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Abstract. Interior point methods provide an attractive class of approaches for solving linear,
quadratic and nonlinear programming problems, due to their excellent efficiency and wide applica-
bility. In this paper, we consider PDE-constrained optimization problems with bound constraints
on the state and control variables, and their representation on the discrete level as quadratic pro-
gramming problems. To tackle complex problems and achieve high accuracy in the solution, one is
required to solve matrix systems of huge scale resulting from Newton iteration, and hence fast and
robust methods for these systems are required. We present preconditioned iterative techniques for
solving a number of these problems using Krylov subspace methods, considering in what circum-
stances one may predict rapid convergence of the solvers in theory, as well as the solutions observed
from practical computations.
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1. Introduction. We are concerned with optimization problems which involve
partial differential equations. Problems of this type appear for example in numerous
applications of optimal control, where one wishes state variables to be close to a certain
desired form and hopes to achieve it by an appropriate choice of control variables. Let
Ω ⊂ Rd be a bounded open domain with sufficiently smooth boundary ∂Ω. An optimal
control problem with constraints may be written as:

min
y∈Y, u∈U

J (y, u) s.t. c(y, u) = 0, (1.1)

where the state y and control u belong to appropriate functional spaces Y and U ,
respectively. The objective J : Y × U 7→ R and the constraints c : Y × U 7→
Λ, where Λ is another functional space, are assumed to satisfy certain smoothness
conditions to guarantee the existence and uniqueness of the solution. Many real-
life problems may be modelled as optimal control problems (1.1). There exists rich
literature on the subject which addresses specific applications and provides theoretical
background to such problems. The rigorous analysis of optimal control problems
requires using nontrivial functional spaces and involves sophisticated techniques from
functional analysis. We refer the interested reader to excellent books on the subject
[13, 14, 32], while for simplicity in this paper we assume that Y , U and Λ are all equal
to L2(Ω).

The objective function J may take many different forms but it is often given as:

J (y, u) =
1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω), (1.2)

which corresponds to balancing between two goals: keeping the state y close to a
certain desired form ŷ, and minimizing the “energy” of the applied control u. The
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constraints c in (1.1) involve some PDE operator(s), and restrict y and u to Ω and its
boundary ∂Ω. Additionally they may include simple bounds on y and u. In Section 3
we will introduce two particular classes of optimal control problems: time-invariant
and time-dependent PDE-constrained problems.

Computational techniques for PDE-constrained optimal control problems involve
a discretization of the underlying PDE. There are two options for doing this, and the
typical paradigm in PDE-constrained optimization literature is for both approaches
to solve the problem in a similar manner. The first is to apply an optimize-then-
discretize method, involving constructing continuous optimality conditions, and then
discretizing these. However we find that this approach is inconvenient when con-
sidering the resulting discrete systems for the problems considered in this paper,
specifically with regard to the reduction of the dimension of the system, as well as
symmetry of the matrix involved. The alternative method, which we apply in this
paper, is the discretize-then-optimize approach: here a discrete cost functional is con-
structed and discretized constraints are formulated. Then optimality conditions are
derived for such (possibly huge) problems. Our motivation for using this approach
originates from an observation that for a particular (quadratic) cost functional (1.2)
the discretized PDE-constrained problem takes the form of a quadratic optimization
problem. The use of fine discretization leads to a substantial size of the resulting
optimization problem. Therefore we will apply an interior point algorithm to solve it.

Interior point methods (IPMs) are very well-suited to solving quadratic optimiza-
tion problems and they excel when sizes of problems grow large [10, 39], which makes
them perfect candidates for discretized PDE-constrained optimal control problems.
The use of IPMs in PDE-constrained optimization is not new. There have been several
developments which address the theoretical aspects of it, include the functional anal-
ysis viewpoint, and study the convergence properties of an interior point algorithm
[33, 36, 38], and many others which focus on the practical (computational) aspects.
IPMs belong to a broad class of methods which rely on the use of Newton methods
to compute optimizing directions. There have been several successful attempts to use
Newton-based approaches in the PDE-constrained optimization context [3, 4, 15, 17].
The main computational challenge in these approaches is the solution of linear system
which determines the Newton direction. For fine PDE discretizations such systems
quickly get very large. Additionally, when IPMs are applied, the added interior point
diagonal scaling matrices degrade the conditioning of such systems [10] and make
them numerically challenging. Direct methods for sparse linear algebra [6] can handle
the ill-conditioning well but struggle with excessive memory requirements when prob-
lems get larger. Inexact interior point methods [11, 12, 37] overcome this difficulty by
employing iterative methods to solve the Newton equations.

Because of the unavoidable ill-conditioning of these equations the success of any
iterative scheme for their solution depends on the ability to design efficient precon-
ditioners which can improve spectral properties of linear systems. A development
of such preconditioners is a very active research area. Preconditioners for IPMs in
PDE-constrained optimization exploit the vast experience gathered for saddle point
systems [1], but face an extra difficulty originating from the presence of IPM scaling.
There have been already several successful attempts to design preconditioners for such
systems, see [2, 12] and the references therein.

In this paper, we propose a general methodology to design efficient preconditioners
for such systems. Our approach is derived from the matching strategy originally
developed for a particular Poisson control problem [26]. We adapt it to much more
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challenging circumstances of saddle point systems arising in IPMs applied to solve
the PDE-constrained optimal control problems. We briefly comment on the enjoyable
spectral properties of the preconditioned system, and provide computational results
to demonstrate that they work well in practice.

This paper is structured as follows. In Section 2 we briefly recall a few basic facts
about interior point methods for quadratic programming. In Section 3 we demonstrate
how IPMs can be applied to PDE-constrained optimization problems. In Section 4 we
introduce the preconditioners proposed for problems originating from optimal control.
We consider separately two different cases of time-independent and time-dependent
problems. In Section 5 we illustrate our findings with computational results and,
finally, in Section 6 we give our conclusions.

2. Interior point methods for quadratic programming. Within this paper,
we are interested in the solution of quadratic programming (QP) problems. In their
most basic form, such problems may be written as

min
~x

~c>~x+
1

2
~x>Q~x (2.1)

s.t. A~x = ~b,

~x ≥ ~0.

We consider the case where A ∈ Rm×n (m ≤ n) has full row rank, Q ∈ Rn×n is

positive semidefinite, ~x,~c ∈ Rn, and~b ∈ Rm. This formulation is frequently considered
alongside its dual problem

max
~y

~b>~y − 1

2
~x>Q~x

s.t. A>~y + ~z −Q~x = ~c,

~y free, ~z ≥ ~0,

where ~z ∈ Rn, and ~y ∈ Rm. We note that a subset of this setup is that of linear
programming (LP) problems, where Q = 0.

In this manuscript, we consider the solution of quadratic programming problems
using interior point methods [10]. The nonnegativity constraints ~x ≥ ~0 are “replaced”
with the logarithmic barrier penalty function, and the Lagrangian associated with the
barrier subproblem is formed:

L(~x, ~y ) = ~c>~x+
1

2
~x>Q~x+ ~y>

(
A~x−~b

)
− µ

∑
j

log(xj).

Applying Lagrangian duality theory [5], stationarity conditions for the Lagrangian
are derived

A~x = ~b,

A>~y + ~z −Q~x = ~c,

xjzj = µ, j = 1, ..., n, (2.2)

(~x, ~z) ≥ 0,

in which the standard complementarity condition for (2.1), that is xjzj = 0,∀j, is
replaced with the purturbed complementarity condition xjzj = µ,∀j. IPMs drive the



4 J. W. PEARSON AND J. GONDZIO

barrier term µ to zero and gradually reveal the activity of the primal variables xj
and dual slacks zj . This is achieved by applying Newton’s method to the system of
(mildly) nonlinear equations (2.2) −Q A> I

A 0 0
Z 0 X

 ~sx
~sy
~sz

 =

 ~ξd
~ξp
~ξc

 , (2.3)

where ~sx, ~sy and ~sz denote Newton direction, ~ξd, ~ξp and ~ξc denote primal and dual
infeasibilities and the violation of complementarity conditions, respectively. X and
Z denote diagonal matrices with elements of ~x and ~z spread on the diagonals, re-
spectively. By eliminating ~sz, the Newton system (2.3) is further reduced to a saddle
point form [

−Q−X−1Z A>

A 0

] [
~sx
~sy

]
=

[
~ξd −X−1~ξc

~ξp

]
. (2.4)

Since for any j = 1, 2, . . . , n at least one of the variables xj and zj reaches zero at
optimality, the elements of diagonal scaling matrix X−1Z added to the (1,1) block
may significantly differ in magnitude: some of them go to zero while the other go
to infinity. This feature of IPMs [10] is a challenge for any linear equation solver
applied to (2.4). We skip further details about IPMs and refer the interested reader
to [10, 39]. We also highlight that ~y in this description relates to a dual variable,
whereas for PDE-constrained optimization the function y corresponds to a primal
variable – we elect to use the standard notation within the respective fields.

However, before moving on to PDE-constrained optimization, it is worth drawing
reader’s attention to the fact that although in (2.1) we assume only one-sided bound
~x ≥ ~0, IPMs can be also easily applied to variables with two-sided bounds:

~xa ≤ ~x ≤ ~xb.

This requires introducing two nonnegative Lagrange multipliers associated with two
inequalities. Later on we will denote them as ~za and ~zb, respectively.

3. PDE-constrained optimization. We now wish to demonstrate how interior
point methods may be applied to PDE-constrained optimization problems. These
are a crucial class of problems which may be used to model a range of applications
in science and industry, for example fluid flow, chemical and biological processes,
shape optimization, imaging problems, and mathematical finance, to name but a few.
However the problems are often of complex structure, and sophisticated techniques
are frequently required to achieve accurate solutions for the models being considered.
We recommend the papers [13, 32], which provide an excellent introduction to the
field.

Let us first consider a time-independent linear PDE-constrained optimization
problem with additional bound constraints:

min
y,u

1

2
‖y − ŷ‖ 2

L2(Ω) +
β

2
‖u‖2L2(Ω) (3.1)

s.t. Ly = u, in Ω,

y = f, on ∂Ω,

ya ≤ y ≤ yb, a.e. in Ω,

ua ≤ u ≤ ub, a.e. in Ω.
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Here y, ŷ, u denote the state, desired state and control variables, with L some PDE
operator, and β a positive regularization parameter. The problem is solved on domain
Ω (with boundary ∂Ω), for given functions f , ya, yb, ua, ub. We will now apply the
discretize-then-optimize approach to (3.1).

We wish to construct a finite element discretization of it: for the problems con-
sidered in this paper it is beneficial to use equal order finite elements for state and
control variables, and observe that a discretized approximation of the cost functional
is

1

2
‖y − ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω) ≈

1

2
~y>M~y − ~y>d ~y +

1

2

∫
Ω

ŷ 2 dΩ︸ ︷︷ ︸
constant

+
β

2
~u>M~u,

where ~y, ~u are the discretized versions of y, u. The finite element symmetric mass
matrix M contains entries of the form [M ]ij =

∫
Ω
φiφj dΩ, where {φi} are the finite

element basis functions used, and ~yd contains entries of the form
∫

Ω
ŷφi dΩ.

We therefore write (3.1) on the discrete level as

min
~y,~u

1

2
~y>M~y − ~y>d ~y +

β

2
~u>M~u (3.2)

s.t. K~y −M~u = ~f,

~ya ≤ ~y ≤ ~yb,
~ua ≤ ~u ≤ ~ub,

with ~f , ~ya, ~yb, ~ua, ~ub the discrete versions of f , ya, yb, ua, ub. The matrix K
depends on the PDE operator L considered: for example when a Poisson control
problem (with L = −∇2) is examined, K denotes a finite element stiffness matrix
with entries [K]ij =

∫
Ω
∇φi · ∇φj dΩ. Alternatively for convection-diffusion control

problems (with L = −ν∇2 + (~w · ∇), and without stabilization applied within the
solution method), K contains a sum of diffusion and convection terms with [K]ij =∫

Ω

(
ν∇φi · ∇φj + (~w · ∇φj)φi

)
dΩ.

We observe that, using our equal order finite element method, the matrices
M,K ∈ RN×N , where N denotes the number of finite element nodes used, and fur-
thermore that ~y, ~u ∈ RN .

It can easily be seen that the problem statement (3.2) is in the form of the
quadratic programming problem (2.1), with

~x =

[
~y
~u

]
, Q =

[
M 0
0 βM

]
, A =

[
K −M

]
,

~c =

[
−~yd
~0

]
, ~xa =

[
~ya
~ua

]
, ~xb =

[
~yb
~ub

]
.

In the next section we consider interior point methods for solving a range of
problems of structure (3.2). Although there has at this point been relatively little
research into such strategies, we highlight that the paper [33] considers numerical
solution of problems of this type with control constraints only.

3.1. Newton iteration. We now wish to derive the equations arising from a
Newton iteration applied to the (nonlinear) problem (3.1). Let us define

J
(
~y, ~u
)

=
1

2
~y>M~y − ~y>d ~y +

β

2
~u>M~u
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to be the function which we wish to minimize. Applying the discretized version of
the PDE constraint, alongside a barrier function for the bound constraints as in the
previous section, leads to the Lagrangian

L
(
~y, ~u, ~p

)
= J

(
~y, ~u
)

+ ~p>
(
K~y −M~u− ~f

)
− µ

∑
j

log
(
yj − ya,j

)
− µ

∑
j

log
(
yb,j − yj

)
− µ

∑
j

log
(
uj − ua,j

)
− µ

∑
j

log
(
ub,j − uj

)
,

of which we wish to find the stationary point(s). Here ~p denotes the discretized adjoint
variable (or Lagrange multiplier), yj , ya,j , yb,j , uj , ua,j , ub,j denote the j-th entries
of ~y, ~ya, ~yb, ~u, ~ua, ~ub, and µ is the barrier parameter used.

Differentiating L with respect to ~y, ~u and ~p give the first order optimality condi-
tions (or Karush-Kuhn-Tucker conditions):

M~y − ~yd +K>~p− ~zy,a + ~zy,b = ~0, (3.3)

βM~u−M~p− ~zu,a + ~zu,b = ~0, (3.4)

K~y −M~u− ~f = ~0, (3.5)

where

(~y − ~ya) ◦ ~zy,a = µ~e, (3.6)

(~yb − ~y) ◦ ~zy,b = µ~e, (3.7)

(~u− ~ua) ◦ ~zu,a = µ~e, (3.8)

(~ub − ~u) ◦ ~zu,b = µ~e, (3.9)

~e defines the vector of ones of appropriate dimension, and ◦ relates to the multiplica-
tion componentwise of two vectors. Note that, by construction, the following bound
constraints apply for the Lagrange multipliers enforcing the bound constraints:

~zy,a ≥ ~0, ~zy,b ≥ ~0, ~zu,a ≥ ~0, ~zu,b ≥ ~0.

Applying a Newton iteration to (3.3)–(3.9) gives, at each Newton step,

M~sy +K>~sp − ~szy,a + ~szy,b
= ~yd −M~y ∗ −K>~p∗ + ~z ∗y,a − ~z ∗y,b, (3.10)

βM~su −M~sp − ~szu,a
+ ~szu,b

= − βM~u∗ +M~p∗ + ~z ∗u,a − ~z ∗u,b, (3.11)

K~sy −M~su = ~f −K~y ∗ +M~u∗, (3.12)

(~y ∗ − ~ya) ◦ ~szy,a
+ ~z ∗y,a ◦ ~sy = µ~e− (~y ∗ − ~ya) ◦ ~z ∗y,a, (3.13)

(~yb − ~y ∗) ◦ ~szy,b
− ~z ∗y,b ◦ ~sy = µ~e− (~yb − ~y ∗) ◦ ~z ∗y,b, (3.14)

(~u∗ − ~ua) ◦ ~szu,a
+ ~z ∗u,a ◦ ~su = µ~e− (~u∗ − ~ua) ◦ ~z ∗u,a, (3.15)

(~ub − ~u∗) ◦ ~szu,b
− ~z ∗u,b ◦ ~su = µ~e− (~ub − ~y ∗) ◦ ~z ∗u,b. (3.16)

Here, ~y ∗, ~u∗, ~p∗, ~z ∗y,a, ~z ∗y,b, ~z
∗
u,a, ~z ∗u,b denote the most recent Newton iterates for ~y, ~u,

~p, ~zy,a, ~zy,b, ~zu,a, ~zu,b, with ~sy, ~su, ~sp, ~szy,a , ~szy,b
, ~szu,a , ~szu,b

the Newton updates.
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In matrix form, (3.10)–(3.16) read

M 0 K> −I I 0 0
0 βM −M 0 0 −I I
K −M 0 0 0 0 0
Zy,a 0 0 Y − Ya 0 0 0
−Zy,b 0 0 0 Yb − Y 0 0

0 Zu,a 0 0 0 U − Ua 0
0 −Zu,b 0 0 0 0 Ub − U





~sy
~su
~sp
~szy,a

~szy,b

~szu,a

~szu,b



=



~yd −M~y ∗ −K>~p∗ + ~z ∗y,a − ~z ∗y,b
−βM~u∗ +M~p∗ + ~z ∗u,a − ~z ∗u,b

~f −K~y ∗ +M~u∗

µ~e− (~y ∗ − ~ya) ◦ ~z ∗y,a
µ~e− (~yb − ~y ∗) ◦ ~z ∗y,b
µ~e− (~u∗ − ~ua) ◦ ~z ∗u,a
µ~e− (~ub − ~y ∗) ◦ ~z ∗u,b


,

where Y , U , Zy,a, Zy,b, Zu,a, Zu,b are diagonal matrices, with the most recent iterates
for ~y, ~u, ~zy,a, ~zy,b, ~zu,a, ~zu,b appearing on the diagonal entries. Similarly, the matrices
Ya, Yb, Ua, Ub are diagonal matrices corresponding to ~ya, ~yb, ~ua, ~ub.

Now, we may write that fourth, fifth, sixth and seventh rows lead to

~szy,a
= − (Y − Ya)−1Zy,a~sy − Zy,a + µ(Y − Ya)−1~e, (3.17)

~szy,b
= (Yb − Y )−1Zy,b~sy − Zy,b + µ(Yb − Y )−1~e, (3.18)

~szu,a = − (U − Ua)−1Zu,a~su − Zu,a + µ(U − Ua)−1~e, (3.19)

~szu,b
= (Ub − U)−1Zu,b~su − Zu,b + µ(Ub − U)−1~e, (3.20)

whereupon we may consider instead the solution of the reduced system M +Dy 0 K>

0 βM +Du −M
K −M 0

 ~sy
~su
~sp

 (3.21)

=

 µ(Y − Ya)−1~e− µ(Yb − Y )−1~e+ ~yd −M~y ∗ −K>~p∗
µ(U − Ua)−1~e− µ(Ub − U)−1~e− βM~u∗ +M~p∗

~f −K~y ∗ +M~u∗

 ,
where

Dy = (Y − Ya)−1Zy,a + (Yb − Y )−1Zy,b, (3.22)

Du = (U − Ua)−1Zu,a + (Ub − U)−1Zu,b. (3.23)

The conditions written in (3.21) are applied, alongside the imposition of (3.17)–(3.20),
at each Newton iteration.

Note that, due to the fact that state and control bounds are enforced as strict
inequalities at each Newton step, the diagonal matrices Dy and Du are positive defi-
nite.

Of course, it is perfectly natural to consider a problem with only state constraints
or only control constraints (or indeed only lower or upper bound constraints). For
such cases we may follow exactly the same working to obtain a matrix system of the
form (3.21), removing individual matrices corresponding to constraints that we do
not apply.
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3.2. Algorithm. We now present the structure of the interior point algorithm
that we apply to the problems considered in this paper. The essence of the method
is to traverse the interior of the feasible region where solutions may arise – we do
this by applying a relaxed Newton iteration, reducing the barrier parameter by a
factor σ at each Newton step. Having computed the Newton updates ~sy, ~su, ~sp,
~szy,a

, ~szy,b
, ~szu,a

, ~szu,b
, we make a step in this direction that also guarantees that the

strict bounds are enforced at each iteration. Upon convergence the iterates approach
the true solution of the optimization problem, with the additional state and control
constraints automatically satisfied.

Interior Point Method for Quadratic Programming

Parameters

α0 = 0.995, step-size factor to boundary

σ ∈ (0, 1), barrier reduction parameter

εp, εd, εc, stopping tolerances,

Interior point method stops when
∥∥~ξ kp ∥∥ ≤ εp, ∥∥~ξ kd ∥∥ ≤ εd, ∥∥~ξ kc ∥∥ ≤ εc

Initialize IPM

Initial guesses for ~y 0, ~u 0, ~p 0, ~z 0
y,a, ~z

0
y,b, ~z

0
u,a, ~z

0
u,b

Barrier parameter µ0

Primal infeasibility ~ξ 0
p = ~f −K~y 0 +M~u 0

Dual infeasibility ~ξ 0
d =

[
~yd −M~y 0 −K>~p 0 + ~z 0

y,a − ~z 0
y,b

−βM~u 0 +M~p 0 + ~z 0
u,a − ~z 0

u,b

]
Complementarity products ~ξ 0

c , as in (3.24) with k = 0

Interior Point Method

while
(∥∥~ξ kp ∥∥ > εp or

∥∥~ξ kd ∥∥ > εd or
∥∥~ξ kc ∥∥ > εc

)
Reduce barrier parameter µk+1 = σµk

Solve Newton system (3.21) for primal-dual Newton direction ~sy, ~su, ~sp

Use (3.17)–(3.20) to find ~szy,a
, ~szy,b

, ~szu,a
, ~szu,b

Find αP , αD s.t. bound constraints on primal and dual variables hold

Set αP = α0αP , αD = α0αD

Make step: ~y k+1 = ~y k + αP~sy, ~u
k+1 = ~u k + αP~su, ~p

k+1 = ~p k + αD~sp

~z k+1
y,a = ~z ky,a + αD~szy,a

, ~z k+1
y,b = ~z ky,b + αD~szy,b

~z k+1
u,a = ~z ku,a + αD~szu,a

, ~z k+1
u,b = ~z ku,b + αD~szu,b

Update infeasibilities:

~ξ k+1
p = ~f −K~y k+1 +M~u k+1,

~ξ k+1
d =

[
~yd −M~y k+1 −K>~p k+1 + ~z k+1

y,a − ~z k+1
y,b

−βM~u k+1 +M~p k+1 + ~z k+1
u,a − ~z k+1

u,b

]
Compute error of complementarity products as in (3.24)

Set iteration number k = k + 1

end
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Let us now consider appropriate stopping criteria for the method. Two natural
requirements are for the norms of the primal and dual infeasibilities (at the k-th
iteration)

~ξ kp = ~f −K~y k +M~u k, ~ξ kd =

[
~yd −M~y k −K>~p k + ~z ky,a − ~z ky,b
−βM~u k +M~p k + ~z ku,a − ~z ku,b

]
to be lower than some prescribed tolerances εp, εd, respectively. Additionally, we
require the error in the complementarity products

~ξ kc =


µ~e− (~y k − ~ya) ◦ ~z ky,a
µ~e− (~yb − ~y k) ◦ ~z ky,b
µ~e− (~uk − ~ua) ◦ ~z ku,a
µ~e− (~ub − ~y k) ◦ ~z ku,b

 , (3.24)

to fall below some specified tolerance εc.

We present the algorithm that we apply – its structure is similar to the algorithm
outlined in [10, Section 2].

It is clear from the presentation of this method that the dominant computational
work arises from the solution of Newton system (3.21). It is therefore crucial to
construct fast and robust solvers for this system, and this is what we focus on in
Section 4.

3.3. Time-dependent problems. It is also important to be able to handle
time-dependent problems using this methodology, due to the complexity and practical
utility of such setups. To provide a brief illustration of how this may be accomplished,
let us consider the time-dependent problem:

min
y,u

1

2

∫ T

0

∫
Ω

(y − ŷ)2 dΩdt+
β

2

∫ T

0

∫
Ω

u2 dΩdt

s.t. yt − Ly = u, in Ω× [0, T ],

y = f, on ∂Ω× [0, T ],

y = y0, at t = 0,

ya ≤ y ≤ yb, a.e. in Ω× [0, T ],

ua ≤ u ≤ ub, a.e. in Ω× [0, T ].

The state, control and adjoint variables are now solved in a space-time domain Ω ×
[0, T ], with L the time-independent component of the PDE operator.

As in [24, 31] for heat equation control problems, we may apply a discretize-
then-optimize approach, using the trapezoidal rule in space, and the backward Euler
method to account for the time derivative. We thus rewrite the problem in the discrete
setting as follows:

min
y,u

τ

2
~y>M1/2~y − τ~y>d,T~y +

βτ

2
~u>M1/2~u

s.t. K~y −M~u = ~fT ,

~ya ≤ ~y ≤ ~yb,
~ua ≤ ~u ≤ ~ub.
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Here the matrix M1/2 = blkdiag( 1
2M,M, ...,M, 1

2M), M = blkdiag(M, ...,M), and

K =


M + τK
−M M + τK

. . .
. . .

−M M + τK
−M M + τK

,

~yd,T =


1
2~yd,1
~yd,2

...
~yd,Nt−1
1
2~yd,Nt

 , ~fT =


M~y0 + ~f

~f
...
~f
~f

,

whereK corresponds to the time-independent part of the PDE operator, and τ denotes
the (constant) time-step taken. The vectors ~yd,i relate to the values of ŷ at the i-
th time-step, and ~y0 is the vector representation of y0. We denote by Nt := T

τ the
number of time-steps taken.

We apply Newton iteration to the discrete optimality conditions, in an analogous
way to the time-independent problem. This yields the matrix system

τM1/2 0 K> −I I 0 0
0 βτM1/2 −τM 0 0 −I I
K −τM 0 0 0 0 0
Zy,a 0 0 Y − Ya 0 0 0
−Zy,b 0 0 0 Yb − Y 0 0

0 Zu,a 0 0 0 U − Ua 0
0 −Zu,b 0 0 0 0 Ub − U





~sy
~su
~sp
~szy,a

~szy,b

~szu,a

~szu,b


(3.25)

=



τ~yd,T − τM1/2~y
∗ −K>~p∗ + ~z ∗y,a − ~z ∗y,b

−βτM1/2~u
∗ + τM~p∗ + ~z ∗u,a − ~z ∗u,b

~fT −K~y ∗ + τM~u∗

µ~e− (~y ∗ − ~ya) ◦ ~z ∗y,a
µ~e− (~yb − ~y ∗) ◦ ~z ∗y,b
µ~e− (~u∗ − ~ua) ◦ ~z ∗u,a
µ~e− (~ub − ~y ∗) ◦ ~z ∗u,b


,

with ~zya , ~zyb , ~zua
, ~zub

the same as for the time-independent setting, except now
measured over all points in space and time.

Reducing (3.25) as for the time-independent case gives a block matrix system τM1/2 +Dy 0 K>
0 βτM1/2 +Du −τM
K −τM 0

 ~sy
~su
~sp

 (3.26)

=

 µ(Y − Ya)−1~e− µ(Yb − Y )−1~e+ ~yd,T − τM1/2~y
∗ −K>~p∗

µ(U − Ua)−1~e− µ(Ub − U)−1~e− βτM1/2~u
∗ + τM~p∗

~fT −K~y ∗ + τM~u∗

 ,
with Dy, Du analogous to Dy, Du, as defined in (3.22), (3.23), except with the quan-
tities measured within the entire space-time domain.
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4. Preconditioning for the Newton system. For the matrix systems con-
sidered in this paper, particularly those arising from time-dependent problems, great
care must be taken when seeking an appropriate scheme for obtaining an accurate so-
lution. The dimensions of these systems mean that a direct method is often infeasible,
so we find that the natural approach is to develop preconditioned Krylov subspace
solvers.

When seeking preconditioners for such methods, we exploit the fact that the
matrix systems for the PDE-constrained optimization problems are of saddle point
form: [

Φ Ψ>

Ψ Θ

]
︸ ︷︷ ︸

A

[
~x1

~x2

]
=

[
~b1
~b2

]
. (4.1)

Here Φ ∈ Rn×n, Ψ ∈ Rm×n and Θ ∈ Rm×m (with m ≤ n, as in Section 2). Further
Φ and Θ are symmetric matrices, meaning that A is itself symmetric, and all of the
matrices are sparse for the finite element method used. We recommend [1] for a
thorough overview of saddle point systems and their numerical properties.

The study of preconditioners for systems of this form is a well-established subject
area: indeed it is known that two ‘ideal’ preconditioners are given by

PD =

[
Φ 0
0 S

]
, PT =

[
Φ 0
Ψ −S

]
,

where S := −Θ + ΨΦ−1ΨT defines the (negative) Schur complement of A. It can be
shown [16, 18] that the eigenvalues of the preconditioned systems are given by

λ
(
P−1
D A

)
∈
{

1,
1

2
(1±

√
5)

}
, if Θ = 0,

λ
(
P−1
T A

)
∈ {1} , generally,

provided that these systems are invertible.
In practice, of course, one would not wish to invert Φ and S exactly within a

preconditioner, so the main challenge is to devise effective approximations Φ̂ and Ŝ
which can be applied within a block diagonal or block triangular preconditioner of
the form

P =

[
Φ̂ 0

0 Ŝ

]
or

[
Φ̂ 0

Ψ −Ŝ

]
. (4.2)

Such preconditioners are very often found to be extremely potent in practice, and in
many cases one can prove their effectiveness as well (we discuss this further in Section
4.1).

A major objective within the remainder of this paper is to develop effective rep-
resentations of the (1, 1)-block Φ and Schur complement S for matrix systems arising
from interior point solvers.

4.1. Time-independent problems. We now wish to apply saddle point theory
to matrix systems arising from time-independent problems. So consider the matrix
system (3.21), in the case where the matrix K arises from a Laplacian operator (con-
sidered for Poisson control) or convection-diffusion operator. This system is of saddle
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point form (4.1), with

Φ =

[
M +Dy 0

0 βM +Du

]
, Ψ =

[
K −M

]
, Θ =

[
0
]
.

Let us consider approximating the (1, 1)-block and Schur complement of this matrix
system. For this problem M is a positive definite matrix, with positive diagonal
entries, and the same applies to K in the case of Poisson control problems.

We now highlight that mass matrices may in fact be well approximated by their
diagonal: for instance, in the case of Q1 mass matrices on a uniform two dimen-
sional domain, the eigenvalues of [diag(M)]−1M are all contained within the interval
[ 1
4 ,

9
4 ] (see [34]). As Dy and Du are diagonal and positive definite, one option for

approximating Φ is hence to take

Φ̂ =

[
diag (M +Dy) 0

0 diag (βM +Du)

]
.

The effectiveness of the approximation may be measured in some sense by the eigen-
values of Φ̂−1Φ, which may themselves be determined by the Rayleigh quotient

~v>Φ~v

~v>Φ̂~v
=

~v>1 (M +Dy)~v1 + ~v>2 (βM +Du)~v2

~v>1
[
diag(M +Dy)

]
~v1 + ~v>2

[
diag(βM +Du)

]
~v2

=
~v>1 M~v1 + β~v>2 M~v2 + ~v>1 Dy~v1 + ~v>2 Du~v2

~v>1
[
diag(M)

]
~v1 + β~v>2

[
diag(M)

]
~v2 + ~v>1 Dy~v1 + ~v>2 Du~v2

∈

[
min

{
~v>1 M~v1 + β~v>2 M~v2

~v>1
[
diag(M)

]
~v1 + β~v>2

[
diag(M)

]
~v2

, 1

}
, (4.3)

max

{
~v>1 M~v1 + β~v>2 M~v2

~v>1
[
diag(M)

]
~v1 + β~v>2

[
diag(M)

]
~v2

, 1

}]
∈
[
min

{
λmin

([
diag(M)

]−1
M
)
, 1
}
,max

{
λmax

([
diag(M)

]−1
M
)
, 1
}]

,

where (4.3) follows from the fact that ~v>1 Dy~v1 + ~v>2 Du~v2 is non-negative. Here ~v =[
~v>1 , ~v

>
2

]> 6= ~0, with ~v1, ~v2 vectors of appropriate length, and λmin, λmax denote the
smallest and largest eigenvalues of a matrix. We therefore see that if [diag(M)]−1M

is well-conditioned, then the same is true of Φ̂−1Φ.
As an alternative for our approximation Φ̂, one may apply a multigrid method to

approximate the inverses of M +Dy and βM +Du – this is however a more expensive
process to approximate a relatively simple component of the entire system (in general
the matrices with the most complex structure are K and K>).

The main task at this stage is to approximate the Schur complement

S = K(M +Dy)−1K> +M(βM +Du)−1M.

The aim is to build an approximation such that the eigenvalues of the preconditioned
Schur complement are tightly clustered. We motivate our approximation based on a
‘matching’ strategy originally derived in [26] for the Poisson control problem without
bound constraints: for this particular problem it was shown that by ‘capturing’ both
terms of the Schur complement, one obtains the result

λ

([(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)]−1 [
KM−1K +

1

β
M

])
∈
[

1

2
, 1

]
,
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independently of problem size, as well as the value of β. Motivated by this strategy,
we may consider an approximation for S of the form

Ŝ1 :=
(
K + M̂1

)
(M +Dy)−1

(
K + M̂1

)>
,

where M̂1 is chosen to incorporate the second term of the exact Schur complement,
that is:

M̂1(M +Dy)−1M̂ >
1 ≈M(βM +Du)−1M.

This leads to the following requirement when selecting M̂1:

M̂1 ≈M(βM +Du)−1/2(M +Dy)1/2.

We take diagonal approximations where appropriate, in order to avoid having to con-
struct square roots of matrices, which would be extremely expensive computationally.
That is, we take

M̂1 = M
[
diag(βM +Du)

]−1/2[
diag(M +Dy)

]1/2
.

In practice, one may often approximate the inverses of K+M̂1 and its transpose effec-
tively using a multigrid process. We apply the Aggregation-based Algebraic Multigrid
(AGMG) software [19, 20, 21, 22] for this purpose within our iterative solvers.

It is possible to prove a lower bound of the preconditioned Schur complement for
a very general matrix form, as demonstrated below.

Theorem 4.1. Let SG and ŜG be the general matrices

SG = XX> + Y Y >, ŜG = (X + Y )(X + Y )>,

which we assume to be invertible, and with real X, Y.1 Then the eigenvalues of Ŝ−1
G SG

are real, and satisfy λ ≥ 1
2 .

Proof. As SG and ŜG are invertible, they are symmetric positive definite by
constuction. To examine the spectrum of Ŝ−1

G SG we therefore consider the Rayleigh

quotient (for real ~v 6= ~0):

R :=
~v>SG~v

~v>ŜG~v
=

~χ>~χ+ ~ω>~ω

(~χ+ ~ω)>(~χ+ ~ω)
, ~χ = X>~v, ~ω = Y >~v,

which is itself clearly real. By the invertibility of SG and ŜG, both numerator and
denominator are positive. Therefore

1

2
(~χ− ~ω)>(~χ− ~ω) ≥ 0 ⇔ ~χ>~χ+ ~ω>~ω ≥ 1

2
(~χ+ ~ω)>(~χ+ ~ω) ⇔ R ≥ 1

2
.

Note that to demonstrate an upper bound, one would write

R =

(
1 +

2~χ>~ω

~χ>~χ+ ~ω>~ω

)−1

.

1For the example considered here, X = K(M +Dy)−1/2 and Y = M(βM +Du)−1/2.
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This quantity is certainly finite, as 2~χ>~ω
~χ>~χ+~ω>~ω

> −1 by simple manipulation (the case
2~χ>~ω

~χ>~χ+~ω>~ω
= −1 is disallowed by the assumption of invertibility of ŜG). It is generally

not possible to demonstrate an upper bound unless X and Y have structures which
can be exploited. However, using the methodology of Theorem 4.1, results of this
form have been demonstrated for problems such as convection-diffusion control [25]
and heat equation control [24] (without additional bound constraints). In general,

the eigenvalues of Ŝ−1
G SG are better clustered if the term XY > + Y X> is positive

semi-definite, or ‘nearly’ positive semi-definite. The worst case would arise in the
setting where ~χ ≈ −~ω, however for our problem the matrices X and Y do not relate
closely to each other as the activities in the state and control variables do not share
many common features.

The ‘matching strategy’ presented here guarantees a lower bound for the pre-
conditioned Schur complement of matrices of this form, provided some very weak
assumptions hold,2 and often results in the largest eigenvalue being of moderate mag-
nitude. We therefore wish to make use of this approach to generate effective Schur
complement approximations for the matrix systems considered in this manuscript.

Combining our approximations of Φ and S, we propose the following block diag-
onal preconditioner of the form (4.2):

P1 =

 (M +Dy)approx 0 0
0 (βM +Du)approx 0

0 0 Ŝ1

 ,
where (M+Dy)approx, (βM+Du)approx indicate our choice of approximations for M+
Dy, βM+Du (i.e. diagonal approximation or multigrid process). This preconditioner
is symmetric positive definite, and may thus be applied within a symmetric solver such
as Minres [23].

It is useful to consider the distribution of eigenvalues of the preconditioned sys-
tem, as this will control the convergence properties of the Minres method. The
fundamental result we use for our analysis is stated below [28].

Theorem 4.2. If Φ is symmetric positive definite, Ψ is full rank, and Θ = 0, the
eigenvalues of A are contained within the following intervals:

λ(A) ∈
[

1

2

(
µmin −

√
µ2

min + 4σ2
max

)
,

1

2

(
µmax −

√
µ2

max + 4σ2
min

)]
∪
[
µmin,

1

2

(
µmax +

√
µ2

max + 4σ2
max

)]
,

where µmax, µmin denote the largest and smallest eigenvalues of Φ, with σmax, σmin

the largest and smallest singular values of Ψ.
We now wish to apply a result of this form to the preconditioned system. The

preconditioned matrix, when a general block diagonal preconditioner of the form (4.2)
is used, is given by

P−1A =

[
Φ̂ 0

0 Ŝ

]−1 [
Φ Ψ>

Ψ 0

]
=

[
Φ̂−1Φ Φ̂−1Ψ>

Ŝ−1Ψ 0

]
.

2The main assumption made is that ŜG is invertible. This certainly holds unless (X + Y )~v = ~0
for some ~v, which in our setting implies that (M +Dy)1/2K−1M(βM +Du)−1/2 has an eigenvalue
exactly equal to −1. As the matrices M , Dy , Du and K are unlikely to interact closely at any
Newton step, this is extremely unlikely to occur and our assumption is therefore reasonable.
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Now, to analyse the properties of this system, let

λ(Φ̂−1Φ) ∈ [φmin, φmax], λ(Ŝ−1S) ∈ [smin, smax],

where φmin, smin > 0.

By the similarity property of matrix systems (using that for our problem Φ̂ and

Ŝ are positive definite) the eigenvalues will be the same as those of

P−1/2AP−1/2 =

[
Φ̂−1/2 0

0 Ŝ−1/2

] [
Φ Ψ>

Ψ 0

] [
Φ̂−1/2 0

0 Ŝ−1/2

]

=

[
Φ̂−1/2ΦΦ̂−1/2 Φ̂−1/2Ψ>Ŝ−1/2

Ŝ−1/2ΨΦ̂−1/2 0

]
.

The eigenvalues of the (1, 1)-block of this matrix, Φ̂−1/2ΦΦ̂−1/2, are the same

as those of Φ̂−1Φ by similarity, and so are contained in [φmin, φmax]. The singu-
lar values of the (2, 1)-block are given by the square roots of the eigenvalues of

Ŝ−1/2ΨΦ̂−1Ψ>Ŝ−1/2, i.e. the square roots of the eigenvalues of Ŝ−1(ΨΦ̂−1Ψ>) by
similarity. Writing the Rayleigh quotient (for ~v 6= ~0),

~v>ΨΦ̂−1Ψ>~v

~v>Ŝ~v
=
~v>ΨΦ̂−1Ψ>~v

~v>ΨΦ−1Ψ>~v
· ~v
>ΨΦ−1Ψ>~v

~v>Ŝ~v
=

~w>Φ̂−1 ~w

~w>Φ−1 ~w︸ ︷︷ ︸
∈[φmin,φmax]

· ~v
>ΨΦ−1Ψ>~v

~v>Ŝ~v︸ ︷︷ ︸
∈[smin,smax]

,

where ~w = Ψ>~v, enables us to pin the singular values of the (2, 1)-block within
[
√
φminsmin,

√
φmaxsmax].

So, using Theorem 4.2, the eigenvalues of P−1A are contained within the interval
stated below.

Lemma 4.3. If Φ and S are symmetric positive definite, and the above bounds
on λ(Φ̂−1Φ) and λ(Ŝ−1S) hold, then the eigenvalues of P−1A satisfy

λ(P−1A) ∈
[

1

2

(
φmin −

√
φ2

min + 4φmaxsmax

)
,

1

2

(
φmax −

√
φ2

max + 4φminsmin

)]
,

∪
[
φmin,

1

2

(
φmax +

√
φ2

max + 4φmaxsmax

)]
.

It is therefore clear that, for our problem, a good approximation of the Schur
complement will guarantee clustered eigenvalues of the preconditioned system, and
therefore rapid convergence of the Minres method. As we have observed for our
problem, the quantities of interest are therefore the largest eigenvalues of Ŝ−1S, which
can vary at every step of a Newton method.

We now present a straightforward result concerning the eigenvectors of a precon-
ditioned saddle point system of the form under consideration.

Proposition 4.4. Consider an eigenvalue λ that satisfies[
Φ Ψ>

Ψ 0

] [
~v1

~v2

]
= λ

[
Φ̂ 0

0 Ŝ

] [
~v1

~v2

]
, (4.4)
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with Φ, S = ΨΦ−1Ψ>, Φ̂, Ŝ symmetric positive definite. Then either λ is an eigen-
value of Φ̂−1Φ, or λ, ~v1 and ~v2 satisfy(

λΦ̂− Φ− 1

λ
Ψ>Ŝ−1Ψ

)
~v1 = ~0, ~v2 =

1

λ
Ŝ−1Ψ~v1.

Proof. Equation (4.4) is equivalent to

Ψ>~v2 =
(
λΦ̂− Φ

)
~v1, (4.5)

Ψ~v1 = λŜ~v2. (4.6)

Let us first consider the case where Ψ~v1 = ~0 (there are at most n −m such linearly
independent vectors that correspond to eigenvectors). Then (4.6) tells us that ~v2 = ~0,

from which we conclude from (4.5) that (λΦ̂− Φ)~v1 = ~0. Therefore, in this case, the

eigenvalues are given by eigenvalues of Φ̂−1Φ, with eigenvectors of the form [~v>1 , ~0
>]>

– there are at most n−m such solutions.
If Ψ~v1 6= ~0, we may rearrange (4.6) to obtain

~v2 =
1

λ
Ŝ−1Ψ~v1 ⇒ Ψ>~v2 =

1

λ
Ψ>Ŝ−1Ψ~v1,

which we may substitute into (4.5) to obtain

1

λ
Ψ>Ŝ−1Ψ~v1 =

(
λΦ̂− Φ

)
~v1.

This may be trivially rearranged to obtain the required result.
We observe that the eigenvalues and eigenvectors of the (1, 1)-block and Schur

complement (along with their approximations) interact strongly with each other. This

decreases the likelihood of many extreme eigenvalues of Ŝ−1S arising in practice, as
this would have implications on the numerical properties of Φ and Ψ (which for our
problems do not interact at all strongly). However the working provided here shows
that this is very difficult to prove rigorously, due to the wide generality of the saddle
point systems being examined – we must also rely on the physical properties of the
PDE operators within the optimization framework. Our numerical experiments of
Section 5 indicate that the eigenvalues of Ŝ−1S, and therefore the preconditioned
system, are tightly clustered, matching some of the observations made in this section.

As an alternative to the block diagonal preconditioner P1, we may take account
of information on the block lower triangular parts of the matrix system, and apply
the block triangular preconditioner

P2 =

 (M +Dy)approx 0 0
0 (βM +Du)approx 0

K −M −Ŝ1

 ,
within a non-symmetric solver such as Gmres [29].

It is possible to carry out eigenvalue analysis for the block triangular precondi-
tioner P2 in the same way as for the block diagonal preconditioner P1. However it
is well known that the convergence of non-symmetric solvers such as Gmres do not
solely depend on the eigenvalues of the preconditioned system, and therefore such an
analysis would be less useful in practice.
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We now consider a completely different strategy for preconditioning the matrix
system. We may first rearrange (3.21) to the form βM +Du −M 0

−M 0 K
0 K> M +Dy

 ~su
~sp
~sy

 (4.7)

=

 µ(U − Ua)−1~e− µ(Ub − U)−1~e− βM~u∗ +M~p∗

~f −K~y ∗ +M~u∗

µ(Y − Ya)−1~e− µ(Yb − Y )−1~e+ ~yd −M~y ∗ −K>~p∗

 .
The matrix within (4.7) is a saddle point system of the form (4.1), with

Φ =

[
βM +Du −M
−M 0

]
, Ψ =

[
0 K>

]
, Θ =

[
M +Dy

]
.

This approach has the advantage that the (1, 1)-block Φ can be inverted almost
precisely, as all that is required is a method for approximating the inverse of a mass
matrix (to be applied twice). For this, a very cheap and accurate method is Chebyshev
semi-iteration [8, 9, 35], so we apply this strategy within our preconditioner.

Once again, the main challenge is to approximate the Schur complement:

S = − (M +Dy) +
[

0 K>
] [ βM +Du −M

−M 0

]−1 [
0
K

]
= − (M +Dy) +

[
0 K>

] [ 0 −M−1

−M−1 −M−1(βM +Du)M−1

] [
0
K

]
= −

[
K>M−1(βM +Du)M−1K + (M +Dy)

]
.

Let us consider a ‘matching’ strategy once again, and write for our approximation:

Ŝ2 := −
(
K> + M̂2

)
M−1(βM +Du)M−1

(
K + M̂ >

2

)
,

where M̂2 is selected to incorporate the second term of S, i.e.

M̂2M
−1(βM +Du)M−1M̂ >

2 ≈M +Dy,

which may be achieved if

M̂2 ≈ (M +Dy)1/2(βM +Du)−1/2M.

For a practical preconditioner, we in fact select

M̂2 =
[
diag(M +Dy)

]1/2[
diag(βM +Du)

]−1/2
M.

To approximate K> + M̂2 and K + M̂ >
2 in practice, we again make use of the

AGMG software to apply a multigrid process to the relevant matrices within Ŝ2.
Rearranging the matrix system (and hence the preconditioner) to the form (3.21),

we are therefore able to construct the following preconditioner:

P3 =

 −Ŝ2 0 K>

0 βM +Du −Mcheb

0 −Mcheb 0

 ,
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where Mcheb relates to a Chebyshev semi-iteration process for the mass matrix M .
We observe that this relates to observations made on nullspace preconditioners for
saddle point systems in [27].

It is clear that to apply the preconditioner P3, we require a non-symmetric solver
such as Gmres, as it is not possible to construct a positive definite preconditioner with
this rearrangement of the matrix system. Within such a solver, the key advantage
of this stategy is that we may approximate Φ almost perfectly (and cheaply). The
associated disadvantage is that our approximation of S is unlikely to be as effective
or cheap as the approximation Ŝ1 used within the preconditioners P1 and P2.

4.2. Time-dependent problems. Due to the huge dimension of the matrix
systems arising from time-dependent PDE-constrained optimization problems, it is
very important to consider saddle point preconditioners from the resulting systems,
which are of the form (3.26). These are again of saddle point type (4.1), with

Φ =

[
τM1/2 +Dy 0

0 βτM1/2 +Du

]
, Ψ =

[
K −τM

]
, Θ =

[
0
]
.

As for the time-independent case we may approximate Φ using diagonal solves or
a multigrid method applied to the matrices from each time-step.

To approximate the Schur complement of (3.26),

S = K
(
τM1/2 +Dy

)−1K> + τ2M
(
βτM1/2 +Du

)−1M,

we again apply a matching strategy to obtain

Ŝ1,T :=
(
K + M̂1,T

)(
τM1/2 +Dy

)−1(K + M̂1,T

)>
,

where

M̂1,T

(
τM1/2 +Dy

)−1M̂>
1,T ≈ τ2M

(
βτM1/2 +Du

)−1M.

This in turn motivates the choice

M̂1,T = τM
[
diag

(
βτM1/2 +Du

)]−1/2 [
diag

(
τM1/2 +Dy

)]1/2
,

and we require two multigrid processes per time-step to apply Ŝ−1
1,T efficiently.

Combining our approximations of (1, 1)-block and Schur complement, we may
again apply

P1,T =


(
τM1/2 +Dy

)
approx

0 0

0
(
βτM1/2 +Du

)
approx

0

0 0 Ŝ1,T


within Minres, for example, or

P2,T =


(
τM1/2 +Dy

)
approx

0 0

0
(
βτM1/2 +Du

)
approx

0

K −τM −Ŝ1,T

 ,
within a nonsymmetric solver such as Gmres.
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Fig. 5.1. Contour and mesh plots of the solution to the Poisson control example with control
constraints, for state variable y (top) and control variable u (bottom), with β = 10−2.

Alternatively, in complete analogy to the time-independent setting, we may rear-
range the matrix system such that the (1, 1)-block may be approximated accurately,
and select the preconditioner

P3,T =

 −Ŝ2,T 0 K>
0 βτM1/2 +Du −τMcheb

0 −τMcheb 0

 .
Inverting Mcheb requires the application of Chebyshev semi-iteration to Nt mass
matrices M , and the Schur complement approximation is given by

Ŝ2,T := − 1

τ2

(
K> + M̂2,T

)
M−1

(
βτM1/2 +Du

)
M−1

(
K + M̂>

2,T

)
,

with

M̂2,T = τ
[
diag

(
τM1/2 +Dy

)]1/2 [
diag

(
βτM1/2 +Du

)]−1/2M.

Similar eigenvalue results can be shown for these Schur complement approxima-
tions as for the approximations used in the time-independent case.

5. Numerical experiments. Having motivated our numerical methods for the
solution of the problems considered, we now wish to test our solvers on a range of
examples. These test problems are of both time-independent and time-dependent
form, and are solved on a desktop with a quad-core 3.2GHz processor. Within the
interior point method, the value of the barrier reduction parameter σ is set to be
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Table 5.1
Results for the Poisson control example with control constraints, for a range of values of h and

β, and preconditioner P1. Presented are the number of interior point (Newton) iterations required
to achieve convergence (blue, left), and average number of Minres steps per interior point iteration
before a relative preconditioned residual norm of 10−6 is achieved (black, right). Results are given
with an AGMG method applied to the (1, 1)-block (top), and with a diagonal approximation (bottom).

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

P1 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0

AGMG u ≤ 0.01 u ≤ 0.1 u ≤ 1 u ≤ 3 u ≤ 20 u ≤ 100 u ≤ 300

h

2−2 10 5.6 11 6.3 13 6.2 15 6.6 18 7.5 19 7.2 20 7.4

2−3 10 5.7 13 6.1 14 6.3 16 7.8 19 8.3 20 8.7 21 9.3

2−4 10 5.6 13 6.1 15 6.5 19 7.4 22 8.6 22 8.5 21 8.8

2−5 11 5.4 16 5.8 18 6.3 21 7.0 23 8.8 25 8.9 24 9.4

2−6 11 5.5 16 5.8 20 6.2 22 6.8 26 15.5 24 8.9 30 9.4

2−7 12 5.2 18 5.5 20 6.2 20 7.1 27 8.4 25 8.6 31 9.2

β = 1 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

P1 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0 u ≥ 0

Diagonal u ≤ 0.01 u ≤ 0.1 u ≤ 1 u ≤ 3 u ≤ 20 u ≤ 100 u ≤ 300

h

2−2 9 9.4 11 10.4 13 9.5 15 9.2 18 10.1 19 9.4 20 17.6

2−3 10 15.1 12 16.7 14 16.9 16 18.4 19 17.5 20 18.5 21 19.5

2−4 10 15.5 15 18.6 16 19.9 19 22.7 22 21.6 22 23.4 21 24.3

2−5 11 16.3 16 16.2 19 19.5 21 21.1 23 24.7 25 25.7 24 25.8

2−6 11 15.5 16 20.2 20 16.9 22 18.9 26 32.1 24 18.9 31 26.7

2−7 12 14.3 18 15.7 21 16.1 20 18.5 28 28.8 25 19.3 31 23.4

Table 5.2
Results for the Poisson control example with state constraints, for a range of values of h and β.

Presented are the number of interior point iterations required to achieve convergence (blue, left), and
average number of Gmres steps needed (black, right). Results are given when the preconditioners
P2 (top) and P3 (bottom) are used.

β = 1 β = 10−2 β = 10−4 β = 10−6

P2 −0.1 ≤ y ≤ 0.002 −0.1 ≤ y ≤ 0.175 −0.1 ≤ y ≤ 0.9 −0.1 ≤ y ≤ 1

h

2−2 11 5.3 8 5.0 9 5.0 10 5.0

2−3 12 9.9 9 10.2 10 13.3 10 10.9

2−4 13 11.4 10 12.9 11 16.8 11 13.5

2−5 14 12.1 11 13.3 13 27.4 12 15.0

2−6 16 12.5 12 13.6 14 17.8 13 15.7

2−7 17 12.7 13 14.6 16 16.9 14 16.3

β = 1 β = 10−2 β = 10−4 β = 10−6

P3 −0.1 ≤ y ≤ 0.002 −0.1 ≤ y ≤ 0.175 −0.1 ≤ y ≤ 0.9 −0.1 ≤ y ≤ 1

h

2−2 11 5.0 8 5.1 9 5.0 10 5.0

2−3 12 9.6 9 9.1 10 10.5 10 10.5

2−4 13 11.2 10 10.3 11 12.3 11 12.4

2−5 14 12.1 11 10.8 13 12.9 12 13.5

2−6 16 12.6 12 11.4 14 13.3 13 13.9

2−7 17 13.1 13 13.0 16 13.5 14 14.5

0.1, with α0 = 0.995, and εp = εd = εc = 10−6. To solve the Newton systems
arising from the interior point method, we use the Ifiss software package [7, 30] to
construct the relevant finite element matrices. When the symmetric block diagonal
preconditioner P1 is used, we solve the Newton systems using the Minres algorithm
to a relative preconditioned residual norm tolerance of 10−8, and the AGMG software
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Table 5.3
Number of interior point (Newton) iterations, average number of iterations of the Krylov sub-

space method per interior point step, and CPU time required to solve the Poisson control example
with state constraints, when the preconditioners P1, P2 and P3 are used. Results are presented for
a range of h, and fixed β = 10−2.

P1 P2 P3

β = 10−2 IPM Krylov CPU IPM Krylov CPU IPM Krylov CPU

h

2−2 8 8.0 0.15 8 5.0 0.30 8 5.1 0.22

2−3 9 11.8 0.26 9 10.2 0.52 9 9.1 0.34

2−4 10 14.5 0.49 10 12.9 0.94 10 10.3 0.57

2−5 11 14.1 2.1 11 13.3 3.9 11 10.8 2.4

2−6 13 14.8 10.6 12 13.6 17.1 12 11.4 10.1

2−7 14 14.9 47.2 13 14.6 81.6 13 13.0 53.8
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Fig. 5.2. Contour and mesh plots of the solution to the convection-diffusion control example
with state and control constraints, for state variable y (top) and control variable u (bottom), with
β = 10−2.

to approximate the inverse of the (1, 1)-block (apart from within one experiment where
we use a diagonal approximation), as well as the inverse Schur complement. Where
the block triangular preconditioners P2 and P3 are applied, we solve the Newton
systems with the preconditioned Gmres method to a tolerance of 10−8; we apply
AGMG (for P2) or 20 steps of Chebyshev semi-iteration (for P3) to approximate the
(1, 1)-block, and once again utilize AGMG for the Schur complement approximation.
All results are computed using Matlab R2015a.

The first experiments we carry out involve a Poisson control problem, with L =
−∇2 applied on Ω := [0, 1]2, y = 0 on the boundary of Ω, and the desired state given

by ŷ = e−64((x1−0.5)2+(x2−0.5)2), where the spatial coordinates x = [x1, x2]
>

. We
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Table 5.4
Results for the convection-diffusion control example with state and control constraints, for a

range of values of h and β. Presented are the number of interior point iterations required to achieve
convergence (blue, left), and average number of Gmres steps needed (black, right). Results are given
when the preconditioners P3 (top) and P2 (bottom) are used.

β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

P3 0 ≤ y ≤ 0.2 0 ≤ y ≤ 0.5 0 ≤ y ≤ 0.5 0 ≤ y ≤ 0.75 0 ≤ y ≤ 0.75

−0.75 ≤ u ≤ 0.75 −2 ≤ u ≤ 2 −3 ≤ u ≤ 3 −5 ≤ u ≤ 5 −6 ≤ u ≤ 6

h

2−2 13 8.9 14 9.1 15 9.5 14 8.7 14 8.8

2−3 14 11.3 15 10.9 15 12.1 15 12.2 15 11.8

2−4 15 13.1 15 11.8 16 13.4 16 13.3 16 14.1

2−5 17 13.9 17 13.3 16 14.7 19 13.7 19 14.9

2−6 19 14.6 19 14.5 17 17.9 22 16.6 23 16.3

2−7 21 23.0 21 14.9 17 16.5 26 17.7 27 18.4

β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5

P2 0 ≤ y ≤ 0.2 0 ≤ y ≤ 0.5 0 ≤ y ≤ 0.5 0 ≤ y ≤ 0.75 0 ≤ y ≤ 0.75

−0.75 ≤ u ≤ 0.75 −2 ≤ u ≤ 2 −3 ≤ u ≤ 3 −5 ≤ u ≤ 5 −6 ≤ u ≤ 6

h

2−2 13 10.1 14 11.3 14 11.3 14 11.1 14 11.4

2−3 14 20.9 15 19.8 15 24.8 15 21.8 15 22.4

2−4 16 35.1 15 20.6 16 42.6 16 37.6 17 53.0

2−5 17 44.1 17 40.4 16 45.6 19 64.3 19 69.3

2−6 19 52.6 19 48.4 17 47.3 22 66.7 23 73.6

solve this problem using the Minres algorithm with preconditioner P1, using both
the AGMG method and the matrix diagonal to approximate the (1, 1)-block within
the preconditioner. The results obtained are shown in Table 5.1, for a range of mesh-
sizes h and regularization parameters β. A solution plot for β = 10−2 is also shown in
Figure 5.1. We select box constraints for the control variable only, based on the value
of β used and the behaviour of the optimal control problem when no bound constraints
are imposed – we are careful to make sure that the constraints are sensible physically,
but also challenging for our interior point solver. The constraints taken for each value
of β are stated in Table 5.1. It is worth pointing out that increasing the accuracy of
discretization (decreasing h by a factor of 2) typically adds about one extra interior
point iteration, which once again demonstrates that interior point methods are not
very sensitive to the problem dimension (as discussed in [10], for instance). We find
that both the number of iterations of the interior point method, and the average
number of Minres iterations per interior point (Newton) step, are very reasonable
for the problem considered. Whereas we observe an increase in iterative steps for
the more challenging case of smaller β, all numbers are low, in particular the very
encouraging iteration counts for moderate regularization parameters. We also find
that, as one might expect, the computational cheapness of a diagonal approximation
of the (1, 1)-block is counteracted by the higher Minres iteration numbers that result.

We next examine a Poisson control problem involving state constraints, where
ŷ = sin(πx1) sin(πx2), and y = ŷ on the boundary of Ω. We apply the preconditioners
P2 (with the AGMG routine to approximate the (1, 1)-block) and P3, and solve using
Gmres to a tolerance of 10−8 for a range of h and β. Again the results, which are
presented in Table 5.2, are very promising when either preconditioner is used, and a
large degree of robustness is achieved despite the very general matrix systems which
can arise at each interior point iteration. We highlight that the iteration counts are
likely to vary depending on how severe the box constraints that we impose are, as
the structure of the matrices can change drastically. In Table 5.3 we present results
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Table 5.5
Results for the heat equation control example with control constraints, for a range of values of

h, τ and β, and preconditioner P1,T . Presented are the number of interior point iterations required
to achieve convergence (blue, left), and average number of Minres steps needed (black, right).

P1,T β = 10−1 β = 10−2 β = 10−3 β = 10−4

τ = 0.04 0 ≤ u ≤ 0.1 0 ≤ u ≤ 1 0 ≤ u ≤ 3 0 ≤ u ≤ 30

h

2−2 16 7.8 15 9.4 16 11.1 15 9.4

2−3 15 7.9 16 9.7 19 11.3 21 17.4

2−4 17 8.4 21 10.3 21 13.5 25 20.9

2−5 18 8.6 22 10.6 21 13.6 25 20.7

2−6 17 7.9 19 11.3 22 13.1 27 27.5

P1,T β = 10−1 β = 10−2 β = 10−3 β = 10−4

τ = 0.02 0 ≤ u ≤ 0.1 0 ≤ u ≤ 1 0 ≤ u ≤ 3 0 ≤ u ≤ 30

h

2−2 17 7.3 18 8.8 19 10.5 24 24.7

2−3 17 7.4 21 8.7 19 10.7 26 23.5

2−4 18 7.6 18 10.7 21 13.0 25 20.4

2−5 17 8.3 19 10.5 22 13.3 30 27.0

2−6 16 7.5 19 11.0 23 13.0 31 26.3

P1,T β = 10−1 β = 10−2 β = 10−3 β = 10−4

τ = 0.01 0 ≤ u ≤ 0.1 0 ≤ u ≤ 1 0 ≤ u ≤ 3 0 ≤ u ≤ 30

h

2−2 14 6.5 20 8.4 20 10.0 24 23.5

2−3 14 6.6 20 8.4 20 10.3 28 16.2

2−4 16 6.9 23 9.4 22 11.7 27 19.9

2−5 17 7.3 21 10.0 23 12.8 31 19.9

2−6 17 7.7 19 11.3 23 12.5 32 21.0

for this problem (for β = 10−2) with preconditioners P1, P2 and P3 – we observe
in particular that the CPU times scale in an approximately linear fashion with the
dimension of the matrix system being solved.

In Table 5.4 we investigate a problem of convection-diffusion control type, with

L = −0.01∇2 +
[
− 1√

2
, 1√

2

]> · ∇, and ŷ = e−64((x1−0.5)2+(x2−0.5)2). We now impose

both state and control constraints (as specified for each value of β), and test the
preconditioners P2 and P3 using Gmres. We also present a solution plot for β = 10−2

in Figure 5.2. For convection-diffusion control problems such as this, we find there is a
great advantage in applying the preconditioner P3 over the preconditioner P2, due to
the accurate approximation of the (1, 1)-block within it. Indeed this is demonstrated
by the numbers of Gmres iterations required, which are much lower when using the
preconditioner P3, especially for the final interior point iterations when convergence is
close to being achieved. The Gmres solver with P3 demonstrates excellent robustness
considering the complexity of the problem.

Finally, to demonstrate that our solvers are also able to handle matrix systems
of vast dimension arising from time-dependent PDE-constrained optimization prob-
lems, we present results in Table 5.5 for a heat equation control problem, with the
PDE constraint given by yt − ∇2y = u (for t ∈ (0, 1]), and with additional control
constraints imposed. The number of interior point iterations, and average Minres
iteration count when P1,T is applied, are provided for a range of h, β, and time-
step τ . We once again observe a high degree of robustness in problem size (whether
increased by refining the mesh in the spatial coordinates, or by decreasing the time-
step) and regularization parameter. We emphasize once again that the performance
of the method is dependent somewhat on the severity of the box constraints imposed,
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however the numerical results obtained for a range of time-independent and time-
dependent PDE-constrained optimization problems demonstrate the potency of the
solvers presented in this manuscript.

6. Concluding remarks. In this paper we have presented a practical method
for the interior point solution of a number of PDE-constrained optimization problems
with state and control constraints, by reformulating the minimization of the dis-
cretized system as a quadratic programming problem. Having outlined the structure
of the algorithm for solving these problems, we derived fast and feasible preconditioned
iterative methods for solving the resulting Newton systems, which is the dominant
portion of the algorithm in terms of computational work. Encouraging numerical
results indicate the effectiveness and utility of our approach.

The problems we considered involved Poisson control, heat equation control, and
both steady and time-dependent convection-diffusion control. A natural extension of
this work would be to consider the control of systems of PDEs, for instance Stokes con-
trol and other problems in fluid flow, as well as the control of nonlinear PDEs, which
arises in a wide range of practical scientific applications. The latter task would be ac-
complished by reformulating the discretization as a nonlinear programming problem
– the robust solution of such formulations is a substantial challenge within the opti-
mization community, but would represent significant progress in tackling real-world
optimal control problems.
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