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Abstract. In this paper we present a method for blind deconvolution of linear 

channels based on source separation techniques, for real word signals. This 

technique applied to blind deconvolution problems is based in exploiting not 

the spatial independence between signals but the temporal independence be-

tween samples of the signal. Our objective is to minimize the mutual informa-

tion between samples of the output in order to retrieve the original signal. In 

order to make use of use this idea the input signal must be a non-Gaussian i.i.d. 

signal. Because most real world signals do not have this i.i.d. nature, we will 

need to preprocess the original signal before the transmission into the channel. 

Likewise we should assure that the transmitted signal has non-Gaussian statis-

tics in order to achieve the correct function of the algorithm. The strategy used 

for this preprocessing will be presented in this paper. If the receiver has the in-

verse of the preprocess, the original signal can be reconstructed without the 

convolutive distortion. 

1   Introduction 

Many researches have been done in the identification and/or the inversion of linear 

and nonlinear systems. These works assume that both the input and the output of the 

system are available [14]; they are based on higher-order input/output cross-

correlation [3], bispectrum estimation [12, 13] or on the application of the Bussgang 

and Prices theorems [4, 9] for nonlinear systems with Gaussian inputs. However, in 

real world situations, one often does not have access to the distortion input. In this 

case, blind identification of the system becomes the only way to solve the problem. In 

this paper we propose to adapt the method presented in [17, 18] for blind deconvolu-

tion by means of source separation techniques, to the case of real world signals which 

are non i.i.d. This is done by means of a stage of preprocessing before sending the 

signal and post-processing stage after the reception and deconvolution. The paper is 

organized as follows. The source separation problem is described in Section 2. The 

model and assumptions for applying these techniques to blind deconvolution are 

presented in Section 3. Section 4 contains the proposed preprocessing and post-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RIUVic

https://core.ac.uk/display/50524472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


processing stages, and the simulation results are presented in Section 5, before con-

cluding in Section 6. 

2   Source Separation review 

The problem of source separation may be formulated as the recovering of a set of 

unknown independent signals from the observations of mixtures of them without any 

prior information about either the sources or the mixture [10, 6]. The strategy used in 

this kind of problems is based in obtaining signals as independent as possible at the 

output of the system. In the bibliography multiple algorithms have been proposed for 

solving the problem of source separation in instantaneous linear mixtures. These 

algorithms range from neural networks based methods [1], cumulants or moments 

methods [7, 5], geometric methods [15] or information theoretic methods [2]. In real 

world situations, however, the majority of mixtures can not be modeled as instanta-

neous and/or linear. This is the case of the convolutive mixtures, where the effect of 

channel from source to sensor is modeled by a filter [11]. Also the case of the post-

nonlinear (PNL) mixtures, where the sensor is modeled as a system that performs a 

linear mixture of sources plus a nonlinear function applied to its output, in order to 

take into account the possible non-linearity of the sensor (saturation, etc.)  [16]. 

 Mathematically, we can write the observed signals in source separation problem 

of instantaneous and linear mixtures as (see figure 1): 
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where A={
ija } is the mixing matrix. It is well known that such a system is blindly 

invertible if the source signals are statistically independent and we have no more than 

one Gaussian signal. 
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Fig. 1. Block diagram of the mixture system and blind demixing system. Both matrix A and 

signals si(t) on the mixture process are unknown. 

 A solution may be found by minimizing the mutual information function between 

the outputs of the system yi: 
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 A related problem with blind separation is the case of blind deconvolution, which 

is presented in figure 2, and can be expressed in the framework of Equation (1). De-

velopment of this framework is presented in the following section. 
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Fig. 2. Block diagram of the convolution system and blind deconvolution system. Both filter h 

and signal s(t) on the convolution process are unknown. 

3   Model and assumptions 

We suppose that the input of the system S={s(t)}is an unknown non-Gaussian inde-
pendent and identically distributed (i.i.d.) process. We are concerned by the estima-

tion of s(t) from the system’s output e. This implies the blind inversion of a filter. 

From figure 2, we can write the output of filter h in a similar form that obtained in 

source separation problem, Equation 1, but now with vectors and matrix of infinite 

dimension: 

Hse =   

where: 
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is a Toeplitz matrix of infinite dimension and represents the action of filter h to the 

signal s(t). This matrix h is nonsingular provided that the filter h is invertible, i.e. h-1 

exists and satisfies h-1∗h = h∗h-1 = δ0, where δ0 is de Dirac impulse. The solution to 
invert this systems and the more general nonlinear systems (Wiener systems) are 

presented and studied in [17, 18] where a Quasi-nonparametric method is presented. 



In the particular case of windowed signals, h is of finite length, and the product h-1∗h 
yields a Dirac impulse with a delay. 

3.1 Summary of the deconvolution algorithm 

From figure 2 we can write the mutual information of the output of the filter w using 

the notion of entropy rates of stochastic processes [12] as:  
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where τ is arbitrary due to the stationary assumption. The input signal S={s(t)} is an 
unknown non-Gaussian i.i.d. process, Y={y(t)} is the output process and y denotes a 
vector of infinite dimension whose t-th entry is y(t). We shall notice that I(Y) is al-

ways positive and vanishes when Y is i.i.d. 

After some algebra, Equation (2) can be rewritten as [10]: 
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(3) 

To derive the optimization algorithm we need the derivative of I(Y) with respect 

to the coefficients of w filter. For the first term of Equation (3) we have: 
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where ψy(u)=(logPy)’(u) is the score function. The second term is: 
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where one recognizes the {−t}-th coefficient of the inverse of the filter w, which we 
denote ( )w t− .  Combining Equations (5) and (6) leads to:  
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that is the gradient of I(Y) with respect to w(t). Using the concept of natural or rela-

tive gradient, the gradient descendent algorithm will be finally as: 

( ) ( )( )[ ]{ } w*ytxEww y δτψτµ +−+←   

It is important to notice that blind deconvolution is a different problem than source 

separation. In our blind deconvolution scenario the objective is to recover an un-



known signal filtered by an unknown filter, using only the received (observed) signal. 

The main idea, proposed in [17, 18] is to use independence criteria, as in source sepa-

ration problems, for deal with this problem. The relationship between source separa-

tion and deconvolution is shown in figure 3. 

 

Fig. 3. Relationship between deconvolution and source separation. In source separation we 

force spatial independence between samples of different signals (at the same time instant). On 

the other hand, in deconvolution we impose this independence between samples of the unique 

signal at different times (time independence). 

   4   Application to real world signals 

When signals are sent from the transmitter to the receiver, they suffer changes in their 

waveform form due to the effect of the transmission channel. In real systems, usually 

the transmission channel is unknown, and therefore the effect over the signals is un-

certain. In this case, the use of an equalizer is necessary in order to ensure that the 

received signal is exactly the sent signal. Our proposed method uses directly the sig-

nal of interest to blindly estimate the inverse of the transmission channel, without the 

need of any other technique for equalizing the channel. In order to apply this method 

to real world signals we have to deal, as shown in previous Section with the fact that 

the signals are usually not i.i.d., so we can not use this method directly. In order to 

use it, we need to preprocess the input signal to ensure its temporal independence 



between samples and also to ensure its non-Gaussian distribution. In this section we 

present these preprocessing and post-processing stages in experiments done with 

speech signals. 

4.1 Whitening of the signal 

Speech signals have a clear correlation structure, and therefore are not i.i.d. In order 

to use source separation techniques for blind deconvolution a preprocessing stage  is 

necessary and it consists on a whitening of the original signal by means of an inverse 

LPC filter.  

The use of a LPC preprocessing is useful in the case of signals that can be modeled 

as autoregressive processes. This is the case of speech signal or string and wind in-

struments, which were our test signals. In figure 4 we can see the autocorrelation 

sequence of a speech segment corresponding to the vowel /a/, before and after the 

whitening filter. Note that the prediction residual has peaks at multiples of the pitch 

frequency, and the residual in between these peaks is reduced. 

 

Fig. 4. Left: wave form of Vowel /a/ and the prediction residual. Right: Comparison of the 

normalized autocorrelations of the vowel signal and the residual of the LPC. 

The resulting residual after the whitening filter is an i.i.d. signal with a Gaussian 

distribution. Consequently it will be necessary to change de probability density func-

tion of the i.i.d. signal in order to acquire the necessary conditions to apply the de-

convolution process on the receiver. 

4.2 Des-Gaussianity of the signal  

In figure 5 we show the quantiles of the signal and the residual vs. the quantiles of a 

Gaussian distribution. One can see that the whitened signal has a nearly linear rela-

tion and is symmetric. For the purposes of the algorithm that we propose the signal 

can be considered Gaussian. 

In order to change its probability density function, we propose a method based 

on the following observations:  



1. Speech signals are periodic signals, with a fundamental period (pitch fre-

quency). 

2. A whitening filter removes all the components and keeps only the non-

predictable part that corresponds precisely to the excitation of the speech 

signal (the pitch), and to the excitation of the instrument, with its fundamen-

tal period. 

Starting from these observations we propose the following method: 

1. Normalize the whitened signal provided by a LPC filter in a way that the 

maximums associated whit the periodic excitation been around ±1. 

2. Pass the result signal trough a nonlinear function that maintains the peak val-

ues but modify substantially all the other values, therefore the pdf.  We pro-

pose  two functions for this task: 

2.1. exponential function x(·)n: attenuate all the values between two consecutive 
peaks.  

2.2. tanh(·): amplify all the values between two consecutive peaks. 

 

 

 

Fig. 5. Plot of the quantiles of the whitened signal versus probability of a Gaussian. One can 

observe the Gaussianity of the distribution. 

 

The effect of this process will be that the output signal will maintain important 

parts of the signal (the peaks of the series) and will change the form of the distribu-

tion. In the next figure we can see the proposed method: 

 



 

Fig. 6. The proposed preprocessing stage, composed by a whitening filter M and a nonlinear 

function k(·) preserving  the most important part of the input signal. This stage is applied before 

sending the (unknown) signal through the transmitter channel. 

5   Experimental results 

The input signal is a fragment of speech signal, preprocessed as shown in the diagram 

of figure 5. This is the signal that we want to transmit through an unknown channel. 

Our objective is to recover the original signal s’(t) only from the received observation 

e(t). 

Consider, now, the filter h as a FIR filter with coefficients: h=[0.826,-

0.165,0.851,0.165,0.810]. Figure 8 show that h has two zeros outside the unit circle, 

which indicates that h is non-minimum phase. The system that we propose will al-

ways yield a stable equalizer because it computes a FIR approximation of the IIR 

optimal solution. The algorithm was provided with a signal of size T = 500. The size 

of the impulse response of w was set to 81. In the pre-processing stage the length of 

LPC was fixed at 12 coefficients and nonlinear function (des-Gaussianity) was k(u) = 

u3. 

In figure 9, on the left we show the prediction residual, before and after a cubic 

non-linearity. On the right we show a quantile plot of the residual vs. a Gaussian 

distribution. It can be seen that it does not follow a linear relation. The results showed 

in figure 10 prove the good behavior of the proposed algorithm, i.e. we perform cor-

rectly the blind inversion of the filter (channel). The recovered signal at the output of 

the system has the spectrum showed in figure 11. We can see how, although we have 

modified in a nonlinear manner the input signal in the preprocess stage, the spectrum 

matches the original because non-linear function k(·) preserve the structure of the 

residual (non-predictable part) of the signal. The difference between harmonic peaks 

of speech signal and background noise is about 40 dB. 

  M 

pre-processing 

k (.)  s(t)  s’(t) 



   

Fig. 7. On the upper part of the figure, the proposed preprocessing stage, and the convolution 

system. On the lower part, the blind deconvolution system and the post-processing stage. 
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Fig. 8. Poles and zeros of h. We observe two zeros outside the unit circle, so the filter is of 

non-minimum phase. 
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Fig. 9. On the left, the LPC residue of the signal superposed with the residual after the non-

linear operation. On the right, the quantile of the processed residual versus the quantiles of a 

Gaussian distribution. 

 

 

Fig. 10. On the left, filter coefficients evolution of the inverse filter w. The convergence is 

attained at 150 iterations approx. On the right, convolution between filter h and its estimated 

inverse w. The result is clearly a delta function. 

 

Similar experiments have been done with music signals, which are also non i.i.d. 

signals and have strong correlations between samples due to the resonance character-

istics of the instruments. In this case, similarly to the previous experiments, the results 

are quite good, using the same parameters (non-linear function k, LPC order, etc.).  

6   Summary 

In this paper we have presented a method for blind deconvolution of channel applied 

to real world signals. This method is based on source separation techniques, which 

can estimate the inverse of a channel if the original signal is non-Gaussian and i.i.d.  

In order to apply this result to real world signals we will need to preprocess the origi-

nal signal using a whitening stage by means of an inverse LPC filter and applying 



after a non-linear function for des-Gaussianity the signal. Thereby we modify the 

density probability function without changing the non predictable part of the signal. 

In reception, after the deconvolution of the signal, we need a post-processing stage by 

means of the inverse of the LPC filter in order to reconstruct the original signal.  

 

 

Fig. 11. Input signal spectrum (continuous line), output signal spectrum (dotted line) and LPC 

spectrum (Thick line). We can observe the similarity of these spectrums at low frequencies. 

The main difference is related to the high part of the spectrum of the reconstructed signal, 

which is due to the fact that the LPC reconstruction allocates resources to the parts of the spec-

trum with high energies 

For a future works we are studying other possibilities in order to apply source 

separation techniques to linear or non-linear channel deconvolution problems with 

real world signals. Our preliminary work indicated that we can effectively invert the 

nonlinear convolution by means of source separation techniques [10, 11] but for a 

non stationary signal it is necessary to study how we can preprocess this signals to 

insure the i.i.d. and non Gaussian distribution necessary conditions to apply these 

techniques. 
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