2,119 research outputs found

    Block Factor-width-two Matrices and Their Applications to Semidefinite and Sum-of-squares Optimization

    Full text link
    Semidefinite and sum-of-squares (SOS) optimization are fundamental computational tools in many areas, including linear and nonlinear systems theory. However, the scale of problems that can be addressed reliably and efficiently is still limited. In this paper, we introduce a new notion of \emph{block factor-width-two matrices} and build a new hierarchy of inner and outer approximations of the cone of positive semidefinite (PSD) matrices. This notion is a block extension of the standard factor-width-two matrices, and allows for an improved inner-approximation of the PSD cone. In the context of SOS optimization, this leads to a block extension of the \emph{scaled diagonally dominant sum-of-squares (SDSOS)} polynomials. By varying a matrix partition, the notion of block factor-width-two matrices can balance a trade-off between the computation scalability and solution quality for solving semidefinite and SOS optimization. Numerical experiments on large-scale instances confirm our theoretical findings.Comment: 26 pages, 5 figures. Added a new section on the approximation quality analysis using block factor-width-two matrices. Code is available through https://github.com/zhengy09/SDPf

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page

    A Parallel Approximation Algorithm for Positive Semidefinite Programming

    Full text link
    Positive semidefinite programs are an important subclass of semidefinite programs in which all matrices involved in the specification of the problem are positive semidefinite and all scalars involved are non-negative. We present a parallel algorithm, which given an instance of a positive semidefinite program of size N and an approximation factor eps > 0, runs in (parallel) time poly(1/eps) \cdot polylog(N), using poly(N) processors, and outputs a value which is within multiplicative factor of (1 + eps) to the optimal. Our result generalizes analogous result of Luby and Nisan [1993] for positive linear programs and our algorithm is inspired by their algorithm.Comment: 16 page

    Bootstrapping Mixed Correlators in the 3D Ising Model

    Full text link
    We study the conformal bootstrap for systems of correlators involving non-identical operators. The constraints of crossing symmetry and unitarity for such mixed correlators can be phrased in the language of semidefinite programming. We apply this formalism to the simplest system of mixed correlators in 3D CFTs with a Z2\mathbb{Z}_2 global symmetry. For the leading Z2\mathbb{Z}_2-odd operator σ\sigma and Z2\mathbb{Z}_2-even operator ϵ\epsilon, we obtain numerical constraints on the allowed dimensions (Δσ,Δϵ)(\Delta_\sigma, \Delta_\epsilon) assuming that σ\sigma and ϵ\epsilon are the only relevant scalars in the theory. These constraints yield a small closed region in (Δσ,Δϵ)(\Delta_\sigma, \Delta_\epsilon) space compatible with the known values in the 3D Ising CFT.Comment: 39 pages, 6 figure
    corecore