6 research outputs found

    Image Decomposition and Separation Using Sparse Representations: An Overview

    Get PDF
    This paper gives essential insights into the use of sparsity and morphological diversity in image decomposition and source separation by reviewing our recent work in this field. The idea to morphologically decompose a signal into its building blocks is an important problem in signal processing and has far-reaching applications in science and technology. Starck , proposed a novel decomposition method—morphological component analysis (MCA)—based on sparse representation of signals. MCA assumes that each (monochannel) signal is the linear mixture of several layers, the so-called morphological components, that are morphologically distinct, e.g., sines and bumps. The success of this method relies on two tenets: sparsity and morphological diversity. That is, each morphological component is sparsely represented in a specific transform domain, and the latter is highly inefficient in representing the other content in the mixture. Once such transforms are identified, MCA is an iterative thresholding algorithm that is capable of decoupling the signal content. Sparsity and morphological diversity have also been used as a novel and effective source of diversity for blind source separation (BSS), hence extending the MCA to multichannel data. Building on these ingredients, we will provide an overview the generalized MCA introduced by the authors in and as a fast and efficient BSS method. We will illustrate the application of these algorithms on several real examples. We conclude our tour by briefly describing our software toolboxes made available for download on the Internet for sparse signal and image decomposition and separation

    Morphological Diversity and Sparsity for Multichannel Data Restoration

    Get PDF
    International audienceOver the last decade, overcomplete dictionaries and the very sparse signal representations they make possible, have raised an intense interest from signal processing theory. In a wide range of signal processing problems, sparsity has been a crucial property leading to high performance. As multichannel data are of growing interest, it seems essential to devise sparsity-based tools accounting for such specific multichannel data. Sparsity has proved its efficiency in a wide range of inverse problems. Hereafter, we address some multichannel inverse problems issues such as multichannel morphological component separation and inpainting from the perspective of sparse representation. In this paper, we introduce a new sparsity-based multichannel analysis tool coined multichannel Morphological Component Analysis (mMCA). This new framework focuses on multichannel morphological diversity to better represent multichannel data. This paper presents conditions under which the mMCA converges and recovers the sparse multichannel representation. Several experiments are presented to demonstrate the applicability of our approach on a set of multichannel inverse problems such as morphological component decomposition and inpainting

    Blind Source Separation: the Sparsity Revolution

    Get PDF
    International audienceOver the last few years, the development of multi-channel sensors motivated interest in methods for the coherent processing of multivariate data. Some specific issues have already been addressed as testified by the wide literature on the so-called blind source separation (BSS) problem. In this context, as clearly emphasized by previous work, it is fundamental that the sources to be retrieved present some quantitatively measurable diversity. Recently, sparsity and morphological diversity have emerged as a novel and effective source of diversity for BSS. We give here some essential insights into the use of sparsity in source separation and we outline the essential role of morphological diversity as being a source of diversity or contrast between the sources. This paper overviews a sparsity-based BSS method coined Generalized Morphological Component Analysis (GMCA) that takes advantages of both morphological diversity and sparsity, using recent sparse overcomplete or redundant signal representations. GMCA is a fast and efficient blind source separation method. In remote sensing applications, the specificity of hyperspectral data should be accounted for. We extend the proposed GMCA framework to deal with hyperspectral data. In a general framework, GMCA provides a basis for multivariate data analysis in the scope of a wide range of classical multivariate data restorate. Numerical results are given in color image denoising and inpainting. Finally, GMCA is applied to the simulated ESA/Planck data. It is shown to give effective astrophysical component separation

    Image decomposition and separation using sparse representations: an overview

    Get PDF
    International audienceThis paper gives essential insights into the use of sparsity and morphological diversity in image decomposition and source separation by overviewing our recent work in this field. The idea to morphologically decompose a signal into its building blocks is an important problem in signal processing and has far-reaching applications in science and technology. Starck et al. [1], [2] proposed a novel decomposition method - Morphological Component Analysis (MCA) - based on sparse representation of signals. MCA assumes that each (monochannel) signal is the linear mixture of several layers, the so-called Morphological Components, that are morphologically distinct, e.g. sines and bumps. The success of this method relies on two tenets: sparsity and morphological diversity. That is, each morphological component is sparsely represented in a specific transform domain, and the latter is highly inefficient in representing the other content in the mixture. Once such transforms are identified, MCA is an iterative thresholding algorithm that is capable of decoupling the signal content. Sparsity and morphological diversity have also been used as a novel and effective source of diversity for blind source separation (BSS), hence extending the MCA to multichannel data. Building on these ingredients, we will overview the Generalized MCA (GMCA) introduced by the authors in [3], [4] as a fast and efficient BSS method. We will illustrate the application of these algorithms on several real examples. We conclude our tour by briefly describing our software toolboxes made available for download on the Internet for sparse signal and image decomposition and separation

    Piecewise Linear Source Separation

    Get PDF
    International audienceWe propose a new framework, called piecewise linear separation, for blind source separation of possibly degenerate mixtures, including the extreme case of a single mixture of several sources. Its basic principle is to : 1/ decompose the observations into ``components'' using some sparse decomposition/nonlinear approximation technique; 2/ perform separation on each component using a ``local'' separation matrix. It covers many recently proposed techniques for degenerate BSS, as well as several new algorithms that we propose. We discuss two particular methods of multichannel decompositions based on the Best Basis and Matching Pursuit algorithms, as well as several methods to compute the local separation matrices (assuming the mixing matrix is known). Numerical experiments are used to compare the performance of various combinations of the decomposition and local separation methods. On the dataset used for the experiments, it seems that BB with either cosine packets of wavelet packets (Beylkin, Vaidyanathan, Battle3 or Battle 5 filter) are the best choices in terms of overall performance because they introduce a relatively low level of artefacts in the estimation of the sources; MP introduces slightly more artefacts, but can improve the rejection of the unwanted sources

    Methods for learning adaptive dictionary in underdetermined speech separation

    Full text link
    Underdetermined speech separation is a challenging problem that has been studied extensively in recent years. A promising method to this problem is based on the so-called sparse signal representation. Using this technique, we have recently developed a multi-stage algorithm, where the source signals are recovered using a pre-defined dictionary obtained by e.g. the discrete cosine transform (DCT). In this paper, instead of using the pre-defined dictionary, we present three methods for learning adaptive dictionaries for the reconstruction of source signals, and compare their performance with several state-of-the-art speech separation methods. © 2011 IEEE
    corecore