97 research outputs found

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    WM-NET: Robust Deep 3D Watermarking with Limited Data

    Full text link
    The goal of 3D mesh watermarking is to embed the message in 3D meshes that can withstand various attacks imperceptibly and reconstruct the message accurately from watermarked meshes. Traditional methods are less robust against attacks. Recent DNN-based methods either introduce excessive distortions or fail to embed the watermark without the help of texture information. However, embedding the watermark in textures is insecure because replacing the texture image can completely remove the watermark. In this paper, we propose a robust deep 3D mesh watermarking WM-NET, which leverages attention-based convolutions in watermarking tasks to embed binary messages in vertex distributions without texture assistance. Furthermore, our WM-NET exploits the property that simplified meshes inherit similar relations from the original ones, where the relation is the offset vector directed from one vertex to its neighbor. By doing so, our method can be trained on simplified meshes(limited data) but remains effective on large-sized meshes (size adaptable) and unseen categories of meshes (geometry adaptable). Extensive experiments demonstrate our method brings 50% fewer distortions and 10% higher bit accuracy compared to previous work. Our watermark WM-NET is robust against various mesh attacks, e.g. Gauss, rotation, translation, scaling, and cropping

    A steganalytic algorithm for 3D polygonal meshes

    Get PDF
    We propose a steganalytic algorithm for watermarks embedded by Cho et al.'s mean-based algorithm [1]. The main observation is that while in a clean model the means of Cho et al.'s normalized histogram bins are expected to follow a Gaussian distribution, in a marked model their distribution will be bimodal. The proposed algorithm estimates the number of bins through an exhaustive search and then the presence of a watermark is decided by a tailor made normality test. We also propose a modification of Cho et al.'s algorithm which is more resistant to the steganalytic attack and offers an improved robustness/capacity trade-off

    Robust feature-based 3D mesh segmentation and visual mask with application to QIM 3D watermarking

    Get PDF
    The last decade has seen the emergence of 3D meshes in industrial, medical and entertainment applications. Many researches, from both the academic and the industrial sectors, have become aware of their intellectual property protection arising with their increasing use. The context of this master thesis is related to the digital rights management (DRM) issues and more particularly to 3D digital watermarking which is a technical tool that by means of hiding secret information can offer copyright protection, content authentication, content tracking (fingerprinting), steganography (secret communication inside another media), content enrichment etc. Up to now, 3D watermarking non-blind schemes have reached good levels in terms of robustness against a large set of attacks which 3D models can undergo (such as noise addition, decimation, reordering, remeshing, etc.). Unfortunately, so far blind 3D watermarking schemes do not present a good resistance to de-synchronization attacks (such as cropping or resampling). This work focuses on improving the Spread Transform Dither Modulation (STDM) application on 3D watermarking, which is an extension of the Quantization Index Modulation (QIM), through both the use of the perceptual model presented, which presents good robustness against noising and smoothing attacks, and the the application of an algorithm which provides robustness noising and smoothing attacks, and the the application of an algorithm which provides robustness against reordering and cropping attacks based on robust feature detection. Similar to other watermarking techniques, imperceptibility constraint is very important for 3D objects watermarking. For this reason, this thesis also explores the perception of the distortions related to the watermark embed process as well as to the alterations produced by the attacks that a mesh can undergo

    Robust digital watermarking for compressed 3D models based on polygonal representation

    Get PDF
    Multimedia has recently played an increasingly important role in various domains, including Web applications, movies, video game and medical visualization. The rapid growth of digital media data over the Internet, on the other hand, makes it easy for anyone to access, copy, edit and distribute digital contents such as electronic documents, images, sounds and videos. Motivated by this, much research work has been dedicated to develop methods for digital data copyright protection, tracing the ownership, and preventing illegal duplication or tampering. This paper introduces a methodology of robust digital watermarking based on a well-known spherical wavelet transformation, applied to 3D compressed model based on polygonal representation using a neural network. It will be demonstrated in this work that applying a watermarking algorithm on a compressed domain of a 3D object is more effective, efficient, and robust than when applied on a normal domain

    Steganalysis of meshes based on 3D wavelet multiresolution analysis

    Get PDF
    3D steganalysis aims to find the information hidden in 3D models and graphical objects. It is assumed that the information was hidden by 3D steganography or watermarking algorithms. A new set of 3D steganalysis features, derived by using multiresolution 3D wavelet analysis, is proposed in this research study. 3D wavelets relate a given mesh representation with its lower and higher graph resolutions by means of a set of Wavelet Coefficient Vectors (WCVs). The 3D steganalysis features are derived from transformations between a given mesh and its corresponding higher and lower resolutions. They correspond to geometric measures such as ratios and angles between various geometric measures. These features are shown to significantly increase the steganalysis accuracy when detecting watermarks which have been embedded by 3D wavelet-based watermarking algorithms. The proposed features, when used in combination with a previously proposed feature set, is shown to provide the best results in detecting the hidden information embedded by other information hiding algorithms

    A Review of 2D &3D Image Steganography Techniques

    Get PDF
    This examination displays an outline of different three-dimensional (3D) picture steganography methods from overview perspective. This paper exhibit scientific categorization of 3D picture steganography systems and distinguish the ongoing advances in this field. Steganalysis and assaults on 3D picture steganography calculations have likewise been examined. 3D picture steganography strategies in all the three spaces: geometrical, topological and portrayal areas have been contemplated and thought about among each other on different parameters, for example, inserting limit, reversibility and reaction towards assaults. A few difficulties which restrain the advancement of 3D steganography calculations have been recognized. This investigation finishes up with some valuable discoveries at last

    An Adaptive Spread Spectrum (SS) Synchronous Data Hiding Strategy for Scalable 3D Terrain Visualization

    No full text
    International audienceThe diversity of clients in today's network environment compels us to think about solutions that more than satisfy their needs according to their resources. For 3D terrain visualization this translates into two main requirements, namely the scalability and synchronous unification of a disparate data that requires at least two files, the texture image and its corresponding digital elevation model (DEM). In this work the scalability is achieved through the multiresolution discrete wavelet transform (DWT) of the JPEG2000 codec. For the unification of data, a simple DWT-domain spread spectrum (SS) strategy is employed in order to synchronously hide the DEM in the corresponding texture while conserving the JPEG2000 standard file format. Highest possible quality texture is renderable due to the reversible nature of the SS data hiding. As far as DEM quality is concerned, it is ensured through the adaptation of synchronization in embedding that would exclude some highest frequency subbands. To estimate the maximum tolerable error in the DEM according to a given viewpoint, a human visual system (HVS) based psycho-visual analysis is being presented. This analysis is helpful in determining the degree of adaptation in synchronization
    • …
    corecore