573 research outputs found

    On the role of commutator arguments in the development of parameter-robust preconditioners for Stokes control problems

    Get PDF
    The development of preconditioners for PDE-constrained optimization problems is a field of numerical analysis which has recently generated much interest. One class of problems which has been investigated in particular is that of Stokes control problems, that is the problem of minimizing a functional with the Stokes (or Navier-Stokes) equations as constraints. In this manuscript, we present an approach for preconditioning Stokes control problems using preconditioners for the Poisson control problem and, crucially, the application of a commutator argument. This methodology leads to two block diagonal preconditioners for the problem, one of which was previously derived by W. Zulehner in 2011 (SIAM. J. Matrix Anal. & Appl., v.32) using a nonstandard norm argument for this saddle point problem, and the other of which we believe to be new. We also derive two related block triangular preconditioners using the same methodology, and present numerical results to demonstrate the performance of the four preconditioners in practice

    A New Approximation of the Schur Complement in Preconditioners for PDE Constrained Optimization

    Get PDF
    Saddle point systems arise widely in optimization problems with constraints. The utility of Schur complement approximation is now broadly appreciated in the context of solving such saddle point systems by iteration. In this short manuscript, we present a new Schur complement approximation for PDE constrained optimization, an important class of these problems. Block diagonal and block triangular preconditioners have previously been designed to be used to solve such problems along with MINRES and non-standard Conjugate Gradients respectively; with appropriate approximation blocks these can be optimal in the sense that the time required for solution scales linearly with the problem size, however small the mesh size we use. In this paper, we extend this work to designing such preconditioners for which this optimality property holds independently of both the mesh size and of the Tikhonov regularization parameter \beta that is used. This also leads to an effective symmetric indefinite preconditioner that exhibits mesh and \beta-independence. We motivate the choice of these preconditioners based on observations about approximating the Schur complement obtained from the matrix system, derive eigenvalue bounds which verify the effectiveness of the approximation, and present numerical results which show that these new preconditioners work well in practice

    All-at-once solution of time-dependent PDE-constrained optimization problems

    Get PDF
    Time-dependent partial differential equations (PDEs) play an important role in applied mathematics and many other areas of science. One-shot methods try to compute the solution to these problems in a single iteration that solves for all time-steps at the same time. In this paper, we look at one-shot approaches for the optimal control of time-dependent PDEs and focus on the fast solution of these problems. The use of Krylov subspace solvers together with an efficient preconditioner allows for minimal storage requirements. We solve only approximate time-evolutions for both forward and adjoint problem and compute accurate solutions of a given control problem only at convergence of the overall Krylov subspace iteration. We show that our approach can give competitive results for a variety of problem formulations

    All-at-Once Solution if Time-Dependent PDE-Constrained Optimisation Problems

    Get PDF
    Time-dependent partial differential equations (PDEs) play an important role in applied mathematics and many other areas of science. One-shot methods try to compute the solution to these problems in a single iteration that solves for all time-steps at the same time. In this paper, we look at one-shot approaches for the optimal control of time-dependent PDEs and focus on the fast solution of these problems. The use of Krylov subspace solvers together with an efficient preconditioner allows for minimal storage requirements. We solve only approximate time-evolutions for both forward and adjoint problem and compute accurate solutions of a given control problem only at convergence of the overall Krylov subspace iteration. We show that our approach can give competitive results for a variety of problem formulations

    Preconditioning iterative methods for the optimal control of the Stokes equation

    Get PDF
    Solving problems regarding the optimal control of partial differential equations (PDEs) – also known as PDE-constrained optimization – is a frontier area of numerical analysis. Of particular interest is the problem of flow control, where one would like to effect some desired flow by exerting, for example, an external force. The bottleneck in many current algorithms is the solution of the optimality system – a system of equations in saddle point form that is usually very large and ill-conditioned. In this paper we describe two preconditioners – a block-diagonal preconditioner for the minimal residual method and a block-lower triangular preconditioner for a non-standard conjugate gradient method – which can be effective when applied to such problems where the PDEs are the Stokes equations. We consider only distributed control here, although other problems – for example boundary control – could be treated in the same way. We give numerical results, and compare these with those obtained by solving the equivalent forward problem using similar technique

    Preconditioners for state constrained optimal control problems with Moreau-Yosida penalty function

    Get PDF
    Optimal control problems with partial differential equations as constraints play an important role in many applications. The inclusion of bound constraints for the state variable poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to be advantageous compared to other approaches. In this paper we develop robust preconditioners for the efficient solution of the Newton steps associated with solving the Moreau-Yosida regularized problem. Numerical results illustrate the efficiency of our approach

    Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization

    Get PDF
    Interior point methods provide an attractive class of approaches for solving linear, quadratic and nonlinear programming problems, due to their excellent efficiency and wide applicability. In this paper, we consider PDE-constrained optimization problems with bound constraints on the state and control variables, and their representation on the discrete level as quadratic programming problems. To tackle complex problems and achieve high accuracy in the solution, one is required to solve matrix systems of huge scale resulting from Newton iteration, and hence fast and robust methods for these systems are required. We present preconditioned iterative techniques for solving a number of these problems using Krylov subspace methods, considering in what circumstances one may predict rapid convergence of the solvers in theory, as well as the solutions observed from practical computations

    Preconditioners for state constrained optimal control problems\ud with Moreau-Yosida penalty function tube

    Get PDF
    Optimal control problems with partial differential equations play an important role in many applications. The inclusion of bound constraints for the state poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to be advantageous compared to other approaches. In this paper we develop preconditioners for the efficient solution of the Newton steps associated with the fast solution of the Moreau-Yosida regularized problem. Numerical results illustrate the competitiveness of this approach. \ud \ud Copyright c 2000 John Wiley & Sons, Ltd

    Fast iterative solvers for convection-diffusion control problems

    Get PDF
    In this manuscript, we describe effective solvers for the optimal control of stabilized convection-diffusion problems. We employ the local projection stabilization, which we show to give the same matrix system whether the discretize-then-optimize or optimize-then-discretize approach for this problem is used. We then derive two effective preconditioners for this problem, the �first to be used with MINRES and the second to be used with the Bramble-Pasciak Conjugate Gradient method. The key components of both preconditioners are an accurate mass matrix approximation, a good approximation of the Schur complement, and an appropriate multigrid process to enact this latter approximation. We present numerical results to demonstrate that these preconditioners result in convergence in a small number of iterations, which is robust with respect to the mesh size h, and the regularization parameter β, for a range of problems

    Preconditioning for active set and projected gradient methods as\ud semi-smooth Newton methods for PDE-constrained optimization\ud with control constraints

    Get PDF
    Optimal control problems with partial differential equations play an important role in many applications. The inclusion of bound constraints for the control poses a significant additional challenge for optimization methods. In this paper we propose preconditioners for the saddle point problems that arise when a primal-dual active set method is used. We also show for this method that the same saddle point system can be derived when the method is considered as a semi-smooth Newton method. In addition, the projected gradient method can be employed to solve optimization problems with simple bounds and we discuss the efficient solution of the linear systems in question. In the case when an acceleration technique is employed for the projected gradient method, this again yields a semi-smooth Newton method that is equivalent to the primal-dual active set method. Numerical results illustrate the competitiveness of this approach
    • …
    corecore