16e7 233/67584 257 7 52.18 

s13e7 185/67584 343 7 87.71 
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Table 4-5: Characteristics of an Adder on XC4LX160-10 
 

 

 

 

 

 

 

Data Formats Slices Frequency ( MHz) Latency GFLOPs 

s52e11 (double) 778/67584 235 12 14.29 

s51e11 772/67584 239 12 14.65 

s50e11 754/67584 245 12 15.37 

s34e8 531/67584 278 12 24.77 

s33e8 510/67584 268 12 24.86 

s23e8 (single) 380/67584 287 11 35.73 

s17e8 314/67584 278 11 41.88 

s16e8 301/67584 309 11 48.57 

s16e7 293/67584 266 11 42.95 

s13e7 244/67584 287 10 55.65 
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4.4 Performance Summary 
The execution time of our design in Figure 4-2 consists of four parts: the time for the LU 

decomposition, iterative refinement, forward/backward triangular solver, and 

communication. As we discussed before, the clock cycles required for our LU design is 

pn 3/3 , where p  is the number of PEs. The frequency f of the LU decomposition design 

depends heavily on the data formats. The communication time is associated by the data 

movements between the FPGA and the CPU main memory, so it is determined by the 

matrix size ( 2n ), data width (w), and bus bandwidth ( busB ). Finally, the time for iterative 

refinement depends on the number of iterations ( refI ) and the time for each loop ( refT ). So 

the total time can be described as: 

refreftri
bus

refinementtricommLUmixed

TITw
B

n
pf

n
TTTTT

+++=

+++=
22 2

3
 (4-5)

Using a smaller data format could significantly increase the number of PEs and the 

frequency and reduce the data width, so the first two terms will be greatly decreased. On 

the other hand, the number of refinement iterations would likely increase as shown in Table 

4-2. Because refT  is relatively small, the impact from the third term is dominated by the 

first two terms. The computation for the triangular solver is O(n2) which is much less than 

 
 

Figure 4-2: Structure for Mixed-Precision Direct Solver 
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for the LU decomposition. The architecture for this mixed-precision solver on the 

Cray-XD1 supercomputer will be introduced in Chapter 5. 
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5 Design on Cray XD1 

This chapter describes the implementation our hybrid direct solver on the Cray-XD1 

supercomputer which utilize FPGAs as application processors. First, we introduce a general 

architecture and development background for the Cray-XD1 supercomputer. Second, both 

hardware and software implementations of our hybrid direct solver on the Cray-XD1 

supercomputer are introduced. The performance of the hybrid solver is also tested and 

compared to CPUs. 

5.1 CRAY XD1 Introduction 

5.1.1 Architecture Overview 

The Cray XD-1 supercomputer incorporates reconfigurable computing devices as 

accelerators to deliver significant speedup of targeted applications [16]. The basic 

architectural unit of the Cray XD1 system is the Cray XD1 chassis, which can contain one 

to six compute blades. Each compute blade includes two 64-bit AMD Opteron processors 

configured as a two-way symmetric multiprocessor (SMP) that runs Linux. 1 to 8 GB DDR 

can be assigned to each compute processor. FPGAs can be adopted as coprocessors by 

adding an expansion module on the compute blade. Processors, FPGAs, and memory 

within a chassis and between chasses are linked by a high-speed switch fabric called the 

RapidArray interconnect. Besides the main memory, each FPGA module contains four 

QDR II SRAMs as high-speed storage. The programmable clock enables the user to set the 

speed of the FPGAs [50]. The Cray XD1 machine at ORNL (Tiger) has 12 chasses 

containing 144 Opteron processors and 6 Xilinx XC2VP50-7 FPGAs . 

5.1.2 RapidArray Interconnect 

The high-bandwidth, low-latency RapidArray interconnect is the central organizing 

construct of the Cray XD1, which enables the system to avoid bus bottlenecks and 

shared-resource contention. The Cray RapidArray Transport (RT) core provides the 
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RapidArray fabric interface to an FPGA design. To facilitate different applications, the RT 

core has two interfaces: fabric request and user request. The fabric request interface issues 

read/write requests from the rest of the Cray system to the user logic, while conversely the 

user request processes requests from the user logic. Currently the Cray XD1 only supports 

access to the local processor. The RT interface provides a 64-bit interface at a maximum 

speed of 200 MHz, which yields a bandwidth of 1.6GB/sec for simultaneous transmit and 

receive. For applications with heavy data movement, the RT core provides data bursts, 

which can be up to 64 bytes per request [50], [51]. 

The FPGA is accessible via a 128 MB region of the HyperTransport I/O address space. 

Any HyperTransport read/write from the SMP to this region is directed to the RT interface 

of the FPGA which passes them on to the user logic. The Cray XD1 provides API 

functions for processors to communicate with FPGA applications. More specifically, it 

supports both SMP-initiated requests and FPGA-initiated requests. The SMP can initiate 

requests in two ways: I/O mapped access and read/write functions. The main difference lies 

in that the I/O mapped access takes advantage of “write combining”, which improves the 

performance of write accesses from the SMP to the FPGA by combining multiple write 

accesses into a single HyperTransport packet [50].  

5.1.3 HDL Development Flow 

The Cray XD1 uses standard development processes and tools for FPGA development. 

FPGA IP cores are used to provide the interface between user applications and Cray 

System. As mentioned before, the RT core provides the interface between user application 

and the RapidArray, while the QDR core is used for connecting the user application and the 

QDR II SRAMs. These IP cores need to be integrated with the user design during the 

FPGA implementation process. The binary file from place and route needs to be converted 

to a Cray-proprietary format file by adding frequency and other information before 

downloading to the FPGAs. A typical application on the Cray XD1 is illustrated in Figure 

5-1. The top-level VHDL file contains several logic components: user application, RT core, 

QDR core, and a user-programmable clock generator. 
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5.2 Hybrid Direct Solver on Cray XD1 

5.2.1 Hardware Architecture  

As shown in Figure 5-2, the hybrid solver top level architecture consists of the RT Client, 

Register Interface, and LU Interface block. QDR memory is not used in this application, so 

QDR core is disabled to save resources and power. The RT Core is a standard IP block 

provided by Cray to enable communication with other devices over the RapidArray fabric. 

The Register Interface block provides a set of readable and writeable interface registers, 

which are used to communicate between host and LU decomposition kernels. The LU 

Interface block contains all function units for LU decomposition. The LU Interface block 

appears to the host processor as a large block of memory. Appropriate internal BRAMs are 

mapped to the User Interface ports by internal control logic according to different operation 

stages. For example, all PEs’ local BRAMs are combined as a big memory block when the 

matrix is transported from main memory to the FPGA local memory. Addresses of PEs are 

properly arranged so that the input matrix is mapped into all PEs by columns as shown in 

Figure 3-17. The Decoder block in the LU Interface is used to interpret signals between the 

Register Interface and LU Interface.  

 
 

Figure 5-1: Cray XD1 FPGA Organization [50] 
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For our direct solver design, the original matrices are located in the processor main 

memory. The complete matrix is moved into the FPGA for LU decomposition and then 

moved back to the main memory after the required operations are completed.  

5.2.2 System Hierarchy 

The hybrid solver is co-designed in C and VHDL. C is used for the host programs, while 

VHDL configures the hardware for the FPGA accelerator. The Cray FPGA API library is 

utilized to communicate between the C program and FPGA kernel. The file hierarchy is 

shown in Figure 5-3. The top level of the software program is a hybrid solver, which has 

LU decomposition and forward/backward solvers in double precision. When a matrix is 

assigned to the FPGA accelerator, the hybrid solver calls FPGA interface functions to 

communicate with the FPGA hardware. Test matrices are stored in separate files and can be 

loaded by the hybrid solver’s I/O functions. The software also provides functions to record 

matrix solver and performance analysis results such a number of iterations or execution 

time.  

The final binary file to configure the FPGA accelerator is “top.bin.ufp”, which combines 

the FPGA configure file “top.bin” and Cray configuration file “ufphdr”. The file “ufphdr” 

provides Cray Part Number and FPGA frequency information. The top level logic design is 

in “user_app.vhd”which includes several components: LU Interface, Register Interface, 

LU decomposition on FPGA

Register interface
reg

reg
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Figure 5-2: Hybrid Mixed-Precision Direct Solver on Cray-XD1 
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and RT Client. The system uses a parameterized design. All Cray parameters are included 

in “user_pkg.vhd”, while parameters for LU decomposer are included in “LU_pkg.vhd”.  

5.2.3 Implementation Results and Performance Comparison 

The hardware implementation results for LU decomposition are listed in Chapter 3. Other 

logic circuits for Cray IP cores total around 5% extra slices. No previous FPGA designs for 

LU decomposition have considered mixed-precision data formats, so we just compare our 

double precision design with previous work. In [39] LU decomposition is implemented on 

multiple processors on a FPGA, and its architecture is very different from ours. The 

architecture in [40] limits the problem size by the number PEs, and cannot scale to big 

matrices. [38] improves the design of [36], and implements the LU algorithm using circuits 

as with our work. In both [38] and our work, the matrix size is not limited by the number of 

PEs but by BRAM size. Block LU decomposition algorithms can be used for large matrices 

which exceed the FPGA on-chip BRAM size. If we target our work onto Xilinx 

XC2VP100 to compare our results to [38], 18 PEs can be implemented. Therefore our 

design is very similar to [38] as far as resource cost. However, unlike [38] our design 

implements pivoting algorithm which requires some additional slices.  

 
Figure 5-3: Hybrid Mixed-Precision Direct Solver on Cray-XD1 
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Our work accelerates the performance of direct solvers by mapping LU decomposition onto 

FPGAs and taking advantage of the high performance of lower-precision arithmetic. 

Therefore we first test the performance of our LU decomposition designs with different 

data formats. As shown in Figure 5-4, the LU decomposition execution time for 

lower-precision designs is much less than for higher-precision designs. 

The test matrices here are randomly generated with all elements following a Gaussian 

distribution as shown in Table 4-1 and Table 4-2. As shown in equation (4-5), the 

execution time for our mixed-precision solver consists of four components: LU 

decomposition, iterative refinement, forward/backward triangular solver, and 

communication. The average execution time for randomly generated matrices is shown in 

Figure 5-5. As expected, the time for both LU computation and communication is reduced 

rapidly for lower-precision arithmetic. On average, this approach requires 1 refinement 

iteration for s33e8 and 4 iterations for s16e7 format. The execution time for 

backward/forward solvers and iterative refinement occupies a small portion of the complete 

direct solver algorithm, but appear relatively long in Figure 5-5. The reasons are that the 
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Figure 5-4: Performance comparison of LU design  
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time for LU decomposition is significantly reduced by using our FPGA accelerator. The 

time on iterative refinements will become relatively small when matrix sizes increase. 

Finally, we compare the performance of our design to software executing on CPUs. For 

software, we implement the LU decomposition algorithm in C. As shown in Figure 5-6, our 

double precision LU decomposer achieves 2x speedup over 2.2GHz Opteron processors. 

Lower-precision designs have higher performance by taking advantage of both more 

parallelism and higher frequency. The LU decomposer using s16e7 data format achieves 

about 8x speedup over software. By taking advantage of the high performance of the 

lower-precision LU decomposer, our mixed-precision direct solver achieves roughly 3x 

speedup over CPUs. The performance of the lower-precision design s16e7 is about 3 times 

faster for LU decomposition and 1.6 times faster for matrix solver than for the double 

precision design.  

For large matrices, the execution time of the triangular solver and iterative refinement will 

require a smaller percentage in Figure 5-5. Previous work also shows that a FPGA-based 

LU decomposer achieves higher performance for larger matrices. For example, design 2 in 

[38] achieves 2GFLOPs for 100x100 matrices, but the performance increases to 4GFLOPs 

for 1000x1000 matrices. According to Amdahl’s law [85], the high performance of our 
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Figure 5-5: Execution Time for Mixed-Precision Direct Solvers 
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lower-precision LU design will make more impact on the overall performance as problem 

size increases. Therefore, we expect even higher speedup of our mixed-precision design for 

large matrices. 

5.3 Conclusion 
This chapter introduces the Cray XD1 architecture and the implementation of our hybrid 

direct solver design. Our experimental results show that the FPGA based LU decomposer 

design has higher performance than a 2.2 GHz Opteron processor. Due to the large size of 

double precision floating point units, we cannot achieve high parallelism on FPGAs for 

them due to resource constraints. On the other hand, our lower-precision LU decomposition 

design has much higher performance. Test results show that mixed-precision design on 

FPGAs can achieve significantly higher performance without losing accuracy.    
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Figure 5-6: Speedup of LU and direct solver over a 2.2GHz Opteron 
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6 Performance Evaluation 

Due to power consumption, heat dissipation, and other reasons, it is increasingly difficult 

for the IC industry to keep up with Moore’s Law. Therefore combining parallel clusters 

with FPGA application processors for high performance computing has gathered wide 

interest. For example, Cray supercomputers integrate computation blades by using fast 

interconnections. FPGA application processors can be adapted to Opteron processor based 

blades by adding expansion modules.  

This chapter introduces FPGA application accelerators for high performance computing 

systems and gives performance analysis. First of all, the execution time of algorithms 

mapped on FPGAs is investigated. A clock cycle accurate analytic model is also introduced 

for the execution time on FPGAs. Due to the difficulty in developing FPGA application 

accelerators, an analytic model brings great convenience by enabling designers to analyze 

and predict the performance of FPGA applications on various platforms. Secondly, the 

framework of FPGA-enhanced computing system is introduced. For reconfigurable 

computers, the overall performance is affected by factors such as the attributes of 

microprocessors, FPGAs, memory, and interconnects. These factors are investigated by 

building a reconfigurable computing system performance model. Finally, we extend this 

model to parallel computing systems. Our performance model brings an important tool to 

optimize program development, predict the performance, and investigate high performance 

computer architectures.  

6.1 Performance Metrics 
To compare reconfigurable computing systems to traditional computers, speedup is an 

important metric. The basic definition of speedup is the execution time of applications on a 

serial processor over that of the investigated computing systems. For the heterogeneous 

parallel computing systems discussed in this dissertation, we define speedup as the shortest 

time of programs on a single microprocessor over that on a parallel computing system. If 
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the execution time on a single processor is serialR  and that on a parallel computing system 

is parallelR , the speedup can be described by the following equation. 

parallel

serial

R
R

Speedup =  (6-1)

Heterogeneous parallel computers shorten parallel execution time by using a combination 

of multiple microprocessors and FPGAs. Even inside an FPGA application processor, 

multiple processing elements (PEs) are usually implemented. Using more parallel 

processing units reduces the computation load on each unit but also increases resource cost 

and parallel overhead. It is valuable to evaluate the speedup brought by each processing 

unit. Efficiency is another important metric for parallel computing systems, and is define as 

speedup over the number of processing units p. 

pR
R

p
speedupEfficiency

parallel

serial

⋅
==  (6-2)

6.2 FPGA Performance Analysis 
In general, applications mapped onto hardware consist of serial and parallel parts. FPGA 

accelerators speed up the parallel parts of algorithms by employing parallel multiple 

processing units (PEs). The number of PEs is usually limited by hardware resources. Our 

deeply pipelined architecture also allows many FPGA applications to overcome the 

performance of CPUs with much higher frequency. For example, the LU factorization 

design in this work using 8 PEs at 120MHz has higher performance than a 2.2 GHz 

Opteron CPU. One important reason for FPGA application processors to achieve higher 

performance is that the FPGA design utilizes deeply pipelined architecture and therefore 

has less idle cycles. A pipeline cannot achieve peak performance unless all the pipeline 

stages are filled. This is the “latency of pipelines”. For an L stage pipeline, the latency is 

also L. In common parallel architectures for FPGA application accelerators, the total cycles 
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of the critical path consists at least 3 parts: serial time serialc , parallel time parallelc , and 

pipeline latency latencyc . In practice, there are other overheads such as control logic cycles, 

and register/BRAM latencies. We include these overheads in overheadc . Since FPGAs are 

usually used as accelerators for microprocessors, data and control signals have to be 

transferred between the host and FPGAs. The clock cycles for communication can be 

represented by commc . Therefore, the clock cycles of FPGAs can be represented as: 

overheadcommlatencyparallelserialFPGA cccccC ++++=  (6-3)

The central logic of a hardware design is commonly implemented as state machines. A 

large design usually has many states. For an application that has S states with deterministic 

length tasks, the total cycles are the summation of cycles for all the states. 

 )( ,,1 ,,, ioverheadicomm
S
i ilatencyiparalleliserialFPGA cccccC ++∑ ++= =  (6-4)

Now we analyse the clock cycles required by an application. Suppose the application needs 

itaskC ,  clock cycles if parallelism is not considered. itaskC ,  has parallelizable and non 

prrallelizable (serial) parts.  

iparalleliserialitask CCC ,,, +=  (6-5)

For a specific application, the execution time is decided by both the total clock cycles and 

frequency. If p PEs can be implemented for the parallel tasks and the frequency is f, the 

total execution time becomes: 

f
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6.2.1 Performance Modeling for LU Factorization on FPGAs 

Our FPGA-based LU decomposer accelerates the LU factorization algorithm by employing 

a deeply pipelined architecture and multiple parallel PEs. Chapter 5 introduces a matrix 

decomposer on the Cray-XD1 supercomputer which requires the complete input matrix to 

be fit into the FPGA on-chip memory. Some applications might require larger matrices. In 

this case, input matrices can be stored in the QDR memory located beside the FPGA. 

Considering the limited resources on current platforms and the difficulty of developing 

reconfigurable accelerators, it is very valuable to predict the performance of this design for 

bigger matrices before hardware development. A performance model for this design helps 

to predict performance for different inputs and optimize future hardware architecture.  

Due to the dynamic sub-matrix sizes and various matrix operations in the LU factorization 

algorithm, the FPGA-based LU decomposer requires complicated hardware logic. Figure 

3-19 gives the main stages for the LU decomposer with pivoting. These stages are divided 

into multiple sub-states for hardware state machines. For example, the “column 

normalization” stage in Figure 3-19 is divided into two sub-states “column normalization” 

and “normalization delay”. The former state normalizes the column by a floating point 

divider, while the latter fills idle cycles and therefore avoids data hazards during the time 

caused by the floating point divider. Assuming the floating point divider has a latency of 

dividerL , the total clock cycles for the complete “column normalization” stage for a k by k 

sub-matrix is dividerLk + . If the input matrix has a size of n by n, the LU decomposition 

algorithm has n-1 iterations, in which n-1 sub-matrices with size n to 2 are processed. 

Considering overheads introduced by BRAM operations, BRAML , the total number of 

clock cycles for column normalization is: 

divider

n
k BRAMdividerionnormalizat

L
LLkc

1)-(n4)-n/27/2(n
)3(

2
2

++=
∑ ++= =  (6-7)
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Figure 6-1: Complete States for LU Factorization 
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As introduced in chapter 3, the “sub-matrix update” stage is to update the value of yxa ,  by 

yxyx ala ,00,, − , where yxa ,  is the element in the sub-matrices and 0,xl  is the element in 

the normalized column. A sub-matrix in this design is updated by column simultaneously 

by all PEs. Because multiple columns are stored in a one PE’s local memory as shown in 

Figure 3-17, the data stream in the column buffer needs to flow through the PEs multiple 

times with one column updated each time. For a sub-matrix with size k, k values are 

updated for each column. The column stream needs to circulate ⎣ ⎦ 1/)1( +− pk  times, 

where p is the number of PEs and ⎣ ⎦pk /)1( −   is to calculate the integer part of (k-1)/p. 

For an n by n matrix, there are n-1 sub-matrices totally with size reducing from n to 2. The 

states “Matrix update start”, “Matrix update idle1”, and “Matrix update idle2” are to 

initialize address registers and insert idle clock cycles for reading BRAMs. Each of these 3 

states costs 1 clock cycle. Considering BRAM latencies, the total clock cycles for the 

sub-matrix update computation part is: 

∑ +−++= =
n
k BRAMcomputeupdate pkLkc 2 )1]/)1)([(33(  (6-8)

The “Sub-matrix update” stage has the most computations among four stages in Figure 

3-19. It is divided into 8 sub-states for parallelism in Figure 6-1. As shown in Figure 3-17, 

the data path is deeply pipelined in the “sub-matrix update” stage. When a column is fed 

into the pipeline, the output will come out after the delay of the pipeline. The depth of this 

pipeline is equal to the latency of a floating point multiplier and adder, which can be 

represented by addermult LL + . Our design hides this latency between iterations of columns. 

But the “Matrix update complete” state has to wait for addermult LL +  clock cycles to avoid 

data hazards.  There is also a 1-clock-cycle overhead due to control logic. “Matrix update 

start”, “Matrix update idle1”, “Matrix update idle2”, and “Matrix update complete” need to 

be executed in n-1 iterations for a matrix decomposition algorithm as shown in Figure 6-1. 

Therefore the clock cycles for the “sub-matrix update” stage totals: 
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)1)(1()1]/)1)([(6(
)1)(1(

2 ++−+∑ +−+=
++−+=

= addermult
n
k

addermultcomputeupdateupdate
LLnpkk

LLncc  (6-9)

Pivoting has 9 total states. For a sub-matrix of size k, the “pivoting maximum value” state 

costs k clock cycles to find maximum value and 1 clock cycle overhead. The function of 

“Pivoting store pivot row”, “Pivoting update pivot row”, and “Pivoting Update max row” 

states is to exchange 2 rows in all PEs simultaneously by using temporary buffers and 

requires 3n/p clock cycles. The other 4 states take 1 clock cycle each. Note that pivoting 

might not be executed depending on the results from the “Pivoting judgment” state. 

Assume the probability to execute pivoting is pivotp , the total number of clock cycle for 

pivoting for all sub-matrices are: 

)52/92/()/)123((
)1()1(3)/)1)(13((
)1()1(3)/)1)(13((

22
2

2

−++−−=
∑ ++−+−+=
∑ ++−+−+=

=

=

nnppnn
kknppnn

knppnnc

pivot

n
kpivot

n
kpivotpivoting

 (6-10)

According to Figure 6-1, there are still some states not counted. The “Address 

initialization”, “Address initialization idle”, “Register update 1” and “Register update 2” 

cost 1 clock cycle per iteration. Considering BRAM read latency, the total time for LU 

decomposer on FPGA with frequency f is: 

fncccT updateionnormalizatpivotingLU /))1(4( −+++=  (6-11)

Model Validation and Performance Prediction 

We validate the clock cycle accurate performance model in equation (6-11) by comparing 

with our test results on the Cray-XD1 supercomputer. Figure 6-2 shows the execution time 

predicted by our performance model agrees remarkably with real test results. This 

performance model is very valuable to predict the performance of our design for different 

matrices and on different platforms. 

For large matrices which cannot fit in FPGA on-chip memories, we propose to use QDR 

memory on the Cray-XD1 supercomputer. The Cray-XD1 supports 4 QDR memory banks. 
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Each QDR memory can be used as PE local memory for a single or multiple PEs. For 

future architectures, each PE should have a separate QDR memory bank for the purpose of 

high I/O bandwidth. We compare LU execution time speedup from our model with 

software codes on an Opteron processor of Cray-XD1 supercomputer in Figure 6-3. For 

software, we use C.   

Linear solvers take advantage of the high performance lower-precision LU decomposition 

and increase the accuracy by iterative refinement. The required refinement iteration loops 

are listed in Table 4-2. We plot the GFLOPs performance of linear solvers in Figure 6-4. It 

is easy to see that mixed-precision solvers achieve higher speedups for large matrices. This 

is because LU decomposition dominates the execution time for large matrices.  

One advantage of our LU decomposition design over previous work [36] [38] [39] [40] is 

that our work implements the pivoting algorithm in hardware which greatly improves the 

numeric properties of LU decomposition algorithms. For non-positive-definite matrices, 

pivoting must be implemented to prevent matrix entries from being divided by zeros. As 

shown in Figure 6-1, the pivoting algorithm costs almost half of the states in our design.  
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Figure 6-2: Test and Model Performance 
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Figure 6-3: LU Performance Comparison  
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Figure 6-4: Solver Performance Comparison  
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Figure 6-5 gives the relative execution time for pivoting. We observe that the percentage of 

time on pivoting decreases with matrix size. This is reasonable because the computational 

complexity of pivoting is O(n2) while that of the complete LU decomposition is O(n3). We 

also notice that the pivoting algorithm costs a higher percentage of time for lower-precision 

data formats. The reason is that lower-precision designs have more PEs, but compared to 

other parts of the LU decomposition algorithm, the pivoting algorithm can not take good 

advantage of parallelism. An accurate estimate of the relative time required for pivoting can 

be derived by equations (6-10) and (6-11). 

6.3 Reconfigurable Single Node Model 
For FPGA-enhanced computers, we start our performance analysis with a single 

reconfigurable computing (RC) node running a synchronous iterative algorithm (SIA). 

Restricting the analysis to a single node helps us to investigate the interactions between 

hosts and FPGA application processors before expanding to a parallel computing analysis.  
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Figure 6-5: Relative Time on Pivoting  
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As shown in Figure 6-6 (a), we assume the program segment we are interested has I  

similar iterations as shown in Figure 6-6 (a). A reconfigurable node could have multiple 

microprocessors and FPGA hardware accelerators. The program kernel to be accelerated 

can be parallelized and assigned to both microprocessors and FPGAs as shown in Figure 

6-6 (b). Smith proposed a similar block diagram for reconfigurable nodes [76]. Because of 

the new multi-core technology and its wide application on supercomputers, we consider a 

reconfigurable node with multiple microprocessors. 

For an iteration i , the time for initialization and reconfiguration can be denoted as iinitt ,  

and iconft , ; the communication time is denoted as icommt , ; the serial time cannot be 

accelerated is iserialt , ; the accelerated program kernel is run both on m microprocessors for 

time ijswt ,,  ( mj ≤≤1 ) and n FPGAs for time ijhwt ,,  ( nj ≤≤1 ) respectively. We 

include iinitt , , iconft ,  and other overheads in ioverheadt , . The execution time of the SIA is 

determined by that of the critical path, so the runtime, RCR , for I  iterations is: 

∑ +++= =
≤≤≤≤

I
i ioverheadicommijhwnjijswmjiserialRC tttttR 1 ,,,,1,,1, )))(max),(maxmax((  (6-12)

Since all the iterations are similar in SIA, we are interested in a typical iteration. The 

parallel time on hardware and software can be described by random variables [53]. The 

time spent on serial execution, communication, and overheads can be represented as serialt , 

commt , and overheadt . Now RCR becomes the expectation of Equation (6-12).  

)))](max),(max[max((
])[][))](max),(max[max(][(

,1,1

,1,1

overheadcommjhwnjjswmjserial

overheadcommjhwnjjswmjserialRC

ttttEtI
tEtEttEtEIR

+++=

+++=

≤≤≤≤

≤≤≤≤ (6-13)

Time jswt ,  in equation (6-13) is decided by the computational load and microprocessor 

computation capability. The former can be deterministic or stochastic depending on 

specific applications, while the latter is affected by such factors as microprocessor speed, 

I/O, and memory.  
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Figure 6-6: Synchronous Iterative Algorithm on a Single RC Node 
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In a shared computing environment, software execution time is also affected by 

background load which can be described by a parameter [76]. The software execution time 

jswt ,  can be modeled as a random variable, whose parameters can be decided by tests on 

platforms, simulation, or analytical modeling [76]. Time jhwt ,  is determined by the tasks 

and the FPGA application accelerator performance. Because the FPGA application 

processor is usually a dedicated system, jhwt ,  is usually deterministic for deterministic 

tasks.  

On a single processor, the execution time is the summation of the serial time serialt , total 

software time ∑ =
m
j jswt1 , , and total hardware time j

n
j jhwt σ⋅∑ =1 , . Note that the execution 

times for the same algorithm on hardware and software are different. jσ  represents 

hardware speedup over software for algorithms mapped on FPGA j. Now the speedup of 

the reconfigurable computing system over a single processor is defined as the execution 

time on a single processor over that on the reconfigurable computing systems: 

overheadcommjhwnjjswmjserial

j
n
j jhw

m
j jswserial

RC
RC

ttttEt
ttt

R
R

Speedup

+++

⋅∑+∑+
=

=

≤≤≤≤

==

))](max),(max[max(
)()(

,1,1

1 ,1 ,

1

σ  (6-14)

6.4 Reconfigurable Parallel Computing Model 
We now expand our analysis to parallel computers which utilize multiple nodes for high 

performance. The system diagram is shown in Figure 6-7. Computational tasks are divided 

into multiple nodes which are enhanced by FPGA application accelerators. We still 

consider SIA algorithms for the multiple node analysis, and assume each node has similar 

tasks. The total execution time is equal to the last RC node to finish its tasks plus the 

communication time and serial software time which cannot be divided into multiple nodes. 

For a system with p nodes, the execution time is: 
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∑ +++= =
≤≤

I
i imoverheadimcommjRCpjimserialP ttRtR 1 ,,,1, ))(max(  (6-15)

Where imserialt , , imcommt , , and imoverheadt ,  are serial execution time, communication time, 

and overhead to manage all the parallel nodes. As with the single node analysis, all 

iterations of the SIA are similar. Therefore the serial software time, communication time, 

and overhead time in equation (6-15) are the same for all iterations. Now the parallel 

execution time becomes: 

)))(max(( ,1 moverheadmcommjRCpjmserialP ttREtIR +++=
≤≤

 (6-16)

If we plug in the execution time model for single nodes and assume each node has m  and 

n  identical processors and FPGAs, equation (6-16) becomes  

)))
)))(max),(max(max((max((

1

moverheadmcommnoverheadncomm

hwnswmnserialpjmserialP

tttt
ttEtEtIR

++++

++=
≤≤  (6-17)

Where inserialt , , incommt , , and inoverheadt ,  are internal serial execution time, communication 

time, and overhead inside nodes. Equation (6-17) is, 

)
)))))(max),(max(max((max((

moverheadmcommnoverheadncomm

hwnswmpnserialmserialP

tttt
ttEEttIR

++++

++=
 (6-18)

If a program is executed on a single processor, the execution time is equal to serial 

execution time on microprocessors mserialt  plus the software and hardware execution time 

on all nodes. The time of each node also consists of serial time, parallel time on multiple 

processors, and parallel time on FPGAs. Considering the hardware speedup factorσ , the 

execution time a single processor is: 

))((1 hwswnserialmserial tntmtptIR ⋅⋅+⋅++= σ  (6-19)
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The speedup is defined as the execution time on a single processor over that on a parallel 

system. 

p

hwswnserialmserial

p
p R

tntmtptI
R
R

Speedup
)((1 ⋅⋅+⋅++

==
σ

 (6-20)

The efficiency is defined as the speedup over the number of nodes to evaluate the 

contribution to performance improvement from each node. 

p

hwswnserialmserial

p
p Rp

tntmtptI
Rp

R
Efficiency

⋅
⋅⋅+⋅++

=
⋅

=
))((1 σ

 (6-21)

6.5 Load Imbalance Analysis 
Having developed performance models for RC systems, we now look at more detailed 

factors affecting the model’s accuracy. In previous analysis we assume dedicated systems, 

identical processors, and equal load distributions. To extend our models to more general 

cases, we try to remove these assumptions.  

In a shared resource environment, processor cycles are shared by multiple programs. The 

computational loads caused by distributed applications are called application load, while 

those caused by other users or system programs are called background load [76] [52]. 

Imbalance of both application and background loads will cause performance degradation. 

For a processor j  in parallel systems, Peterson and Smith used a factor jjj βγη ⋅=  to 

describe load imbalance. Here γ  and β  are both integers, and respectively represent 

background and application imbalance. Peterson discusses generalized models γ  and β  

where are non intergers [88]. The parameter γ  represents extra time spent by a shared 

resource processor over that of a dedicated processor. If time units spent by a processor j  

on background and application loads are jl  and 1, then the background imbalance factor 

jγ  is 1+jl . The application imbalance parameter jβ  represents the load units on 
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processor j. Assuming the average loads on processors are B , then Bj /β  is the 

application imbalance scale factor for processor j . The imbalance factor can be described 

by random variables with a distribution function: 

 )()()( 1 α
γαββγη α

kPPkP j
k

jjjj =∑ ==== =  (6-22)

where 0)( ==
α

γ kP j , if 
α
k  is not an integer [76] [52]. 

In heterogeneous environments, processors have different computation capabilities. If 

processor j  requires time jδ  per unit time, and a baseline processor requires time ω  

for the same job, then  

ω
δ

βγη j
jjj ⋅⋅=  (6-23)

Because FPGA application processors are usually dedicated systems, we do not consider 

background imbalance for FPGAs. For simplicity, we also assume the computational 

capabilities for all FPGAs are identical in this dissertation. If applications are deterministic, 

the execution time on FPGAs is also deterministic. In a homogeneous environment, the 

execution time on a parallel RC system in equation (6-24) becomes: 

)
)))))(max),(max(max((max((

moverheadmcommnoverheadncomm

hwnswmpnserialmserialP

tttt
ttEEttIR

++++

⋅++= η
 (6-24)

6.6 Summary 
In this chapter, we develop performance models for FPGA application processors, single 

RC nodes, and parallel RC systems running SIA algorithms. The performance models we 

propose effectively help to predict and optimize the performance of algorithms on new 
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platforms. The calculation of mean maximum such as in equation (6-24) is a difficult 

problem in analytic model computations. This dissertation focuses on improving the 

accuracy of performance models by proposing an efficient mean maximum calculation 

method, so other factors such as load imbalance models are just briefly introduced. We 

introduce the mean maximum calculation problem in the next chapter. 



 86 
 

7 Effective Mean Maximum Approximation Method 

As introduced in chapter 2, the mean maximum calculation remains as an unsolved 

statistics problem for years and affects the accuracy and efficiency for parallel computing 

models. This chapter presents an analytical method with extreme values to approximate the 

expectation of the maximum of random variables for both homogeneous and heterogeneous 

initial distributions. Compared to previous methods, it is more accurate, computationally 

effective, and generalizable to probability distributions. Our method provides a powerful 

mathematical tool to improve the accuracy and efficiency of parallel computation modeling 

and task graph analysis.  

7.1 PERFORMANCE MODEL 
Synchronous iterative algorithms are widely used in optimization, discrete-event simulation, 

solution to partial differential equations, Gaussian elimination and matrix inversion, finite 

element methods, Fast Fourier Transforms, and many others [52]. Synchronous iterative 

algorithms repeatedly execute a computation, with an explicit synchronization of the tasks 

and exchange of data performed at the end of each computation (iteration). At the end of 

each of the iterations, processors reach a barrier synchronization and await the arrival of the 

other processors before continuing. Figure 7-1 illustrates a typical synchronous iterative 

application. 

The runtime of synchronous iterative algorithms can be described by a simplified 

performance model. When the algorithm has I iterations and there are P processors, the 

execution time PR  can be modeled as [52]: 

∑ ⎥⎦
⎤

⎢⎣
⎡ ++=

= ≤≤

I

i
ioverheadparjiparallelPjiserialP tttR

1
,_,,1, max  (7-1)
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Here iserialt ,  represents the amount of time to complete serial calculations (operations that 

are not or cannot be parallelized) in the thi  iteration. Similarly, each processor j completes 

some portion of the parallel computations for iteration i, requiring time jiparallelt ,, . 

Processors completing early sit idle waiting for the barrier synchronization operation, so 

)(max ,,1 jiparallelpj t≤≤  gives the time required for the last processor to complete iteration i . 

Parallel processing typically results in some additional overhead ioverheadpart ,_ . Operations 

such as the barrier synchronization are included in this term. 

We here assume all iterations require roughly the same amount of computation (the 

statistics for all iterations are the same). Therefore, we only need to consider the 

computations required for a “typical” iteration. The overall execution time can then be 

modeled as: 

[ ] [ ]

⎟
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⎡+=
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⎤
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≤≤
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overheadparjparallelPjserial
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i
ioverheadparjiparallelPjiserialP

ttEtI

tEtEtER

_,1

1
,_,,1,

max

max
 (7-2)

Where serialt  and overheadpart _  are the average time needed to complete serial and parallel 

overhead tasks. The mean of the maximum ))((max ,1 jparallelpj tE ≤≤  describes the mean 

 
 

Figure 7-1: Timing of a synchronous iterative algorithm 
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time required for the last processor to complete its parallel computations. The terms serialt , 

overheadpart _ , and jparallelt ,  can be found by measurement or simple calculation. 

To compute the execution time in equation (7-2), we calculate the expectation for the 

maximum parallel execution time per iteration. Although this problem can be computed by 

numerical or analytical methods, an analytical solution is very helpful for performance 

analysis and optimization. Let s be the random variable )(max ,1 jparallelpj t≤≤ . If the 

individual runtimes are identically independently distributed (i.i.d.), the distribution 

function of the extreme distribution s is: 

P
tS sFsF

jparallel
))(()(

,
=  (7-3)

The density function of s is: 
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(7-4)

The expected maximum is then: 

∫=
∫=

−b
a t
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a S
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jparalleljparallel
)())((

)()(

,,

1  (7-5)

Where a  and b  are the lower and upper bounds of random variable s. The mean 

maximum in equation (7-5) could be analytically solved for some simple distributions. 

However numerical methods often have to be used. The resulting computational load to 

find the mean maximum is unacceptable for many applications, such as dynamic load 

balancing and scheduling.  
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Extreme theory [66] could approximate the mean maximum when the initial random 

variables are i.i.d. and follow certain distributions. For normally distributed random 

variables with mean µ  and variance 2σ : 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+
−+≈

≤≤

2
1

2
1

2
1

)ln2()ln2(2
4lnlnln)ln2(

]max[ ,1

mm
mm

tE jparallelPj

γπσµ  (7-6)

Where γ  is Euler’s constant (0.5772). 

Extreme theory gives asymptotic approximations as the number of random variables grows, 

but it can only work for certain distributions. To find a general and effective extreme mean 

maximum approximation for parallel performance evaluation, we introduce our expectation 

of mean maximum approximation (EMMA) method in the next section. 

7.2 EMMA METHOD 

7.2.1 EMMA Method for i.i.d. Random Variables 

To quickly and accurately compute the mean maximum of random variables as presented 

before, we introduce the EMMA method for i.i.d. tasks. For simplicity, we give the 

conclusions without explanation first. The mathematical proofs and extensions of the 

method are described in the next part. 

Method I: Let iX  ( ni ≤≤1 ) be i.i.d. random variables, and i
n
in XY 1max == . 

Then ϕ≈≤ n
ni ))E(YP(X , where )( nYE  is the mean of nY  and ϕ  is a constant taken 

as 0.57. If iX  has distribution function iF  with inverse function 1−
iF , then )( nYE  can 

be approximated by )( 11 n
iF ϕ− .  

According to this theorem, equation (7-5) can simply be calculated by  
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57.0)))((())((
,

== P
tS SEFSEF

jparallel
 (7-7)

)57.0()(
1

,

1 P
jparalleltFSE −=  (7-8)

Compared to previous work, this theorem gives a much more effective approach for the 

EMV problem. By using 57.0=ϕ , the EMMA method replaces the complicated extreme 

distribution forms in order statistics. Mathematical explanation and proof will be given in 

the next part.  

Example 1: Gaussian distribution.  

Assume iX  ( ni ≤≤1 ) are i.i.d. Gaussian random variables with mean µ , variance 2σ , 

and i
n
in XY 1max == . Here, we take 30=µ  and 92 =σ . For each value of n, we use a 

random number generator in MATLAB to produce the n Gaussian random variables and 

find the maximum value. We repeat this operation 500 times and compute the expectation 

by taking the average of these 500 maximum values. MATLAB provides reverse 

distribution functions for many distributions. For the Gaussian distribution, the 

approximated mean maximum )( nYE  for each n can be simply computed as: 

30+3*sqrt(2)*erfinv(2*((0.57)^(1/n))-1), where erfinv is the inverse error function for the 

Gaussian distribution. 

In Figure 7-2, we compare the EMMA results to extreme theory [58] and MC simulations. 

Figure 7-2 shows that EMV from the EMMA theorem accurately agrees with the MC 

simulation results. We repeated the above experiment many times and change the values of 
2σ , and n. We observed that EMMA approximates the simulation results consistently and 

accurately. 
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Example 2: Binomial distribution. 

Binomial is another common distribution used in computer performance modeling. For 

example, in parallel logic simulation, the number of gates to be simulated at a time step on 

each processor may follow a binomial distribution [53] [54]. Assume iX  ( ni ≤≤1 ) is 

binomially distributed with parameters M=5000 and p=0.02 (activity level in logic gate 

simulation). By using methods similar to example 1, we illustrate implementing EMMA for 

i.i.d. binomial distributions. The result is compared to MC simulation in Figure 7-3. The 

approximation accuracy increases with the number of random numbers. There are some 

exceptions, which is because the inverse function of the binomial distribution is discrete 

while the MC simulation gives continuous real numbers. 

For both Gaussian and binomial distributions, the EMMA method gives results similar to 

MC simulation. Note that the approximation becomes more accurate when the number of 

random numbers grows. We compared EMMA and MC simulation for many commonly 

used distributions with arbitrary parameters, and observed promising results in all tests.  
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Figure 7-2: EMV by different methods for Gaussian distributions 
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7.2.2 Mathematical Proof and Extensions 

It is well known in order statistics that there are three types of distributions for extreme 

values: type I, type II, and type III [58]. These three types of distributions cover the 

asymptotic extreme distributions for most initial distributions. Most common initial 

distributions, such as normal, exponential, and Rayleigh distributions belong to type I. Here 

we explain the EMMA method by using the properties of extreme distributions.  

Theorem 1: For a Type I distributions with mean nµ  and cumulative distribution 

function )(⋅
nYF , the following property exists: 57.0)( ≈nYn

F µ . 

Proof: For a Type I distribution, the probability density function (PDF) and cumulative 

distribution function (CDF) for the maximum values are [58]: 
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Figure 7-3: EMV by MC simulation and EMMA (Binomial distribution) 
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The mean of this distribution above is: 

kn γαµ +=  (7-11)

Where γ  is the Euler-Mascheroni constant.  Substituting nµ  into the CDF function, we 

get 
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Theorem 2: For a Type II distribution with parameters nv  and k, let nµ  and )(⋅
nYF  be 

the mean and cumulative distribution function. The following property exists: 
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∞→

n
k

Yn
F µ  

Proof: For a Type II distribution, the probability density function (PDF) and cumulative 

distribution function (CDF) for the maximum random variable are [58]: 
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Where nv is the characteristic largest value of the initial random variables and k is the 

shape parameter ( k/1  is a measure of dispersion). The mean for this distribution is: 
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)11( kvnn −Γ=µ  (7-15)

Where )(⋅Γ  is the gamma function. Substituting nµ  into the CDF function, we get 
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In order statistics, Type I and Type II are the extreme distributions for the initial 

distributions unlimited in the directions of the relevant extremes. In contrast, Type III 

represents the limiting distribution for initial distributions with a finite upper bound or 

lower bound value. For execution time modeling, we are only interested in upper bounds. 

Theorem 3: For Type III distribution with parameters nw  and k, let nµ  and )(⋅
nYF  be 

the mean and cumulative distribution function. The following property exists: 

57.0)( →
∞→

n
k

Yn
F µ  

Proof: For Type III distribution, the PDF and CDF for the maximum random variables are 

[58]: 
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Where nw  is the characteristic largest value of the initial random variables, k is the shape 

parameter ( k/1  is a measure of dispersion of nX ), and ω  is the upper bound value of the 

initial distributions. The mean for this distribution is: 

)11()( kwnn +Γ−−= ωωµ  (7-19)

Where )(⋅Γ  is the gamma function. By substituting nµ  into the CDF function, we get 
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(7-20)

Figure 7-4 plots the CDF value at the mean point nµ  for three types of extreme 

distributions. It is always roughly 0.57 for Type I. With the growth of parameter k, the CDF 

values for Type II and Type III converge very quickly to 0.57 from above and below, 

respectively. 

Based on the theorems above, we derive the following result.  

Theorem 4: The CDF at the mean point for Type I is always 0.57. For Type II and III, it 

converges to 0.57 quickly with the shape parameter k.  

By theorem 1 to 3, we derive the EMMA method from this theorem for i.i.d. initial 

distributions, whose extreme distributions meet the following sufficient conditions: 

1. Type I, or 

2. Type II/III with shape parameter k not too small, 

For both Type II and III in extreme theory, the parameter k is the shape parameter, which is 

normally an increasing function of n and converges to a constant when n approaches 
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infinity. Figure 7-5 gives the approximation error on some commonly used distributions. 

Because of a lack of analytical methods for EMV computation for most of these 

distributions here, we compare EMMA with MC simulation. The results are shown when 

the processor number is 5, 50, and 500. Note that the approximation becomes more 

accurate as the number of processors n increases. 

For completeness, we now consider distributions that do not meet these two conditions. As 

with Figure 7-4, if for some certain initial distribution, the parameter k converges to a small 

value for a certain distribution, then a constant different than 0.57 should be used for ϕ  to 

achieve more accurate approximation. However, if a certain approximation error can be 

tolerated, the constant 0.57 can still be used for simplicity. That is, the EMMA method is 

robust to parameter k. We describe this property by constructing a distribution converging 

to type III with shape parameter 2=k . 

Example 3: Assume an initial distribution function has CDF and PDF as: 
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Figure 7-4: CDF values at mean maximum point for extreme distributions 



 97 
 

2)10/)10((1)( xxFX −−=  ; ax ≤≤0  (7-21)

50/)10()( xxf X −=  (7-22)

This distribution is type III, the asymptotic form for the maximum value is:  

])10/)10((exp[)( 2ynyF
nY −−=  (7-23)

With the parameters 2=k  and 10=ω . The mean is  

)/5.01(10 n
nY πµ −=  (7-24)

The shape parameter k  is very small and the related CDF value at the mean maximum 

point )( nX n
F µ  is around 0.46 in Figure 7-4. By extreme theory and the deduction of 

Theorem III, we know the EMMA method can accurately approximate the mean maximum 

for this distribution by taking the constant ϕ  as 0.46. In this case, we are interested in the 
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Figure 7-5: Approximation Error for Different Distributions 
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approximation error when ϕ  is given as 0.57. Figure 7-6 plots the approximation from 

EMMA method when ϕ  is 0.46 and 0.57.  

Figure 7-6 shows that for a type III distribution with small shape parameter k, which does 

not meet the sufficient conditions, the EMMA method with constant 0.57 also follows the 

trend very well, but with a little bigger approximation error when the number of parallel 

processors n is low.  

7.2.3 EMMA Method for Heterogeneous Distribution 

Method 2: Let D  be a set of independent random variables that can be divided into m  

mutually exclusive subsets iD  ( mi ≤≤1 ). For each iD , there are in  i.i.d. random 

variables jiX ,  ( inj ≤≤1 ). Let )max( , jin XY =  ( mi ≤≤1  and inj ≤≤1 ) for all the 

probability events. Then∏=
≈≤

m

i
n

ni,j .))E(YP(X i

1
570 , where )( nYE  is the mean of nY . If 

jiX ,  ( inj ≤≤1 ) has distribution function iF , then )( nYE  can be approximated by solving 

the function: ϕ∏ =
≈

m

i
n

ni
i))(E(YF

1
, where ϕ  is a constant usually taken as 0.57. 
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Figure 7-6: EMMA with different constants 
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The above is an extension of method 1 to non-identical independent random variables. 

Note that different subsets do not need to have the same kind of distribution in this method. 

This extends EMMA for heterogeneous computing environments. Using method 2 to find 

EMV requires solving an implicit function where numerical methods can be used.  

We illustrate method 2 using a collection of Gaussian distributions. Assume there are three 

subsets, each with identically distributed random variables. The parameters are shown in 

Table 7-1. 

In Figure 7-7, we assume each subset has the same number of tasks. The X-axis is the 

number of tasks for each subset. We can see the EMV by Method 2 agrees with MC 

simulation. The EMV values for each subset are also given by MC simulation. They are all 

below under the overall mean maximum as expected. Because of a lack of analytical 

methods to calculate EMV for non-identical random variables, the largest execution time 

for individual subsets historically has been used as the overall execution time [57]. Figure 

7-7 shows that this method can result in around ten percent error even when there are just 

three subsets of tasks.  

Table 7-1: Subset Parameters 
 

Parameter Subset 1 Subset 2 Subset 3 

Mean 40 45 50 

Standard Deviation 12 9 6 

 
 

Table 7-2: Subset Parameters 
 

 Subset 1 Subset 2 Subset 3 

Distributions Gaussian Gaussian Exponential 

Parameters 12,40 == σµ 9,45 == σµ 30=µ  
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We validate method 2 with various combinations of commonly used distributions and find 

accurate approximation results for all of them. Figure 7-8 approximates the execution time 

when the tasks have different distributions as shown in Table 7-2. 

Note that the parameter for Subset 3 stands for mean, instead of the parameter (one over 

mean) normally used in the density function of an exponential distribution. 

The X-axis in Figure 7-8 represents the number of processors per subset. We assume each 

subset has the same number of processors for simplicity. In this example, subset 3 is 

dominant and determines the mean maximum, which is also very accurately approximated 

by EMMA. 

7.3 Utilization of EMMA Method 
The EMMA method provides an accurate and general mathematic tool for execution time 

approximation in parallel computing. It is also convenient for analysis of other 

characteristics of the system, such as speedup and optimal processor configuration. This 
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Figure 7-7: EMV from MC simulation and EMMA for heterogeneous environment 

(Gaussian distribution with different parameters) 
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section describes using the EMMA method to analyze the system performance for some 

test cases.  

7.3.1 Logic Simulation Applications 

Logic simulation is widely used to verify modern VLSI system design before fabrication. 

As the number of gates per VLSI chip increases, the simulation time becomes an important 

issue. We now apply the model (1) and Method 1 into an example of logic simulation.  

An efficient logic simulation of circuits is possible by the event-driven method, where node 

voltages are represented by discrete values and their changes are restricted to discrete 

points in time [55] [61]. The gates are modeled as functions to manipulate signals applied 

to their inputs and produce output signals. There is a finite delay for the gate operation 

depending on different gate types. On each clock cycle, plenty of the gates are inactive 

because their input signals remain unchanged. In the event-driven method, only the active 

gates are simulated. For each of the iterations, the activities of all the gates are independent 

and take roughly the same computational effort. Table 7-3 shows the active gates for some 

experimental circuits.  
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Figure 7-8: EMV from MC simulation and EMMA for heterogeneous environment 

(mixed distributions) 
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For the event-driven method on parallel processors, tasks (gates) can be statically assigned 

to processors with an approximately equal amount per processor. Due to the static 

allocation of gates to the processors, the number of potential active gates for each processor 

represents a set of random variables. If we assume that the probability of each gate being 

active at a given time is the same and that the gates are independent, then the random 

variables representing the number of active gates for each processor is independent and 

identically distributed given each processor has the same number of gates to simulate. At 

the end of each of the iterations, the processors synchronize, share signal updates, and 

proceed to the next iteration.  

We first discuss the speedup characteristics of problems with stochastic execution time. 

The time used for synchronization and communication are neglected for simplicity. Now, 

equation (7-2) is simplified as: 

⎥⎦
⎤

⎢⎣
⎡⋅=

≤≤
jparallelPjP tEIR ,1

max  (7-25)

Assume the multiplier circuit is simulated on 5 parallel processors with 1000 gates per 

processor. If 0.02 is picked as the average activity, the number of active gates per processor 

in  ( 51 ≤≤ i ) is binomially distributed with parameters 1000 and 0.02. That is, 

)02.0,1000(~ Bni . 

Table 7-3: Experimental Circuit Collections [62] [63] 
 

Circuits Gate count Average activity 

CKT2 1754 0.03 

8080 3439 0.001-0.005 

Multiplier 5000 0.01-0.02 
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Assume the computational effort for simulating each gate is one time unit and 300 

iterations are needed. The expected execution time can be derived by equation (7-8), where 

the function -1F  is now the inverse function for binomial distribution:  

)57.0(300 5
1

,

1−⋅=
jparalleltP FR  (7-26)

By using inverse Binomial distribution function, we get the expected execution time is 

7800=PR . 

If the simulation runs on a single processor, the execution time is  

30600)57.0(300 1
1

,

1
1 =⋅= −

jparalleltFR  (7-27)

Note that 1-
t parallel,j

F  is now the inverse function for binomial distribution )02.0,5000(B . 

The speedup is: 

92.3
7800

30600

1
===

R
RSpeedup P  (7-28)

where we can see the parallel speedup cannot achieve the ideal even when the time on 

synchronization, communication, and overhead are not counted. The reason is for parallel 

computation on multiple processors: 

[ ]jparalleljparallelPj
tEtE ,,1

max >⎥⎦
⎤

⎢⎣
⎡

≤≤
 (7-29)

Assume this simulation task is assigned to various numbers of processors. Figure 7-9 plots 

the speedup with the number of processors. This example demonstrates that for problems 

with stochastic execution time on each processor, the speedup can never achieve the ideal 

due to application load imbalance. 
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In practice, the synchronization and communication time cannot be neglected in many 

cases and can be modeled as a function of the processor number [73]. The following will 

introduce a method for finding the optimal processor number to achieve the minimum 

execution time by using the EMMA method. 

For simplicity, we assume that the time for synchronization and communication is linear in 

the number of processor, that is, for equation (7-1): 

( )1,_ −= Pkt ioverheadpar  (7-30)

Where k  is a constant and taken as 2 in this example. Equation (7-2) becomes: 
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 (7-31)

After taking away the constants I and serialt , which will not affect our optimization results, 

the cost function to minimize the execution time can be simplified as: 
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Figure 7-9: Ideal vs. analytic speedup without counting time for synchronization, 

communication and overheads 
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PtEC jparallelPj

 (7-32)

By using the EMMA method, we can easily plot this equation as shown in Figure 7-10. The 

optimal point is where the value of the cost function C has the smallest value. In this 

particular case, the cost function has similar value when the processor number is 6, 7, or 8. 

If other factors like economics are considered, 6 would be expected to be the best selection. 

7.4 Execution Time for Task Graphs 
A task graph is often used to describe program execution. Plenty of research addressed how 

to analyze the execution time of task graphs [67]. In this section, we discuss the analysis of 

complicated task graphs by using the EMMA method. For simplicity, some results from 

probability are cited without proof. 

Precondition 1: Let nXX L1  be random variables and ∑ =
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n

i iXX
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, then 
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Figure 7-10: Simplified cost function for finding optimal processor number 
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This precondition is well known in probability theory, which says that the mean of the sum 

is equal to the sum of the mean. For a task graph in Figure 7-11 (a), the overall structure of 

the task graph is serial, where each phase could be parallel tasks. In such a paragraph, the 

overall execution time is equal to the sum of the execution time for all phases. For phases 

having parallel tasks, the mean execution time of that phase can be computed by the 

EMMA method.  

For the task graph shown in Figure 7-11 (b), the middle path consists of a series of tasks. 

To apply the EMMA method, we consider the overall task graph is parallel, so the 

distribution functions for all paths are required. We discuss finding the distribution for the 

sum of serial tasks in the following. 

Precondition 2: Let ),,1( niX i L=  be a normal random variable with mean iµ  and 

variance 2
iσ , ∑ =

=
n

i iXX
1

.  Then X  is still a normal random variable with mean 

∑ =
=

n

i i1
µµ  and variance ∑=

=
n

i i1
22 σσ . 

Since the Gaussian distribution is often used to model the running time, it is important that 

the distribution can be accurately calculated for the sum of Gaussian distributions. 

Unfortunately, there are no such nice properties for other distributions. However, the 

 
 

Figure 7-11: Serial and parallel task graphs 



 107 
 

distribution can also be approximated according to the central limit law for those 

non-Gaussian distributions.  

Precondition 3: Let ),,1( niX i L=  be independent and iiXE µ=)( , 2)( iiXVar σ= . 

Assume ∞<+ )||(sup 2 ε
j

j
XE  for some 0>ε . Let ∑ =

=
n

i iXX
1

, then X  converges to 

a Gaussian random variable with mean ∑ =
=

n

i i1
µµ  and variance ∑ =

=
n

i i1
22 σσ . 

The proof of precondition 3 can be found in [58]. Once the distribution functions of all the 

parallel paths are available, the overall execution time in Figure 7-11 (b) can be computed 

by using the EMMA method for heterogeneous cases. It might not be accurate to apply the 

central limit law when the number of serial processes is small. A more accurate method is 

to compute the distribution formula for the sum of random variables. However, it is usually 

very complicated.  

7.5 Extension to Dependent Tasks 
For parallel computation performance evaluations, independence is usually assumed for 

simplicity. However, dependencies usually exist because of many reasons. First of all, the 

tasks can be dependent themselves. For example, in logic gate simulation, the active gates 

might be related. Secondly, for some parallel computer architectures, the parallel programs 

have to share some common hardware and create dependencies. Thirdly, some tasks might 

be dependent by sharing a common path. The communication and synchronization will also 

bring dependencies. It is very difficult to quantify the dependencies, so normally the 

dependencies are just neglected for simplicity. For example, for task graphs with common 

tasks, Madala approximates the execution time by assuming task path independence [67].  

It is necessary to analyze the inaccuracy caused by assuming independence. In this part, we 

will discuss dependences among parallel tasks. We use the timing model in Figure 7-1. 
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7.5.1 Associated Tasks 

For parallel programs with dependences, the EMMA method can be applied by neglecting 

the dependencies. The following part will discuss the result in this case for associated 

parallel tasks. Associated tasks imply that increasing the load of one task will impact that of 

the others.  An example is that the number of active logic gates increases simultaneously 

on different parts of a circuit. A precise definition for association is the following [70]: 

Definition 1: Random variables nXX ,,1 L  are associated if  

( ) ( )[ ] 0,cov ≥∆Γ XX  (7-33)

For all pairs of increasing binary functionsΓ  and∆ .  

It is well known in the theory of reliability that if iX  ( ni ≤≤1 ) are associated random 

variables, then [70] [71] 

[ ] [ ]∏
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≤≥≤≤
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i
in yXPyXyXP

1
1 ,,L  (7-34)

Let i
n
in XY 1max == , then 
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n

i
XY yFyF

in
1

 (7-35)

Corollary 1: For dependent associated parallel tasks, the result from the EMMA theory by 

ignoring dependence is an upper bound of the real mean of the maximum. 

Proof: according to theorem 4, the mean of the maximum can be computed by: 

( ) 57.0)( =nY YEF
n

 (7-36)

From equation (7-35), we have 
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[ ] 57.0)(
1

≤∏
=

n

i
nX YEF

i
 (7-37)

If we compute the mean of the maximum by ignoring the dependence, we consider both 

sides in equation (7-37) as equal. That is, we compute by using 

[ ] 57.0)(
1

=∏
=

n

i
nX YF

i
 (7-38)

Since the function sum and cumulative distribution function are both non-decreasing, the 

computed results are bigger than or equal to the actual values. The equality is achieved 

when the random variables are mutually independent. 

7.5.2 Sharing Common Paths 

The dependence addressed in corollary 1 could also be caused by sharing a common path. 

Note that although the dependence caused by sharing a common path meets the definition 

of association, corollary 1 cannot be applied because of synchronization effects.  

For example, assume the sub tasks in Figure 7-12 represented by cycles are identical. The 

running time of each subtask is Gaussian distributed with mean 30 and variance 9.  By 

applying the EMMA method, the mean execution time for phase 1, 3, and 5 in task graph (a) 

is computed to be 34.033. Therefore the overall average runtime can be calculated as 

34.033+30+34.033+30+34.033=162.099. For task graph (b), the running time distribution 

for each path is Gaussian distributed with mean 150 and variance 45, so the overall average 

execution time is 159.227. MC simulation results also agree to the results from EMMA. 

This example shows that if we compute the execution time of task graph (a) as 5 

independent paths as in task graph (b), the result is less than the actual value. This does not 

conflict with corollary 1. The reason is that task graph (a) cannot be simply considered as a 

dependent counterpart of the task in graph (b), because phases 1, 3, and 5 need to be 

synchronized before proceeding to the next phase and this synchronization costs extra time. 

Some previous work argued the execution time in task graph (b) is the upper bound of its 
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counterpart with common paths (a) [71]. Here is an opposite example that disproves this 

claim. Hence, by applying the EMMA technique, we can account for these effects. 

7.6 CONCLUSIONS 
Accurate performance modeling of parallel applications faces difficulties due to the 

challenge of finding EMV. Despite significant previous work, the problem is still unsolved 

for decades, especially for heterogeneous computing. Our work can be considered as an 

extension of Extreme Theory, especially to heterogeneous distributions. By exploiting 

extreme value properties, we propose the EMMA method that is capable of finding fast, 

accurate approximations for parallel execution time in both homogeneous and 

heterogeneous environments. We present a mathematical proof and comparisons to MC 

simulation which demonstrate the accuracy and generality of our method. EMMA can 

significantly improve the accuracy and efficiency of parallel computation modeling.  

Methodologies are also proposed to simplify the task graph analysis. We extend EMMA to 

interdependent tasks and evaluate the effect of dependencies. Further work could focus on 

applying the EMMA method onto different performance model and task graphs. 

 
 

Figure 7-12: Task graph with common paths (a) and its independent counterpart (b) 
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8 Conclusions and Future Work 

While traditional CPUs struggle to keep up with Moore’s law, new heterogeneous 

computing systems show potential for high performance scientific computing. This 

dissertation explores high performance reconfigurable computer architectures for linear 

algebra applications. First of all, we develop application-specific processors for linear 

algebra, which can be implemented on supercomputers as accelerators. Various linear 

algebra algorithms and architectures are discussed for high performance matrix 

computation on FPGAs. Secondly, execution time models are developed for both FPGA 

accelerators and reconfigurable computing systems to better understand the performance 

our systems. Finally this dissertation proposes an important statistics theory, which greatly 

increases the accuracy and convenience of parallel computing system performance 

modeling.   

8.1 Conclusions 
We have developed application-specific processors for high performance linear algebra on 

FPGAs. The linear algebra subroutines we explore in this dissertation include sparse matrix 

multiplication and a dense matrix direct solver. To achieve high performance matrix 

computations, various matrix algorithms and hardware architectures circuits are proposed.  

Our sparse matrix multiplication solver can achieve 20 times speedup over contemporary 

CPUs and the performance depends less on matrix structure. On traditional CPUs, sparse 

matrix operations are normally inefficient because of frequent data movements. Our 

architecture achieves high performance by taking advantage of several factors. First, we 

propose an innovative sparse matrix storage format to reduce data movement overhead. 

Second, high performance data and control paths are utilized such as multiplication 

accumulator, adder tree, and summation circuits. Third, our streaming architecture greatly 

reduces idle cycles in data path pipelines.   
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Our direct solver on FPGAs achieves significant speedup over CPUs by using a hybrid 

architecture. Since LU decomposition is the dominant part of direct solvers, it is mapped 

onto FPGAs for fast computation. On the other hand, triangular solvers are implemented on 

CPUs to save resources and development time because these computations are a mush 

smaller fraction of serial execution time. The overall performance of our hybrid direct 

solvers is improved by an innovative LU decomposition circuitry on FPGAs, which 

computes LU decomposition on several parallel PEs. Our LU decomposition design is also 

the first work to include the pivoting algorithm for a high performance design implemented 

with a hardware description language.   

Due to the high cost of double-precision floating point units, we propose to use a 

mixed-precision algorithm and architecture for high performance linear algebra. In our 

architecture, lower-precision floating point is used as much as possible for higher 

performance, while higher-precision floating point is utilized only when necessary. For 

linear direct solvers, a mixed-precision refinement algorithm is employed to achieve high 

accuracy for final results. Theoretical analysis and experimental results show that our 

mixed-precision direct solver successfully takes advantage of the higher performance of 

lower-precision floating point units without loss of accuracy. 

We target our linear solvers on Cray-XD1 supercomputers for performance analysis. 

Cray-XD1 supercomputers consist of many computation nodes connected by a high speed 

interconnect. FPGAs can be connected to computation nodes by Hyper Transport as 

application-specific processors. Our implementation on the Cray-XD1 supercomputer 

includes the development for both FPGAs and the host programs. Our test results show that 

the performance of linear algebra can be greatly improved on Cray-XD1 supercomputers 

by using FPGAs. 

Execution time models are important for understanding the system performance, mapping 

tasks, and optimizing architecture. First of all, we build performance models for 

application-specific processors on FPGAs by dividing computation time into several 

categories: parallel time, serial time, communication time, and overheads. Because the 
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circuit activities can be clock cycle accurately predicted, our FPGA performance model has 

very high accuracy. By analyzing performance models with different parameters, we are 

able to accurately estimate the performance of our design on different architectures.   

We further build performance models for single FPGA-enhanced computation nodes and 

parallel computing systems, where the overall execution time is determined by both FPGAs 

and the host processors. The execution time on host processors is affected by application 

load imbalance. At the same time, background loads also increase execution time in shared 

resource computational environments. We evaluate these factors by using different 

parameters. 

One difficulty in parallel performance modeling is to compute the expectation of the 

maximum of a set of random variables. Previous methods including extreme theory and 

other estimation methods are either not general or accurate enough. We propose an 

efficient mean maximum approximation (EMMA) method which accurately approximates 

the mean maximum by using very simple formulas. The EMMA method also provides an 

important tool for complicated task graph analysis.   

8.2 Future Work 
Our work shows the potential of using FPGAs for high performance linear algebra and 

provides performance analysis tools. Future work includes exploration of more hardware 

architectures, enhancing performance models, and finding applications of the EMMA 

theory.  

First of all, we show the potential of high performance linear algebra on FPGAs by 

developing sparse matrix vector multiplication and dense direct solvers. Similar linear 

algebra computation kernels can be developed for a host of other applications. For example, 

by taking advantage of our sparse matrix vector multiplication circuits, it should be easy to 

develop iterative solvers on FPGAs. Because of the limited size of our FPGA chips, the 

triangular solvers are implemented on processors in our work. When larger FPGAs are 
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used in the future, triangular solvers can be merged onto FPGAs to increase the 

performance of our direct solvers. 

Mixed-precision algorithms and architectures are very interesting. We point out the 

potential of using mixed-precision architectures on FPGAs for high performance. Future 

work includes developing mixed-precision algorithms and architectures for other 

applications and platforms. This dissertation mainly explores the execution time of 

mixed-precision architectures. Since mixed-precision designs require less resources and are 

faster, we also expect better power efficiency. Further study of such power-related issues 

remains to be investigated. 

Our performance models focus on computation. Other factors such as I/O performance can 

be included in our model if applications require. Heterogeneous systems show great 

potential for high performance computing. Based on our performance models for a 

reconfigurable computer, heterogeneous computing system performance models can also 

be easily extended. 

Finally, the EMMA theory provides an important tool for mean maximum calculations. 

This dissertation successfully derives mathematical forms and proofs for the EMMA theory. 

Future work should focus on applying the EMMA theory to various applications such as 

task graph analysis and schedule optimization. 



 115 
 

 

 

 

 

 

 

 

 

 

 

List of References 



 116 
 

List of References 

[1] J. Dongarra, “Basic Linear Algebra Subprograms Technical Forum Standard”, 
International Journal of High Performance Applications and Supercomputing, 16(1) 
(2002), pp. 1--111, and International Journal of High Performance Applications and 
Supercomputing, 16(2) (2002), pp. 115--199. 

[2] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical 
Recipes in C: The Art of Scientific Computing. Cambridge University Press, 1992. 

[3] O. O. Storaasli. “Performance of NASA Equation Solvers on Computational 
Mechanics Applications,” 37-th SDM Conf., AIAA-96-1505, Vol. 3, pp. 1213–1223. 

[4] A. Pinar and M. T. Heath. “Improving Performance of Sparse Matrix-Vector 
Multiplication,” Supercomputing, November 1999. 

[5] E.-J. Im, K. A. Yelick. “Optimizing Sparse Matrix Computations for Register Reuse 
in Sparsity”. International Conference on Computational Science, 2001. 

[6] K. D. Underwood. “FPGAs vs. CPUs: Trends in peak floating-point performance,” 
ACM International Symposium on Field Programmable Gate Arrays, February 2004. 

[7] Y. Bi, G. D. Peterson, L. Warren, and R. Harrison, “Hardware Acceleration of 
Parallel Lagged-Fibonacci Pseudo Random Number Generation,” ERSA, June 2006.  

[8] R. Scrofano and V. K. Prasanna. “Computing Lennard-Jones Potentials and Forces 
with Reconfigurable Hardware,” ERSA, June 2004. 

[9] J. L. Tripp, A.A. Hanson, M. Gokhale, and H.S. Mortveit. “Partitioning Hardware 
and Software for Reconfigurable Supercomputing Applications: A Case Study,” 
Supercomputing, November 2005. 

[10] K. Underwood, S. Hemmert, and C. Ulmer. “Architectures and APIs: Assessing 
Requirements for Delivering FPGA Performance to Applications,” Supercomputing, 
November 2006. 

[11] L. Zhuo and V. K. Prasanna. “Sparse matrix-vector multiplication on FPGAs,” 
FPGA, February, 2005. 

[12] M. deLorimier and A. DeHon. “Floating-Point Sparse Matrix-Vector Multiply for 
FPGAs,” FPGA, February, 2005. 



 117 
 

[13]  Y. El-kurdi, W. J. Gross, and D. Giannacopoulos. “Sparse Matrix-Vector 
Multiplication for Finite Element Method Matrices on FPGAs,” FCCM, April 2006.  

[14] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and J. Kurzak, “Mixed 
Precision Iterative Refinement Techniques for the Solution of Dense Linear 
Systems,” International Journal of High Performance Computer Applications, 
Volume 21 Number 4, Winter 2007, pp 457-466, ISSN 1094-3420. 

[15] R. Barrett, Templates for the solution of Linear Systems: Building Blocks for Iterative 
methods, 2nd Edition. SLAM, Philadelphia, PA, 1994. 

[16] Cray Inc. http://www.cray.com 

[17] Digilent Inc. http://www.digilentinc.com 

[18] Xilinx Inc. http://www.xilinx.com 

[19] H. A. ElGindy and Y. L. Shue. “On Sparse Matrix-Vector Multiplication with 
FPGA-based System,” 10th IEEE Symposium on Field-Programmable Custom 
Computing Machines, April 2002. 

[20] R. Vuduc, J. Demmel, K. Yelick. “OSKI: A library of automatically tuned sparse 
matrix kernels,” SciDAC 2005, Journal of Physics: Conference Series, June 2005. 

[21] T. Davis, University of Florida Sparse Matrix Collection, 
http://www.cise.ufl.edu/research/sparse/matrices, NA Digest, 92(42), October 16, 
1994, NA Digest, 96(28), July 23, 1996, and NA Digest, 97(23), June 7, 1997. 

[22] O. O. Storaasli, “Compute Faster without CPUs: Engineering Applications on 
NASA's FPGA-based Hypercomputers,” Technical Symposium on Reconfigurable 
Computing with FPGAs, Manchester UK, February 2005. 

[23] J. Sobieski and O.O. Storaasli, “Computing at the Speed of Thought,” Aerospace 
America, Oct. 2004, pp. 35-38. 

[24] O. O. Storaasli, “Engineering Applications on NASA's FPGA-based 
Hypercomputer,” MAPLD, September, 2004. 

[25] O. O. Storaasli, “Computing Faster without CPUs: Scientific Applications on a 
Reconfigurable, FPGA-based Hypercomputer,” MAPLD Conference, September, 
2003. 

[26] O. O. Storaasli, R. C. Singleterry, and S. Brown, “Scientific Computations on a 
NASA Reconfigurable Hypercomputer,” MAPLD. September, 2002. 



 118 
 

[27] J. Sun, G. Peterson, O.O. Storaasli, “Sparse Matrix-vector Multiplication Design on 
FPGAs”, the 15th IEEE Symposium on Field-Programmable Custom Computing 
Machines (FCCM), CA, April, 2007. 

[28] Nallatech Inc. http://www.nallatech.com 

[29] Sgi Inc. www.sgi.com 

[30] Starbridge Inc. www.starbridgesystems.com 

[31] SRC Computers Inc. www.srccomp.com 

[32] G. Govindu, R. Scrofano and V. K. Prasanna, “A Library of Parameterizable 
Floating-Point Cores for FPGAs and Their Application to Scientific Computing,” 
The 2005 International Conference on Engineering of Reconfigurable Systems and 
Algorithms, June 2005. 

[33] X. Wang, M. Leeser, and H. Yu, “A parameterized floating-point library applied to 
Multispectral image clustering,” MAPLD, September 2004. 

[34] Y. Dou, S. Vassiliadis, G. Kuzmanov, G. N. Gaydadjiev, “64-bit floating-point 
FPGA matrix multiplication,” FPGA, 2005. 

[35] Z.H. Kamal, A. Gupta, L. Lilien, and A. Khokhar, “Classification using Efficient LU 
Decomposition in Sensornets,” wireless sensor network, 2006. 

[36] V. Daga, G. Govindu, S. Gangadharpalli, V. Sridhar, and V. K. Prasanna, “Efficient 
Floating-point Based Block LU Decomposition on FPGAs,” ERSA, June 2004. 

[37] Gokul Govindu, Seonil Choi, Viktor K. Prasanna, Vikash Daga, Sridhar 
Gangadharpalli, and V. Sridhar, “A High-Performance and Energy-efficient 
Architecture for Floating-point based LU Decomposition on FPGAs,” RAW, April 
2004.   

[38] Ling Zhuo, Viktor K. Prasanna, “High-Performance and Parameterized Matrix 
Factorization on FPGAs,” FPL, Madrid, Spain, August 2006. 

[39] X. Wang and S.G. Ziavras, “Parallel LU Factorization of Sparse Matrices on 
FPGA-Based Configurable Computing Engines,” Concurrency Computation: Prac. 
Expei., Vol. 16, No. 4, April 2004. 

[40] DaeGon Kim, Sanjay V. Rajopadhye, “An Improved Systolic Architecture for LU 
Decomposition,” IEEE 17th International Conference on Application-specific 
Systems, Architectures and Processors (ASAP), 2006. 



 119 
 

[41] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov, “Using Mixed 
Precision for Sparse Matrix Computations to Enhance the Performance while 
Achieving 64-bit Accuracy,” Accepted in ACM TOMS, to appear in December 2008 
issue. 

[42] J. W. Demmel, “Applied Numerical Linear Algebra,” SIAM Press, 1997. 

[43] R. Strzodka and D. Göddeke, “Mixed precision methods for convergent iterative 
schemes,” EDGE, North Carolina, May 2006. 

[44] R. Strzodka and D. Göddeke, “Pipelined mixed precision algorithm on FPGAs for 
fast and accurate PDE solvers from low precision componets,” IEEE Proceedings on 
Field-Programmable Custom Computing Machines, IEEE Computer Society Press, 
may 2006. 

[45] D. Göddeke, R. Strzodka, and S. Turek, “Accelerating Double Precision FEM 
simulations with GPUs,” ASIM, Sep 2005. 

[46] J. H. Wilkinson, “The Algebraic Eigenvalue Problem,” Oxford, U.K.: Clarendon, 
1965. 

[47] C. B. Moler, “Iterative Refinement in Floating Point,” J. ACM (2) (1967) 316–321. 

[48] J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J. Riedy, “Error 
Bounds from Extra Precise Iterative Refinement,” Technical Report No. 
UCB/CSD-04-1344, LAPACK Working Note 165, August 2004. 

[49] G. W. Stewart, Introduction to Matrix Computations. Academic Press, New York, 
1973. 

[50] Cray, Inc., “Cray XD1 FPGA Development,” 2005. 

[51] Cray, Inc., “Design of Cray XD1™ RapidArray Transport Core”, 2005. 

[52] G. D. Peterson and R. D. Chamberlain, “Parallel Application Performance in a 
Shared Resource Environment,” IEE Distributed Systems Engineering Journal, 
August 1996. 

[53] G. D. Peterson and R. D. Chamberlain, “Beyond Execution Time: Expanding the Use 
of Performance Models,” IEEE Parallel & Distributed Technology, 2(2): 37-49, 
11994. 

[54] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving 
Problems on Concurrent Processors, Volume I, Prentice Hall, 1988. 



 120 
 

[55] M. L. Bailey, Jr. J. V. Briner, and R. D. Chamberlain. “Parallel Logic Simulation of 
VLSI Systems,” ACM Computing Surveys, 26(3): 255--294, September 1994. 

[56] R. D. Chamberlain, “Parallel logic simulation of VLSI systems,” Proceedings of the 
32nd ACM/IEEE conference on Design automation conference, p.139-143, June 
12-16, 1995, San Francisco, California, United States. 

[57] V. D. Agrawal and S. T. Chakraadhar, “Performance analysis of synchronized 
iterative algorithm on multiprocessor systems,” IEEE Trans. Parallel and 
Distributed Systems, VOL. 3, NO. 6, 739-745, Nov. 1992. 

[58] J. Jacod and P. Protter, Probability Essentials. Springer, 2000. 

[59] R. -D. Reiss, Approximate Distributions of Order Statistics with Applications to 
Nonparametric Statistics. Springer, 1989. 

[60] S. S. Gupta, "Selection and ranking procedures and order statistics for the binomial 
distribution," in Classical and Contagious Discrete Distributions, G. P. Patil, Ed. 
Calcutta: Statistical Publishing Society, 1965, pp. 219-230. 

[61] K.T. Cheng and V. D. Agrawal, Unified Methods for VLSI Simulation and Test 
Generation. Boston: Kluwer Academic, 1989. 

[62] P. Agrawal, “Concurrency and communication in hardware simulators,” IEEE Trans. 
on Computer Aided Design, vol. CAD-5, pp. 617-623, Oct. 1986. 

[63] L. Soule and T. Blank, “Statistics for parallelism and abstraction level in digital 
simulation,” in Proc. 24th ACM/IEEE Design Automat. Conf., 1987, pp. 588-591. 

[64] G. D. Peterson and R. D. Chamberlain, “Sharing Networked Workstations: A 
Performance Model,” 6th IEEE Symposium on Parallel and Distributed Processing, 
pp. 308-315, Dallas, TX, October 1994.  

[65] B. W. Weide, “Analytic Models to Explain the Anomalous Behavior of Parallel 
Programs,” In International Conference on Parallel Processing, pp. 183-187, 1981. 

[66] A.H. –S. Ang and W. H. Tang, Probability Concepts in Engineering Planning and 
Design Vol. II. Rainbow Bridge, 1984. 

[67] S. Madala and J. B. Sinclair, “Performance of Synchronous Parallel Algorithms with 
Regular Structures,” IEEE Transactions on Parallel and Distributed Systems, 2(1): 
105-116, January 1991. 

[68] J. T. Robinson, “Some analysis techniques for asynchronous multiprocessor 
algorithms,” IEEE Trans. Software Eng., vol. SE-5, pp. 24-31, Jan. 1979. 



 121 
 

[69] H. A. David, Order Statistics. New York: Wiley, 1981. 

[70] R. E. Barlow and F. Proschan, “Statistical Theory of Reliability and Life Testing,” 
New York: hold 1975. 

[71] Nihal Yazici-Pekergin and Jean-Marc Vincent, “Stochastic Bounds on Execution 
Times of Parallel Programs,” IEEE Trans. on Software Eng., vol. 17, No. 10, Oct. 
1991. 

[72] J. Sun and G. D. Peterson, “Effective Execution Time Estimation of Heterogeneous 
Parallel Computing,” PDCS, Sep, 2006.  

[73] M. A. Driscoll and W. R. Daasch, “Accurate Predictions of Parallel Program 
Execution Time,” Journal of Parallel and Distributed Computing. Vol. 25, No. 1, 
Feb, 1995. 

[74] Hu, L. and Gorton, I., “Performance Evaluation for Parallel Systems: A Survey,” 
UNSWCSE-TR-9707, pp. -56, Sydney, Australia, 1997. 

[75] Kant, K., “Introduction to Computer System Performance Evaluation New York,” 
McGraw-Hill, Inc., 1992. 

[76] Melissa C. Smith and Gregory D. Peterson, “Parallel Application Performance on 
Shared High Performance Reconfigurable Computing Resources,” Performance 
Evaluation, 60(1-4): 107-125, 2005.  

[77] J. Sun, G. Peterson, O.O. Storaasli, “Mapping Sparse Matrix-Vector Multiplication 
on FPGAs,” RSSI, 2007. 

[78] Mitrion inc. http://www.mitrion.com/  

[79] Xtremedata inc. http://www.xtremedatainc.com/ 

[80] DRC Computer inc. http://www.drccomputer.com/ 

[81] G. H. Golub, C. F. Loan, Matrix Computations. 3rd edition, Johns Hopkins, 1996. 

[82] N. J. Higham, Accuracy and Stability of Numerical Algorithms. 2nd Edition, SIAM 
Press, 2002. 

[83] H. Bowdler, R. Martin, G. Peters, and J. Wilkinson. “Handbook series linear algebra: 
Solution of real and complex systems of linear equations,” Numerische Mathematic, 
8: 217-234, 1966. 



 122 
 

[84] J. Demmel, M. Heath, and H. van der Vorst, “Parallel numerical linear algebra,” in 
Acta Numerica, p111-198, Cambridge University Press, Cambridge, UK, 1993. 

[85] Amdahl, G. M., “Validity of the Single Processor Approach to Achieving Large 
Scale Computing Capabilities,” In AFIPS Conference Proceedings, pp. 483-485, 
1967, Reston, VA. 

[86] J. Sun, “Obtaining High Performance via Lower-Precision FPGA Floating Point 
Units,” Supercomputing, Reno NV, Nov. 2007. 

[87] K. Turkington, K. Masselos, G. A. Constantinides, P. Leong, “FPGA Based 
Acceleration of the Linpack Benchmark: A High Level Code Transformation 
Approach,” FPL, Aug. 2006.  

[88] G. D. Peterson, “Parallel Application Performance on Shared, Heterogeneous 
Workstations,” Ph.D. dissertation, Washington University, Missouri, 1994. 

 

 
 
 
 



 123 
 

Vita 

Junqing Sun was born in Jiangsu, China. He received his B.S. and M.S. degrees from 

Tongji University, China in 2001 and 2004. He was ranked the top out of 70 students in his 

class for his undergraduate and granted “Best 100 Students of Tongji University”. He was 

certified as an “Advanced Programmer” by the Chinese Ministry of Information Industry.  

Junqing Sun completed his Ph.D. with a cumulative GPA of 4.0 from The University of 

Tennessee, Knoxville in 2007. He won the first place award for the ACM Student Research 

Competition at Supercomputing 2007. He was also selected as a member of American 

Academic Honor Society Phi Kappa Phi. He filed one patent application during his 

graduate school.   

 

 


	High Performance Reconfigurable Computing for Linear Algebra: Design and Performance Analysis
	Recommended Citation

	Microsoft Word - sun-phd-dissertation-final.doc

