
1

Robust Digital Watermarking for Compressed 3D Models

Based on Polygonal Representation

Samir Abou El-Seoud
Faculty of Informatics and

Computer Scieence, British
University in Egypt (BUE)

samir.elseoud@bue.edu.eg

Nadine Abu Rumman
Prince Sumaya University for
Technology (PSUT), Jordan

Nadine@psut.edu.jo

Islam A.T.F. Taj-Eddin
Faculty of Informatics and

Computer Scieence, British
University in Egypt (BUE)

Islam.tajeddin@bue.edu.eg

Khalaf F. Khatatneh
Al-Balqa Appl. Univ., Jordan

Christain Gütl
IT-School, IICM-TU Graz, Austria

cguetl@iicm.edu

ABSTRACT
Multimedia has recently played an increasingly important role
in various domains, including Web applications, movies,
video game and medical visualization. The rapid growth of
digital media data over the Internet, on the other hand, makes
it easy for anyone to access, copy, edit and distribute digital
contents such as electronic documents, images, sounds and
videos. Motivated by this, much research work has been
dedicated to develop methods for digital data copyright
protection, tracing the ownership, and preventing illegal
duplication or tampering. This paper introduces a
methodology of robust digital watermarking based on a well-
known spherical wavelet transformation, applied to 3D
compressed model based on polygonal representation using a
neural network. It will be demonstrated in this work that
applying a watermarking algorithm on a compressed domain
of a 3D object is more effective, efficient, and robust than
when applied on a normal domain.

Keywords
Robust Watermarking, Spherical Wavelet Transformation,
Artificial Intelligent, Multi-layer Feed Forward Neural
Network, Attacks, Fast Fourier Transform Butterfly method,
Lossy Compression, Bit Error Rate.

1. INTRODUCTION
Multimedia continues to play an increasingly important role in
various domains, including Web applications, movies, video
games, and medical visualization. The rapid growth of digital
media data over the Internet, on the other hand, makes it easy
for everybody to access, copy, edit and distribute digital
contents, such as electronic documents, images, sounds and
videos [23]. Motivated by this, much research work has been
dedicated to develop methods for digital data copyright
protection, tracing the ownership and preventing illegal
duplication or tampering. One of the most effective
techniques for the copyright protection of digital media data is
a process, in which a hidden specified signal (watermark) is
embedded in digital data. The watermarking technique should
allow people to permanently mark their documents, and
thereby prove claims of authenticity or ownership. The
existing efforts in the literature on digital watermarking have
been concentrated on media data such as audio, images, and
video [6][12].

There are no effective ways for the copyright protection of
three dimensional (3D) models against attacks, especially
when the copyright of the models is distributed over the
Internet. The problem of 3D model watermarking has
received less attention from researchers due to the fact that the
technologies that have emerged for watermarking images,
videos, and audio cannot be easily adapted to work for
arbitrary surfaces or polygons.

Watermarking schemes can be classified into private, public,
and semi-public [9]. A private watermarking scheme needs
the original 3D model and original watermarks to extract the
embedded watermarks. A public watermarking scheme can
extract embedded watermarks in the absence of the original
3D model and original watermarks, which is also called blind
so that all fragile watermarking schemas are also public. A
semi-public watermarking scheme does not need the original
3D model in the embedded watermark extraction stage, but
the original watermarks are necessary for comparing with the
extracted watermarks.

In this research, the 3D object is used without texturing. Thus,
the watermarking, in this paper, is based on connectivity and
geometry watermarking. In addition, working with
connectivity and geometry watermarking is more robust than
texture watermarking because they protect their components,
which are vertices and faces from mesh operation attacks like
scaling, smoothing compression, and geometry
transformation. The watermarking is based on 3D object
attributes, such as geometry and topology that make
embedding watermarking primitives either geometrical
embedding primitives or topological embedding primitives.
Thus, watermarking methods are either a geometry-based
watermarking method or a topology –based watermarking
method. Each of these methods has its own characteristics that
will be discussed next [3].

1.1 Geometry – Based Watermarking

Methods
This method focuses on a geometric feature of the 3D object’s
vertices, so embedding the watermark may modify the
position of the vertices in order to insert the watermark,
changing the length of a line, the area of a polygon, or the
ratio of the volumes of two polygons. One of simplest
examples of this type is embedding a watermark directly onto
the vertex coordinates. It works in the following steps [32]:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195655025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:samir.elseoud@bue.edu.eg
mailto:Nadine@psut.edu.jo
mailto:Islam.tajeddin@bue.edu.eg
mailto:cguetl@iicm.edu
mailto:cguetl@iicm.edu

2

1. Modify the coordinates of the vertex by modulating

the watermark signal with a global scaling factor
and a masking weight.

2. The masking weight for each vertex is the average

of differences between the connected vertices to that
vertex.

3. Adding the watermark coordinate values.

1.2 Topology – Based Watermarking

Methods

This method focuses on a topological feature of the 3D object
which is the connectivity of mesh vertices. Therefore,
embedding the watermark changes the topology of a model.
The side effect of this is a change in geometry. Usually,
working with topology is more robust for the watermarking,
where the topology is redefined to encode one or more bits.
One of the most famous examples of this type is encoding
binary bits in triangulating a quadrilateral way [18]. Look to
Figure 1.

Figure 1: Example of Topology Structure [18].

The wavelet transformation had been applied in the
watermarking schema due to robustness measurements
[6][17][24].

The pioneer works of watermarking 3D models were
performed by Ohbuchi et al. [21], who introduced several
schemes for watermarking polygonal models. One scheme
embeds information using groups of four adjacent triangles,
while another scheme proposed using ratios of tetrahedral
volumes. The tetrahedral are formed by the three vertices of
each face and a common vertex that is computed by averaging
a few fixed mesh vertices. Moreover, a way of visually
embedding information into polygonal mesh data is proposed
by modifying the vertex coordinates, the vertex topology, or
both. Ohbuchi et al. [22] also proposed a frequency domain
approach to watermark 3D shapes, where the mesh is
segmented first into some patches, and then for each patch, a
spectral analysis is conducted, and the watermark information
is finally embedded into the frequency domain at the
modulation step.

The approach of Guillaume [10] is quite different; Guillaume
presented a digital watermark embedded on 3D compressed
meshes based on a subdivision surface, which chooses a 3D
object segmented into surface patches as a target, and then
hides the watermark in the compressed object.

Praun [27] provided a robust watermarking scheme suitable
for proving ownership claims on triangle meshes representing
surfaces in a 3D model by converting the original triangle

mesh into a multiresolution format, consisting of a coarse base
mesh and a sequence of refinement operations. Next, a scalar
basis function is defined over its corresponding neighborhood
in the original mesh. A watermark is then inserted as follows:
each basis function is multiplied by a coefficient, and added to
the 3D coordinates of the mesh vertices. Each basis function
has a scalar effect at each vertex and a global displacement
direction, where this process is applied as a matrix
multiplication for each of the three spatial coordinates x, y,
and z.

In the 3D model represented as a cloud of vertices and a list of
corresponding edges, Kundur [27] provided a new method
based on finding and synchronizing particular areas used to
embed the message by using data hiding that relies on
modifying the topology of the edges in a chosen area.

A wavelet-based multiresolution analysis is used for
polygonal models proposed by Wan-Hyun Cho [33]. First,
generate the simple mesh model and wavelet coefficient
vectors by applying a multiresolution analysis to a given mesh
model. Then, watermark embedding is processed by
perturbing the vertex of chosen mesh at a low resolution
according to the order of norms of wavelet coefficient vectors
using a look-up table. The watermark extraction procedure is
to take binary digits from the embedded mesh using a look-up
table and similarity test between the embedded watermark and
the extracted one follows.

JIN Jian-qiu et al [15] proposed a robust watermarking for 3D
mesh. The algorithm is based on spherical wavelet
transformation, where the basic idea is to decompose the
original mesh of details at different scales by using a spherical
wavelet; the watermark is then embedded into the different
levels of details. The embedding process includes: global
sphere parameterization, spherical uniform sampling,
spherical wavelet forward transformation, embedding
watermark, spherical wavelet inverse transformation, and at
last re-sampling the watermarked mesh to recover the
topological connectivity of the original model.

Adrian G.Bors [5] also proposed a public watermarking
algorithm that is applied on various 3D models and does not
require the original object in the detection stage using a key to
generate a binary code. A set of vertices and their
neighborhoods are selected and ordered according to a
minimized distortion visibility threshold. The embedding
consists of local geometrical changes of the selected vertices
according to the geometry of their neighborhoods.

The approach proposed in [2] which uses a new blind digital
watermarking algorithm is based on discrete wavelet packet
transformation and a Backpropagation (BP) Neural Network.
Backpropagation is a common method of training artificial
neural networks so as to minimize the objective function

The contribution in this paper is to apply digital watermarking
algorithm based on a spherical wavelet transform [13] applied
to polygonal 3D mesh models. These polygonal 3D mesh
models were compressed using a Multi Layer Feed Forward
(MLFF) neural network [25][26][29][30]. The paper will
combine geometric methods with topological methods in the
watermarking algorithm.

The proposed robust watermarking algorithm should meet the
following technical requirements:

3

No
ise

 R
ati

o

1. Direct Embedding: The watermark should be

directly embedded into the compressed geometry
data or topology data of the polygonal model.

2. Invisible: The embedded watermark must be
perceptually invisible within the model and
unnoticeable for the user.

3. Small geometric error: The geometric error of the
polygon data caused by the embedding must be
small enough in order not to disturb the application
use.

4. Robustness: The embedded watermark must be

The object has been created manually (modeling them using
Autodesk Maya 2008); and before entering the data in MLFF.
Pre-processing should be applied on the data [29][30].

The following sub-sections will briefly explain the steps of
the compression [25][26][29][30].

Figure 2 shows the difference between the MLFF neural
network algorithm employed in this paper and the Java 3D
geometry compression package.

possible 3D geometric operations done on the 3D
polygonal model.

5. Capacity: The amount of the watermark which can
be embedded in the model is large enough to
record the information needed for the application.

6. Efficient Space: A data embedding method should
be able to embed a non-trivial amount of
information into model.

This paper is divided as the following:

0.6

0.5

0.4

0.3

0.2

0.1

0

Multi layer feed forward Neural Network

 3D java Geomtery Compression Package

3 3.5 4 4.5 5 5.5

Compression Ratio

• In section II, a brief background is given about the

proposed compression methodology based on a
Multi Layer Feed Forward (MLFF) neural network
[25][26][29][30].

• In section III, the output from compression, which is
a compressed 3D polygonal mesh model, will be the
input for a proposed watermarking algorithm. The
algorithm applies the watermark, which can be a
secret key or image, in a spherical wavelet
transformation for the compressed data set [13].

• In section IV, testing results will be presented on
some 3D models [29][30] samples. The proposed
watermarking algorithm will be evaluated against
various types of attacks [13].

• In section V, we present our conclusion. The
experimental results show that the proposed
watermark algorithm on compressed 3D objects:

1. Is a very efficient and robust. Moreover,
it is proved to reduce the processing time.

2. Allow the embedding of the watermark
into the model without much increase on
the model size.

2. 3D OBJECT COMPRESSION
ALGORITHM
neural network employed in this paper is a multilayer feed-
forward neural network (MLFF) [25][26][29][30], which
provides lossy compression. The neural network tool used for
this algorithm is the Mathworks tool (Neural Network
Toolbox’s with Multi-layer Feed Forward Architecture).

MLFF is a well known neural model, which consists of an
input layer, one or several hidden layers and an output layer.
All nodes are fully connected. The neurons in the feed-
forward neural network are generally grouped into layers.
Signals flow in one direction from the input layer to the next,
but not within the same layer. An essential factor of
successes of the neural networks depends on the training
network. Among the several learning algorithms available,
back-propagation has been the most popular and most widely
implemented.

Figure 2: Comparing between the MLFF compression
algorithm and 3D Java geometry compression package

[29][30].

2.1 The Pre-Process Data Set

Before the inputs are presented to the MLFF, the data should
be pre-processed. Accuracy of the outputs of the neural
network depends on the data pre-processing step.

The following are the steps that should be done in the data
pre-processing stage:

• Normalization
• Extract main features of the dataset

The supervised learning problem is divided into parametric
and nonparametric models. The problem here lies in the
nonparametric model because there is no prior knowledge of
the form of the function being estimated. Therefore, it is
required to use a neural network that could be trained using
different models samples. This type of neural learning is
called learn by example [29][30]. The learning process will be
performed by a learning algorithm. The objective of this
algorithm is to change the synaptic weight of the network to
attain a desired design objective, which is the compressed
object. Once the network has been trained, it is capable of
generalization [29][30].

2.2 The Structure of the MLFF Neural
Network

The neural network structure contains an input layer, one
hidden layer, and an output layer; all nodes are fully
connected. The network takes x, y and z coordinates of
vertices as input; the activation function is a sigmoid logistic
function with a learning rate of 0.9 [29][30].

A sigmoid logistic function, also known as a logistic function,
is given by the relationship [29][30]:

4

where β is a slope parameter. The sigmoid has the property of
being similar to the step function, but with the addition of a
region of uncertainty. Sigmoid functions in this respect are
very similar to the input-output relationships of biological
neurons, although not exactly the same. Below is the graph of
a sigmoid function. Sigmoid functions are also prized because
their derivatives are easy to calculate, which is helpful for

calculating the weight updates in certain training algorithms.
The derivative is given by [29][30]:

The number of neurons in the input layer is 4, where the first
three input vectors are the x, y and z vertices coordinates, and
the fourth input is the maximum face ratio which indicates
that the maximum face must remain as it is. The number of
neurons in the hidden layer is between 3 and 4. The
compression process overall depends on the hidden layer, so
the number of neurons in the hidden layer should be
absolutely less than the number of neurons in the input layer
to do the compression. For higher accuracy, the number of
neurons in the hidden layer should be increased, but this
reduces the compression process. A two-layer feed-forward
network with sigmoid hidden neurons and linear output
neurons can fit multi-dimensional mapping problems
arbitrarily well, given consistent data and enough neurons in
its hidden layer [29][30]. Figure 3 displays the neural
network structure with a given 3D model object sample for
input object and target object.

2.3 The Training Samples

There are three main aims for the geometry compression
technique; efficient rendering, progressive transmission, and
maximum compression to save disk space [8]. Geometry
compression using the Java 3D package can achieve lossy
compression ratios between 10:6 to one object, depending on
the original representation format and the desired quality of
the final level. Decompression is the reverse of this process.
The improvement in this package by adding optimization
compression makes the lossy in detail of the 3D object much
smaller.

Figure 3: One hidden layer Feed Forward Neural
Network Structure [29][30].

The geometry compression algorithm steps for the Java 3D
package are as follows [8]:

1. Input explicit bag of triangles to be compressed,
along with quantization thresholds for positions,
normals, and colors.

2. Topologically analyze connectivity, mark hard
edges in normals and/or color.

3. Create vertex traversal order & mesh buffer
references.

4. Histogram position, normal, and color deltas.
5. Assign variable length Huffman tag codes for deltas,

based on histograms, separately for positions,
normals and colors.

6. Generate binary output stream by first outputting
Huffman table initializations, then traversing the
vertices in order, outputting appropriate tag and
delta for all values.

Also, there are some definitions that have been added to
identify the critical vertices, so that removing those critical
vertices can be controlled such that the number of vertices
remains correspondent to the edges which are never used by
the compression algorithm. The following are the definitions
of those vertices depending on invariant vertex identification
that is provided by [20]:

1. Boundary vertices of the 3D model are the vertices
that cannot be used by the compression algorithms
because these are critical vertices. These are defined
as vertices which influence the shape of the 3D
model.

2. Neighboring vertices to split a vertex will never be
used by the compression algorithms.

3. Vertices of edges which do not form a simple
triangle cannot be collapsed. That can be calculated
from the data of 3D models by storing all the
vertices and faces according to the label of vertices,
and then checking every two consecutive faces. If
any two consecutive triangles have two of its
vertices in common, so that two vertices form a
complex triangle. In this way, this pair of vertices
cannot be used by the compression algorithm.

The complexity of invariant vertex selection is analyzed as
follows according to [7]:

1. The complexity of selecting boundary vertices of the
3D object by computing convex hull takes O(n log
n) using a quick hull algorithm [9].

2. The neighboring vertices, which are computed after
each refinement, has to be split. These set of

5

1

vertices vary according to the compression scheme
used If p is the number of split vertices in a
refinement, and d is the maximum degree for a
vertex, then the complexity for processing these set
of vertices is O(p*d).

3. Computing the vertices of edges which are not
simple triangles. First, sort all the faces according to
the label of vertices which takes O(n log n). Then,
checking between two consecutive faces takes O(n)
time.

Therefore, the overall worst time complexity of the invariant
vertex selection algorithm is :

T(n)= n log n + n log n + n log n+ n=O(n log n) (2.1)

Where T (n) is time complexity and n is the number of
vertices.

The overall complexity of remesh algorithm using Java 3D
geometry compression in addition to invariant vertex selection
algorithm is as follows[29][30]:

1. The invariant vertex selection algorithm complexity

(see equation 2.1) is:
T(n) = 3nlog n + n = O(n log n),

2. The remesh algorithm complexity is:

T (n) =15n+4 = O(n). (2.2)

3. from equations (2.1) and (2.2):
T (n) = (3n log n +n) * (15n + 4),

T (n) = 45n2 log n +15 n2 +12 n log n +4n

= O(n2 log n) (2.3)

Where T (n) is time complexity and n is the number of

2.4 The Results

The network trains 1000 times with the training set until the
Mean Square Error (MSE) is small; say less than a given

, this MSE is the difference between the output objects
and desired objects, and is given by:

(2.6)

Where X are the coordination vertices (3D point) in original
mesh, X' are the coordination vertices (3D point) in
compressed mesh, N denotes the number of rows and M the
number of columns in the array of vertices coordinated,
respectively. Training automatically stops when
generalization stops improving, as indicated by an increase in
the Mean Square Error (MSE) of the validation samples [30].
The network will be trained with a gradient-descent back
propagation algorithm with adaptive learning rate. Training
time for each model takes approximately 2 hours and 30
minutes; for all the ten models takes 25 hours and 12 minutes
[30]. In another set of experiments, training time for each
model takes approximately 5 hours and 4 minutes. For all the
ten models, it takes 55 hours and 40 minutes [29].

Table 2.1 shows the results achieved by the proposed
algorithm for some models. Angel Model[29], Happy
Model[29], Horse Model[29][30], Dragon Model[29], Bunny
Model[29][30], and Cow Model[29][30].

They entered to MLFF neural, where:

Compression Ratio =

Signal to Noise Ratio =

N

∑ [(X'– X)2 + (Y'– Y)2+(Z'– Z)2]
N i =1

vertices. Therefore, O (n2 log n) is the overall worst time
complexity of the remesh algorithm in addition to invariant
vertex selection.

Theorem 1 [30]: The overall worst time complexity of the
compression algorithm using the proposed MLFF neural

where N denotes the number of vertices, X', Y' and Z' are
coordinates in compressed 3D object and X, Y and Z are the
coordinates in the original object.

Obviously, the number of neurons in the input layer is 4,
hence, the total size of the object on Disk = nf *ns *4*3, where

network is O(n3). nf denotes the number of faces, ns denotes the number of

Proof:

Equation (2.1) is the worst time complexity for invariant
vertex selection algorithm. Equation (2.2) is the worst time
complexity for remesh algorithm. Equation (2.3) is the worst
time complexity for remesh algorithm in addition to
identifying for invariant vertex.

The Worst time complexity for pre- process data set (i.e.
section 2.1) is [29][30]

T (n) =10n (2.4)

The worst time complexity for MLFF neural network given in
this paper is [25][26][29]

T (n) =n3 (2.5)

From all of the above, equation (2.1), equation (2.2), equation
(2.3), equation (2.4) and equation (2.5) :

T (n) = O (n3).

Where T(n) is overall time complexity and n is the number of
vertices.

vertices. Denote that each face has three vertices and the
number of neurons in the input layer is 4. Size will be in byte.
See figure 4 for an example of a model before and after
compression.

By using MLFF neural network algorithm, the performance of
the compression increases. The compression ratio is between
5.3 and 3.3 of the original object. The noise ratio depends on
the MSE (error function), given equation (2.6), which
provides minimum noise for the visual eye [29][30].

3. WATERMARKING ALGORITHM
FOR COMPRESSED 3D OBJECT
The output result from the compression algorithm mentioned
in the previous section, which is the compressed 3D model,
will be the input for the watermarking algorithm proposed in
this section. The proposed watermarking algorithm is based
on a spherical wavelet transformation which is considered
among the most robust watermarking methods [6][17][24].
The watermarking algorithm in this paper is based on the
method in [13], which performs the efficient spherical wavelet
function, depending on the spherical wavelet presented in

6

[31]. The following sections will explain how the proposed
algorithm should embed and extract the Watermark in the
compressed 3D mesh model.

3.1 Generate the Sphere Coordinate for
Each Vertex in 3D Mesh using spherical
parameterization

3.1.1 Construct a harmonics function on the
Sphere and perform spherical harmonic
transformation

It is popular to represent a 3D shape with functions

defined on the unit sphere, sampled on a regular
grid of size n x n of angles of elevation (0≤ ≤π), and
azimuth (0≤ ≤2π).

Spherical harmonic function represents a data set on the
sphere. The function used for this representation is spherical
harmonics that helps in making the multi-resolution
representation of the 3D mesh. Any point on the unit sphere
can be denoted as follows:

P = (cos sin , sin sin , cos), where (0≤ ≤π)
and (0≤ ≤2π) denote the angles of longitude and latitude
respectively. The spherical shape function is defined
on the unit sphere and the expansion of in spherical
harmonics is defined to be [19]:

(3.1)

Where the normalized spherical harmonics
are

3.1.2 Perform a Spherical Parameterization for
the 3D Mesh

Parameterization is crucial to many applications such as
texture mapping, morphing and geometric signal
processing.

Spherical parameterization is mapping a mesh into a sphere
such that the 3D model can be defined as spherical signals.
This step requires that the mesh is homeomorphic to
sphere [14]. Several methods were developed for
parameterization over the unit sphere [1][14][28][34]. We
use the algorithm developed in [13][34].

The parameterization of a triangle mesh onto the sphere
means assigning a 3D position on the unit to each of the mesh
vertices. The topological sphere for the 3D object is a close
manifold genus mesh that means embedding its connectivity
graph on the sphere to get a spherical parameterization of the
original mesh.

defined respectively by:

(3.2)

And

(3.3)

where

= , and

and
is the associated Legendre polynomial of

By Rodrigues’ formula :

where

, m ={-l, -l+1, …,l-1,l} Figure 4: Shaded and point cloud Dragon 3D object model
before and after compression [29].

7

3D Models

Samples

/Performance

Metrics

Angel

Model

Happy

Model

Horse

Model

Dragon

Model

Bunny

Model

Cow

Model

Max face ratio 0.30000 0.20000 0.30000 0.10000 0.20000 0.30000

Edges collected

711072

1630179

145449

1308351

104288

8706

Edge processed

166044

439719

33948

366488

28545

2111

Edge collapsed

165917

435087

33939

353500

27811

2032

No. of edges removed

497751

1305261

101817

1060500

83433

6096

No of final edges

213321

326313

43632

248756

20855

2610

Compression ratio

3.33304

5.05457

3.33343

5.31049

5.05457

3.33384

Mean Square Error

0.69465

0.82077

0.79666

0.81663

0.79376

0.76822

Vertex signal to noise

ratio

0.24736

0.20456

0.00527

0.01556

0.01269

0.18737

*Execution Time as

CPU Time

76.74

191.65

15.35

172.97

12.23

1.10

Table 2.1: Compression result of the proposed MLFF
neural network [29][30]. (*CPU Time returns the total
CPU time (in seconds) used by MATLAB® application

from the time it was started. This number can overflow
the internal representation and wrap around.)

3. Computing the subdivision of each triangle into 4
smaller triangles in 3D mesh, and then project on the
sphere whose radius is one unit.

Generally speaking, the steps commonly used to compare 3D
shapes are [16]: Normalization, Parameterization, Spherical
Harmonic Transform (SHT), and Shape descriptors.

Figure 7 shows the samples for applying section 3.1 on 3D
mesh model. The output of section 3.1 will be the input of next
section 3.2.

3.2 Generate the Spherical Wavelet
Transformation

Wavelets have been proved to be powerful bases for use in
signal processing based on the fact that they only require a
small number of coefficients to represent general functions and
large data sets. Due to local support in both the spatial domain
and the frequency domain, which are suited for spare
approximation of function, the spherical wavelet transform is
chosen in this work. In fact, wavelets are basis functions
which represent a given function at multiple levels of detail.
Due to their local support in both spatial domain and frequency
domain, they are suited for sparse approximations of functions.
We adopt the spherical wavelet proposed in [31]. In
particular, the butterfly wavelet transformation is selected. The
following is a brief description about the wavelet
transformation in general, and later the butterfly wavelet
transformation in particular.

The general wavelet transformation of a function is
constructed as follows [31]:

Analysis: (forward transform)

(3.4)

According to [19], the basis mesh is transformed into a
spherical mesh using centric. Therefore, a sequence of
successive vertex split operations and the corresponding local
parameterization of the deleted vertices on the spherical mesh
have been applied. As illustrated in figure 5, the method
described in [13] involves the following steps that explain
how spherical parameterization information is generated for
the 3D mesh:

1. Generating a progressive mesh representation with

local parameterization information based on
equations (3.1), (3.2) and (3.3). Edge collapse
operation is iteratively performed until the mesh is
simplified into a convex polyhedron. For each edge
collapse, the two decimated vertices are
parameterized over the resultant simplified mesh.

2. Start with the initial spherical mesh yielded by
projecting the base mesh recorded in the previous
step onto the unit sphere. The sequence of vertex
split operations is performed progressively. For
each vertex split, the two split vertices are
positioned on the unit sphere using the recorded
connectivity and local parameterization
information. The procedure of edge collapse with
local parameterization is in Figure 6 [13].

This represents the scaling function coefficient, fine to coarse.

(3.5)

This represents wavelet coefficient, fine to coarse On the other
hand, the inverse wavelet transformation [31]:

Synthesis: (backward transform)

(3.6)

This represents the scaling function coefficient, coarse to fine.

In equations (3.5) and (3.6), λn,• and ,• are the
approximation and wavelet coefficients of the function at
resolution j, respectively. The decomposition filters ĥ, ĝ, and
the synthesis filters h, g corresponds to the spherical wavelet
basis functions. The forward transform is performed
recursively starting from the shape function λ = λn,• at the
finest resolution n to get λn,• and ,• at level j, j=n-1,…,0. The
coarsest approximation λn-i,• is obtained after i iterations (0 < i
≤ n). In other words, when λn,• (n is finest resolution level) is
given, we can recursively perform the above analysis
process (forward transform) to get ,• the wavelet
coefficients at the current level, and the coarsest
approximation part λn-i,• after performing the decomposition i

8

times [13]. Similarly, if we have λn-i,• and ,• (j=n−i, n−i+1, ...,
n−1), we can perform the synthesis process (inverse transform)
recursively to get the λn,• Different h, ĥ, g, ĝ denote different
wavelet basis function. In Euclidean space we have hj, k, l =hi-2k

(the same with g, ĝ), but in general manifold they are
dependent on scale and position. The abstract sets M(j) and
K(j) are index sets on the sphere such that

, and K(n) = K is the index set at the finest resolution.

The mesh including dashed edges in the figure 8 is assumed as
resolution j+1 level. Here K(j) denotes the point set of the
intersection points of the solid lines and M(j) denotes the set of
the intersection points of the dash lines. We will compute the λj

and approximation part and detailed part, by single
decomposition in the neighborhood of m [13].

The work done in [13] was based on linear and linear-lifting
transformation methods, where in linear transformation, the
scaling coefficients (approximation part) are sub-sampled and
kept unchanged. This basic inter-polatory form uses the stencil
k K = {v1,v2} for analysis and synthesis:

Figure 5: Global spherical parameterization [13]

(3.12)

respectively.

(3.7)

(3.8)

Note that this stencil does properly account for the geometry
provided that the m sites at level j+1 have equal geodetic
distance from the {v1,v2} sites on their parent edge. Linear
lifting update the scaling coefficients by using the wavelet
coefficients of linear wavelet transform to assure that the
wavelet has at least one vanishing moment sj,v1,m = sj,v2,m =
1/2. In this work the Butterfly transformation [31] is used to
decompose the geometric signal of the approximation and
detailed parts, and uses all immediate neighbors (all the sites
km = {v1,v2, f1,f2,e1,e2,e3,e4}. Where sv1=sv2= , sf1=sf2= and

se1=se2=se3=se4= -) in construction of the smooth mesh.

Analysis: (Butterfly Transformation)

(3.9)

(3.10)

Synthesis: (Butterfly Transformation)

(3.11)

Figure 6: Edge collapse with local parameterization [13]

Figure 7: Samples before and after applying section
3.1[29][30].

9

The butterfly transformation is considered to take more time
than a linear transformation, but because the work is on a
compressed domain this makes the butterfly and linear close in
time consumption. However, the butterfly is supposed to be
more robust as regards the watermarking algorithm; in this
work the level wavelet decomposition will be to 3 levels (see
figure 9).

watermark (logo image for example), and F(•) is a function to
compute the weight of the embedding intensity, which is
related with the band j. Here is used to control the global
intensity of the watermark and is only related with band j. In
our implementation, the function F is defined by [13]:

3.4 Extracting the Watermark

(3.14)

Figure 8: Neighbors used in spherical wavelet
transformation [13].

The following sections will explain how the proposed
algorithm should embed and extract the Watermark in the
compressed 3D mesh model.

3.3 Embedding Watermark [11]

3.3.1 Generation Watermark and its Capacity

A watermark can be a secret key or image. This algorithm is
adopted to embed a watermark as a secret key or image.
Embedding a watermark by these two ways should be
sequences of binary bits, which means that by the secret key
case (all characters and numbers) should be converted to a
sequence of binary bits; and in the case of image, the image
should be converted to a gray scale level in order to be as a
sequence of binary bits. However, in all experimental results
that have been displayed in this paper, just the image method
was used because it is more complex than the secret key, and
this assures coverage for the entire model.

Capacity of Watermark means the amount of information
embedded in a 3D object; this amount should be closely related
to the complexity of the object (number of vertices, number of
faces). It is assumed that the data capacity of a watermark
should be not more than the complexity of the 3D object,
depending on the number of vertices. Dependent on choosing
the watermark as an image, the logo image shouldn’t be more
125*125 pixels (which was observed from experiments) and
then converted to binary (gray scale), which produced 16384
bits ready to embed into the 3D object.

3.3.2 Watermark Embedding

The watermark embedding is done by the following equation:

(3.13)

where is the ith vertex of M′ after the watermark is
embedded and belongs to band j. On the other hand, is the
set of all vertices of M and belong to band j. w is the

In order to extract the watermark from a 3D model the
following steps have been applied:

Figure 9: The samples before and after applying the

spherical wavelet transformation. The colored vertices are
induction for wavelet coefficients [29][30].

10

3.4.1 Mesh Registration

The mesh registration used here is based on the ICP (Iterative
Closest Point) algorithm [4]. It was applied on the
watermarked mesh as follows:

Input: The point set P with Np points from the data shape and

the model shape M (section 3.2). The data set is
initialized. The registration vectors are defined
relative to the initial data set.

Output: The final registration vectors output represents the

complete transformation.

Process: The following four steps are applied until
convergence within a tolerance

1. Compute the closest points of the Squared Euclidian

distances ,
2. Compute the registration (rotation and translation),
3. Apply the registration,
4. Terminate the iteration when the change in Mean

Square Error (MSE) equation (2.6) falls below a
preset threshold .

3.4.2 Spherical Wavelet Forward Transformation

After producing the mesh registration, the spherical wavelet
forward transformation is applied on two meshes

1. The registration mesh
2. The compressed mesh (i.e. the original mesh

before applying the watermarking algorithm)

Compare the results of the meshes in order to extract the
watermark image as a sequence of binary digits (see sub-
section 3.3.1).

4. EXPERIMENTAL RESULTS AND
EVALUATIONS AGAINST ATTACKS

4.1 Performance evaluation

This section presents the evaluation of the proposed
watermarking algorithm. There are two performance metrics,
which will be discussed below.

4.1.1 Sampling and precision control

The visual impact of the watermarking on the protected 3D
object should be as limited as possible to measure the effect of
the embedded watermark on 3D objects.

In this paper, Hausdorff distance d is used to quantify the
maximum geometric error. Generally speaking, the Hausdorff
distance d is a measure defined between two point sets.

In section 3.1, the geometrical signal on the unit sphere has been
obtained. In order to perform spherical wavelet transform over
the geometrical signal, the signals should be sampled regularly
over the sphere. As illustrated in figure 10, we first perform
recursive 1-split-to-4 subdivision of the tetrahedral base shape as
used by [31], and then we sample the signals at the vertices of

the subdivision spherical mesh. In practice, we wish that the
generated regular mesh approximates the original mesh with a
given tolerance .

Let M be the original mesh and SM is the sampled mesh. We
perform inverse sampling on SM to get mesh M′. The inverse
sampling will be executed until the following equation is
satisfied [13]:

where is a user-specified error threshold, and are vertices
on M and M′ respectively.

4.1.2 Processing Time

For this watermarking algorithm, most of the time consumed
was spent on calculating coefficients by spherical wavelet
transformation; the embedded watermark and extracted
watermark don’t take a lot of time compared with wavelet
transformation. There is no mathematical way to calculate the
time processing here but by experimental results shown in table
2.1, it can be noticed that time processing increases according
to an increasing number of vertices. Table 4.1 shows the
results that have been achieved by applying the watermarking
algorithm in this paper on the six models [29][30].

4.2 Testing

For testing the watermarking algorithm implemented in this
paper, the following attacks were chosen to attack 3D models
samples [29][30]:

1. Translation (x+20,y-5,z-13).
2. Translation (x-2, y+13, z+5).
3. Rotation (y- coordination 30˚).
4. Rotation (x-coordination 30˚ and z-coordination 60˚).
5. Scale (x-scale 0.6,y-scale 2, z-scale 3).
6. Scale (x-scale 3, y-scale 0.5, z-scale 0.2).
7. Smoothing mesh as noise filtering with regular

subdivisions 1:4.
8. Lossy compression provided by [10], (look to figure 11).

To measure the robustness of the watermarking algorithm, the
following measurements were used:

1- The Bit Error Rate (BER) is used, see Equation (4.2). The
BER is a rate that measures the errors that appear after the 3D
model is attacked (the ratio of number of destroyed bits to the
total bit length in the extracted watermark).

(4.2)

where is the sequence of binary bits embedded into the
3D model before being distributed over the Internet and
attacked; is the sequence of binary bits that are
extracted from the 3D model after being attacked; ⊕is an

(Exclusive Or) operation that leads to a sequence of ones in the
positions that had errors; Counterrors is a counter that holds how
many errors appear after attacks; and Total Number of Bits is
the number of bits in or the original watermark that is
embedded into the 3D model before being attacked.

11

2- The Survival Rate (SR) is the rate of survival of a watermark
under attack formations.

SR = 1-BER (4.3)

Table 4.2 shows the measurements of robustness that are
achieved by applying the watermarking algorithm in this paper
on the models of [29][30] using BER. Table 4.3 shows the
measurements of robustness achieved by applying the
watermarking algorithm in [13] also using BER. From the
results that appear in Tables 4.2 and 4.3 it had been confirmed
that applying a watermarking algorithm on a compressed
domain is more robust than applying a watermarking algorithm
on a normal domain. Figure 12 and Figure 13 show a
comparison between the performed work in this paper and the
work in [13] from the robustness of two watermarking
algorithms against the attacks on the models of [29][30]. This
clearly shows that the performance from the BER of proposed
watermarking algorithm is better in most types of attacks than
the algorithm in paper [13].

Figure 10: Spherical meshes subdivision. The subdivided

meshes are used for sampling [31]

Figure 11: The Happy Model Before and After
Compression attack [29].

Table 4.1: Performance measurement of the watermarking
algorithm in this work (*CPU Time returns the total CPU
time (in seconds) used by MATLAB® application from the
time it was started. This number can overflow the internal

representation and wrap around.)

3D Models
Samples /
Performance
Metrics

Angel
Model

Happy
Model

Horse
Model

Cow
Model

Dragon
Model

Bunny
Model

Geometric

Error

0.0550

0.0991

0.1912

0.2990

0.02100

0.0791

*Time

Processing

468.56

703.26

370.83

94.59

226.35

532.92

Figure 12: Experimental result for the work proposed in
[13]

Figure 13: Experimental result for the work in this paper

12

Table 4.2: Robustness measurement results of BER for a watermarking algorithm in this paper.

3D Models Samples

/ Robustness

Metrics against Attacks

Angel
Model

Happy
Model

Horse
Model

Cow
Model

Dragon

Model

Bunny

Model

Lossy Compression 0.0291 0.0535 0.0945 0.1764 0.0665 0.1160

Translation (x+20,y-5, z-13) 0.0018 4.2725e-004 0.0015 2.4414e-004 9.4604e-004 5.4932e-004

Translation (x-2, y+13, z+5) 0.0011 4.2705e-004 0.0035 2.4454e-004 9.4613e-004 5.4902e-004

Rotation (y-coordination 30˚) 0.0020 9.7656e-004 0.0013 3.0518e-004 6.7139e-004 0.0068

Rotation (x- coordination 30˚ And z- coordination 60˚) 0.0026 9.7436e-004 0.0025 3.0508e-004 6.7139e-004 0.0040

Scale (x-scale 0.6 ,y-scale 2, z-scale 3) 8.2393e-004 4.5746e-004 1.5279e-004 7.0180e-004 5.1890e-004 0.0042

Scale (x-scale 3, y-scale 0.5 , z-scale 0.2) 8.2397e-004 4.5776e-004 1.5259e-004 7.0190e-004 5.1880e-004 0.0012

Smoothing mesh with regular subdivisions 1:4 0.0183 0.0237 0.0243 0.0304 0.0245 0.0400

Table 4.3: Robustness measurement results of BER for the algorithm in paper [13].

3D Models Samples

/ Robustness

Metrics against Attacks

Angel
Model

Happy
Model

Horse
Model

Cow
Model

Dragon

Model

Bunny

Model

Lossy Compression 0.4888 0.3052 0.4272 0.3709 0.2374 0.5432

Translation (x+20,y-5, z-13) 0.0012 0.0014 9.7656e-004 6.1035e-004 0.0024 0.0015

Translation (x-2, y+13, z+5) 0.0011 0.0017 9.7666e-004 6.1075e-004 0.0022 0.0019

Rotation (y-coordination 30˚) 0.0025 5.4932e-004 0.0031 0.0018 0.0043 8.5449e-004

Rotation (x- coordination 30˚ And z- coordination 60˚) 0.0037 5.4911e-004 0.0039 0.0012 0.0053 8.5489e-004

Scale (x-scale 0.6 ,y-scale 2, z-scale 3) 0.0018 0.0061 0.0055 0.0049 0.0221 0.0171

Scale (x-scale 3, y-scale 0.5 , z-scale 0.2) 0.0023 0.0049 0.0061 0.0051 0.0220 0.0165

Smoothing mesh with regular subdivisions 1:4 0.1366 0.1831 0.3520 0.2191 0.3484 0.4211

5. CONCLUSIONS

A compression algorithm using an MLFF neural network that
produces a compressed 3D model (with a compression ratio
that reaches 5.5) reduces the size of the 3D model with
minimum loss of details and vertex signal to noise ratio. This
is noticed experimentally by applying the proposed algorithm
on different 3D models samples [29][30]. The MLFF neural
network as an AI tool played an important role in the

performance of the compression algorithm making the
algorithm’s performance better than the 3D compression
geometry proposed in [31].

The methodology of applying a watermark on a 3D model
after compression, on a compressed domain, is proved to
reduce the processing time of the watermarking algorithm, in
addition to allowing the embedding of the watermark into the
model without much increase on model size, compared to the

13

original model before compression. Implementing the
watermarking algorithm is based on a spherical wavelet as a
butterfly transformation method for vertex bases wavelet
coefficients. The experimental results and evaluation against
attacks shows that watermarking algorithm proposed in this
paper met the technical requirements of robustness that
mentioned earlier in this paper.

6. REFERENCES

[1] Alexa, M., "Recent a d v a n c e s in mesh m o r p h i n g " ,
Computer Graphics Forum, 21(2):173-196 (2002).

[2] Baoming Q., Pulin Z., and Qiao K., "A Digital Watermarking
Algorithm Based on Wavelet Packet Transform and BP
Neural Network", Seventh International Conference on
Computational Intelligence and Security (2011). DOI
10.1109/CIS.2011.117

[3] Benedens O., "Geometry-Based Watermarking of 3D
Models", IEEE Computer Graphics and Applications 19(1),
46–55 (1999).

[4] Besl P. and McKay N., "A Method for Registration of 3-D
Shapes", IEEE Trans. on Pat. Anal. and Mach. Int., Vol. 14,
N. 2, pp. 239-256 (1992).

[5] Bors A., "Watermarking mesh-based representations of 3-D
objects using local moments" , IEEE Transactions on Image
Processing 15(3), 687–701 (2006).

[6] Chen S-T, Huang H-N, Hsu C-Y, Tseng K-K, Wu C., and Pan
J-S, "Wavelet-Based Entropy for Digital Audio
Watermarking", Seventh International Conference on
Intelligent Information Hiding and Multimedia Signal
Processing (2011).DOI 10.1109/IIHMSP.2011.39

[7] Cox I, Miller M., Bloom J., "Digital Watermarking: Principle
& Practice", (The Morgan Series in Multimedia and
Information Systems), ISBN-1558607145 (2001).

[8] Deering M. "Geometry compression", ACM SIGGRAPH, pp.
13–20 (1995).

[9] Fornaro C. and Sanna A., "Public Key Watermarking for
authentction of CSG models", Computer Aided Design,
32(12), 727-735 (2000).

[10] Guillaume L., Denis F., Dupont F., "Subdivision surface
watermarking. Computers & Graphics", 31(3): 480-492
(2007).

[11] Isenburg M. and Snoeyink J., "Face fixer compressing
polygon meshes with properties", ACM Siggraph Conference
Proc, pp. 263-270 (2001).

[12] Jianhong S, Junsheng L., and Zhiyong L., "An Improved
Algorithm of Digital Watermarking Based on Wavelet
Transform", World Congress on Computer Science and
Information Engineering (2009). DOI 10.1109/CSIE.2009.150

[13] JQ J., MY D., HJ B. and QS P., "Watermarking on 3D mesh
based on spherical wavelet transform", Journal of Zhejiang
University SCIENCE pp. 251–258 (2004).

[14] Kent, J.R., Carlson, W.E., and Parent, R.E., "Shape
Transformation for Polyhedral Objects", SIGGRAPH,
Computer Graphics Proceedings, Annual Conference
Series, ACM, p.47-54 (1992).

[15] Kundur D. and Hatzinakos D., "Robust digital image
watermarking method using wavelet-based fusion", Proc. of
IEEE Int. Conf. on Image Processing, Vol.1, pp.544-547
(1997).

[16] Laga H; Nakajima M; and Chihara, K. H., "Discriminative
spherical wavelet features for content-based 3D model
retrieval", International Journal of shape modeling (2007).

[17] Li Y., Gou W. and Li B., "A new digital watermark algorithm
based on the DWT and SVD", 10th International Symposium
on Distributed Computing and Applications to Business,

Engineering and Science (2011). DOI
10.1109/DCABES.2011.7

[18] Li L, Pan ZG, Sun SS and Wu XL "A private and lossless
digital image watermarking system. In: Proceedings of second
international conference on image and graphics, Hefei, China,
SPIE, p. 365–70 (2002).

[19] Li, L., Zhang, D., Pan, Z., Shi, J., Zhou, K. and Ye, K.,
"Watermarking 3D Mesh by Spherical Parameterization.
Computers and Graphics", 28(6), 981–989 (2004).

[20] Maheshwari P., Agarwal P., and Prabhakaran B., "Progressive
compression invariant semi-fragile Watermarks for 3D
meshes", in Proceedings of ACM Multimedia and Security
Workshop (2007) (MM&Sec 2007), Dallas, TX , USA , pp.
245-25, (2007).

[21] Ohbuchi R., Masuda H. and Aono M., "Watermarking
multiple object types in three-dimensional models",
Multimedia and Security Workshop at ACM Multimedia,
Bristol, UK (1998).

[22] Ohbuchi R., Mukaiyama A. and Takahashi J., "Watermarking
a 3D shape model defined as a point set", International
Conference on Cyberworlds (2004).

[23] Ohbuchi R. , Nakazawa M. and Takei T., "Retrieving 3D
shapes based on their appearance", ACM SIGMM Workshop
on Multimedia Information Retrieval, Berkeley, California,
pp. 39–46 (2003).

[24] Okagaki K., and Takahashi K., "Robustness Evaluation of
Digital Watermarking Based on Discrete Wavelet Transform",
Sixth International Conference on Intelligent Information
Hiding and Multimedia Signal Processing (2010). DOI
10.1109/IIHMSP.2010.36

[25] Piperakis E., "Transformations on 3D Objects Represented
with Neural Networks", IEEE, Proceedings of the Third
International Conference on 3-D Imaging and Modeling,
(2001).

[26] Piperakis E., and Kumazawa I, "3D Polygon Mesh
Compression with Multi Layer Feed Forward Neural
Networks", Systemics, Cybernetics, and Informatics , Volume
1, Number 3, (2002).

[27] Praun E., Hoppe H. and Finkelstein A., "Robust mesh
watermarking", ACM SIGGRAPH, Los Angeles, California,
pp. 49–56 (1999).

[28] Quicken, M., Brechbühler, C., Hug, J., Blattmann, H., and
Székely, G., "Parameterization of Closed Surfaces for
Parametric Surface Description", CVPR, p.354-360
(2000).

[29] Rumman N. A., "Robust Digital Watermarking for
Compressed three Dimensional Models Based on Polygonal
Representation", Master of Science Degree Thesis in
Computer Science, Faculty of Graduate Studies Al-Balqa'
Applied University, Jordan, August, (2009).

[30] Rumman N. A., El-Seoud S. A., Khatatneh K. F., and Gutl C,
"Geometry Compression for 3D Polygonal
Models using a Neural Network", International Journal of
Computer Applications (0975-8887)-Volume 1-No. 20,
(2010).

[31] Schröder P. and Sweldens W., "Spherical wavelets:
Efficiently representing functions on the sphere", ACM
SIGGRAPH 95, 161-172 (1995).

[32] Shusen S., Li Li P. Z and Jiaoying S., "Robust 3D model
watermarking against geometric transformation",
CAD/CG’2003, October 29–31, Macao. China ,p. 87–92
(2003).

[33] Yeo B., Yeung M., "Watermarking 3-D Objects for
Variations", IEEE Computer Graphics and Application, Vol.
19,36–45 (1999).

[34] Zhou, K., Bao, H., and Shi, J., "uniform digital geometry
processing", journal of computer, 25(9):904-9 (2002).

