213 research outputs found

    Distribution dependent adaptive learning

    Get PDF

    A BLIND DECISION FEEDBACK EQUALIZER WITH EFFICIENT STRUCTURE-CRITERION SWITCHING CONTROL

    Get PDF
    This paper considers and proposes an innovated method of structure-criterion switching control for the self-optimized blind decision feedback equalizer (DFE) scheme which operates by switching between adaptation modes according to the mean square error (MSE) convergence state. The new switching control shortens the blind acquisition period time of the DFE and, consequently, speeds up its effective convergence rate. The switching control is based on the variable switching threshold which combines the commonly used MSE estimate of the DFE’s output and a posteriori error of the all-pole whitener performing front-end amplitude equalization during the blind operation mode. The efficiency of the DFE switching control is verified by simulations of single-carrier system transmitting QAM signals over multipath channels

    Enhanced coding, clock recovery and detection for a magnetic credit card

    Get PDF
    Merged with duplicate record 10026.1/2299 on 03.04.2017 by CS (TIS)This thesis describes the background, investigation and construction of a system for storing data on the magnetic stripe of a standard three-inch plastic credit in: inch card. Investigation shows that the information storage limit within a 3.375 in by 0.11 in rectangle of the stripe is bounded to about 20 kBytes. Practical issues limit the data storage to around 300 Bytes with a low raw error rate: a four-fold density increase over the standard. Removal of the timing jitter (that is prob-' ably caused by the magnetic medium particle size) would increase the limit to 1500 Bytes with no other system changes. This is enough capacity for either a small digital passport photograph or a digitized signature: making it possible to remove printed versions from the surface of the card. To achieve even these modest gains has required the development of a new variable rate code that is more resilient to timing errors than other codes in its efficiency class. The tabulation of the effects of timing errors required the construction of a new code metric and self-recovering decoders. In addition, a new method of timing recovery, based on the signal 'snatches' has been invented to increase the rapidity with which a Bayesian decoder can track the changing velocity of a hand-swiped card. The timing recovery and Bayesian detector have been integrated into one computation (software) unit that is self-contained and can decode a general class of (d, k) constrained codes. Additionally, the unit has a signal truncation mechanism to alleviate some of the effects of non-linear distortion that are present when a magnetic card is read with a magneto-resistive magnetic sensor that has been driven beyond its bias magnetization. While the storage density is low and the total storage capacity is meagre in comparison with contemporary storage devices, the high density card may still have a niche role to play in society. Nevertheless, in the face of the Smart card its long term outlook is uncertain. However, several areas of coding and detection under short-duration extreme conditions have brought new decoding methods to light. The scope of these methods is not limited just to the credit card

    MIMO-THP System with Imperfect CSI

    Get PDF

    Algorithms For Wireless Channel Equalization With Joint Coding And Soft Decision Feedback

    Get PDF
    The paper proposes a new approach based on Joint Entropy Maximisation (JEM) using a soft decision feedback equalizer (S-DE) to suppress error propagation. In its first section, the paper presents the principle of the solution and the theoretical framework based on entropy maximisation, which allows introducing the soft decision device without assuming that the channel distortion is Gaussian. Because JE is a non-linear function, a gradient descent algorithm is used for maximising. Then an equivalence of JEM and ISIC (Inter-Symbol Interference Cancellation) is proved in order to establish that an equalised single carrier system using coded modulation (8-phase shift keying associated with a convolution code) offers similar performances when compared with multicarrier modulation. In the second section the paper develop an adequate receiver model for joint convolution coding and S-DFE. The error correction decoder uses a standard Viterbi algorithm. The DFE consists of a feedforward finite impulse response (FIR) filter (FFF) and a feedback filter (FBF) implemented as a transversal FIR filter. FFF eliminates the precursor ISI, while FBF minimise the effect of residual ISI using soft decisions by the joint coding and equalisation process. The third main section of the paper describes the proposed method for estimating optimum soft feedback using a maximum a posteriori probability (MAP) algorithm. Then, performances of the soft decision device in a simulated environment are analysed on a structure with 8 taps for FFF and 5 taps for FBF. Since the purpose of the evaluation was to compare the proposed S-DFE with a former H-EFE, the coded packet error rate was estimated in a two-path and in a six- path channel. We have shown that in some case the proposed algorithm offers better convergence rate and robustness when compared with the corresponding existing algorithm. Some conclusions on the extension of the S-DFE techniques in vary applications are finally presented

    Blind Equalization and Channel Estimation in Coherent Optical Communications Using Variational Autoencoders

    Get PDF
    We investigate the potential of adaptive blind equalizers based on variational inference for carrier recovery in optical communications. These equalizers are based on a low-complexity approximation of maximum likelihood channel estimation. We generalize the concept of variational autoencoder (VAE) equalizers to higher order modulation formats encompassing probabilistic constellation shaping (PCS), ubiquitous in optical communications, oversampling at the receiver, and dual-polarization transmission. Besides black-box equalizers based on convolutional neural networks, we propose a model-based equalizer based on a linear butterfly filter and train the filter coefficients using the variational inference paradigm. As a byproduct, the VAE also provides a reliable channel estimation. We analyze the VAE in terms of performance and flexibility over a classical additive white Gaussian noise (AWGN) channel with inter-symbol interference (ISI) and over a dispersive linear optical dual-polarization channel. We show that it can extend the application range of blind adaptive equalizers by outperforming the state-of-the-art constant-modulus algorithm (CMA) for PCS for both fixed but also time-varying channels. The evaluation is accompanied with a hyperparameter analysis.Comment: Published (Open Access) in IEEE Journal on Selected Areas in Communications, Sep 202

    UNDERWATER COMMUNICATIONS WITH ACOUSTIC STEGANOGRAPHY: RECOVERY ANALYSIS AND MODELING

    Get PDF
    In the modern warfare environment, communication is a cornerstone of combat competence. However, the increasing threat of communications-denied environments highlights the need for communications systems with low probability of intercept and detection. This is doubly true in the subsurface environment, where communications and sonar systems can reveal the tactical location of platforms and capabilities, subverting their covert mission set. A steganographic communication scheme that leverages existing technologies and unexpected data carriers is a feasible means of increasing assurance of communications, even in denied environments. This research works toward a covert communication system by determining and comparing novel symbol recovery schemes to extract data from a signal transmitted under a steganographic technique and interfered with by a simulated underwater acoustic channel. We apply techniques for reliably extracting imperceptible information from unremarkable acoustic events robust to the variability of the hostile operating environment. The system is evaluated based on performance metrics, such as transmission rate and bit error rate, and we show that our scheme is sufficient to conduct covert communications through acoustic transmissions, though we do not solve the problems of synchronization or equalization.Lieutenant, United States NavyApproved for public release. Distribution is unlimited
    corecore