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ABSTRACT 
Multimedia has recently played an increasingly important role 
in  various  domains,  including  Web  applications,  movies, 
video game and medical visualization. The rapid growth of 
digital media data over the Internet, on the other hand, makes 
it easy for anyone to access, copy, edit and distribute digital 
contents such as electronic documents, images, sounds and 
videos. Motivated by this, much research work has been 
dedicated to develop methods for digital data copyright 
protection, tracing the ownership, and preventing illegal 
duplication    or    tampering.    This    paper    introduces    a 
methodology of robust digital watermarking based on a well- 
known spherical wavelet transformation, applied to 3D 
compressed model based on polygonal representation using a 
neural network.   It will be demonstrated in this work that 
applying a watermarking algorithm on a compressed domain 
of a 3D object is more effective, efficient, and robust than 
when applied on a normal domain. 
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1.  INTRODUCTION 
Multimedia continues to play an increasingly important role in 
various domains, including Web applications, movies, video 
games, and medical visualization. The rapid growth of digital 
media data over the Internet, on the other hand, makes it easy 
for everybody to access, copy, edit and distribute digital 
contents, such as electronic documents, images, sounds and 
videos [23]. Motivated by this, much research work has been 
dedicated to develop methods for digital data copyright 
protection, tracing the ownership and preventing illegal 
duplication  or  tampering.  One  of  the  most  effective 
techniques for the copyright protection of digital media data is 
a process, in which a hidden specified signal (watermark) is 
embedded in digital data.  The watermarking technique should 
allow people to permanently mark their documents, and 
thereby  prove  claims  of  authenticity  or  ownership.    The 
existing efforts in the literature on digital watermarking have 
been concentrated on media data such as audio, images, and 
video [6][12]. 

There are no effective ways for the copyright protection of 
three  dimensional  (3D)  models  against  attacks,  especially 
when the copyright of the models is distributed over the 
Internet.     The  problem  of  3D  model  watermarking  has 
received less attention from researchers due to the fact that the 
technologies that have emerged for watermarking images, 
videos, and audio cannot be easily adapted to work for 
arbitrary surfaces or polygons. 
 
Watermarking schemes can be classified into private, public, 
and semi-public [9].   A private watermarking scheme needs 
the original 3D model and original watermarks to extract the 
embedded watermarks.  A public watermarking scheme can 
extract embedded watermarks in the absence of the original 
3D model and original watermarks, which is also called blind 
so that all fragile watermarking schemas are also public.  A 
semi-public watermarking scheme does not need the original 
3D model in the embedded watermark extraction stage, but 
the original watermarks are necessary for comparing with the 
extracted watermarks. 
 
In this research, the 3D object is used without texturing. Thus, 
the watermarking, in this paper, is based on connectivity and 
geometry  watermarking.  In  addition,  working  with 
connectivity and geometry watermarking is more robust than 
texture watermarking because they protect their components, 
which are vertices and faces from mesh operation attacks like 
scaling,  smoothing  compression,  and  geometry 
transformation.   The watermarking is based on 3D object 
attributes, such as geometry and topology that make 
embedding watermarking primitives either geometrical 
embedding primitives or topological embedding primitives. 
Thus, watermarking methods are either a geometry-based 
watermarking method or a topology –based watermarking 
method. Each of these methods has its own characteristics that 
will be discussed next [3]. 
 
1.1  Geometry – Based Watermarking 

Methods 
This method focuses on a geometric feature of the 3D object’s 
vertices,  so  embedding  the  watermark  may  modify  the 
position of the vertices in order to insert the watermark, 
changing the length of a line, the area of a polygon, or the 
ratio of the volumes of two polygons. One of simplest 
examples of this type is embedding a watermark directly onto 
the vertex coordinates.  It works in the following steps [32]: 
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1.    Modify the coordinates of the vertex by modulating 

the watermark signal with a global scaling factor 
and a masking weight. 

 
2.    The masking weight for each vertex is the average 

of differences between the connected vertices to that 
vertex. 

 
3. Adding the watermark coordinate values. 

 
 
1.2  Topology – Based Watermarking 

Methods 
 
 

This method focuses on a topological feature of the 3D object 
which is the connectivity of mesh vertices. Therefore, 
embedding the watermark changes the topology of a model. 
The side effect of this is a change in geometry. Usually, 
working with topology is more robust for the watermarking, 
where the topology is redefined to encode one or more bits. 
One of the most famous examples of this type is encoding 
binary bits in triangulating a quadrilateral way [18].  Look to 
Figure 1. 

 

 
 

Figure 1: Example of Topology Structure [18]. 
 

The wavelet transformation had been applied in the 
watermarking schema due to robustness measurements 
[6][17][24]. 

 
The pioneer works of watermarking 3D models were 
performed by Ohbuchi et al. [21], who introduced several 
schemes for watermarking polygonal models. One scheme 
embeds information using groups of four adjacent triangles, 
while another scheme proposed using ratios of tetrahedral 
volumes. The tetrahedral are formed by the three vertices of 
each face and a common vertex that is computed by averaging 
a few fixed mesh vertices. Moreover, a way of visually 
embedding information into polygonal mesh data is proposed 
by modifying the vertex coordinates, the vertex topology, or 
both. Ohbuchi et al. [22] also proposed a frequency domain 
approach to watermark 3D shapes, where the mesh is 
segmented first into some patches, and then for each patch, a 
spectral analysis is conducted, and the watermark information 
is finally embedded into the frequency domain at the 
modulation step. 

 
The approach of Guillaume [10] is quite different; Guillaume 
presented a digital watermark embedded on 3D compressed 
meshes based on a subdivision surface, which chooses a 3D 
object segmented into surface patches as a target, and then 
hides the watermark in the compressed object. 

 
Praun [27] provided a robust watermarking scheme suitable 
for proving ownership claims on triangle meshes representing 
surfaces in a 3D model by converting the original triangle 

mesh into a multiresolution format, consisting of a coarse base 
mesh and a sequence of refinement operations. Next, a scalar 
basis function is defined over its corresponding neighborhood 
in the original mesh. A watermark is then inserted as follows: 
each basis function is multiplied by a coefficient, and added to 
the 3D coordinates of the mesh vertices. Each basis function 
has a scalar effect at each vertex and a global displacement 
direction, where this process is applied as a matrix 
multiplication for each of the three spatial coordinates x, y, 
and z. 
 

In the 3D model represented as a cloud of vertices and a list of 
corresponding edges, Kundur [27] provided a new method 
based on finding and synchronizing particular areas used to 
embed the message by using data hiding that relies on 
modifying the topology of the edges in a chosen area. 
 
A  wavelet-based  multiresolution  analysis  is  used  for 
polygonal models proposed by Wan-Hyun Cho [33]. First, 
generate the simple mesh model and wavelet coefficient 
vectors by applying a multiresolution analysis to a given mesh 
model.  Then,  watermark  embedding  is  processed  by 
perturbing the vertex of chosen mesh at a low resolution 
according to the order of norms of wavelet coefficient vectors 
using a look-up table. The watermark extraction procedure is 
to take binary digits from the embedded mesh using a look-up 
table and similarity test between the embedded watermark and 
the extracted one follows. 
 
JIN Jian-qiu et al [15] proposed a robust watermarking for 3D 
mesh. The algorithm is based on spherical wavelet 
transformation, where the basic idea is to decompose the 
original mesh of details at different scales by using a spherical 
wavelet; the watermark is then embedded into the different 
levels of details. The embedding process includes: global 
sphere  parameterization,  spherical  uniform  sampling, 
spherical wavelet forward transformation, embedding 
watermark, spherical wavelet inverse transformation, and at 
last re-sampling the watermarked mesh to recover the 
topological connectivity of the original model. 
 
Adrian G.Bors [5] also proposed a public watermarking 
algorithm that is applied on various 3D models and does not 
require the original object in the detection stage using a key to 
generate a binary code. A set of vertices and their 
neighborhoods are selected and ordered according to a 
minimized distortion visibility threshold. The embedding 
consists of local geometrical changes of the selected vertices 
according to the geometry of their neighborhoods. 
 
The approach proposed in [2] which uses a new blind digital 
watermarking algorithm is based on discrete wavelet packet 
transformation and a Backpropagation (BP) Neural Network. 
Backpropagation is a common method of training artificial 
neural networks so as to minimize the objective function 
 
The contribution in this paper is to apply digital watermarking 
algorithm based on a spherical wavelet transform [13] applied 
to polygonal 3D mesh models.  These polygonal 3D mesh 
models were compressed using a Multi Layer Feed Forward 
(MLFF) neural network [25][26][29][30]. The paper will 
combine geometric methods with topological methods in the 
watermarking algorithm. 
 
The proposed robust watermarking algorithm should meet the 
following technical requirements: 
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1.    Direct   Embedding:   The   watermark   should   be 

directly embedded into the compressed geometry 
data or topology data of the polygonal model. 

2.  Invisible: The embedded watermark must be 
perceptually invisible within the model and 
unnoticeable for the user. 

3. Small geometric error: The geometric error of the 
polygon data caused by the embedding must be 
small enough in order not to disturb the application 
use. 

4. Robustness:  The  embedded  watermark  must  be 

The object has been created manually (modeling them using 
Autodesk Maya 2008); and before entering the data in MLFF. 
Pre-processing should be applied on the data [29][30]. 
 
The following sub-sections will briefly explain the steps of 
the compression [25][26][29][30]. 
 
Figure 2 shows the difference between the MLFF neural 
network algorithm employed in this paper and the Java 3D 
geometry compression package. 

 
possible 3D geometric operations done on the 3D 
polygonal model. 

5. Capacity: The amount of the watermark which can 
be  embedded  in  the  model  is  large  enough  to 
record the information needed for the application. 

6. Efficient Space: A data embedding method should 
be   able   to   embed   a   non-trivial   amount   of 
information into model. 

 
 

This paper is divided as the following: 
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• In section II, a brief background is given about the 

proposed  compression  methodology  based  on  a 
Multi Layer Feed Forward (MLFF) neural network 
[25][26][29][30]. 

• In section III, the output from compression, which is 
a compressed 3D polygonal mesh model, will be the 
input for a proposed watermarking algorithm. The 
algorithm applies the watermark,  which can be a 
secret   key   or   image,   in   a   spherical   wavelet 
transformation for the compressed data set [13]. 

• In section IV, testing results will be presented on 
some 3D models [29][30] samples.   The proposed 
watermarking algorithm will be  evaluated against 
various types of attacks [13]. 

• In  section  V,  we  present  our  conclusion.  The 
experimental results show that the proposed 
watermark algorithm on compressed 3D objects: 

1.    Is a  very efficient and robust. Moreover, 
it is proved to reduce the processing time. 

2.    Allow  the  embedding  of  the  watermark 
into the model without much increase on 
the model size. 

 
 
 

2.   3D OBJECT COMPRESSION 
ALGORITHM 
neural network employed in this paper is a multilayer feed- 
forward  neural  network  (MLFF)  [25][26][29][30],  which 
provides lossy compression.  The neural network tool used for 
this algorithm is the Mathworks tool (Neural Network 
Toolbox’s with Multi-layer Feed Forward Architecture). 

 

MLFF is a well known neural model, which consists of an 
input layer, one or several hidden layers and an output layer. 
All nodes are fully connected. The neurons in the feed- 
forward neural network are generally grouped into layers. 
Signals flow in one direction from the input layer to the next, 
but  not   within  the  same  layer.   An   essential   factor  of 
successes of the neural networks depends on the training 
network.  Among the several learning algorithms available, 
back-propagation has been the most popular and most widely 
implemented. 

Figure 2: Comparing between the MLFF compression 
algorithm and 3D Java geometry compression package 

[29][30]. 
 
2.1 The Pre-Process Data Set 
 
Before the inputs are presented to the MLFF, the data should 
be pre-processed. Accuracy of the outputs of the neural 
network depends on the data pre-processing step. 
 
The following are the steps that should be done in the data 
pre-processing stage: 
 

•  Normalization 
•  Extract main features of the dataset 

 
 
The supervised learning problem is divided into parametric 
and nonparametric models. The problem here lies in the 
nonparametric model because there is no prior knowledge of 
the form of the function being estimated. Therefore, it is 
required to use a neural network that could be trained using 
different  models samples.    This type of neural learning is 
called learn by example [29][30]. The learning process will be 
performed by a learning algorithm. The objective of this 
algorithm is to change the synaptic weight of the network to 
attain a desired design objective, which is the compressed 
object. Once the network has been trained, it is capable of 
generalization [29][30]. 
 

2.2 The Structure of the MLFF Neural 
Network 
 

The neural network structure contains an input layer, one 
hidden  layer,  and  an  output  layer;  all  nodes  are  fully 
connected.  The  network  takes  x,  y  and  z  coordinates  of 
vertices as input; the activation function is a sigmoid logistic 
function with a learning rate of 0.9 [29][30]. 
 
A sigmoid logistic function, also known as a logistic function, 
is given by the relationship [29][30]: 
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where β is a slope parameter. The sigmoid has the property of 
being similar to the step function, but with the addition of a 
region of uncertainty. Sigmoid functions in this respect are 
very similar to the input-output relationships of biological 
neurons, although not exactly the same. Below is the graph of 
a sigmoid function. Sigmoid functions are also prized because 
their derivatives are easy to calculate, which is helpful for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

calculating the weight updates in certain training algorithms. 
The derivative is given by [29][30]: 

 
 
 

The number of neurons in the input layer is 4, where the first 
three input vectors are the x, y and z vertices coordinates, and 
the fourth input is the maximum face ratio which indicates 
that the maximum face must remain as it is. The number of 
neurons in the hidden layer is between 3 and 4. The 
compression process overall depends on the hidden layer, so 
the  number  of  neurons  in  the  hidden  layer  should  be 
absolutely less than the number of neurons in the input layer 
to do the compression. For higher accuracy, the number of 
neurons in the hidden layer should be increased, but this 
reduces the compression process.   A two-layer feed-forward 
network with sigmoid hidden neurons and linear output 
neurons  can  fit  multi-dimensional  mapping  problems 
arbitrarily well, given consistent data and enough neurons in 
its  hidden  layer  [29][30].     Figure  3  displays  the  neural 
network structure with a given 3D model object sample for 
input object and target object. 

 

2.3 The Training Samples 
 

There are three main aims for the geometry compression 
technique; efficient rendering, progressive transmission, and 
maximum compression to save disk space [8]. Geometry 
compression using the Java 3D package can achieve lossy 
compression ratios between 10:6 to one object, depending on 
the original representation format and the desired quality of 
the final level.  Decompression is the reverse of this process. 
The improvement in this package by adding optimization 
compression makes the lossy in detail of the 3D object much 
smaller. 

 

 

 
 

Figure 3: One hidden layer Feed Forward Neural 
Network Structure [29][30]. 

 

The geometry compression algorithm steps for the Java 3D 
package are as follows [8]: 
 

1.    Input  explicit  bag  of  triangles  to  be  compressed, 
along with quantization thresholds for positions, 
normals, and colors. 

2. Topologically   analyze   connectivity,   mark   hard 
edges in normals and/or color. 

3.    Create   vertex   traversal   order   &   mesh   buffer 
references. 

4. Histogram position, normal, and color deltas. 
5.    Assign variable length Huffman tag codes for deltas, 

based   on   histograms,   separately   for   positions, 
normals and colors. 

6. Generate  binary output stream  by  first  outputting 
Huffman table initializations, then traversing the 
vertices  in  order,  outputting  appropriate  tag  and 
delta for all values. 

 
Also, there are some definitions that have been added to 
identify the critical vertices, so that removing those critical 
vertices can be controlled such that the number of vertices 
remains correspondent to the edges which are never used by 
the compression algorithm. The following are the definitions 
of those vertices depending on invariant vertex identification 
that is provided by [20]: 
 

1.    Boundary vertices of the 3D model are the vertices 
that cannot be used by the compression algorithms 
because these are critical vertices. These are defined 
as vertices which influence the shape of the 3D 
model. 

2.    Neighboring vertices to split a vertex will never be 
used by the compression algorithms. 

3.    Vertices  of  edges  which  do  not  form  a  simple 
triangle cannot be collapsed. That can be calculated 
from  the  data  of  3D  models  by  storing  all  the 
vertices and faces according to the label of vertices, 
and then checking every two consecutive faces. If 
any  two  consecutive  triangles  have  two  of  its 
vertices in common, so that two vertices form a 
complex triangle. In this way, this pair of vertices 
cannot be used by the compression algorithm. 

 
The complexity of invariant vertex selection is analyzed as 
follows according to [7]: 
 

1. The complexity of selecting boundary vertices of the 
3D object by computing convex hull takes  O(n log 
n) using a quick hull algorithm [9]. 

2.    The neighboring vertices, which are computed after 
each  refinement,  has  to  be  split.  These  set  of 
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vertices vary according to the compression scheme 
used If p is the number of split vertices in a 
refinement, and d is the maximum degree for a 
vertex, then the complexity for processing these set 
of vertices is O(p*d). 

3. Computing  the  vertices  of  edges  which  are  not 
simple triangles. First, sort all the faces according to 
the label of vertices which takes  O(n log n). Then, 
checking between two consecutive faces takes O(n) 
time. 

 
Therefore, the overall worst time complexity of the invariant 
vertex selection algorithm is : 

T(n)= n log n + n log n + n log n+ n=O(n log n)             (2.1) 

Where  T  (n)  is  time  complexity  and  n  is  the  number  of 
vertices. 

 
The overall complexity of remesh algorithm using Java 3D 
geometry compression in addition to invariant vertex selection 
algorithm is as follows[29][30]: 

 
1. The invariant vertex selection algorithm complexity 

(see equation 2.1) is: 
T(n) = 3nlog n + n = O(n log n), 

 
2. The remesh algorithm complexity is: 

T (n) =15n+4 = O(n).                                        (2.2) 
 

3. from equations (2.1) and (2.2): 
T (n) = (3n log n +n) * (15n + 4), 

 
T (n) = 45n2 log n +15 n2 +12 n log n +4n 

= O(n2 log n) (2.3) 

Where  T  (n)  is  time  complexity  and  n  is  the  number  of 

2.4 The Results 
 

The network trains 1000 times with the training set until the 
Mean  Square Error (MSE) is small; say less than a given 

, this MSE is the difference between the output objects 
and desired objects, and is given by: 

(2.6) 

Where X are the coordination vertices (3D point) in original 
mesh,   X'   are   the   coordination   vertices   (3D   point)   in 
compressed mesh, N denotes the number of rows and M the 
number of columns in the array of vertices coordinated, 
respectively.  Training  automatically  stops  when 
generalization stops improving, as indicated by an increase in 
the Mean Square Error (MSE) of the validation samples [30]. 
The network will be trained with a gradient-descent back 
propagation algorithm with adaptive learning rate. Training 
time for each model takes approximately 2 hours and 30 
minutes; for all the ten models takes 25 hours and 12 minutes 
[30].  In another set of experiments, training time for each 
model takes approximately 5 hours and 4 minutes. For all the 
ten models, it takes 55 hours and 40 minutes [29]. 
 

Table  2.1  shows  the  results  achieved  by  the  proposed 
algorithm for some models.    Angel Model[29], Happy 
Model[29], Horse Model[29][30], Dragon Model[29], Bunny 
Model[29][30], and Cow Model[29][30]. 
 

They entered to MLFF neural, where: 

Compression Ratio = 

 

Signal to Noise Ratio = 
 

N 

∑  [(X'– X)2 + (Y'– Y)2+(Z'– Z)2] 
N i =1 

vertices. Therefore, O  (n2  log n) is the overall worst time 
complexity of the remesh algorithm in addition to invariant 
vertex selection. 

 
Theorem 1 [30]: The overall worst time complexity of the 
compression  algorithm  using  the  proposed  MLFF  neural 

where N denotes the number of vertices, X', Y' and Z' are 
coordinates in compressed 3D object and X, Y and Z are the 
coordinates in the original object. 
 
Obviously, the number of neurons in  the input layer is 4, 
hence, the total size of the object on Disk = nf *ns *4*3, where 

network is O(n3). nf   denotes the number of faces,  ns denotes the number of 

Proof: 
 

Equation  (2.1)  is  the  worst  time  complexity  for  invariant 
vertex selection algorithm.   Equation (2.2) is the worst time 
complexity for remesh algorithm.  Equation (2.3) is the worst 
time   complexity   for   remesh   algorithm   in   addition   to 
identifying for invariant vertex. 

 

The  Worst  time  complexity  for  pre-  process  data  set  (i.e. 
section 2.1) is [29][30] 

T (n) =10n (2.4) 

The worst time complexity for MLFF neural network given in 
this paper is [25][26][29] 

T (n) =n3 (2.5) 

From all of the above, equation (2.1), equation (2.2), equation 
(2.3), equation (2.4) and equation (2.5) : 

T (n) = O (n3). 
 

Where T(n) is overall time complexity and n is the number of 
vertices. 

vertices.  Denote  that  each  face  has  three  vertices  and  the 
number of neurons in the input layer is 4. Size will be in byte. 
See figure 4 for an example of a model before and after 
compression. 
 
By using MLFF neural network algorithm, the performance of 
the compression increases. The compression ratio is between 
5.3 and 3.3 of the original object. The noise ratio depends on 
the   MSE   (error   function),   given   equation   (2.6),   which 
provides minimum noise for the visual eye [29][30]. 
 
3.  WATERMARKING ALGORITHM 
FOR COMPRESSED 3D OBJECT 
The output result from the compression algorithm mentioned 
in the previous section, which is the compressed 3D model, 
will be the input for the watermarking algorithm proposed in 
this section. The proposed watermarking algorithm is based 
on a spherical wavelet transformation which is considered 
among the  most robust watermarking  methods  [6][17][24]. 
The watermarking algorithm in this paper is based on the 
method in [13], which performs the efficient spherical wavelet 
function,  depending  on  the  spherical  wavelet  presented  in 
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[31].   The following sections will explain how the proposed 
algorithm should embed and extract the Watermark in the 
compressed 3D mesh model. 

 
 
3.1 Generate the Sphere Coordinate for 
Each Vertex in 3D Mesh using spherical 
parameterization 

 
3.1.1 Construct a harmonics function on the 
Sphere and perform spherical harmonic 
transformation 

 
It  is  popular  to  represent  a  3D  shape  with  functions 

defined on the unit sphere, sampled on a regular 
grid of size n x n of angles of elevation      (0≤    ≤π), and 
azimuth    (0≤   ≤2π). 

 
Spherical  harmonic  function  represents  a  data  set  on  the 
sphere. The function used for this representation is spherical 
harmonics that helps in making the multi-resolution 
representation of the 3D mesh. Any point on the unit sphere 
can be denoted as follows: 

 
P  =  (cos    sin   ,  sin    sin   ,  cos    ),  where       (0≤    ≤π) 
and     (0≤    ≤2π) denote the angles of longitude and latitude 
respectively. The spherical shape function               is defined 
on the unit sphere and the expansion of               in spherical 
harmonics is defined to be [19]: 

(3.1) 

Where the normalized spherical harmonics 
are 

3.1.2  Perform  a  Spherical  Parameterization  for 
the 3D Mesh 
 
Parameterization is crucial to many applications such as 
texture mapping, morphing and geometric signal 
processing. 
 
Spherical parameterization is mapping a mesh into a sphere 
such that the 3D model can be defined as spherical signals. 
This  step  requires  that  the  mesh  is  homeomorphic  to 
sphere [14]. Several methods were developed for 
parameterization over the unit sphere [1][14][28][34].  We 
use the algorithm developed in [13][34]. 
 
The  parameterization  of  a  triangle  mesh  onto  the  sphere 
means assigning a 3D position on the unit to each of the mesh 
vertices. The topological sphere for the 3D object is a close 
manifold genus mesh that means embedding its connectivity 
graph on the sphere to get a spherical parameterization of the 
original mesh. 

defined respectively by:  
 
(3.2) 

 
And 

 
 

(3.3) 
 

where 
 
 

= , and 
 

 
 

and 
is the associated Legendre polynomial of 

 
 
 
 

By Rodrigues’ formula : 
 

where 
 

, m ={-l, -l+1, …,l-1,l} Figure 4: Shaded and point cloud Dragon 3D object model 
before and after compression [29]. 
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3D Models 

 
Samples 

 
/Performance 

 
Metrics 

 
 

Angel 
 

Model 

 
 

Happy 
 

Model 

 
 

Horse 
 

Model 

 
 

Dragon 
 

Model 

 
 

Bunny 
 

Model 

 
 

Cow 
 

Model 

Max face ratio 0.30000 0.20000 0.30000 0.10000 0.20000 0.30000 

 
Edges collected 

 
711072 

 
1630179 

 
145449 

 
1308351 

 
104288 

 
8706 

 
Edge processed 

 
166044 

 
439719 

 
33948 

 
366488 

 
28545 

 
2111 

 
Edge collapsed 

 
165917 

 
435087 

 
33939 

 
353500 

 
27811 

 
2032 

 
No. of edges removed 

 
497751 

 
1305261 

 
101817 

 
1060500 

 
83433 

 
6096 

 
No of final edges 

 
213321 

 
326313 

 
43632 

 
248756 

 
20855 

 
2610 

 
Compression ratio 

 
3.33304 

 
5.05457 

 
3.33343 

 
5.31049 

 
5.05457 

 
3.33384 

 
Mean Square Error 

 
0.69465 

 
0.82077 

 
0.79666 

 
0.81663 

 
0.79376 

 
0.76822 

Vertex signal to noise 

ratio 

 
0.24736 

 
0.20456 

 
0.00527 

 
0.01556 

 
0.01269 

 
0.18737 

*Execution Time as 
 

CPU Time 

 
76.74 

 
191.65 

 
15.35 

 
172.97 

 
12.23 

 
1.10 

 

 
Table 2.1: Compression result of the proposed MLFF 
neural network [29][30]. (*CPU Time returns the total 
CPU time (in seconds) used by MATLAB® application 

from the   time it was started.  This number can overflow 
the internal representation and wrap around.) 

3.    Computing the subdivision of each triangle into 4 
smaller triangles in 3D mesh, and then project on the 
sphere whose radius is one unit. 

 
Generally speaking, the steps commonly used to compare 3D 
shapes are [16]: Normalization, Parameterization, Spherical 
Harmonic Transform (SHT), and Shape descriptors. 
 
Figure 7 shows the samples for applying section 3.1 on 3D 
mesh model.  The output of section 3.1 will be the input of next 
section 3.2. 
 
3.2 Generate the Spherical Wavelet 
Transformation 
 
Wavelets have been proved to be powerful bases for use in 
signal processing based on the fact that they only require a 
small number of coefficients to represent general functions and 
large data sets. Due to local support in both the spatial domain 
and the frequency domain, which are suited for spare 
approximation of function, the spherical wavelet transform is 
chosen  in  this  work.    In  fact,  wavelets  are  basis  functions 
which represent a given function at multiple levels of detail. 
Due to their local support in both spatial domain and frequency 
domain, they are suited for sparse approximations of functions. 
We   adopt   the   spherical   wavelet   proposed   in   [31].   In 
particular, the butterfly wavelet transformation is selected. The 
following  is  a  brief  description  about  the  wavelet 
transformation in general, and later the butterfly wavelet 
transformation in particular. 
 
The general wavelet transformation of a function      is 
constructed as follows [31]: 

 
Analysis: (forward transform)  

 
(3.4) 

 
 
 
 

According to [19], the basis mesh is transformed into a 
spherical mesh using centric.   Therefore, a sequence of 
successive vertex split operations and the corresponding local 
parameterization of the deleted vertices on the spherical mesh 
have been applied. As illustrated in figure 5, the method 
described  in [13]  involves the  following steps that explain 
how spherical parameterization information is generated for 
the 3D mesh: 

 
1.    Generating  a  progressive  mesh  representation  with 

local  parameterization  information  based  on 
equations (3.1), (3.2) and (3.3). Edge collapse 
operation is iteratively performed until the mesh is 
simplified into a convex polyhedron. For each edge 
collapse, the two decimated vertices are 
parameterized over the resultant simplified mesh. 

2.   Start with the initial spherical mesh yielded by 
projecting the base mesh recorded in the previous 
step onto the unit sphere. The  sequence  of  vertex 
split  operations  is  performed  progressively.  For 
each vertex split, the two split vertices are 
positioned on the unit sphere using the recorded 
connectivity  and  local  parameterization 
information. The procedure of edge collapse with 
local parameterization is in Figure 6 [13]. 

This represents the scaling function coefficient, fine to coarse. 

(3.5) 

This represents wavelet coefficient, fine to coarse On the other 
hand, the inverse wavelet transformation [31]: 
 
Synthesis: (backward transform) 
 

(3.6) 

This represents the scaling function coefficient, coarse to fine. 

In   equations   (3.5)   and   (3.6),   λn,•    and       ,•     are   the 
approximation and wavelet coefficients of the function at 
resolution j, respectively. The decomposition filters ĥ, ĝ, and 
the synthesis filters h, g corresponds to the spherical wavelet 
basis  functions.  The  forward  transform  is  performed 
recursively starting  from the shape function  λ =  λn,•  at the 
finest resolution n to get λn,• and    ,• at level j, j=n-1,…,0. The 
coarsest approximation λn-i,• is obtained after i iterations (0 < i 
≤ n). In other words, when λn,• (n is finest resolution level) is 
given,   we  can  recursively  perform  the  above  analysis 
process (forward  transform)  to  get     ,•     the wavelet 
coefficients at the current level, and the coarsest 
approximation part λn-i,•  after performing the decomposition i 
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times [13]. Similarly, if we have λn-i,• and    ,• (j=n−i, n−i+1, ..., 
n−1), we can perform the synthesis process (inverse transform) 
recursively to get the λn,• Different h, ĥ, g, ĝ denote different 
wavelet basis function.  In Euclidean space we have hj, k, l =hi-2k 

(the  same  with  g,  ĝ),  but  in  general  manifold  they  are 
dependent on scale and position.   The abstract sets M(j) and 
K(j) are index sets on the sphere such that 

, and K(n) = K is the index set at the finest resolution. 
 

The mesh including dashed edges in the figure 8 is assumed as 
resolution j+1 level. Here K(j) denotes the point set of the 
intersection points of the solid lines and M(j) denotes the set of 
the intersection points of the dash lines. We will compute the λj 

and         approximation   part   and   detailed   part,   by  single 
decomposition in the neighborhood of m [13]. 

 
The work done in [13] was based on linear and linear-lifting 
transformation methods, where in linear transformation, the 
scaling coefficients (approximation part) are sub-sampled and 
kept unchanged. This basic inter-polatory form uses the stencil 
k    K = {v1,v2} for analysis and synthesis: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Global spherical parameterization [13] 

(3.12) 

 
 
 
 
 
 

respectively. 

(3.7) 

(3.8) 

 
Note that this stencil does properly account for the geometry 
provided that the m sites at level j+1 have equal geodetic 
distance from the {v1,v2} sites on their parent edge. Linear 
lifting update the scaling coefficients by using the wavelet 
coefficients of linear wavelet transform to assure that the 
wavelet has at least one vanishing moment     sj,v1,m  = sj,v2,m = 
1/2. In this work the Butterfly transformation [31] is used to 
decompose the geometric signal of the approximation and 
detailed parts, and uses all immediate neighbors (all the sites 
km  = {v1,v2, f1,f2,e1,e2,e3,e4}. Where sv1=sv2=  , sf1=sf2=   and 

se1=se2=se3=se4= -    ) in construction of the smooth mesh. 
 

Analysis: (Butterfly Transformation) 
 

(3.9) 
 
 
 
 
 
 

(3.10) 
 

Synthesis: (Butterfly Transformation) 
 

(3.11) 

 
 
 

Figure 6: Edge collapse with local parameterization [13] 
 

 
 

Figure 7: Samples before and after applying section 
3.1[29][30]. 



9  

 
The butterfly transformation is considered to take more time 
than a linear transformation, but because the work is on a 
compressed domain this makes the butterfly and linear close in 
time consumption. However, the butterfly is supposed to be 
more  robust  as  regards  the  watermarking  algorithm;  in  this 
work the level wavelet decomposition will be to 3 levels (see 
figure 9). 

watermark (logo image for example), and F(•) is a function to 
compute  the  weight  of  the  embedding  intensity,  which  is 
related with the band j. Here       is used to control the global 
intensity of the watermark and is only related with band j.  In 
our implementation, the function F is defined by [13]: 

 

 
 
 
 

3.4 Extracting the Watermark 

(3.14) 

 
 
 
 
 
 
 
 
 
 

Figure 8: Neighbors used in spherical wavelet 
transformation [13]. 

 
The   following   sections   will   explain   how   the   proposed 
algorithm should embed and extract the Watermark in the 
compressed 3D mesh model. 

 
3.3 Embedding Watermark [11] 

 
3.3.1 Generation Watermark and its Capacity 

 
A watermark can be a secret key or image. This algorithm is 
adopted to embed a watermark as a secret key or image. 
Embedding  a  watermark  by  these  two   ways  should   be 
sequences of binary bits, which means that by the secret key 
case (all characters and numbers) should be converted to a 
sequence of binary bits; and in the case of image, the image 
should be converted to a gray scale level in order to be as a 
sequence of binary bits. However, in all experimental results 
that have been displayed in this paper, just the image method 
was used because it is more complex than the secret key, and 
this assures coverage for the entire model. 

 
Capacity of Watermark means the amount of information 
embedded in a 3D object; this amount should be closely related 
to the complexity of the object (number of vertices, number of 
faces). It is assumed that the data capacity of a watermark 
should be not more than the complexity of the 3D object, 
depending on the number of vertices. Dependent on choosing 
the watermark as an image, the logo image shouldn’t be more 
125*125 pixels (which was observed from experiments) and 
then converted to binary (gray scale), which produced 16384 
bits ready to embed into the 3D object. 

 
3.3.2     Watermark Embedding 

 
The watermark embedding is done by the following equation: 

(3.13) 

where          is  the  ith   vertex  of  M′  after  the  watermark  is 
embedded and belongs to band j. On the other hand,        is  the 
set of all  vertices of  M  and  belong  to  band   j.  w is the 

In  order  to  extract  the  watermark  from  a  3D  model  the 
following steps have been applied: 
 

 
Figure 9: The samples before and after applying the 

spherical wavelet transformation. The colored vertices are 
induction for wavelet coefficients [29][30]. 
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3.4.1 Mesh Registration 

 
The mesh registration used here is based on the ICP (Iterative 
Closest Point) algorithm [4].    It was applied on the 
watermarked mesh as follows: 

 
Input:  The point set P with Np points from the data shape and 

the model shape M (section 3.2). The data set is 
initialized. The registration vectors are defined 
relative to the initial data set. 

 
Output: The final registration vectors output represents the 

complete transformation. 
 

Process: The following four steps are applied until 
convergence within a tolerance 

 
1.    Compute the closest points of the Squared Euclidian 

distances                                         , 
2. Compute the registration (rotation and translation), 
3. Apply the registration, 
4.   Terminate the iteration when the change in Mean 

Square Error (MSE) equation (2.6) falls below a 
preset threshold          . 

 
 
3.4.2 Spherical Wavelet Forward Transformation 

 
After producing the mesh registration, the spherical wavelet 
forward transformation is applied on two meshes 

 
1. The registration mesh 
2.    The   compressed   mesh   (i.e.   the   original   mesh 

before applying the watermarking algorithm) 
 

Compare the results of the meshes in order to extract the 
watermark image as a sequence of binary digits (see sub- 
section 3.3.1). 

 
4. EXPERIMENTAL RESULTS AND 
EVALUATIONS AGAINST ATTACKS 

 

 
 
4.1 Performance evaluation 

 
This section presents the evaluation of the proposed 
watermarking algorithm. There are two performance metrics, 
which will be discussed below. 

 
4.1.1 Sampling and precision control 

 
The visual impact of the watermarking on the protected 3D 
object should be as limited as possible to measure the effect of 
the embedded watermark on 3D objects. 

 
In this paper, Hausdorff distance d is used to quantify the 
maximum geometric error. Generally speaking, the Hausdorff 
distance d is a measure defined between two point sets. 

 
In section 3.1, the geometrical signal on the unit sphere has been 
obtained. In order to perform spherical wavelet transform over 
the geometrical signal, the signals should be sampled regularly 
over the sphere. As illustrated in figure 10, we first perform 
recursive 1-split-to-4 subdivision of the tetrahedral base shape as 
used by [31], and then we sample the signals at the vertices of 

the subdivision spherical mesh.   In practice, we wish that the 
generated regular mesh approximates the original mesh with a 
given tolerance   . 
 
Let M be the original mesh and SM is the sampled mesh. We 
perform inverse sampling on SM to get mesh M′. The inverse 
sampling will be executed until the following equation is 
satisfied [13]: 
 

 
 
 
 
where is a user-specified error threshold, and are vertices 
on M and M′ respectively. 
 
4.1.2 Processing Time 
 
For this watermarking algorithm, most of the time consumed 
was spent on calculating coefficients by spherical wavelet 
transformation; the embedded watermark and extracted 
watermark don’t take a lot of time compared with wavelet 
transformation. There is no mathematical way to calculate the 
time processing here but by experimental results shown in table 
2.1, it can be noticed that time processing increases according 
to  an  increasing  number  of  vertices.    Table  4.1  shows  the 
results that have been achieved by applying the watermarking 
algorithm in this paper on the six models [29][30]. 
 
4.2 Testing 
 

For testing the watermarking algorithm implemented in this 
paper, the following attacks were chosen to attack 3D models 
samples [29][30]: 
 

1.  Translation (x+20,y-5,z-13). 
2.  Translation (x-2, y+13, z+5). 
3.  Rotation (y- coordination 30˚). 
4.  Rotation (x-coordination 30˚ and z-coordination 60˚). 
5.  Scale (x-scale 0.6,y-scale 2, z-scale 3). 
6.  Scale (x-scale 3, y-scale 0.5, z-scale 0.2). 
7.  Smoothing    mesh    as    noise    filtering    with    regular 

subdivisions 1:4. 
8.  Lossy compression provided by [10], (look to figure 11). 

 
To measure the robustness of the watermarking algorithm, the 
following measurements were used: 
 
1- The Bit Error Rate (BER) is used, see Equation (4.2). The 
BER is a rate that measures the errors that appear after the 3D 
model is attacked (the ratio of number of destroyed bits to the 
total bit length in the extracted watermark). 
 

(4.2) 
 
where            is the sequence of binary bits embedded into the 
3D model before being distributed over the Internet and 
attacked;                is  the  sequence  of  binary  bits  that  are 
extracted  from  the  3D  model  after  being  attacked;  ⊕is  an 

(Exclusive Or) operation that leads to a sequence of ones in the 
positions that had errors; Counterrors is a counter that holds how 
many errors appear after attacks; and Total Number of Bits is 
the number of bits in            or the original watermark that is 
embedded into the 3D model before being attacked. 
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2- The Survival Rate (SR) is the rate of survival of a watermark 
under attack formations. 

SR = 1-BER                                                                       (4.3) 

Table  4.2  shows  the  measurements  of  robustness  that  are 
achieved by applying the watermarking algorithm in this paper 
on the models of [29][30] using BER. Table 4.3 shows the 
measurements of robustness achieved by applying the 
watermarking algorithm in [13] also using BER. From the 
results that appear in Tables 4.2 and 4.3 it had been confirmed 
that applying a watermarking algorithm on a compressed 
domain is more robust than applying a watermarking algorithm 
on a normal domain. Figure 12 and Figure 13 show a 
comparison between the performed work in this paper and the 
work in [13] from the   robustness of two watermarking 
algorithms against the attacks on the models of [29][30]. This 
clearly shows that the performance from the BER of proposed 
watermarking algorithm is better in most types of attacks than 
the algorithm in paper [13]. 

 

 
Figure 10: Spherical meshes subdivision. The subdivided 

meshes are used for sampling [31] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: The Happy Model Before and After 
Compression attack [29]. 

Table 4.1: Performance measurement of the watermarking 
algorithm in this work (*CPU Time returns the total CPU 
time (in seconds) used by MATLAB® application from the 
time it was started. This number can overflow the internal 

representation and wrap around.) 
 
3D Models 
Samples / 
Performance 
Metrics 

 
Angel 
Model 

 
Happy 
Model 

 
Horse 
Model 

 
Cow 
Model 

 
Dragon 
Model 

 
Bunny 
Model 

Geometric 
 

Error 

 
0.0550 

 
0.0991 

 
0.1912 

 
0.2990 

 
0.02100 

 
0.0791 

*Time 
 

Processing 

 
468.56 

 
703.26 

 
370.83 

 
94.59 

 
226.35 

 
532.92 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12: Experimental result for the work proposed in 
[13] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Experimental result for the work in this paper 
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Table 4.2: Robustness measurement results of BER for a watermarking algorithm in this paper. 

 
3D Models Samples 

 
/ Robustness 

 
Metrics against Attacks 

 
 

Angel 
Model 

 
 

Happy 
Model 

 
 

Horse 
Model 

 
 

Cow 
Model 

 
 

Dragon 
 

Model 

 
 

Bunny 
 

Model 

Lossy Compression 0.0291 0.0535 0.0945 0.1764 0.0665 0.1160 

Translation (x+20,y-5, z-13) 0.0018 4.2725e-004 0.0015 2.4414e-004 9.4604e-004 5.4932e-004 

Translation (x-2, y+13, z+5) 0.0011 4.2705e-004 0.0035 2.4454e-004 9.4613e-004 5.4902e-004 

Rotation (y-coordination 30˚) 0.0020 9.7656e-004 0.0013 3.0518e-004 6.7139e-004 0.0068 

Rotation (x- coordination 30˚ And z- coordination 60˚) 0.0026 9.7436e-004 0.0025 3.0508e-004 6.7139e-004 0.0040 

Scale (x-scale 0.6 ,y-scale 2, z-scale 3) 8.2393e-004 4.5746e-004 1.5279e-004 7.0180e-004 5.1890e-004 0.0042 

Scale (x-scale 3, y-scale 0.5 , z-scale 0.2) 8.2397e-004 4.5776e-004 1.5259e-004 7.0190e-004 5.1880e-004 0.0012 

Smoothing mesh with regular subdivisions 1:4 0.0183 0.0237 0.0243 0.0304 0.0245 0.0400 

 
Table 4.3: Robustness measurement results of BER for the algorithm in paper [13]. 

 
3D Models Samples 

 
/ Robustness 

 
Metrics against Attacks 

 
 

Angel 
Model 

 
 

Happy 
Model 

 
 

Horse 
Model 

 
 

Cow 
Model 

 
 

Dragon 
 

Model 

 
 

Bunny 
 

Model 

Lossy Compression 0.4888 0.3052 0.4272 0.3709 0.2374 0.5432 

Translation (x+20,y-5, z-13) 0.0012 0.0014 9.7656e-004 6.1035e-004 0.0024 0.0015 

Translation (x-2, y+13, z+5) 0.0011 0.0017 9.7666e-004 6.1075e-004 0.0022 0.0019 

Rotation (y-coordination 30˚) 0.0025 5.4932e-004 0.0031 0.0018 0.0043 8.5449e-004 

Rotation (x- coordination 30˚ And z- coordination 60˚) 0.0037 5.4911e-004 0.0039 0.0012 0.0053 8.5489e-004 

Scale (x-scale 0.6 ,y-scale 2, z-scale 3) 0.0018 0.0061 0.0055 0.0049 0.0221 0.0171 

Scale (x-scale 3, y-scale 0.5 , z-scale 0.2) 0.0023 0.0049 0.0061 0.0051 0.0220 0.0165 

Smoothing mesh with regular subdivisions 1:4 0.1366 0.1831 0.3520 0.2191 0.3484 0.4211 

 
 
 

5. CONCLUSIONS 
 

A compression algorithm using an MLFF neural network that 
produces a compressed 3D model (with a compression ratio 
that reaches 5.5) reduces the size of the 3D model with 
minimum loss of details and vertex signal to noise ratio. This 
is noticed experimentally by applying the proposed algorithm 
on different 3D models samples [29][30]. The MLFF neural 
network as an AI tool played an important role in the 

performance of the compression algorithm making the 
algorithm’s performance better than the 3D compression 
geometry proposed in [31]. 
 
The methodology of applying a watermark on a 3D model 
after compression, on a compressed domain, is proved to 
reduce the processing time of the watermarking algorithm, in 
addition to allowing the embedding of the watermark into the 
model without much increase on model size, compared to the 
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original model before compression. Implementing the 
watermarking algorithm is based on a spherical wavelet as a 
butterfly transformation method for vertex bases wavelet 
coefficients.  The experimental results and evaluation against 
attacks shows that watermarking algorithm proposed in this 
paper met the technical requirements of robustness that 
mentioned earlier in this paper. 
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