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Abstract—We investigate the potential of adaptive blind equal-
izers based on variational inference for carrier recovery in
optical communications. These equalizers are based on a low-
complexity approximation of maximum likelihood channel esti-
mation. We generalize the concept of variational autoencoder
(VAE) equalizers to higher order modulation formats encom-
passing probabilistic constellation shaping (PCS), ubiquitous in
optical communications, oversampling at the receiver, and dual-
polarization transmission. Besides black-box equalizers based
on convolutional neural networks, we propose a model-based
equalizer based on a linear butterfly filter and train the fil-
ter coefficients using the variational inference paradigm. As a
byproduct, the VAE also provides a reliable channel estimation.
We analyze the VAE in terms of performance and flexibility
over a classical additive white Gaussian noise (AWGN) channel
with inter-symbol interference (ISI) and over a dispersive linear
optical dual-polarization channel. We show that it can extend the
application range of blind adaptive equalizers by outperforming
the state-of-the-art constant-modulus algorithm (CMA) for PCS
for both fixed but also time-varying channels. The evaluation is
accompanied with a hyperparameter analysis.

Index Terms—blind equalizers, channel estimation, variational
inference, optical fiber communication

I. INTRODUCTION

THE digital transformation along with the modern lifestyle
and the advent of video streaming platforms brought

up a strong demand for high-speed and highly flexible com-
munication systems. Precisely, the required data rates can
only be provided by coherent optical communication systems
along with high-order modulation formats and probabilis-
tic constellation shaping (PCS) [2]. Due to its properties,
e.g., easy rate adaption [3], a decreased gap to the additive
white Gaussian noise (AWGN) channel capacity, increased
energy efficiency [4] and a larger tolerance against fiber non-
linearities, PCS has become an essential ingredient of modern
coherent optical communication systems [5], [6]. However, the
use of PCS entails a more challenging carrier recovery than
conventional square quadrature amplitude modulation (QAM)
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formats. Often, data-aided or pilot-based algorithms are the
only option nowadays, since an open issue in communica-
tions is the lack of optimum (but practical) blind adaptive
channel equalizers. However, pilot symbols cannot transport
information so they reduce data rate and limit the achievable
net bit rate significantly. Hence, there is a strong need of blind
channel equalizers, which can adapt to time-varying channels
and transmission parameters. The saved data rate can be used
to either increase the throughput or forward error correction
(FEC) overhead.

In coherent optical communications, the standard algorithm
for blind adaptive equalization of linear channels and sym-
metric complex modulation formats is the constant-modulus
algorithm (CMA) [7]. It tries to reach a constant signal ampli-
tude (radius) by adaptively equalizing the signal with trainable
finite impulse response (FIR) filters. Thus, it is optimal for
constant-amplitude formats such as 𝑀-ary phase shift keying
(PSK), but it also converges for multi-amplitude formats such
as 𝑀-ary QAM [8] where its criterion is sub-optimal. The
multi-modulus algorithm (MMA) [9] is an extension for multi-
amplitude formats, however, it suffers from its high imple-
mentation complexity and low convergence rate. Based on the
same criterion, a non-linear blind neural network (NN) based
equalization scheme was proposed in [10]. Since the CMA’s
criterion is independent of the signal phase, detection is only
possible in combination with a carrier-phase estimation (CPE)
block. The commonly used algorithms are the blind phase
search [11] or the Viterbi-Viterbi algorithm [12], which both
face performance degradation for PCS [13], [14]. Similarly,
the CMA suffers from convergence issues for PCS as well
[15], [16].

Optimally, we want to use the maximum likelihood (ML)
criterion, which has been considered for blind equalization,
e.g., in [17], [18], [19]. However, we are not aware of any
blind ML based channel equalizer which has been seriously
considered in real coherent optical communication systems.
A promising approach is to approximate ML by variational
inference via a variational autoencoder (VAE) [20], [21]. Vari-
ational inference is used for unsupervised and semi-supervised
learning as well as generative models, however, there are
not many applications in communications with notable ex-
ceptions being [22], [23], [24]. While [22] trains end-to-end
transmission systems without inter-symbol interference (ISI)
in a supervised manner, we, in contrast, focus on blind VAE-
based equalization where we use unsupervised learning at the
receiver to adjust the equalizer weights. Such an unsuper-
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vised equalizer implementation has initially been presented
in [23] and further extended in [24] towards unsupervised low-
density parity-check (LDPC) decoding. However, only a sim-
ple quadrature PSK (QPSK) implementation was used. In this
work, we generalize the approach of [23], [24] and propose
essential extensions, including the application to oversampled
dual-polarization (DP) signals and multi-amplitude PCS for-
mats. We show that the generalized approach is independent of
the equalizer architecture and train both a convolutional neural
network (CNN) based equalizer as in [23], [24]—the VAE-
NN—and a novel linear model-based equalizer with butterfly
FIR filters—the VAE-LE. We evaluate the performance of the
proposed equalizers on different linear channels and propose
an extension for slowly time-varying channels.

This paper is structured as follows: in Sec. II, we intro-
duce our system model, in Sec. III, we motivate variational
inference for equalization, derive the VAE-based equalizer in
a general form and explain how the proposed extensions can
be incorporated. In Sec. IV, we discuss the implementation
of the equalizers and propose an appropriate parameter update
scheme, before we introduce our simulation environment and
our results in Sec. V. We conclude the paper in Sec. VI.

II. SYSTEM MODEL

We start with the demonstration of the basic concept on a
simple AWGN channel with ISI

𝒚 = 𝒉sim ∗ 𝒙 + 𝒏 ,

where the transmit vector 𝒙 is convolved with the simulated
channel impulse response (IR) 𝒉sim and a white noise vector
𝒏 is added.

Then, we focus on a dispersive linear optical dual-
polarization transmission to prove the concept in a practical
environment (coherent optical transmission). We use the more
natural description in the frequency domain by a linear channel
matrix, i.e., [

�̄�TE
�̄�TM

]
= 𝑯( 𝑓 ) ·

[
�̄�TE
�̄�TM

]
+

[
�̄�TE
�̄�TM

]
,

with 𝒛 = F {𝒛} being the Fourier transform of a time domain
vector 𝒛 and {TE,TM} being indices describing the two polar-
izations of the light. Additionally, we emulate a slowly time-
varying channel by changing the channel matrix’ elements
over time, so we can analyze the performance in a dynamical
environment.

Per se, the optical channel is nonlinear, but the linear
distortions are dominant in practical systems and have to
be compensated, whereas the nonlinearity compensation is
computationally demanding and usually provides a signal-to-
noise ratio (SNR) gain of less than 1 dB [25, Sec. 6.9.3].
Hence, we focus in this paper on linear impairments and
assumes potential nonlinearities to be either negligible or
compensated by a separate digital signal processing (DSP)
block, e.g., based on digital backpropagation, which can be
switched on if required.

Further details on the simulation model including the spe-
cific parameters are provided later in Sec. V.

III. VARIATIONAL INFERENCE FOR EQUALIZATION

The goal of communications is to transmit data to a receiver,
which has to fully recover the information without knowledge
of the actually transmitted data. This can be interpreted as an
inference problem, where the received samples 𝒚 ∈ C𝑁 are
observed variables while the transmitted samples 𝒙 ∈ C𝑁 are
unobservable latent variables. The optimum decision is based
on the maximum of the a posteriori probability distribution
[26, Ch. 4.1]

𝑃(𝒙 |𝒚) = 𝑝(𝒚 |𝒙) · 𝑃(𝒙)
𝑝(𝒚) ,

where 𝑝(𝒚 |𝒙) is the likelihood of 𝒚 given 𝒙, 𝑃(𝒙) is the prior
probability and 𝑝(𝒚) is the observations’ marginal density
(also called the evidence). Throughout the paper, we denote
probability mass functions (pmfs) by a capital 𝑃(·) and
continuous densities by a lower case 𝑝(·). While the prior and
the likelihood can usually be assumed as known or modeled
well, the evidence is commonly intractable to compute, since
the marginalization’s complexity grows exponentially with
the length and symbol order of 𝒙, i.e. 𝑝(𝒚) = ∑

𝒙 𝑃(𝒙)𝑝(𝒚 |𝒙).

In statistics, this is a common problem which can be solved
by variational inference. It is also used in machine learning
when the conditional has to be approximated efficiently and
reliably [21]. In particular, this is the case in our problem
where we usually require fast convergence to cope with time-
dependent distortions. The main idea is to cast inference
into an optimization problem, where the goal is to find an
approximation 𝑄(𝒙 |𝒚) ∈ Q of the true a posteriori pmf 𝑃(𝒙 |𝒚)
from a family of approximate pmfs Q, parameterized by free
variational parameters [21], over the latent variables.

A. The Evidence Lower Bound (ELBO)

A suitable objective function is the relative entropy
DKL (𝑃‖𝑄), also called the Kullback-Leibler (KL) divergence,
which is an information-theoretical measure of proximity. It
is asymmetric, non-negative and convex with its minimum at
𝑄 = 𝑃 [27, Ch. 2]. Then, the optimization’s goal is to find the
best approximation to the true a posteriori probability for the
observed varibles 𝒚 by

�̂�(𝒙 |𝒚) = arg min
𝑄∈Q

DKL (𝑄(𝒙 |𝒚)‖𝑃(𝒙 |𝒚)) .

With E𝑄{·} = E𝑄 (𝒙 |𝒚) {·} being the expectation regarding the
variational approximation, the KL divergence can be expressed
as1

DKL (𝑄(𝒙 |𝒚)‖𝑃(𝒙 |𝒚)) = E𝑄{ln𝑄(𝒙 |𝒚)} − E𝑄{ln 𝑃(𝒙 |𝒚)}
= E𝑄{ln𝑄(𝒙 |𝒚)} − E𝑄{ln 𝑝(𝒚 |𝒙)}
− E𝑄{ln 𝑃(𝒙)} + ln 𝑝(𝒚) . (1)

Since the KL divergence depends on ln 𝑝(𝒚), it is not easily
computable and thus not suitable as objective function. How-
ever, the evidence is independent of 𝑄(𝒙 |𝒚), so the last term

1Note that we use the natural logarithm with base e (ln) instead of the
logarithm with base 2 (log2), which is frequently used in communications
and information theory.
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𝒙 𝒚Channel
𝜽

𝑃(𝒙) 𝑝𝜽 (𝒚) = 𝑝(𝒚 |𝜽)

𝑝𝜽 (𝒚 |𝒙)

𝑄𝚽 (𝒙 |𝒚) 𝚽Decoder

Encoder

Fig. 1. Simple transmission system and its corresponding pdfs: 𝒙 and 𝒚 are
realizations of random variable sequences {𝑋𝑘 } and {𝑌𝑘 }; 𝜽 is a discrete-time
AWGN channel with impulse response 𝒉 and noise variance 𝜎2

w; 𝑄𝚽 (𝒙 |𝒚)
is an approximation (in the parameter space 𝚽) of the real a posteriori pdf.

in (1) is only an additive constant regarding the optimization.
Hence, maximizing the evidence lower bound

ELBO(𝑄) = E𝑄{ln 𝑝(𝒚 |𝒙)} + E𝑄{ln 𝑃(𝒙)} − E𝑄{ln𝑄(𝒙 |𝒚)}
= E𝑄{ln 𝑝(𝒚 |𝒙)}︸            ︷︷            ︸

=:B

−DKL (𝑄(𝒙 |𝒚)‖𝑃(𝒙))︸                   ︷︷                   ︸
=:A

(2)

is equivalent to minimizing (1). This mirrors the usual balance
between likelihood and prior, since the ELBO’s first term
B, the expected likelihood, favors densities which explain
the observed data, while the second term A encourages the
densities to be close to the prior [21]. The complexity of this
optimization is defined by the complexity of the family Q.

By rearranging (1) and due to the KL divergence’s non-
negativity, we can show that the ELBO lower-bounds the (log)
evidence, i.e.,

ln 𝑝(𝒚) = DKL (𝑄(𝒙 |𝒚)‖𝑃(𝒙 |𝒚)) + ELBO(𝑄)
≥ ELBO(𝑄) .

Since ln 𝑝(𝒚) is a fixed upper bound, we sandwich
DKL (𝑄(𝒙 |𝒚)‖𝑃(𝒙 |𝒚)) by maximizing the ELBO, so we even-
tually minimize the KL divergence and find a good approxi-
mation 𝑄(𝒙 |𝒚) for the true a posteriori probability.

The concept can also be interpreted from a communication
theory perspective with the likelihood 𝑝(𝒚 |𝒙) as a probabilistic
encoder and the a posteriori—or its variational approximation
𝑄(𝒙 |𝒚), respectively—as the corresponding decoder.2 Pre-
cisely, during transmission, the data 𝒙 (latent variables) is
encoded into the observable receive samples 𝒚, while the
receiver tries to decode the transmitted data again, estimating
𝒙 from 𝒚. Assuming that the densities come from families
of parameteric distributions, the concept can be implemented
as a variational autoencoder (VAE) using machine learning
techniques, where typically both encoder and decoder are
implemented as NNs [20], [24]. However, if we have a suitable
model, e.g., of the encoder 𝑝(𝒚 |𝒙), we do not have to apply
an NN to learn it but we can use the model directly, as done
in the following subsection.

B. The Variational Autoencoder (VAE)-based Equalizer

We assume a general transmission system through a (param-
eterized) channel 𝜽 , as depicted in Fig. 1. Then, the evidence

2In the deep learning literature, e.g., [20], an opposite definition is often
found where 𝑝 (𝒚 |𝒙) is the decoder and 𝑄 (𝒙 |𝒚) is the encoder. However,
from a communications point-of-view we find our definition more intuitive.

𝑝𝜽 (𝒚) as well as the likelihood 𝑝𝜽 (𝒚 |𝒙) are parameterized
by 𝜽 , while the variational approximation 𝑄𝚽 (𝒙 |𝒚) can be
parameterized by a set of learnable parameters 𝚽, as denoted
by the corresponding subscripts.

In other words, the channel (respectively the encoder) dis-
torts the transmitted signal, while the decoder tries to find the
mapping from the distorted received samples to the transmitted
data. Thus, finding the optimum variational approximation
corresponds to finding the optimized equalizer for this channel.
Furthermore, 𝑄𝚽 (𝒙 |𝒚) gives a soft-decision on the received
symbols, so the VAE-based equalizer also approximates an
ML receiver [24].

Note that the exact values of 𝜽 are unknown, so the
proposed equalization concept is blind and the model
parameters are learned simultaneously with the decoder. In
fact, the evidence 𝑝𝜽 (𝒚) = 𝑝(𝒚 |𝜽) can also be interpreted
as the likelihood regarding the channel parameters, so
variational inference also approximates maximum likelihood
channel estimation. This byproduct can be used, e.g.,
for joint communication and sensing. See, e.g., [28] for an
example of capturing acoustic signals based on the channel IR.

In the following, we derive the VAE-based equalizer in a
generalized form compared to [24], where it is only derived
for a toy model with QPSK. We try to keep repetitions as short
as possible, but it is unavoidable at some points to highlight
the generalizations we did. We start by assuming transmission
over an AWGN channel parameterized by 𝜽 =

(
𝒉, 𝜎2

w
)

with
finite IR 𝒉 and noise variance 𝜎2

w. We can model the likelihood
as

𝑝\ (𝒚 |𝒙) ∼ CN
(
𝒉 ∗ 𝒙, 𝜎2

w𝑰𝑁
)
. (3)

Further, we consider transmission of independently modulated
square-𝑀-QAM symbols 𝑥𝑖 , so 𝒙 = (𝑥1, . . . 𝑥𝑁 ) = 𝒙I + j𝒙Q is
a vector of 𝑁 complex-valued symbols. Assuming further that
I and Q have been modulated independently, than 𝑥I

𝑖 , 𝑥Q
𝑖 ∈

A = {𝐴1, . . . , 𝐴√𝑀 } are conditionally independent given 𝒚.
Consequently, we can model

𝑄𝚽 (𝒙 |𝒚) =
𝑁∏
𝑖=1

𝑄𝚽

(
𝑥I
𝑖 |𝒚

)
· 𝑄𝚽

(
𝑥Q
𝑖 |𝒚

)
(4)

and define a vector 𝒒𝑐,𝐴𝑚 (𝒚), 𝑐 ∈ {I,Q}, containing the
parametric functions evaluated for each symbol 𝒒𝑐,𝐴𝑚 (𝒚) :=(
𝑄𝚽

(
𝑥𝑐1 = 𝐴𝑚 |𝒚

)
, . . . 𝑄𝚽

(
𝑥𝑐𝑁 = 𝐴𝑚 |𝒚

) )
, which only depend

on 𝒚 and 𝚽. Although we have a similar decoder model as
[24], we consider multi-level signals and, thus, cannot simplify
further by exploiting the normalization of probabilities.

Then, similarly to [24], we create a minimization problem
by defining the loss function L(𝜽 ,𝚽, 𝒚) := −ELBO(𝑄) =
A−B (see (2)), which only depends on both parameter spaces,
𝜽 and 𝚽, as well as the received samples 𝒚.

The first term A can be easily computed by the standard
formula of the KL divergence, i.e.,

A(𝚽) = DKL (𝑄𝚽 (𝒙 |𝒚)‖𝑃(𝒙))

=
𝑁∑︁
𝑖=1

√
𝑀∑︁

𝑚=1

∑︁
𝑐∈{I,Q}

[
𝑞𝑐,𝐴𝑚

𝑖 (𝒚) · ln 𝑞𝑐,𝐴𝑚

𝑖 (𝒚)
𝑃
(
𝑥𝑐𝑖 = 𝐴𝑚

)
]
. (5)
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Since the term A does not break down to the entropy as in [24]
(due to the assumption of a uniform prior pmf), an important
feature is the inclusion of the prior density 𝑃(𝒙) into the
loss function, which implies the adaption to, e.g., PCS [2],
[3]. Since state-of-the-art blind equalizers struggle with non-
uniform priors [15], [16], [29], simple inclusion is one of the
major benefits of this concept.

The second term B can be re-written, similarly to [24], as

B(𝜽 ,𝚽, 𝒚) = E𝑄{ln 𝑝\ (𝒚 |𝒙)}
= −𝑁 ln

(
𝜋𝜎2

w

)
− 1
𝜎2

w
· E𝑄

{‖𝒚 − 𝒉 ∗ 𝒙‖2}︸                 ︷︷                 ︸
C

, (6)

so B tries to find the best channel estimate 𝒉 regarding the
least-squares of the observation 𝒚 to the prediction (𝒉 ∗ 𝒙),
also referred to as autoencoder distortion [24].

Further, with the operator Re{·} returning the real part of a
complex number, (·)H denoting a vector’s conjugate-complex
and transpose, (·)T the transpose, and assuming that 𝒙, 𝒉 and
𝒚 are column vectors, C becomes

C(𝜽 ,𝚽, 𝒚) = E𝑄
{(𝒚 − 𝒉 ∗ 𝒙)H (𝒚 − 𝒉 ∗ 𝒙)}

= ‖𝒚‖2 − 2Re
{
𝒚H · E𝑄{𝒉 ∗ 𝒙}

} + E𝑄{‖𝒉 ∗ 𝒙‖2}
= ‖𝒚‖2 − 2

(
𝒚I

)T
DI − 2

(
𝒚Q

)T
DQ + E , (7)

with

DI = 𝒉I ∗ E𝑄
{
𝒙I} − 𝒉Q ∗ E𝑄

{
𝒙Q}

,

DQ = 𝒉I ∗ E𝑄
{
𝒙Q} + 𝒉Q ∗ E𝑄

{
𝒙I} ,

E = ‖DI‖2 + ‖DQ‖2+

|𝒉 |2 ∗
(
E𝑄

{(
𝒙I

)2
}
+ E𝑄

{(
𝒙Q

)2
}
− E𝑄

{
𝒙I}2 − E𝑄

{
𝒙Q}2

)
.

In contrast to [24], we keep the vector notation, which helps
to identify an efficient implementation, and we also have to
compute the expectations for any 𝑀-QAM symbol from the
VAE-based equalizer’s output by (𝑐 ∈ {I,Q})

E𝑄{𝒙𝑐} =
√
𝑀∑︁

𝑚=1
𝒒𝑐,𝐴𝑚 (𝒚)𝐴𝑚 ,

E𝑄

{
(𝒙𝑐)2

}
=

√
𝑀∑︁

𝑚=1
𝒒𝑐,𝐴𝑚 (𝒚)𝐴2

𝑚 .

Similarly to [24], we find an analytical solution for 𝜎2
w by

partially differentiating the loss function and equating it to
zero. In fact, A (see (5)) does not depend on 𝜎2

w and

𝜕B
𝜕𝜎2

w
= −𝑁 1

𝜎2
w
+ C
𝜎4

w

!
= 0 ⇒ 𝜎2

w =
C
𝑁

. (8)

Hence, inserting (8) into the loss function and omitting all
additive constants yields

L̃(𝜽 ,𝚽, 𝒚) := DKL (𝑄𝚽 (𝒙 |𝒚)‖𝑃(𝒙)) + 𝑁 ln C . (9)

Here, we emphasize that the equalizer can also be designed
for any integer oversampling factor 𝑁os. If the equalizer
incorporates downsampling, e.g., by convolution with stride
𝑁os, all vectors can be defined accordingly. However, the

𝒚I
TE+j·𝒚

Q
TE

𝒚I
TM+j·𝒚

Q
TM

𝒉I
11+j·𝒉

Q
11

𝒉I
12+j·𝒉

Q
12

𝒉I
21+j·𝒉

Q
21

𝒉I
22+j·𝒉

Q
22

+ �̂�I
TE+j·�̂�

Q
TE

+ �̂�I
TM+j·�̂�

Q
TM

Fig. 2. Complex-valued 2×2 multiple-input multiple-output (MIMO)-system

size of the expectation vectors does not match the size of
the observations 𝒚 anymore, so the term C would not be
computable. Since the loss is summed over all samples, we can
simply match the vectors by inserting (𝑁os − 1) zeros between
consecutive samples of 𝒒𝑐,𝐴𝑚 (𝒚).

C. Extension Towards Coherent Optical Communication Sys-
tems

Light is always traveling as combination of two orthogonal
polarizations, which can be independently modulated
but rotate during propagation through a standard fiber.
In combination with other effects like polarization mode
dispersion (PMD) and chromatic dispersion (CD), the receiver
observes a superposition of both polarizations similar to a
classical multiple-input multiple-output (MIMO) channel
with cross-talk. Although we focus on DP systems in this
work, the proposed VAE-based equalization scheme can be
extended towards any kind of MIMO system accordingly.

In the DP case, the transmitted and received sequences
have to be represented by the matrices 𝑿 = [𝒙TE 𝒙TM]
and 𝒀 = [𝒚TE 𝒚TM], respectively, where the indices denote
the transversal electric (TE) and transversal magnetic (TM)
polarizations of the laser beam.

Considering the orthogonality, we can model

𝑄𝚽 (𝑿 | 𝒀) = 𝑄𝚽 (𝒙TE | 𝒀) · 𝑄𝚽 (𝒙TM | 𝒀) ,
𝑝𝜽 (𝒀 | 𝑿) = 𝑝𝜽 (𝒚TE | 𝑿) · 𝑝𝜽 (𝒚TM | 𝑿) ,

𝑃(𝑿) = 𝑃(𝒙TE) · 𝑃(𝒙TM) ,
and derive the loss function similarly to the AWGN channel
case, which yields

L̃(𝜽 ,𝚽,𝒀) = L̃TE (𝜽 ,𝚽,𝒀) + L̃TM (𝜽 ,𝚽,𝒀) . (10)

In principal, the losses per polarization are calculated similarly
to the proposed case for a single channel. However, in order to
incorporate cross-talk between the polarizations, the mean of
the likelihood’s circular-symmetric normal distribution is not
anymore (𝒉 ∗ 𝒙) (see (3)), but depends on the superposition of
both polarizations. In this work, we implement it as a complex-
valued 2 × 2 MIMO-system as depicted in Fig. 2, which is
based on a physical model [30], [31]. Alternatively, a real-
valued 4×4 system can be implemented, which has additional
degrees of freedom to compensate transceiver impairments.

IV. REALIZATION OF THE EQUALIZER

Commonly in the machine learning community, the VAE’s
encoder 𝑝𝜽 (𝒚 |𝒙) and the decoder 𝑄𝚽 (𝒙 |𝒚) are implemented as
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Fig. 3. Receivers considered in this paper for rectangular 𝑀 -QAM formats (with PCS): VAE-NN (left), VAE-LE (middle); and reference CMA (right).

NNs with the parameters 𝜽 and 𝚽, but this is no requirement.
In the application of the VAE concept to communications,
the transmission channel is forming the encoder, while the
decoder can be either an NN, as in in [24], or an FIR filter
system with a soft-demapping block, as proposed in this work.

In comparison to the FIR filter system, the NN
• carries out a classification task and, hence, combines

equalizer and demapper,
• is potentially capable of compensating non-linearities,
• requires more learnable parameters since its dimension-

ality depends on the modulation order,
• comprises more hyperparameters which have to be tuned,
• provides no access to the output constellation (since it

only outputs the approximations 𝒒𝑐,𝐴𝑚 (𝒚)), which may
prevent the inclusion into state-of-the-art DSP chains.

In Fig. 3, we show the block diagrams of the investigated
adaptive equalizers. The VAE-NN employs a CNN with two
one-dimensional convolutional layers as in [24]. Adaptions
are necessary to the final layer, namely exchanging the
sigmoid with a softmax, to transform the multilevel output
into probabilities, and we apply an exponential linear unit
(ELU) instead of a softsign activation to the first layer, which
provides better results. If applicable, a stride in the final layer
downsamples the output. We found that the second layer’s
kernel size can be fixed to a small value (3 to 5), while the
first layer’s kernel size remains a hyperparameter. Precisely,
the first layer’s kernel size and the length of the estimated
channel impulse response can be any odd integer (to ensure
symmetry around a major central tap), which we optimized
during our simulations. Typical values for both have been
around 29 (for 𝑁os = 2) and 11 (for 𝑁os = 1). All equalizers
and the simulation environment are implemented in Python
with the PyTorch library.

A. The Proposed VAE-LE Scheme

We further propose the VAE-LE scheme, which is based
on a classical 2 × 2 butterfly equalizer system with complex-
valued FIR filters as depicted in Fig. 2. It uses the same filter
system with 𝐹 taps per filter as the reference CMA, which
allows the integration into state-of-the-art DSP chains [31].
Note, however, that the computation of the cost function may
not be as simple as for the CMA and needs to be adapted
as it requires a soft-demapper output and backpropagation
through the latter as well as possibly some further DSP blocks.
Future work may take into account backpropagation through

𝒚I
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𝒚I

TM
𝒚Q

TM

Linear
Equalizer

�̂�I
TE
...

�̂�Q
TM

Soft
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𝒒I,1
TE
...

𝒒Q,
√
𝑀

TM

ELBO𝒉est

𝚽

Fig. 4. Structure of the VAE-LE for DP systems—the other equalizers are
implemented accordingly.

consecutive, possibly non-differentiable DSP blocks (see, e.g.,
[32] for an example) or the complexity reduction of the update
algorithm. Precisely, the VAE-LE uses one filter system for the
equalization, where its weights are Φ in the derivation above,
and a second similar filter system as channel model for the
estimation. Both parameter sets are independent, but they are
trained simultaneously. We also initialize both similarly, i.e.,
we only initialize the real part of the filters 𝒉𝑖𝑖 with a 1 at
the center tap, while all other taps (including the imaginary
parts) are zero (Dirac initialization). Similarly to the CMA, if
used along with soft-decision FEC, the VAE-LE also requires
a soft-demapping block to transform the constellation output
into the variational approximations. The implemented structure
of the VAE-LE for a DP system is displayed in Fig. 4, which is
representative for the implementation of the other equalizers.

We assume the general case of squared-𝑀-QAM transmis-
sion, where the modulation symbols’ prior pmf follows a
Maxwell-Boltzmann distribution with normalization constant
𝐶a and shaping parameter a ≥ 0, i.e.,

𝑝MB
(
𝑥𝑐𝑖

)
= 𝐶ae−a(𝑥𝑐𝑖 )

2
, 𝑐 ∈ {I,Q} ,

with 𝑝MB (𝑥𝑖) = 𝑝MB
(
𝑥I
𝑖

)
𝑝MB

(
𝑥Q
𝑖

)
. For a = 0, 𝑝MB

(
𝑥𝑐𝑖

)
be-

comes a uniform distribution. The Maxwell-Boltzmann distri-
bution is the preferred distribution for PCS [2], [3], so we can
cover both the case of uniform and PCS-QAM transmission
by considering this prior pmf. We characterize the different
formats using the constellation entropy

H = −E𝑝MB {log2 𝑝MB (𝑥𝑖)}
(𝑖)≤ log2 𝑀 ,

with equality in (𝑖) if a = 0 (uniform distribution). Since
optimum demapping is based on the maximum a posteriori
(MAP) criterion [26, Ch. 4.1], we want to find

𝑥𝑐dec,𝑖 = arg max
𝑥𝑐𝑖 ∈X𝑐

𝑝
(
𝑥𝑐𝑖 |𝑦𝑐𝑖

)
= arg max

𝑥𝑐𝑖 ∈X𝑐
𝑝
(
𝑦𝑐𝑖 |𝑥𝑐𝑖

)
𝑝
(
𝑥𝑐𝑖

)
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= arg max
𝑥𝑐𝑖 ∈X𝑐

(
−

(
𝑦𝑐𝑖 − 𝑥𝑐𝑖

)2

2𝜎2
w

− a (
𝑥𝑐𝑖

)2
)

for a Gaussian likelihood [4]. Translating this to soft-
demapping and adapting it to the 𝑀-QAM case with 𝑥𝑐𝑖 ∈
A = {𝐴1, . . . 𝐴√𝑀 } yields

𝒒𝑐𝑖 (𝒚) = softmax
©«
−

(
𝑥𝑐𝑖 · 1√𝑀 − 𝑨

)2

2𝜎2
w

− a𝑨sq
ª®®¬
,

where 𝒒𝑐𝑖 (𝒚) =
(
𝑞𝑐,𝐴1
𝑖 , . . . 𝑞

𝑐,𝐴√𝑀
𝑖

)
, 𝑥𝑐𝑖 is the equalizer’s

output constellation (real or imaginary part) at time instant 𝑖,
𝑨 =

(
𝐴1, . . . 𝐴√𝑀

)
, 𝑨sq =

(
𝐴2

1, . . . 𝐴2√
𝑀

)
, 1√𝑀 is a vector

of
√
𝑀 ones, and softmax(𝒛) = exp(𝒛)/

(∑𝐿
𝑙=1 exp(𝑧𝑖)

)
with

𝒛 ∈ R𝐿 .

B. Parameter Update Schemes

Next, we show how to adapt the VAE’s training procedure
to resemble the online-update of classical gradient-descent-
based equalizers (such as the CMA) and to enable tracking of
time-varying channels. Instead of separating the dataset into
a training, test, and validation set as in classical supervised
machine learning systems, we can directly train on the same
data which we evaluate. Therefore, we continuously buffer the
received data stream, slice it into consecutive mini-batches (of
length 𝑁B ·𝑁os samples) and feed them to the equalizer. Then,
an Adam optimizer [33] constantly updates the weights after
each mini-batch. For the VAE-LE, the equalizer outputs all 𝑁B
equalized symbols and the soft-demapper translates them into
the corresponding variational approximations, while the VAE-
NN’s CNN directly outputs the 𝑁B aproximated probabilities.

For both, we start the slicing of the next batch at the
end of the former, so there are consecutive slices without
any gap or overlapping in between. However, there is no
requirement for having no overlapping, so we can also start the
next slice only 𝑁flex · 𝑁os (instead of 𝑁B · 𝑁os) samples after
the start of the former slice and, thus, reduce the equalizer
output from 𝑁B to 𝑁flex symbols. This results in an overlap of
(𝑁B − 𝑁flex) · 𝑁os samples. Hence, each sample is considered
for 𝑛 = b𝑁B/𝑁flexc consecutive update steps and, if (𝑁B/𝑁flex)
is no integer, some samples are also considered for a further
update step. This boosts convergence speed by sacrificing
computational complexity due to more frequent updates. We
call this generalized implementation VAEflex and introduce it
for the evaluation of the time-varying channel. Throughout this
work, we focus on adaptive channel equalization assuming an
infinitely long random data sequence. Hence, we do not have
to worry about overfitting during training for a specific channel
and data sequence, although time-varying effects require a
continuous re-adaptation of the filters.

The batch-wise update incorporates an implicit averaging of
the loss over 𝑁B · 𝑁os samples, while the CMA updates the
filter taps after each processed symbol by gradient descent as
in its standard implementation [7], [8]. We observe that the
VAE-LE with batch-wise training, which only updates every
𝑁B symbols, had a significantly shorter computation time on

−0.5

0.5
𝑁os = 1

Tap

Re{𝒉sim }
Im{𝒉sim }
Re{𝒉est }
Im{𝒉est }

−0.5

0.5
𝑁os = 2

Tap

Fig. 5. Simulated channel IR 𝒉sim (similar to [23], [24]) and estimations
𝒉est by the VAE-LE at 20 dB for 𝑁os = 1 and 𝑁os = 2 sps (without pulse
shaping).

a standard laptop’s CPU as the CMA with its symbol-wise
update.

The constant modulus criterion is not phase sensitive, so the
CMA can only equalize the amplitude and requires a consecu-
tive CPE stage, which we implement using the Viterbi-Viterbi
algorithm [12] with averaging over 501 symbols. This CPE
stage has, to the best of our knowledge, not been considered
in [23], [24] (or was insufficient), which could explain the
severe observed symbol error rate (SER) penalties in their
QPSK simulations. In fact, we would expect significantly
better results for a PSK-transmission over an AWGN channel,
for which the CMA is well suited, especially if sufficiently
long data sequences are used.

V. RESULTS

We evaluated the proposed equalizers both for simulations
of a simple AWGN channel with ISI and an optical DP
transmission system as well as a time-varying channel as
introduced in Sec. II. The source code is available online [34].

A. Simulation Environment

Unless stated differently, our transmitter model consists of
a source, which outputs a random sequence of 𝑀-QAM sym-
bols, and a root-raised cosine (RRC) pulse-shaping filter with
roll-off 𝛼 = 0.1. We use an oversampling factor of 𝑁os = 2 sps
throughout our simulations and incorporate downsampling to
the equalizer. Since we omit matched filtering (see [26, Ch. 9])
but expect the equalizers to learn it, the receiver faces ISI from
the RRC pulse-shaping additionally to the simulated channel.

In the AWGN channel, we convolve the transmitted se-
quence with the complex-valued channel IR

𝒉sim = [0.055 + j0.05, 0.283 − j0.120, −0.768 + j0.279,
− 0.064 − j0.058, 0.047 − j0.023]

already used in [23], [24] (also shown in Fig 5), which we
oversample by inserting (𝑁os − 1) zeros between consecutive
samples and interpolate by convolving it with the RRC pulse.
We add real-valued AWGN with a variance of 𝜎2

w/2 on both
real and imaginary part and take the oversampling into account
for the SNR calculation.
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TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value

𝛾hv 0.1𝜋 𝜑IQ 0.01𝜋
𝐷pmd 0.1 ps/

√
km [35] 𝐿pmd 1000 km

𝛽cd
1 −26 ps2/km 𝐿cd 1 km

1 equals 𝐷cd = 20 ps nm−1 km−1 at _ = 1550 nm (see [37, Eq. (2.3.5)])

Monte-Carlo simulations of an AWGN channel without ISI
provide a baseline SER per SNR and modulation format,
which we denote by “No ISI” in the result plots.

Our optical DP transmission model follows [35] and [36]
and includes a static (input and output) IQ-phase-shift 𝜑IQ
and a static rotation of the reference polarization to the fiber’s
principal state of polarization (PSP), called HV-phase-shift
𝛾hv. Additionally, we simulate both first-order PMD caused
by the differential group delay 𝜏pmd = 𝐷pmd

√︁
𝐿pmd between

the PSPs over a fiber length 𝐿pmd, and residual CD, which
is defined by the fiber’s group velocity dispersion (GVD)
parameter 𝛽cd [37, Ch. 2.3] times the uncompensated fiber
length 𝐿cd. We display all parameter values in Table I.

By assuming—similarly to [35]—that all non-linear effects
and phase noise are either negligible or compensated, and that
we transmit a complex-valued DP signal 𝒙 = [𝑥TE (𝑡) 𝑥TM (𝑡)],
we can model the fiber by the linear time-invariant frequency
domain channel matrix

𝑯 ( 𝑓 ) = 𝑹T
(
e j𝜋𝜏pmd 𝑓 0

0 e−j𝜋𝜏pmd 𝑓

)
𝑹 · e−j2𝜋2𝛽cd𝐿fiber 𝑓

2

where 𝑹 = e−j𝜑IQ

(
cos 𝛾hv sin 𝛾hv
− sin 𝛾hv cos 𝛾hv

)
. Again, we add AWGN

on both polarizations and I/Q-components with a variance of
𝜎2

w/2 each. To simulate a time-varying channel, we change
the HV-phase-shift after each frame of 𝑁frame = 10, 000
symbols. Precisely, we extend �̃�hv = 𝛾hv + Δ𝛾hv · 𝑘𝑇frame
with the deviation of the HV-shift Δ𝛾hv, the frame duration
𝑇frame = 𝑁frame/𝑅S, the symbol rate 𝑅S and the frame-index
𝑘 as an integer indexing the discrete time (in multiples of
the frame duration). It should be highlighted that we apply
deviations frame-wise, i.e., we neglect deviations within each
frame of 𝑁frame symbols.

For evaluation, we chose the averaging scheme sketched in
Fig. 6, which might not seem to be straight-forward at first
glance but fits to our needs, i.e., it returns a reliable SER
estimate to compare different hyperparameter settings but also
provides insights into the convergence behavior. In particular,
the analysis of the average convergence behavior requires a
certain temporal averaging, but the final analysis requires also
an averaging over multiple execution runs, since the behavior
could vary between different runs.

To get the desired insights, we first have to slice the equal-
izer output 𝒛pol

𝑗 (per simulation run 𝑗 and per polarization pol ∈
{TE,TM}) into 𝑁ind = 170 consecutive frames 𝒛

pol
𝑗 , 𝑘 ∈ C𝑁frame

to allow the evaluation at different time steps, respectively
frame-indices 𝑘 = 1 . . . 𝑁ind. Then, we estimate each frame’s
scalar S̃ER

pol
𝑗 , 𝑘 after hard decision taking into account the

𝒛
pol
𝑗

𝒛
pol
𝑗, 1
...

𝒛
pol
𝑗, 𝑁ind

S̃ERpol
𝑗, 1

...

S̃ERpol
𝑗, 𝑁ind

ŜER
pol
𝑗, 1

...

ŜER
pol
𝑗, 𝑁ma

slicing SER MA

𝒛TE
1 �SERTE

1get SER

𝒛TM
1 �SERTM

1get SER
...

...
...

𝒛TM
𝑁run

�SERTM
𝑁run

get SER

1
2𝑁run

∑
SERmin

Fig. 6. Block diagram sketching the result averaging—𝒛
pol
𝑗, 𝑘
∈ C𝑁frame are

the slices (frames) of the vector containing the corresponding equalizer output
with pol ∈ {TE, TM}, MA is a moving average filter with length 𝐹ma = 10,
so 𝑁ma = (𝑁ind − 𝐹ma + 1) , and min is an operator which returns a vector’s
element with the minimum value.

prior distribution of the constellation symbols [4]. Since we
perform blind equalization, we also need to compensate for
possible time-shifts, I/Q-flips and phase-rotations (in multiples
of 𝜋

4 ). Furthermore, we discard symbols that may be incorrect
due to boundary effects (but having at least 8,000 symbols
per frame remaining for evaluation—hence, we can evaluate
the potential performance of each algorithm). Eventually, we
perform a moving average with filter length 𝐹ma = 10 and get a
sequence of 𝑁ma = 𝑁ind−𝐹ma+1 estimates ŜER

pol
𝑗 , 𝑘 , each being

evaluated on approximately 80, 000 . . . 100, 000 symbols per
frame-index 𝑘 (per polarization and per run). This allows the
analysis of the equalizers’ convergence for each polarization
and run independently.

For further evaluations, we need one reliable scalar SER
estimate for each algorithm and hyperparater setting. Thus,
we carry out 𝑁run = 10 (unless stated otherwise) independent
simulation runs and average the results over all successful
runs, i.e., runs where the SER drops below a pre-defined
threshold of 0.3, by taking the element-wise mean of the
vectors �SERpol

𝑗 ∈ R𝑁ma , which contain the estimates per
run and polarization after moving average. If unsuccessful
runs occurred, we display the amount by a small number
next to the corresponding data point in the result figures.
Finally, we get a reliable scalar SER estimate by taking the
element with the minimum value from the vector containing
the averaged estimates for all remaining 𝑁ma frame-indices.
We chose the minimum over the mean to display the best
(averaged) performance of the equalizers, since we already
have a sufficient averaging (the mean of 𝑁pol · 𝑁run estimates
where each is averaged over at least 80,000 symbols), but can
prevent distortions from potential outliers. In fact, we did not
observe any outliers in all our simulations, so we conjecture
that the estimates’ variance is small and the difference between
taking the minimum and the mean (after convergence) is
insignificant.

Furthermore, we use a learning rate scheduler for the optical
DP channel which halves the learning rate 𝜖lr of each equalizer
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Fig. 7. Results for uniform and PCS-64-QAM through an AWGN channel with ISI and without learning rate reduction—see also [1]; the simulations for the
non-blind DFE and MMSE are without pulse-shaping at 𝑁os = 1 sps.
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Fig. 8. Results for uniform 64-QAM through an AWGN channel with
ISI and without learning rate reduction—see also [1]: 𝒉sim,2 = [0.055 +
j0.017, −1.345 − j0.452, 1.007 + j1.152, 0.348 + j0.315]; the simulations
for the non-blind DFE and MMSE are without pulse-shaping at 𝑁os = 1 sps.

after every frame-index 𝑘 being an integer-multiple of 20, so
the given 𝜖lr represents the initial value.

B. Simple AWGN Channel with ISI

Figure 7 depicts the proposed equalizers’ performance for
both uniform and PCS-64-QAM at 𝑁os = 2 sps. We tuned
the lengths of the filters 𝐹, the batches 𝑁B, the kernels,
and the learning rate. Later, for the DP simulations, we
will show how the hyperparameters influence the equalizers’
performance. Besides the baseline “No ISI”-curve and the
CMA as reference, we also evaluated two non-blind equalizers
at 𝑁os = 1 sps without pulse-shaping, namely the non-linear
decision feedback equalizer (DFE) [26, Ch. 9.5] (with 10 taps
each for both feed-forward and feedback filters) and the linear
minimum mean squared error (MMSE) equalizer [26, Ch. 9.4]
(with 20 taps).

For uniform 64-QAM, the CMA converges with a signifi-
cant penalty to the MMSE, while both VAE-based equalizers
operate close to the MMSE. For a linear channel, the VAE-LE
outperforms the VAE-NN, which might originate from a closer
bounding of the family Q around the optimum �̂�(𝒙 |𝒚) ∈ Q.
We found qualitatively similar results for other ISI channels
as well, e.g., in Fig. 8 for channel 𝒉2 from [24]. For the
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Fig. 9. Performance of the VAE-LE and the CMA for uniform DP-64-QAM
with 𝜖lr = 0.5 · 10−3, 𝐹 = 25 and 𝑁B = 350: SER, left axis, and estimated
SNR, right axis, vs SNR for 𝑅S = 40 GBd and 𝑅S = 90 GBd. The CMA is
evaluated with (𝜖lr = 0.5 · 10−3) and without (w/o. – 𝜖lr = 5 · 10−5) learning
rate scheduler.

sake of computational complexity, we restrict ourselves in the
following to the VAE-LE.

As already forecasted in the early 1990s [15], [16], the
CMA fails to converge for PCS formats which approximate
a Gaussian prior; however, the VAE-LE even reaches the
non-blind MMSE’s performance for higher SNRs, although
we used the same soft-demapper as for the uniform QAM
in these AWGN channel simulations (instead of the optimal
PCS-adapted version as introduced in Sec. IV). Furthermore,
Fig. 5 demonstrates the VAE-LE’s capability of estimating the
channel IR. We depict the estimate without averaging while
processing uniform 64-QAM at SNR = 20 dB for 1 and 2 sps
without pulse-shaping.

C. Optical Dual-polarization Transmission

The results for the application of the VAE-LE are depicted
in Fig. 9. The right axis shows the estimated SNR (averaged
similarly to the SER) while evaluating DP-64-QAM at various
SNRs. The VAE-LE always underestimates the SNR, but only
within a fraction of a decibel (dB). Along with the results
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Fig. 10. Convergence behavior of the VAE-LE and the CMA (𝜖lr = 0.5 · 10−3)
for uniform DP-64-QAM with 𝑅S = 90 GBd, 23 dB and 𝐹 = 25.

of Fig. 5, this demonstrates the potential for joint commu-
nications and sensing, since the estimation of the channel
parameters is a valuable byproduct for tracking and evaluating
the channel IR and SNR without interfering communications.

The left axis in Fig. 9 depicts the corresponding SERs.
Similar to the results in Fig. 7, the CMA has a significant
penalty without learning rate scheduler. Since the scheduler
halves the learning rate after every frame-index 𝑘 being an
integer-multiple of 20, the CMA’s performance-convergence
trade-off is avoided and it reaches marginally lower SERs as
the VAE-LE. For high symbol rates and high SNRs, the VAE-
LE deviates from the ideal “No ISI”-curve. In all other cases,
both equalizers stay within 1 dB of the “No ISI”-curve and
converge to it for low SNRs.

The equalizers’ convergence behavior differs significantly,
as depicted in Fig. 10, where we display one simulation run’s
𝑁ma SER estimates after the moving average filter. It should be
noted that we do not consider a fixed amount of training data
but conduct online-learning on the (in theory, infinitely long)
received data sequence and that the frame-index corresponds
to discrete time steps during training, i.e., one frame has a
duration of 𝑇frame and corresponds to 𝑁os ·𝑁frame samples pro-
cessed by the equalizer. The CMA converges gradually with
a decreasing slope. The distinct “plateaus” are caused by the
learning rate scheduler. The VAE-LE shows a “waterfall-like”
curve. Also, the VAE-LE starts at a significantly higher SER.
Although the initial learning rate and batch size strongly in-
fluence the VAE-LE’s time convergence, the curve’s waterfall-
like shape remains. Interestingly, the CMA seems to optimize
both polarizations equally, while the VAE-LE first focuses on
one polarization before trailing the second one.

The influence of the main hyperparameters is analyzed in
Fig. 11. Interestingly, the symbol rate 𝑅S and the filter length
𝐹 influence the CMA significantly less than the VAE-LE,
which suffers from performance penalties for low 𝐹. The
reason might be that the VAE-LE has to compensate for both
amplitude and phase offset while an extra CPE compensates
the latter for the CMA. Since a high symbol rate mainly
increases the ISI, it is reasonable that it only influences the

VAE-LE for high SNR.
The VAE-LE suffers from convergence issues for high 𝐹

and high 𝑁B (or 𝜖lr), but is very stable for small 𝐹 and small
𝑁B even under high symbol rates. While changes in the initial
learning rate affect the CMA strongly, the VAE-LE has a
negligible penalty over a relatively large range.

We show the results for PCS in a DP optical channel in
Fig. 12. With the adapted soft-demapping and the learning rate
scheduler, the VAE-LE is able to follow the “No ISI”-curve
within 1 dB penalty even for high symbol rates and low SNR.
Lower filter lengths 𝐹 and batch-sizes 𝑁B as well as higher
𝜖lr are necessary to ensure a high probability for convergence,
especially for high symbol rates. The VAE-LE is potentially
capable of converging for 𝑅S > 100 GBd and strong shaping in
our simulation model, but the probability for non-convergence
is relatively high for typical working points. Still, the VAE-LE
significantly outperforms the CMA for PCS, where the latter
does not converge at all.

D. Time-varying Channel

We analyze the influence of time-dependent channel de-
viations to the equalizers by a frame-wise increasing HV-
shift �̃�hv = 𝛾hv + Δ𝛾hv · 𝑘𝑇frame within the optical DP model.
Figure 13 depicts the SER for different slopes Δ𝛾hv. Since we
did not employ the learning rate scheduler in this evaluation,
the hyperparameter values differ from the ones used in the
time-invariant case. Due to its rather slow convergence speed,
the CMA has to operate at rather high learning rates and entails
a severe penalty. The wide range of possible learning rates
allows the VAE-LE to optimize its working point towards low
SERs for low Δ𝛾hv or a high tolerance towards deviations
by moderate penalties. The VAEflex with 𝑁B = 100 and
𝑁flex = 10 accelerates training significantly, which makes it
tolerant towards deviations by still reaching very low SERs.
Although we did not optimize the VAEflex as thoroughly as
the other algorithms, it converges until a low (respectively,
early) frame-index 𝑘 at the cost of a higher computational
complexity. Hence, an option would be to switch between
the VAEflex and the batch-wise VAE during operation by
changing 𝑁flex between 1 and 𝑁B.

For comparison, we also implemented a CMA with a batch-
wise updating scheme as proposed in [38], which we denote
CMAbatch. Additionally, we also extended this scheme with
a flexible update rule akin to the VAEflex. We denote the
resulting equalizer CMAflex. Although Fig. 13 shows that
both the CMAbatch and the CMAflex perform better than the
symbol-wise CMA for this time-varying channel and without
the learning rate scheduler, the gain is relatively small and both
are outperformed by the VAE-based equalizers. Especially the
CMAflex performs very similar to the CMAbatch and, in
contrast to the VAEflex, the flexible update rule is not able
to accelerate training.

VI. CONCLUSION

In this paper, we proposed the new VAE-LE, a model-
based approach with linear butterfly FIR filters, which is
trained by the VAE-based learning paradigm with extensions
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towards practically relevant optical communication systems
with oversampling and DP-PCS-QAM transmission.

For AWGN channels with ISI, the blind VAE-based equal-
izers can approach the performance of the non-blind MMSE
equalizer for both uniform and PCS formats. The proposed
VAE-LE outperforms the previously introduced VAE-NN for
this linear channel. The VAE-LE equalizer also converges in
a dispersive optical DP system but shows a negligible penalty
to the CMA for uniform formats. However, for PCS formats
where the CMA fails to converge without modifications, the
VAE-LE still approaches the ideal reference within 1 dB.

The VAE-LE’s rapid convergence behavior is advantageous
for time-varying channels, where the gradually converging
CMA performs significantly worse. Our proposed VAEflex

update scheme with flexible step length is a powerful alter-
native if convergence speed is a key factor. Additionally, we
have shown that the VAE-LE is able to estimate both the
communication channel taps and the noise variance very well,
which can be an enabler for joint communications and sensing.

While we focused on linear channels in this work, the
extension towards nonlinear impairments might be a possible
direction of future research.
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