51 research outputs found

    Blind fractionally spaced channel equalization for shallow water PPM digital communications links

    Get PDF
    Underwater acoustic digital communications suffer from inter-symbol interference deriving from signal distortions caused by the channel propagation. Facing such kind of impairment becomes particularly challenging when dealing with shallow water scenarios characterized by short channel coherence time and large delay spread caused by time-varying multipath effects. Channel equalization operated on the received signal represents a crucial issue in order to mitigate the effect of inter-symbol interference and improve the link reliability. In this direction, this contribution presents a preliminary performance analysis of acoustic digital links adopting pulse position modulation in severe multipath scenarios. First, we show how the spectral redundancy offered by pulse position modulated signals can be fruitfully exploited when using fractional sampling at the receiver side, which is an interesting approach rarely addressed by the current literature. In this context, a novel blind equalization scheme is devised. Specifically, the equalizer is blindly designed according to a suitably modified Bussgang scheme in which the zero-memory nonlinearity is replaced by a M-memory nonlinearity, M being the pulse position modulation order. Numerical results not only confirm the feasibility of the technique described here, but also assess the quality of its performance. An extension to a very interesting complex case is also provided

    Adaptive Blind Channel Equalization

    Get PDF

    Wireless Channel Equalization in Digital Communication Systems

    Get PDF
    Our modern society has transformed to an information-demanding system, seeking voice, video, and data in quantities that could not be imagined even a decade ago. The mobility of communicators has added more challenges. One of the new challenges is to conceive highly reliable and fast communication system unaffected by the problems caused in the multipath fading wireless channels. Our quest is to remove one of the obstacles in the way of achieving ultimately fast and reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the intensity of which makes the channel noise inconsequential. The theoretical background for wireless channels modeling and adaptive signal processing are covered in first two chapters of dissertation. The approach of this thesis is not based on one methodology but several algorithms and configurations that are proposed and examined to fight the ISI problem. There are two main categories of channel equalization techniques, supervised (training) and blind unsupervised (blind) modes. We have studied the application of a new and specially modified neural network requiring very short training period for the proper channel equalization in supervised mode. The promising performance in the graphs for this network is presented in chapter 4. For blind modes two distinctive methodologies are presented and studied. Chapter 3 covers the concept of multiple cooperative algorithms for the cases of two and three cooperative algorithms. The select absolutely larger equalized signal and majority vote methods have been used in 2-and 3-algoirithm systems respectively. Many of the demonstrated results are encouraging for further research. Chapter 5 involves the application of general concept of simulated annealing in blind mode equalization. A limited strategy of constant annealing noise is experimented for testing the simple algorithms used in multiple systems. Convergence to local stationary points of the cost function in parameter space is clearly demonstrated and that justifies the use of additional noise. The capability of the adding the random noise to release the algorithm from the local traps is established in several cases

    Blind equalization

    Get PDF
    An equalizer is an adaptive filter that compensates for the non-ideal characteristics of a communication channel by processing the received signal. The adaptive algorithm searches for the inverse impulse response of the channel, and it requires knowledge of a training sequence, in order to generate an error signal necessary for the adaptive process. There are practical situations where it would be highly desirable to achieve complete adaptation without the use of a training sequence, hence the the term blind . Examples of these situations are multipoint data networks, high-capacity line-of-sight digital radio, and reflection seismology. A blind adaptive algorithm has been developed, based on simplified equalization criteria. These criteria are that the second- and fourth-order moments of the input and output sequences are equalized. The algorithm is entirely driven by statistics, only requiring knowledge of the variance of the input signal. Because of the insensitivity of higher-order statistics to Gaussian processes, the algorithm performs well when additive white Gaussian noise is present in the channel. Simulations are presented in which the new blind equalizer developed is compared to other equalization algorithms

    Algorithms for Blind Equalization Based on Relative Gradient and Toeplitz Constraints

    Get PDF
    Blind Equalization (BE) refers to the problem of recovering the source symbol sequence from a signal received through a channel in the presence of additive noise and channel distortion, when the channel response is unknown and a training sequence is not accessible. To achieve BE, statistical or constellation properties of the source symbols are exploited. In BE algorithms, two main concerns are convergence speed and computational complexity. In this dissertation, we explore the application of relative gradient for equalizer adaptation with a structure constraint on the equalizer matrix, for fast convergence without excessive computational complexity. We model blind equalization with symbol-rate sampling as a blind source separation (BSS) problem and study two single-carrier transmission schemes, specifically block transmission with guard intervals and continuous transmission. Under either scheme, blind equalization can be achieved using independent component analysis (ICA) algorithms with a Toeplitz or circulant constraint on the structure of the separating matrix. We also develop relative gradient versions of the widely used Bussgang-type algorithms. Processing the equalizer outputs in sliding blocks, we are able to use the relative gradient for adaptation of the Toeplitz constrained equalizer matrix. The use of relative gradient makes the Bussgang condition appear explicitly in the matrix adaptation and speeds up convergence. For the ICA-based and Bussgang-type algorithms with relative gradient and matrix structure constraints, we simplify the matrix adaptations to obtain equivalent equalizer vector adaptations for reduced computational cost. Efficient implementations with fast Fourier transform, and approximation schemes for the cross-correlation terms used in the adaptation, are shown to further reduce computational cost. We also consider the use of a relative gradient algorithm for channel shortening in orthogonal frequency division multiplexing (OFDM) systems. The redundancy of the cyclic prefix symbols is used to shorten a channel with a long impulse response. We show interesting preliminary results for a shortening algorithm based on relative gradient

    Design and Development of Intelligent Sensors

    Get PDF
    In this project, we make an extensive study of Intelligent Sensors and devise methods for analyzing them through various proposed algorithms broadly classified into Direct and Inverse Modeling. Also we look at the analysis of Blind Equalization in any sensor. A regular sensor is a device which simply measures a signal and converts it into another signal which can be read by an observer and an instrument. A sensor's sensitivity indicates how much the sensor's output changes when the measured quantity changes. Ideal sensors are designed to be linear. The output signal of such a sensor is linearly proportional to the value of the measured property. The sensitivity is then defined as the ratio between output signal and measured property. For example, if a sensor measures temperature and gives a voltage output, the sensitivity is a constant with the unit [V/K]; this sensor is linear because the ratio is constant at all points of measurement. If the sensor is not ideal, several types of deviations can occur which render the sensor results inaccurate. On the other hand, an intelligent sensor takes some predefined action when it senses the appropriate input (light, heat, sound, motion, touch, etc.).A sensor is intelligent when it is capable of correcting errors occurred during measurement both at the input and output ends. It generally processes the signal by means of suitable methods implemented in the device before communicating it. As we discussed an ideal sensor should have linear relationship with the measures quantity. But since in practice there are several factors which introduce non-linearity in a system, we need intelligent sensors. This particular project concentrates on the compensation of difficulties faced due to the non-linear response characteristics of a capacitive pressure sensor (CPS).It studies the design of an intelligent CPS using direct and inverse modeling switched-capacitor circuit(SCC) converts the change in capacitance of the pressure-sensor into an equivalent voltage output . The effect of change in environmental conditions on the CPS and subsequently on the output of the SCC is such that it makes the output non-linear in nature. Especially change in ambient temperature causes response characteristics of the CPS to become highly nonlinear, and complex signal processing may be required to obtain correct results. The performance of the control system depends on the performance of the sensing element. It is observed that many sensors exhibit nonlinear input-output characteristics. Due to such nonlinearities direct digital readout is not possible. As a result we are forced to employ the sensors only in the linear region of their characteristics. In other words their usable range gets restricted due to the presence of nonlinearity. If a sensor is used for full range of its nonlinear characteristics, accuracy of measurement is severely affected. Similar effect is also observed in case of LVDT. The nonlinearity present is usually time-varying and unpredictable as it depends on many uncertain factors. Nonlinearity also creeps in due to change in environmental conditions such as temperature and humidity. In addition ageing of the sensors also introduces nonlinearity. The proposed scheme incorporates intelligence into the sensor. We use many algorithms and ANN models to make the sensor ‘intelligent’. Also there is an analysis of the Blind Deconvolution Techniques that maybe used for Channel Estimation. As it is a relatively new field of work, the challenges are huge but opportunities are many as well. We try to make sensors more intelligent as they would allow a varied application of them in industry, academic and domestic environments

    Blind channel deconvolution of real world signals using source separation techniques

    Get PDF
    In this paper we present a method for blind deconvolution of linear channels based on source separation techniques, for real word signals. This technique applied to blind deconvolution problems is based in exploiting not the spatial independence between signals but the temporal independence between samples of the signal. Our objective is to minimize the mutual information between samples of the output in order to retrieve the original signal. In order to make use of use this idea the input signal must be a non-Gaussian i.i.d. signal. Because most real world signals do not have this i.i.d. nature, we will need to preprocess the original signal before the transmission into the channel. Likewise we should assure that the transmitted signal has non-Gaussian statistics in order to achieve the correct function of the algorithm. The strategy used for this preprocessing will be presented in this paper. If the receiver has the inverse of the preprocess, the original signal can be reconstructed without the convolutive distortion

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems
    corecore