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Abstract 

The aim of this thesis is to develop algorithms and techniques for adaptive signal processing in 

non-Gaussian noise environment with applications to communications channel estimation and 

equalisation. 

Practical communication systems are affected by thermal noise, caused by the thermal (Brow-

nian) motion of particles in components. Thermal noise is readily modelled as a stationary 

independent Gaussian stochastic process popularly known as additive white Gaussian noise 

(AWGN). The adaptive signal processing for communication systems has been predominated 

by this AWGN assumption. Channel estimation and equalisation forms an integral part of com-

munications receivers which are usually designed using the Gaussian noise assumption. In 

some communication channels, the observation noise exhibits impulsive, as well as Gaussian 

characteristics. On the other hand, recent increase in the use of wireless devices results in many 

such wireless devices operating in the vicinity of another wireless device. This has caused 

an increase in interference from the other wireless devices operating in the same band, which 

effectively causes the noise in the presence of interference to deviate from Gaussianity. Thus 

in practice the Gaussian noise assumption does not hold for practical communication systems 

and scenarios. To improve the performance of adaptive algorithms, we develop algorithms 

adapted on the noise characteristics rather than adapting only on second order statistics. The 

developments in this thesis can be classified in two major works. 

First work is on developing a minimum bit-error rate (MB ER) decision feedback equaliser 

(DFE) for impulsive noise modelled as an a-stable distribution. The development exploits 

the stable nature of the a-distribution and the concepts build on earlier work in a Gaussian 

noise environment. Further, a Wiener-filter-with-limiter solution is also presented and used as a 

performance bench mark. An improvement in convergence and BER performance is achieved 

by using a minimum bit error rate (MIBER) cost function instead of a conventional least mean 

square (LMS) based design. The ability of least BER (LB ER) equalisers based on a Gaussian 

noise assumption to operate in an a-stable noise environment is also highlighted. 

In the second work, a block based maximum-likelihood algorithm using kernel density esti-

mates to improve channel estimation in non-Gaussian noise environment is proposed. The 



likelihood pdf is assumed unknown and is estimated by using a kernel density estimator at the 

receiver. Thereby combining log-likelihood as a cost function with a kernel density estimator 

provides a robust channel estimator, which could be used for various non-Gaussian noise en-

vironments without any modification. The performance of the proposed estimator is compared 

with the theoretical lower bounds for associated noise distribution. The simulations for impul-

sive noise and co-channel interference (CCI) in the presence of Gaussian noise, confirms that a 

better estimate can be obtained by using the proposed technique as compared to the traditional 

algorithms. The proposed algorithm is then applied to orthogonal frequency division multiplex-

ing (OFDM) communication systems. A considerable performance improvement is observed 

when using a non-parametric channel estimator in conjunction with a symbol-by-symbol non-

parametric maximum a-posteriori probability (MAP) equaliser. Since, in practice, CCI is cor-

related in nature, a whitening filter based approach for channel estimation is proposed. In order 

to make the channel estimation technique robust to channel order mismatch, a novel technique 

to simultaneously adapt the channel order and channel coefficient is discussed. 
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Chapter 1 
Introduction 

The field of adaptive signal processing has seen several advances in recent years primarily 

due to explosive growth in digital communications. The demand for increasing bit throughput 

for multimedia and data services is driving advances in communication technology. Various 

new modulation, diversity, coding techniques have been developed in recent years to match 

the demands of today's bit hungry applications. The operating frequencies for communication 

systems have also been going up from MHz to GHz. Thus bandwidth efficiency is a major 

concern in the communication research community today. 

In real life, communication systems are affected by channel noise and interference from differ-

ent users. To improve the performance of communication systems in noisy and/or interference 

limited varying channel conditions the use of adaptive signal processing techniques is highly 

desirable. This thesis deals with developing such adaptive algorithms and techniques which 

perform better than those based on Gaussian stationary noise assumptions used in communica-

tion systems. 

The chapter begins with an exposition of the principal motivation behind the work Undertaken 

in this thesis. Section 1.2 Outlines the contributions made in this thesis. Lastly, the thesis layout 

is described in section 1.3. 

1.1 Motivation for work 

The revolution in digital communication techniques can be attributed to the invention of the 

automatic linear adaptive equaliser in the late 1960's [1]. From the modest start, adaptive 

equalisers have gone through many stages of development and refinement in the last 40 years. 

Early equalisers were based on linear adaptive filter algorithms [2] with or without a decision 

feedback. Alternatively, the maximum likelihood sequence estimator (MLSE) [3] were im-

plemented using the Viterbi [4][5] algorithm. The MLSE requires knowledge of the channel, 

which was readily available from using a least squares estimation. These methods have been 

applied for several yearsprimarily for two main reasons. 

1 
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Firstly, both forms of equalisers provide two extremes in terms of performance achieved. The 

linear equaliser has low complexity but has poor performance in severe conditions. An infinitely 

length MLSE has better performance in severe channel conditions, however the computational 

complexity is quite high. Until recent years Gaussian noise was considered to be a majórimped-

iment to the communication receiver's performance, where the above two equalisers perform 

fairly well, depending on the channel conditions. 

Secondly, rapid advances in digital signal processing (DSP) techniques have provided scope for 

very large scale integration (VLSI) implementation. The DSP chips specialise in signal process-

ing functions like multiply and add much faster than other central processing units (CPUs). The 

power of DSPs has been increasing and their cost has come down rapidly, thanks to advances 

in VLSI technology. 

Owing to the aforementioned reasons the rapid growth of communication systems both in wire-

line and wireless communications took off. In wireline communications, digital subscriber line 

(DSL) technology has been gaining popularity as a high speed network access technology, capa-

ble of the delivery of multimedia services [6]. A major impairment for DSL is impulse noise in 

the telephone line. In wireless communications, the interference from co-channel and adjacent 

channel are major impairments [7]. The co-channel interference (CCI) in presence of Gaus-

sian noise is successfully modelled as non-Gaussian noise. It is well known that non-Gaussian 

noise can cause significant performance degradation in traditional communication systems de-

signed under the Gaussian stationary linear assumption [8] [9] [10]. In [8] it is shown that by 

using non-parametric techniques and relaxing the Gaussian noise assumption the performance 

of global system for mobile (GSM) receiver can be improved in interference limited channels. 

In [9] and [10] it is shown that for impulsive noise channels Gaussian assumption based sig-

nal processing is not viable, and other statistically based signal processing algorithms lead to 

improvement in performance. Also a well known example is the matched filter for coherent 

reception of deterministic signals in Gaussian white noise. If the noise statistics deviate from 

the Gaussian model, serious degradation in performance occurs, such as increased false alarm 

rate or error probability [11] [12]. 

That means, when the performance degradation due to the ideal Gaussian assumption in a non-

Gaussian environment can not be tolerated, the underlying signal processing methods must be 

revisited and redesigned taking into account the non-Gaussian noise statistics. Thus finding bet-

ter signal processing techniques based on exploiting this non-Gaussian phenomenon motivates 

2 
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the research in this thesis. Some of the advantagesof using such approaches in equalisation has 

already been witnessed in [8] [13] [14] and [ 15]. 

1.2 Thesis contributions 

In this thesis, new signal processing algorithms for channel equalisation and estimation are 

proposed. The proposed algorithms exploit the non-Gaussian behaviour of noise in channel 

estimation and symbol detection/equalisation. 

The first part of the thesis is concerned with the development of a minimum bit error rate 

(MBER) decision feedback equaliser (DFE) working in impulsive noise environments. The 

impulsive noise is modelled as an a-stable distribution as in [13]. In [13] it was observed that 

the Bayesian equaliser working in an a-stable environment performs better than the Gaussian 

noise based algorithms in similar environments. Moreover, an MBER version of algorithms 

for Gaussian noise channels was shown to perform better than least mean square (LMS)-based 

algorithms in [14] [ 15]. In this thesis, an MBER equaliser for a-stable distribution is pro-

posed. The comparison of the proposed equaliser with the traditional LMS-based equaliser and 

Gaussian assumption based MBER equaliser is also explored. 

The later part of the thesis concentrates on the development of non-parametric techniques for 

channel estimation and equalisation. An adaptive non-parametric channel estimator for non-

Gaussian noise is proposed. The proposed channel estimator is found to be robust for both im, 

pulsive noise and co-channel interference limited communication channels. Both the impulsive 

noise and co-channel interference, type of non-Gaussianity is modelled as a mixture of finite 

Gaussian processes. Analysis on the step-size selection for the proposed channel estimator is 

also developed in this thesis. Channel estimation in the time domain based communication 

system is considered first in this thesis. The performance of the proposed algorithm is com-

pared with the theoretical lower bounds defined by the Cramer Rap bound. The concept of 

totally adaptive channel estimator where the channel tap length is also dynamically adapted 

along with the tap coefficients is also explored in the thesis. 

Since CCI is correlated in practice, a. whitening filter based solution is presented. An error 

whitening based technique is used to reduce the correlation and then estimate the channel 

based on this whitened error log-likelihood function. The proposed Channel estimation al-

gorithm is then modified for the frequency domain based communication systems. A non- 

3 
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parametric symbol-by-symbol maximum a posteriori probability (MAP) equaliser for orthog-

onal frequency domain multiplexing (OFDM) communication systems is proposed. Consid-

erable performance gains are achieved by using this MAP equaliser with the non-parametric 

channel estimator. 

1.3 Thesis outline 

The rest of the thesis is organised as follows: 

Chapter 2 presents background and puts the work described in the thesis in perspective. A brief 

review on adaptive signal processing with applications to communications channel estimation 

and equalisation are the focus of this chapter. The models and notations used throughout the 

thesis are also explained in this chapter. 

Chapter 3 is devoted to development of the minimum bit error rate adaptive decision feedback 

equaliser for impulsive noise environment. A Wiener solution for the said simulation envi-

ronment is formulated for performance analysis. Comparison with the MBER algorithm for 

Gaussian distribution and LMS-algorithm is also presented in this chapter. 

Chapter 4 discusses an adaptive non-parametric channel estimator for nor-Gaussian noise en-

vironments. Two specific cases of non-Gaussian noise are analysed throughout the chapter. 

A comparison with popular techniques for channel estimation in non-Gaussian noise environ-

ments is drawn in this chapter. The performance of the algorithm is evaluated for the impulsive 

noise and (correlated and uncorrelated) the co-channel interference in the presence of Gaussian 

noise. 

Chapter 5 is an extension of the algorithm developed in the previous chapter. Here the case of 

channel estimation with whitening filter in co-channel interference limited communication sys-

tems is considered. Monte Carlo simulations support the viability of the framework discussed 

in this chapter. 

Chapter 6 provides a non-parametric channel estimator and a non-parametric symbol-by-symbol 

MAP equaliser for OFDM communication systems. As the OFDM is increasingly used in next 

generation of mobile devices, interference amongst different communication standards work-

ing in-band and in vicinity have become a major concern. The proposed algorithm is tested for 

in-band interference limited communication system. 

4 
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Chapter 7 summarises the work undertaken in this thesis and points to possible directions for 

future research. 



Chapter 2 
Background 

The term estimator or filter is commonly used to refer to a system that is designed to extract 

information about a prescribed quantity of interest from noisy data. With such a broad aim, es-

timation (filter) theory finds applications in many diverse fields: communications, radar, sonar, 

navigation, seismology, biomedical engineering, and financial engineering. In this thesis the 

focus is adaptive channel estimation and equalisation for digital communication systems where 

the noise is considered as impulsive and in the presence of interference from other sources. 

This chapter gives an overview of adaptive signal processing, for detailed discussion on adap-

tive signal processing the reader is referred to work in [16] [17] [18].  In order to present the 

work in this thesis in perspective and introduce the nomenclature used throughout the thesis, 

a background survey on adaptive signal processing is presented in this chapter with digital 

communications as an application area. 

First a brief description of linear optimal filters and adaptive filters is presented. Some typical 

classes of adaptive filters are discussed in section 2.3. Two application areas of adaptive signal 

processing are considered in section 2.4, where first the equalisation problem, followed by the 

channel estimation problem are discussed. 

2.1 Linear optimal filter 

In this section, a brief overview about linear optimal filtering is presented. Consider a filter 

y(k) =E h(i)x(k —i), k = 0,1,2,... 	 (2.1) 

where y(k) is the linear convolution sum of input x(k) and filter h(i) with i being the index to 

the number of taps (or delay elements). From Figure (2. 1), 



Background 

Input 	 Output 	Desired response 
x(0), x(1), x(2),... 	Linear discrete—time 	('k) 	 y(k) 

filter 
h(0), h(1), h(2),... 

Estimation error 
e(k) 

Figure 2.1: Block diagram representation of linear filtering problem 

x(k) = input signal applied to the adaptive filter; 

y(k) = received, desired signal; 

(k) 	= output of adaptive filter; 

e(k) = y(k) - (k) = estimation error 

At some discrete time k, the filter produces an output (k). This output is used to provide an 

estimate of a desired response designated by y(k). In particular, the estimation error, denoted by 

e(k), is defined as the difference between the desired response y(k) and the estimated response 

(k). The requirement is to make the estimation error e(k) "as small as possible" in some 

statistical sense. The filter is assumed to be linear to make the mathematics simpler. Also it is 

assumed that the filter operates in discrete time to make its implementation on digital computer 

hardware or software possible. 

The purpose of the filter in Figure 2.1 is to produce an estimate of the desired response y(k). 

We assume that the filter input and the desired response are single realisations of a jointly wide 

sense stationary stochastic process, with zero mean. To optimise the filter design, we choose to 

minimise the mean-square value of e(k). We thus define the cost function as the mean-square 

error 

J=E{e2 (k)} 	 (2.2) 

where E{ . } denotes the statistical expectation operator. The requirement is therefore to deter-

mine the operating conditions under which J attains its minimum value. For the cost function J 

to attain its minimum value, all the elements of the gradient vector VJ must be simultaneously 
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equal to zero; that is 

V2 J=0, i=O,1,2,... 	 (2.3) 

Under this set of conditions, the filter is said to be optimum in the mean-square error sense, 

where 

ViJ=2E{e(k)} 	 (2.4) 

Thereby taking gradient of eq. (2.2) and then cancelling common terms, it finally yields 

V2 J = —2E{x(k - i)e(k)} 	 (2.5) 

that is equivalent to 

E{x(k —i)e0(k)} =0 	 (2.6) 

which represents the special value of e0  that results when the filter operates in its optimum 

condition. The above equation forms the powerful principle of orthogonality. 

From the Wiener-Hopf equations we see that, 

00  E{x(k - i)(y(k) - 	h0(v)x(k - v))} = 0 	 (2.7) 

where h0  (v) is the vth coefficient in the impulse response of the optimal filter (subscript 'o') 

also known as the Wiener filter. Expanding and re-arranging the terms, 

00 

h0(v)E{x(k - i)x(k - v)} = E{x(k - i)y(k)} 	 (2.8) 

The two expectation in eq. (2.8) are interpreted as follows: 

1) The expectation E{x(k - i)x(k - v)} is equal to the autocorrelation function of the filter 

input for lag  - i. It can be expressed as, 

- i) = E{x(k - i)x(k - v)} 	 (2.9) 

2) The expectation E{x(k - i)y(k)} is equal to the cross-correlation between the filter input 
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x(k - i) and the desired response y(k) for a lag of —i, thus 

rx(—i) = E{x(k - i)y(k)} 	 (2.10) 

By using the definitions of eq. (2.8) and eq. (2.9) in eq. (2.10), an infinite large, system of 

equations as the necessary and sufficient condition for the optimality of the filter: 

00 

h0(v)r(v—i) =rxy(—i) =ryx (i) 	 (2.11) 

The eq. (2.11) defines the optimal filter coefficients, in the most generalised setting. However, 

in practice there are certain constraints in using Wiener filters for many applications. Firstly, 

the statistics of x(k) and y(k) may not be known,.thus exact knowledge of r(v—i) and rxy(i) 

is not guaranteed. In many applications the statistics change with time. Lastly, computing the 

inverse of 	(v - i) may constrain the use of Wiener filters in real time application. These 

applications involve processing of signals that are generated by systems whose characteristics 

are not known a priori. Under this condition, a significant improvement in performance can be 

achieved by using adaptive rather than Wiener (or fixed) filters. 

2.2 	Adaptive filters 

An adaptive filter is a self-designing filter that uses a recursive algorithm (known as adaptation 

algorithm or adaptive filtering algorithm) to design itself. The algorithm starts from an initial 

guess, chosen based on the a priori knowledge available to the system, then refines the guess 

in successive iterations, and converges, eventually, to the optimal Wiener solution in some 

statistical sense. The performance of an adaptive filtering algorithm is evaluated based on one 

or more of the following factors [16]: 

Rate of convergence: This quantity describes the transient behaviour of the algorithm. This is 

defined as the number of iterations required for the algorithm, under stationary conditions, to 

converge close enough to the optimum Wiener solution in the mean square sense. 

Misadjustment: This quantity describes steady-state behaviour of the algorithm. This is a quan-

titative measure of the amount by which the ensemble averaged final value of the mean-squared 

error exceeds the minimum mean-squared error produced by the optimal Wiener filter. 
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Computational Requirements: This is an important parameter from a practical point of view. 

The parameters of interest include the number of operations required for one complete iteration 

of the algorithm and the amount of memory needed to store the required data and also the 

program. These quantities influence the price of the computer needed to implement the adaptive 

filter. 

Numerical Robustness: The implementation of adaptive filtering algorithms on a digital com-

puter, which inevitably operates using finite word-lengths, results in quantisation errors. These 

errors sometimes can cause numerical instability of the adaptation algorithm. An adaptive 

filtering algorithm is said to be numerically robust when its digital implementation using finite-

word-length operations is stable. 

Another practical measure of performance is the number of computations needed for the adap-

tive filter to reach steady state. This measure combines the rate of convergence and computa-

tional requirements and is the product of the number of iterations needed for the algorithm to 

converge close enough to the optimum solution and the number of computations needed per 

iteration [19]. 

However with all the above considerations and practical constraints, the most common linear 

adaptive filters can be modelled as a tap-delay line filter. The aim is to find the solution to 

Wiener-Hopf equations; an iterative approach is used to obtain the solution. The most common 

method of linear optimisation of steepest-gradient [16] is used. The cost function, also referred 

to as the "index of performance"; defined as mean square error is used here. This method re-

quires the use of gradient vector, the value of which depends on two parameters: the correlation 

matrix of the tap inputs in the linear filter and the cross-correlation vector between the desired 

response and the same tap inputs. When the instantaneous value for correlation described in 

eq. (2.8) is used, so as to drive an estimate of the gradient vector, making it assume a stochastic 

character, it is referred to as the LMS algorithm. In essence it can be represented as 

updated value 	 old value 	learning— 	tap— 	/ 
error 

of tap - weight 	= 	of tap - weight. + 	Irate 	input 	I 
\ signal 

vector 	 vector 	 parameter 	vector 

where the "learning rate parameter" defines the rate of adaptation. Too large a value of this 
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parameter this algorithm may never converge and too small a value could result in longer time to 

converge. Hence, this parameter value is application dependent and on the type of cost function 

used. It is usually defined over a range of values. There are various modification (and/or 

combinations) to LMS algorithm available such as leaky LMS, normalised LMS, frequency 

domain LMS, block LMS, signed LMS and variable step size LMS. Another approach to the 

development of linear adaptive filtering is based on the method of least squares. In this method, 

the cost function is defined as the sum of weighted error squares, where the error is itself defined 

as the difference between the derised and the actual filter output. One of the most popular 

methods that uses the method of least squares is recursive least squares (RLS) algorithm. Other 

forms than standard RLS include square-root RLS and Fast RLS [16]. 

2.3 	Classes of application 

The ability of adaptive filters to work satisfactorily in the unknown environment and tracking 

the variations in the system has made adaptive filters attractive for control and signal processing 

community. The application areas of the adaptive filters is thus enormous communications, 

radar, sonar, seismology, and biomedical engineering. The application areas are quite diverse, 

they usually have one basic thing in common: An input vector and a desired response, which 

are used to compute an estimation error, which in turn is used to control the values of a set 

of adjustable filter coefficients. The major difference between various applications of adaptive 

filters is the way the problem is defined, however four broad classifications for adaptive filters 

can be made [16]. 

The four basic classes of the adaptive filtering applications depicted in Figure 2.2-2.5 are as 

follows: 

System Identification: The system identification as shown in Figure 2.2 uses an adaptive 

filter to provide a best fit to the unknown "Plant". The same input is fed to the plant and the 

adaptive filter, and respective outputs compared. Adaptive filter's coefficients are updated by 

some criterion, like LMS or RLS, using the estimation error. 

Inverse Modelling: The adaptive filter in this class, finds the best fit to the inverse of the 

unknown Plant as shown in Figure 2.3. The requirement is to have "System output" the same 

as the delayed "System input", thereby requiring adaptive filter to compensate the effect of the 

plant. 

11 
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A 

H 	
Adaptive Filter 	 y(k) 

System 	 e(k) 	
± 	(k) System 

input 	 output Plant  

Figure 2.2: Adaptive filter applied for system identification 

System 
output 

Plant 	x(k) 	Adaptive Filter 

A 
*k) 

System 	 e(k

input 	
Delay 	1._______________________

y(k)  

Figure 2.3: Adaptive filter applied for inverse modelling 

Prediction: The function of the adaptive filter is to predict the current sample based on the 

past samples as in Figure 2.4. Thus the adaptive filter uses the past information to find the best 

fit to the current input (desired) signal. f  Depending on the application of interest, the adaptive 

filter output or the estimation (prediction) error may serve as the system output. In the first 

case, the system operates as a predictor; in the latter case, it operates as a prediction-error filter. 

System 
output 2 

x(k) I Delay 	 Adaptive Filter  

Random 	 e(k) 	
+ 

signal 	 y(k) 

System 
I  --- output I ---------- 

Figure 2.4: Adaptive filter applied for prediction 

Interference cancellation: The unknown interfering signal is cancelled from the primary 

signal (information alongside interference signal), with cancellation being optimised in certain 
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sense. The primary signal serves as the desired response for the adaptive filter as in Figure 2.5. 

The reference signal is applied to the adaptive filter, where it is assumed that the information-

bearing signal component is weak or essentially undetectable. 

Reference 
signal x(k) 

Adaptive Filter  

— 	yA(k) 

Primary 	 e(k) 	

+\T'Y(k) signal 

System 
output I 

Figure 2.5: Adaptive filter applied for interference cancellation 

2.4 Applications 

The various classes of adaptive filter discussed above are applied in some-way or another in 

modern digital communication systems. A typical digital communication system is shown 

the Figure 2.6. The "data source" constitutes the signal generation system that generated the 

information to be transmitted. Some of the typical examples are speech coders, video coders 

and scanners. The raw data (information) is then coded by the "encoder". The "encoder" adds 

redundancy to the transmitted information to add reliability to the transmitted data. Some of 

the typical examples are "convolutional codes", "gray codes" and "block codes". The digital 

data transmission requires very large bandwidth. The efficient use of available bandwidth is 

achieved through the "transmitter filter", also called the modulating filter. The modulator on 

the other hand places the signal over a high frequency carrier for efficient transmission. Some 

of the typical schemes used in the digital communication are amplitude shift keying (ASK), 

frequency shift keying (FSK), pulse amplitude modulation (PAM), phase shift keying (PSK) 

modulation and quadrature phase shift keying (QPSK). The "channel" is the medium through 

which the information propagates from the transmitter to the receiver. The channel can be 

fixed, flat or multipath fading depending on the application area. At the receiver the signal 

is first "demodulated" to recover the baseband transmitted signal. This demodulated signal is 

processed by the "receiver filter", also termed as receiver demodulating filter, which should 

ideally match to the transmitted filter and channel. Normally, the propagation channel is not 
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known at the receiver, thus the receiver filter is matched to the transmitter filter only. The 

"equaliser" in the receiver removes the impairments, inter-symbol interference (ISI) and ICI 

introduced due to the communication channel. The "decision device" provides the estimate of 

the encoder transmitted signal. The "decoder" reverses the work of the encoder and removes 

the encoding effect revealing the transmitted information symbols. 

TRANSMI'ITER 

RECEIVER 

Figure 2.6: A typical digital communication system 

2.4.1 Propagation channel 

This section discusses the channel impairments that limit the performance of a digital commu-

nication system. The ideal transmission of the digital pulses over an analogue communication 

channel would require infinite bandwidth. A band-limited channel such as a telephone channel 

is characterised as a linear filter having an equivalent low-pass frequency-response character-

stics, Hc(f) [20], defined as: 

Hc(f) =1  Hc(f) I exp(jO(f)) 	 (2A2) 

where Hc(f) represents the Fourier transform (FT) of the channel and 0(f) represents the 

phase response of the channel. The amplitude response of the channel I Hc(f) I can be defined 

as, 

m 
I Hc(f) 1= 	

l, IfI<f 
- 	 (2.13) 

10, lfI>f 
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-0.0 

1 t ---- f -0.5 

----f-I 

0.8 

0.6- 

0.4 

0: 

Sme 	 frequency 
(a) Impulse response 	 (5) Magnitude of the frequency response 

Figure 2.7: Raised cosine pulse and its spectrum 

where Ic1 is a constant and f is the upper cut-off frequency. The channel group delay charac-

teristic is given by, 

S 	

=1c2 	 ,- (2.14) 

where /c2 is an arbitrary constant. The conditions described in eq. (2.13) and eq. (2.14) con-

stitute fixed amplitude and linear phase characteristics of a channel. This channel can provide 

distortion free transmission of analogue signal band limited to f. Transmission of the infinite 

bandwidth digital signal over a band limited channel of f will obviously cause distortion. This 

demands for the infinite bandwidth digital signal be band limited to at least f, to guarantee dis-

tortion free transmission. This work is done with the aid of the transmitter and receiver filters 

shown in Figure 2.6. The combined frequency response of the physical channel, transmitter 

filter and the receiver filter can be represented as, 

H(f) = HT(f)HC(f)HR(f) 	 (2.1-5) 

where, HT (f), H  (f), and HR (f) represent the FT of the transmitter filter, propagation chan-

nel, and the receiver filter respectively. When the receiver filter is matched to the combined - 

response of the propagation channel and the transmitter filter, the system provides optimum 

signal to noise ratio (SNR) at the sampling instant [7] [20].  Since the channel response is not 
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known beforehand, the transmitter and receiver filter are matched, thus 

HR(f) = H(f) 	 (2.16) 

hR(t) = hT( —t) 	 (2.17) 

where * means complex conjugates, and hR (t), hT (t) denote time-domain representation of 

receiver and transmitter filter. For ideal channel presented in eq. (2.12), the design of the 

transmitter and receiver filters is critical for achieving distortion free transmission. One such 

filter capable of satisfying this criterion is the raised cosine filter given by, 

T, 

HTR(f) = 	{1 +cos[( f 

0, 

0 < I :5 
_flii 

2T)iJ' 	2T - 	- 2T 

If 

HTR = HT(f)HR(f) 
	

(2.18) 

T is the source symbol period and /3, 0 < /3 < 1, is the excess bandwidth and HTR is the 

FT of the combined response of transmitter and receiver filter. The plot of this combined filter 

response is shown in Figure 2.7. Figures 2.7-(a) and 2.7-(b) represent the time and frequency 

domain responses of the combined filter respectively. A distortion free transmission can be 

achieved, if the receiver output is sampled at the correct time. A sampling timing error causes 

inter-symbol interference (1ST), which reduces with an increase in /3. In the time-domain the 

impulse response in Figure 2.7-(a) can be represented as: 

sin(4) cos() 
= 	 (2.19) hTR(t) 	It 4j32t2 

and for the special case of 3 = 0 provides a pulse satisfying the condition, 

- sin() 
hTR(t) - 	It 	 (2.20) 

Under this condition the channel can provide the highest signalling rate, T =}-. At the other 

extrema, /3 = 1 provides a signalling rate equal to the reciprocal of the bandwidth, T = -. In 

this process selection of 0 provides a compromise between quality and signalling speed. 

Here, it has been assumed that the physical channel is an ideal low pass filter eq. (2.12). 
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However, in reality all physical channels deviate from this behaviour. This introduces ISI even 

though the received signal is sampled at the correct time. The presence of this 1ST requires an 

equaliser to provide proper detection. 

In general all types of communication systems are effected by 1ST. The combined channel due 

to the transmission filter, propagation channel and the receiver filter and the T-spaced sampler 

can be modelled by the digital finite impulsive response (FIR) filter represented in Figure 2.1. 

Here the channel observed output y(k) is given by the sum, of the noise free channel output 

(k) and noise. (k) in turn is formed by the convolution of the transmitted sequence x(k) 

with the channel taps h(i), 0 < i < NT - 1, where NT is the number of taps. The z-domain 

transfer function of the impulse response can be represented by the equation 

NT-1 

H(z) =h(i)z 	 (2.21) 

the channel provides a dispersion of up to NT samples. This discrete time model will be 

used throughout the thesis, with minor modification, which will be explained in that chapter in 

details. 

2.4.2 Equalisation 

As observed in the previous section, 151 in the communication channel is almost impossible 

to avoid, and therefore an equaliser forms a vital part of a modern day communications re-

ceiver. In general the family of adaptive equalisers can be divided into supervised equaliser 

and un-supervised equaliser. Supervised equalisation requires a set of training sequence to be 

transmitted. A replica of this training sequence is available at the receiver and the comparison 

of the two sequences with a certain rule form the supervised equaliser. After this initial train-

ing, the equaliser is then switched to decision directed mode, where the equaliser can update its 

parameters based on the past detected samples. In digital television and digital radio there is no 

scope for the use of training signal, hence the equalisers used in these applications are called 

un-supervised or blind-equalisers. The equaliser can also be categorised as linear and nonlinear 

equalisers based on their structure. 

The linear equaliser often provides sufficient performance over typical telephone channels for 

data transmission. However, for a typical radio channel with multipath propagation and large 

delay spread, the linear equaliser forms a poor choice. The nonlinear equalisers are used in such 
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situations where distortion is too severe for a linear equaliser to handle. Two very effective 

nonlinear equalisation techniques which offer substantial improvements compared to linear 

equalisation techniques commonly used are: a) decision feedback equaliser and b) maximum 

likelihood sequence estimator. 

The basic idea behind the DFE [21][22][23] is that when a decision has been made on an in-

formation (input) symbol, the 1ST that it induces to the following symbols can be estimated 

and subtracted out before detection of the successive symbols. In principle the feedback part 

takes away the 1ST caused by earlier detected symbols [24]. Several different cost functions 

are available to optimise the equaliser's performance, namely, the peak distortion criterion 

[25][1][26], the minimum mean square error (MMSE) criterion [25] [20] and the MBER cri-

terion [27] [28] [14]. The equaliser optimised for peak distortion criterion is called the zero-

forcing (ZF) equaliser. In recent years however, the ZF equaliser has become less popular [20]. 

The current implementations of equaliser are normally based on the MMSE and MBER cri-

terion. In developing training strategies for DFEs, it is convenient to adopt an MMSE cost 

function as this facilitates the use of standard adaptive "filter techniques" such as the LMS and 

recursive least squares (RLS) algorithms. However it has long been understood that the MMSE 

cost function is not optimal in this application; the MBER cost function being the more appro-

priate choice [27]. Further, the BER rate of a DFE optimised using an MMSE criterion can be 

distinctly inferior to the true optimum solutiOn [14]. Over the recent years there has been con-

siderable interest in developing the MBER based equalisers and their modifications [14] [15] 

[28][29]. The MBER cost function has also shown performance improvements in various ap-

plications such as adaptive beamforming [30] [31], multiuser detection for direct sequence code 

division multiple access (DS-CDMA) systems [32] [33], multiuser detection for OFDM sys-

tems [34] and many more. In general, the relative performance of equalisers designed using 

MMSE and MBER criteria is very much dependent upon specific channel conditions. Further 

exposition on MBER criterion is provided in the next chapter. 

The other popular nonlinear equaliser is the MLSE equaliser, which forms a robust equaliser 

for various channel conditions. The basic idea behind the MLSE is to test all possible data, 

sequences and choose the data sequence with the maximum probability as the output [3]. This 

implies that a MLSE scheme has a large computational requirement compared to traditional 

methods where the decoding is carried out symbol-by-symbol. MLSE is optimal in the sense 

that it minimises the probability of sequence error. MLSE can be implemented by using the 
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Viterbi algorithm thereby reducing the computational complexity of verifying all the possible 

combinations [4]. The basic block diagram of a MLSE equaliser [35] is shown in Figure 2.8. 

The MLSE requires knowledge of the channel characteristics in order to compute the metrics 

for making decisions and also knowledge of the statistical distribution of the noise corrupting - 

the signal. Thus, the probability distribution of the noise determines the form of the metric for 

optimum detection of the received signal. In case of Gaussian noise the metric can be reduced 

to the calculation of the Euclidean distance. From [8] we observe that in the presence of co-

channel interference the noise deviates from Gaussianity and thus the Euclidean distance is not 

an appropriate metric. The probability distribution of noise (including interference) is used-  as 

the metric in [8] The MLSE equaliser's performance is sensitive to the quality of the channel 

estimate, thus a good channel estimate can vastly improve the MLSE equaliser's performance. 

Channel 

output 

iYf atched  
Filter 

Estimated 
data sequence 

MLSE 

Delay 

e(n) 

Channel 

Estimator 

Figure 2.8: Block diagram ofMLSE equaliser 

2.4.3 Channel estimation 

As discussed earlier a good channel estimate can vastly improve a communication receiver's 

performance. The channel estimation in communication systems can be done in three ways: 1) 

blind, 2) semi-blind, and 3) training based. 	 - 

In blind channel estimation techniques, the channel is estimated without the exact knowledge 

of the transmitted sequence. This technique is attractive as the overall throughput is higher, 

as no bits are lost in training. However, blind estimation techniques require large amount of 
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data to be stored before channel estimation can begin, which invariably introduces delays. For 

those channel estimators based on a single-input single-output (SISO) channels, higher than 

second-order statistics or nonlinear optimisation are often required [36] [37] [38],  which causes 

problems such as local and slow convergence [39] [40] for blind channel estimation. 

Although non-data-aided or blind techniques for channel estimation have received considerable 

attention recently, many current digital communications systems employ a pilot sequence to 

probe the channel. The training based techniques estimate the channel by transmitting a known 

(at the receiver) training sequence (also known as pilots) along with the unknown data at the 

receiver. The receiver estimates the communication channel based on estimating the change in 

these training bits due to the channel. This technique provides a simple yet effective way of 

retrieving information about the channel, therefore facilitating all succeeding processing steps 

such as equalisation and symbol detection [41]. Training sequence also help in synchronisation 

and user identification. 

There are various estimators/techniques such as the least squares (LS) estimator, maximum-

likelihood (ML) estimator [42], expectation maximization (EM) [43], and methods of moments 

[44] are used for training based channel estimation in practice. However, the most common 

training sequence based channel estimator is the traditional LS estimator. The LS channel esti-

matorforms an optimal estimator for channel estimation in Gaussian noise environments [42]. 

However when the communication channel is affected by an interfering user then the traditional 

LS based estimation technique does not suffice. Interference when considered together with the 

Gaussian noise can be represented as a Gaussian mixture [8]. The channel estimation problem 

can be viewed as a parameter estimation problem in Gaussian mixture. To find the ML pa-

rameter estimate of a Gaussian mixture the EM based techniques are widely used [45] [46] [47]. 

The EM algorithm basically breaks the Gaussian mixture into an assumption that each obser-

vation is from one of the mixture components which is Gaussian distributed. Thus the complex 

parameter estimation in Gaussiab mixture is broken down into parameter estimation of many 

simpler estimation problems by the EM algorithm. 

Semi-blind estimation algorithms have been proposed in [48] [49] [50] in anticipation of im-

proved performance. These algorithms suggest the use of all the known information in the 

transmitted frame in contrast to either blind-only or training-only estimation algorithms. A de-

terministic and Gaussian ML approach is taken in [48] [49] and associated Cramdr-Rao bounds 

are derived. In [50],  a semi-blind cost function is proposed by combining a training and blind 
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cost function. In [51] a stochastic ML semi-blind channel estimation method is used. Fortu-

nately, the hidden Markov model framework and associated estimation algorithms [52] [53] 

[54] [55] [56] provide a computationally efficient solution to the resulting optimisation prob-

lem. The semi-blind techniques try to reduce the size of the training sequence by exploiting 

both the known and the unknown (blind) portions of the data. There are various other semi-

blind channel estimation techniques discussed in [57]. Recently, the semi-blind techniques 

have been applied for rapidly varying channels in [58], for 3rd-generation (3G) code division 

multiple access (CDMA) standard in [59] and for OFDM fading channels in [60]. 

With blind, semi-blind, and training based channel estimation methods discussed above, the 

training based methods still remains the most popular. One such successful example is the 

GSM communication systems receiver, where MLSE equaliser is used with a channel estima-

tor as in Figure 2.8. Channel estimation of wireless channels becomes challenging with many 

criterion effecting the estimation. The wireless channel could be a fast or slow fading channel 

with flat or multipath fading. Thus considerable research has been undertaken in [43] [44] [61] 

[10] [62] where statistical methods are used to get a reliable channel estimate. With the recent 

proliferation of wireless communication devices, the communication channel is increasingly 

becoming interference limited rather than noise limited as considered in past. Thus alternative 

techniques based on joint estimation [63] and [64] have been proposed for communications re-

ceiver. Recently, with the advent and advantages of using multiple antennas, some techniques 

based on multiple antennas with whitening (linear prediction filter as in section-2.3) are dis-

cussed in [65] and [66]. 

2.5 Conclusions 

In this chapter a brief overview of the adaptive filters and their various configurations were 

discussed in the beginning. A typical digital communication system was also presented. The 

constraints of a practical communication system and need for adaptive signal processing in a 

typical communications receiver was discussed in details. A brief review of the communication 

channel equaliser and estimator was provided at the end. 
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Chapter 3 
Stochastic gradient algorithm for 

equalisers in alpha stable noise 

Equalisers are used to combat 1ST at the receiver in a communication channel as discussed 

in Chapter 1. Channel equalisation dates back to the early work of Lucky [1], Proakis and 

Miller [67], who established the theory of adaptive transversal (or tapped-delay-line) equalisers 

adjusted by the zero-forcing or the MSE criteria. The early work aimed almost entirely at the 

telephone channel, which can essentially be characterised as a linear time-invariant 1ST channel. 

Later work was related to the line-of-sight microwave channel, which may be considered as 

a very slowly time-varying ionospheric and tropospheric channel. It was soon realised that 

linear equalisers were not able to provide the performance requirements for highly dispersive 

channels thus non-linear techniques were sought. DFE and trellis equalisers based on symbol-

by-symbol MAP estimation or MLSE are the non-linear techniques used for equalisation [8]. 

Recently there has been renewed interests in the MBER equaliser [14], [15] which is discuss 

later in this chapter. 

In some communication channels, the observation noise exhibits impulsive, as well as Gaus-

sian characteristics. The sources of impulsive noise may be either natural (e.g. lightning, 

ice-cracking), or man-made. It may include atmospheric noise or ambient noise. It might come 

from relay contacts, electro-magnetic devices, electronic apparatus, or transportation systems, 

and switching transients [68] [69],  as a result causing degradation in receiver's performance. 

Most of the present day systems are optimised under the Gaussian assumption and their per-

formance is degraded by the occurrence of impulsive noise [9]. Impulsive noise is more likely 

to exhibit sharp spikes or occasional bursts of outlying observations than one would expect 

from Gaussian distributed signals. A variety of impulsive noise models have been proposed 

in [69] and [70].  However, a common model to represent impulsive phenomena is the fam-

ily of a-stable random variables [71]. Stable distributions share defining characteristics with 

the Gaussian distribution, such as the stability property and generalised central limit theorem. 

Empirical data indicate that the probability density functions (pdf's) of the impulsive noise pro- 
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cesses exhibit a similarity to the Gaussian pdf, being bell shaped, smooth and symmetric, but 

at the same time having significantly heavier tails [68]. 

In [15] it was shown that adaptive linear equalisation based on probability of error performs 

better than that based on a least squared error cost function. Further, in [14] it was shown that 

the state-translated design with the MBER critera achieves a lower BER than conventional DFE 

structure. However the adaptive least BER (LBER) (with or without state translation) algorithm 

of [15] was derived on the assumption that the noise was drawn from a Gaussian distribution. 

The general purpose adaptive algorithms for a-stable noise environments have been proposed 

in the literature [71] and [72], however they are based on the L norm (where 0 < p < a) of 

the error rather than BER. In this chapter, a class of adaptive equalisers (similar in complexity 

to the LMS algorithm) where the BER is minimised in an a-stable noise environment is devel-

oped. Generally, in adaptive equalisation, the Wiener solution is taken as a point of reference 

in measuring performance. However in a-stable noise the variance of the input signal to the 

equaliser is theoretically infinite and thus the Wiener solution is not defined. In practice, every 

receiver has a finite input dynamic range which limits the amplitude of the received samples 

and produces finite variances. As pointed out in [73] the limiter facilitates the use of standard 

correlation based algorithms in a-stable noise. Using this limiter the 'Wiener solution with 

limiter' (WSL) for a-stable noise environments is derived. Simulation results show that the 

LMS algorithm fails to converge to this WSL solution while the proposed a-stable noise LBER 

algorithm seeks the optimum BER solution for-comparable computational complexity. Robust-

ness of the Gaussian noise LBER algorithms of [15] in a-stable noise is also suggested through 

simulation. 

The chapter is organised as follows: a brief overview of stable processes is provided in section 

3.1; an overview of the state-translated DFE structure is presented in section 3.2; the WSL 

in a-stable noise is derived in section 3.3; the LBER adaptive algorithm for a-stable noise is 

derived in section 3.4; simulation techniques, assumptions and results are discussed in section 

3.5; finally conclusions are drawn in section 3.6. 

3.1 	The class of stable random variables 

The family of stable random variables is defined as a direct generalisation of the Gaussian law 

and in fact include the Gaussian density as a limiting case. The symmetric stable densities 
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have many features of the Gaussian distribution. They are smooth, unimodal, symmetric with 

respect to (w.r.t.) the median and bell-shape. However, the main characteristics of a non-

Gaussian stable density function is that its tails are heavier than those of the normal density. 

This is one of the main reasons why the stable law is regarded suitable for modelling signals 

and noise of impulsive nature. 

The univariate symmetric a-stable (SaS) pdf (s) of a random variable (RV) S is defined by 

means of its characteristic function: 

F(w) = exp(öiw - 'IwI) 	 (3.1) 

where i = 	The parameters a, 'y and 6 describe completely an SaS distribution. 

The characteristics exponent, a 

The characteristics exponent controls the heaviness of the tails of the stable density and hence 

the impulsiveness of the respective stable process. It can take values in the interval (0,2]; a 

smaller value of a implies heavier tails (i.e. severe impulsiveness), while a value of a close to 

2 indicates a more Gaussian type behaviour. When a = 2, the stable distribution is reduced to 

the Gaussian density. 

The scale parameter, 'y 

The scale parameter, also called the dispersion, can be positive number. It plays an analogous 

role to variance and refers to the spread of the distribution. When a = 2 the variance of the 

Gaussian distribution equals 2y. 

The location parameter, 6 

This parameter is identical to the mean of the distribution. Throughout the thesis the SaS noise 

is assumed to be zero mean, hence the location parameter equals zero. 

The a-stable distribution is the inverse Fourier transform of Fa  (w), and can therefore be written 

as 
if'00 

fa(s) FT 1{Fa(w)} = - 	Fa(w)exp(jws)dw 	 (3.2) 
2ir  
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Figure 3.1: The symmetric a-stable probability density function forfour different values of the 
characteristic exponent a, including the Gaussian case fry = 1 and 6 = 0) 

When the random variable is symmetric around zero (6 = 0), then eq. (3.1) reduces to 

	

F(w) jj=O = exp(—'yIw) 	 (3.3) 

in which case the characteristics function is real and even. That is, the density function can be 

written as 
1 

	

fe (s) 
= - / 

exp(1yw ) cos ws dw 	 (3.4) 
ir 

Unfortunately, no closed-form expressions exist for the stable density, except for the Gaussian 

(a = 2), Cauchy (a = 1) and Pearson (a= ) distributions [71] [74]. An important property 

of all non-Gaussian stable distributions is that only the lower moments are finite, so for example 

the Kurtosis is not defined for a < 2. That is, ifs is a non-Gaussian stable RV, then E5 {IsI} < 

00 if p < a. A well known consequence of this property is that all stable RV's with a < 2 

theoretically have infinite variance [9]. 

Figure 3.1 demonstrates the effects of a on the tails of a stable distribution. Four symmetric 

stable distributions are plotted, all with 'y = 1 and 6 = 0 but with a = 0.5, 1.0,1.5 and 2.0. 

With a = 2 corresponding to the Gaussian density with zero-mean and variance equal to 2, and 
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a = 1 corresponding to the Cauchy density. The symmetric a-stable distributions are smooth, 

unimodal, symmetric with respect to the median and bell-shaped, just like the Gaussian density. 

A detailed comparison between the normal and the stable density functions shows that non-

Gaussian stable distributions depart from the corresponding Gaussian density in the following 

ways. For small absolute values of a, the a-stable densities are more peaked than the normal. 

For some intermediate range of I a 1, the a-stable distributions have lower densities than the 

normal. Most importantly, unlike the Gaussian distribution, the stable densities have algebraic 

tails which decay less rapidly. Further discussion on a-stable RV's and their properties can be 

found in [71]. 

3.2 Equaliser structures 

The channel is modelled as a finite impulse response filter with an additive noise source, and 

the received signal at sample k (as in Figure 3.2) is 

NT-1 

y(k) 	(k) + w(k) =h(i)x(k - i) + w(k) 	 (3.5) 

where (k) denotes the noiseless channel output; NT is the channel length and h(i) are the 

channel tap weights; the white noise w(k) has zero mean and is drawn from an a-stable dis-

tribution with dispersion -y and characteristic exponent a; the symbol sequence {x(k)} is in-

dependent and identically distributed (i.i.d.) and has an standard C-PAM constellation [20] 

defined by the set [14] 

x2  =2i—C-1,1<i <C 

Alpha stable noise 
Limiter 

w(k) 

x(k) 
Channel 

y(k) y(k) 

h  

(k) 
Equaliser 

(k—d) 

Figure 3.2: Typical communication system 

Throughout this chapter C = 2 for 2-PAM is considered. For a conventional linear-combiner 

DFE (shown in Figure 3.3) the decision variable z at time k is a linear combination of received 
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samples and past decisions: 

z(k) = aTy(k) - bT*b (k) 

where y(k) = [y(k) y(k - 1) ... y(k - m + 1)]T is the channel observation vector, *b(k) = 

[e(k - d - 1) (k - d - 2) ... I(k - d - )]T is the past detected symbol vector, a = 

[a (0) a(1) ... a(m 	i)]T is the feedforward coefficient vector and b = [b(1) b(2) ... b(n)]T 

is the feedback coefficient vector. The integers d, 'm and n will be referred to as the deci-

sion delay, the feedforward delay and feedback taps respectively; Without loss of generality, 

d = NT - 1, rn = NT and n = NT - 1 will be used as this choice of DFE structure parameters 

which is sufficient to guarantee the linear separability of the subsets of the channel states related 

to the different decisions [14]. Alternatively, the linear-combiner DFE can be expressed in state 

translated form [75]: 

z(k) = aT (y(k) - F2*b(k)) = aTy(k) 	 (3.6) 

The translation of the original input (to the equaliser i.e. received) vector y(k) to transformed 

new input (to the equaliser) vector y'(k) is done as y'(k) = y(k) - bT*b(k), assuming that 

the feedback vector *b (k) is correct (shown in Figure 3.4). The matrix F2  is constructed by 

partitioning the channel impulse response matrix F = [F1  F21, where: 

	

r 	h(0) h(1) •.. h(NT —1) 

F1 = 
0 h(0) 

h(1) 

0 	h(0) 

0 	0 	 0 

h(NT —1) 	0 

F2 = h(NT - 2) h(NT - 1) 	.. 	0 

0 

	

h(1) 	 h(NT  - 2) h(NT 1) 

The above translation performed on y(k) removes the contribution of past detected symbols 

Xb (k), which essentially reduces the requirement of having multiple conditional decision func-

tion for each feedback pattern [76]. By performing. the translation of eq. (3.6), the linear 
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combiner DFE is reduced to an equivalent linear equaliser 'without decision feedback': 

f'(y'(k)) = aTy(k) 	 (3.7) 

The decision boundary of this equivalent linear equaliser consists of C - 1 hyperplanes defined 

by: y' : aTy = 2i - C, 1 < j < C - 1. In particular, for C = 2, the decision boundary, 

y' : aTyl = 0, is a hyperplane passing through the origin of the y'(k)-space. It is shown, in 

[14], that in the state translation the channel states remain separable despite translation. The 

states can be made separable by applying a simple initial condition [14]. Th performance of 

the state translated linear combiner DFE is shown to be better than conventional MMSE DFE, 

however performance depends on the accuracy of the. built-in channel estimator [14]. 

L  1 —1 

zLl-
y(k) 	y(k-1) 	 y(k—m+1) 

filtering 
	 decision 

	'(k—d) 

device 

'(k—d—n) 	'(k—d-2) 	'(k—d-1) 

1 z 	 z 	 z 

Figure 3.3: Generic decision feedback equaliser 

The Wiener or MMSE solution is often said to provide the optimal a and b. It is however 

optimal only with respect to the mean square error criterion. Obviously, there must exist a 

solution at which achieves the best equalisation performance for the structure of eq. (3.7). 

The at is refered to as the MBER solution of the linear-combiner DFE. The MMSE linear-

combiner DFE is generally not this MBER solution. A natural question is how different the 

MMSE and MBER solutions can be. The difference in performance of MMSE and MBER 

solutions 'for Gaussian distributed noise is demonstrated in [14]. 
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h(Nr 1 	 h(N -2) 

z 	 _~D - 

(k—m+1) 

filtering 

decision 
device 

z _1 

'(k—d) 	 '(k—d—l) 

Figure 3.4: Translated decision feedback equaliser 

3.3 Minimum bit error rate equalisation 

It is obvious that the MBER and MIvISE solutions are different as discussed in [77]. In .this 

section the MBER criterion for a general DFE structure is described first. The calculation of 

MMSE solution is not possible for a-stable noise because of infinite variance. However, by 

introducing a practical design constraint of a limited dynamic range, the Wiener solution (the 

conventional way) is estimated. For clarity we describe it as the WSL. 

3.3.1 MBER criterion 

The bit error rate (B ER) observed at the output of the equaliser is dependent on the distribution 

of the decision variable z(k) which in turn is a function of the equaliser tap weights. To be 

more specific, the probability of error, PE, is: 

Pe = P(sgn(x(k - d))z(k) <0) 
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The sign adjusted decision variable z5 (k) = sgn(x(k - d))z(k) is drawn from a mixture pro-

cess. From the definition of z(k), 

ZS  (k) = sgn(x(k - d))(aTFx(k) - bT*b(k)) ± sgn(x(k - d))aTw(k) 

= sgn(x(k - d))z'(k) + w'(k) 
	

(3.8) 

where w(k) = [w (k) w(k 	1) ... w(k - d - )]T is the vector of noise samples; x(k) = 

[x(k) x(k —. 1) ... x(k - d - NT )]T is the vector of transmitted symbols. The first term on 

the right hand side of eq. (3.8), sgn(x(k - d))z'(k), is the noise-free sign-adjusted equaliser 

output and is a member of a finite set with N elements. These N elements forms the noiseless 

channel states i.e. the local means, of the mixture z3  (k). Without noise the combination of the 

channel and DFE is a finite state machine whose state is completely defined by the vector x(k). 

Thus if x(k) e {xi ... x 	XN }, then x2  represent one such state of possible Nz  states. 

Since z'(k) (from eq. (3.8)) and y(k) (from eq. (3.5)) are functions of input signal, the vector 

xi uniquely defines the ith  state of z'(k), y(k), x(k - d) and *b(k) - label these zj, y2, xi and 

*.j respectively. Note that while x(k) has N states, x(k - d) has 2 possible values (2-PAM). 

However since x(k - d) is a component of the vector x(k), the state of x(k) uniquely defines 

the value of x(k - d). The second term w(k) is a zero mean a-stable white noise process with 

dispersion 'y(i aj I) and characteristic exponent a - defining the distribution about the 

local means. 

3.3.2 Wiener solution with limiter 

In an a-stable noise environment with a < 2 the variance of the noise is infinite [711 making 

the use of the traditional Wiener solution theoretically meaningless. Nevertheless, all receivers 

in practice have a finite input dynamic range. This is achieved by using the structure as shown 

in Figure 3.2. The limiter at the front end of the receiver is assumed to be an ideal saturation 

device, with transfer function 

X 	 : IxI<G 
L(x,G) { sgn(x)G : elsewhere 

G being the saturation point of the limiter. The saturation limit level G is kept at a reasonable 

distance from noiseless channel states to preserve the noise structure and not limit (clip) the 

noiseless channel state. Provided C > max( (k)), the received signal at- the output of the 
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limiter, YL  (k), is the sum of the noise-free channel output 9 (k) and what is termed a truncated 

a—stable noise process, WL(k): Vk. The pdf of this truncated a—stable noise process is given 

by: 

fa(s,G1,G2) = fo (5)li[Q j,G2](5,G1,G2) +Ii(—Gi)8(s+ Gi) +Ir(G2)8(s - C2) (3.9) 

where 

1 : —G1<s<G2 

0 : elsewhere 

pGi

fG 

00  

11(—G1) 
= j 	

fo(s)ds,Ir(G2) 
= 	

f(s)ds 
—00 

where f, (s) represents the a-stable distribution. Since the limiter is assumed to be symmetrical 

G1 = C2 = G is considered. The pdf of the channel states (assuming equi-probable) is a delta 

function at the channel centres. 

N3  
f(s) = 

N, 
	 (3.10) 

3  i=1 

Since the truncated a-stable noise process of eq. (3.9) and the noise-free scalar channel states 

of eq. (3.10) are independent, the combined pdf is given by: 

Nsc 	 N3 

fyL() = 	 (3.11) 

where Nc = 2NT is the number of the scalar centres of the channel, i.e., ZT,7  = hT.xch1  (i 

1,2,..., N8 ),where h = [h(0) ... h(NT - i)]T and Xch = [x(k) ... x(k - NT +l)]T are all the 

possible combinations for the channel input vector. This pdf is the same as that observed at the 

output of the receiver, which confirms independence. The limiter "L(x, G)" truncates the pdf of 

the received signal and its tails are concentrated at the points ±G, where they appear as Dirac 

impulses 8(s). The noise variance can be calculated theoretically from [9],  with knowledge of 

a, limiting level G and noiseless channel states E,7. 

From classical Wiener filter theory [16], the WSL is a0  =Rp, where a0  is the optimum tap-

weight vector, R = E{yL YL T} is the input autocorrelation matrix, p = E{yL x} is the cross-

correlation vector and YL = [YL (k) YL  (k — i) ... YL (k - m+ 1)] T. The autocorrelation matrix is 

simply the sum of two autocorrelation matrices: (i) the autocorrelation matrix associated with 
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the noise free channel output; (ii) a scaled identity matrix. The scale factor is the variance of the 

truncated a-stable process and thus the scale factor is f s2 f(s, G)ds. The cross-correlation 

matrix is simply the cross-correlation of the noise free channel output with the target symbol. 

Because the variance of the truncated a-stable noise process is a function of both the parameter 

a and the limiter value G, the WSL will be as well. 

Thus the WSL is formulated after the limiter using the independence property, which was not 

obvious from [9]. 

3.4 Stochastic gradient adaptive equalisers 

In this section the problem of minimising BER in an a-stable noise environment is addressed 

directly and a stochastic gradient algorithm for the task is derived. As the development is in 

terms of probability of error rather than mean squared error the requirement for a limiter is 

removed. 

Consider the noise density function 1(x) associated with the zero mean random variable x. The 

density function is symmetrical and normalised such that the variance or dispersion is unity. The 

associated distribution function is P(x). The "generalised" error function is Q(x) = 1— P(x) 

and its derivative is Q'(x) = - f(x). The probability of error at the output of a linear or state 

translation equaliser with N noise free states as a function of the weight rn-vector ais: 

N 
1 

PE (a) = 
N 

j=1 

where gj  (a) is the signed decision variable associated to the i' state, normalised by the "strength" 

of the noise. In the Gaussian case [15]: 

gj(a) = 
aTyixi 	

(3.12) 
IIaIIa 

where yi is the ith  noise free received vector; the Euclidean norm is 11aM = ( T=i Iaj I 2); x 

is the transmitted symbol associated with that vector; c2  is the noise variance. In the a-stable 

case: 
aTyixi  

9i (a) - - 	 (3.13) 
IIaIl-x 
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where the "a-norm" is defined as: IIaII = ( 7t1  ajI) For adaptive filters, derivatives of 

the form DPE/3a3  : Vj are required. 

= 1
9) 

= 

In the Gaussian case the derivative of eq. (3.12) is given by: 

Dg (a) - 0 (a 	yiXi 

	

8a 	- Oa k..IaII) o• 

= 

	

	yixi 	
(3.14) 

Ia!! 

 

(IT 

hail 1 ° 

where 13  is an rn-vector with all zero elements apart from the jth  entry which is unity. In the 

a-stable case the derivative of eq. (3.13) is taken: 

3g (a) 	(9 ( a 
1, 

y2X2 

= — 0a3 	8a3  IIaIIQ -y.' 

1 	

(1' 

aTa3_lsgn(aj)\ YiXi 	
(3.15) 

IIaIIa 	 h!aiI 	/ - 

The a-stable case being more general is used in the derivations from now on. Thus multipling 

out gives: 
Og (a) - 1 (Y.. 	 xi 

aaj 	i!aII 	 hIahi 	) - 

where Yij  is the j' element of yj  and zi 	aTyj  i.e. the equaliser output associated with the 

jth noise free state. Collecting partial derivatives together to form a gradient vector we have: 

1xi 
N 	

"i 

	

VPE(a) = - 	f(g(a)) 	
(

Yi 
_zi(a) 

IIaIIa hlaII) ,y i=1 

where (a) is an rn-vector with jth  element equal to ajl° 1sgn(aj). Since the norm of the 

weight vector does not affect PE  in the binary signalling case it can be set to unity at each 

iteration thus: 
N / I 	1ii 

VPE(a)= — _— j- ft_j_ (y—(a)z)x 
N i 

The key to developing the LMS algorithm from its related steepest descent algorithm is to 
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replace the ensemble average of the gradient with a single point estimate of the gradient. The 

same concept can also be employed to develop an LMS-style update algorithm to train a MBER 

DFE [15].  Thus the final update equation is modified as an LMS-style update: 

(z(k)x(k_d)'\ 	

x(k —d) 

	

a(k + 1) = a(k) + p1 	 J (y(k) - (a(k))z(k)) 	 (3.16) 
'y 	J 

(z(k)x(k —d)'\ x(k —d) 
ic b(k + 1) = b(k) — pf 

( 	
1(3.17) 

\ 	,y 	IIya 

For a state-translated DFE, eq. (3.16) is modified by replacing y(k) with y'(k) 

a(k + 1) = a(k) +pf (z(k)x(k - d) (y'(k) - (a(k))z(k))x(k—d) 
	

(3.18) 

	

\ 	'y 	) 	 'ya 

where 

y'(k) = y(k) - F2(k)*(k) 	 (3.19) 

Eq. (3.17) is not used here, rather an L-norm (equivalent to a-norm discussed earlier) is 

considered to form an estimate of the impulse response vector h [h(0)h(1) ... h(NT - 

x(k—d)l 1 	 Fx(k — d)llI 

i 

	

hk+1=,hk+p 
[ 	

I IIy(k_d)_hT(k) [ 

	
ft 	(3.20) 

ll 	
Xb 

£1 

The equaliser tap weights are normalised after each update. The final decision, (k - d), is 

made on the filter output aT(k)yF(k). 

3.5 Simulation study 

In this chapter, the SNR of the limited received signal YL  (k) is used for performance evaluation 

in environments where the noise variance is infinite. By using the limiter the SNR is always 

finite and hence measurable. This is referred as the SNR at the reóeiver. Simulations were 

performed for anti-podal signalling (C = 2), assuming that the noise is Cauchy distributed i.e. 

a = 1 and the limiter, at DFE front-end, is at ±4 [9] to avoid being close to noiseless channel 

states at the transmitter output. Method developed by Chambers, Mallows and Stuck [78] is 

used in this thesis to generate random noise. The same procedure was used in [79] and [13]. 
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The variance of the truncated a-stable process wL(k) is calculated as discussed in [9]. Figure 

3.2 represents the receiver architecture considered in simulations. 

As the performance of equalisers are highly dependent on the nature of the channel considered, 

two channels which have been well studied in the literature [13] were chosen to characterise 

the performance. These channels have impulse responses [0.3482 0.8704 0.3482] and [1.0 

0.50 0.25]. The location of poles and zeros for both the channels is shown in Figure 3.5 and 

the frequency respose in Figure 3.6. As observed from the figures, the channel response of 

Figure 3.5-a) is more difficult to equalise than the channel of Figure 3.5-b). The presence of 

a zero outside the unit circle, as in Figure 3.5-a), results in the channel being non-invertible 

leading to difficulty for linear equaliser. As observed from the frequency response a high noise 

enhancement, will result if an linear transversal equaliser was used since the gain required to 

equalise the channel [0.3482 0.8704 0.3482] at higher frequency tends to be much larger than 

for the second channel [1.0 0.5 0.25] as also seen from Figure 3.6., The .DFE provides better 

equalisation than linear equaliser in such deep fade communication channels. The performance 

of the DFE equaliser can be improved by increasing the order of feed-forward and feed-back 

taps. However to have limited computational complexity, the DFE structure is chosen to be 

d = 2, m = 3 and n = 2. 

- 	-1 	0 	 —1 	—0.5 	0 	0.5 
Real Part 
	

Real Part 

a) cole—zero ølot for channel = 10.3482 0.8704 0.34821 
	

b) pole—zero plot for channel = (1.0 0.50 0.251 

Figure 3.5: Pole zero plots for the communication channels to be equalised 
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a) Frequency response of channel = 0.3482 0.8704 0.34821 
	

b) Frequency response 01 channel = [1.0 0.5 0.251 
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Figure 3.6: Frequency response of the communication channels to be equalised 

The legends in Figure 3.7, Figure 3.8, Figure 3.9 and Figure 3.10 depict: a) 'LMS' refers to a 

conventional LMS algorithm for both the feedforward and feedback taps of a conventional DFE, 

b) 'LBER-Gaussian' refers to a LBER algorithm for adapting both feedforward and feedback 

equaliser taps of a conventional DFE assuming that the noise is Gaussian [15] (using eq. (3.16)-

(3.17) with density f (.) being Gaussian distributed) , c) 'LBER-Cauchy' refers to adapting both 

the feedforward and feedback taps of a conventional DFE assuming Cauchy distributed noise 

using eq. (3.16)-(3.17) with density f(.) being Cauchy distributed, d) 'state trans-Gaussian' 

refers to the same adaptive algorithm as (b) but with state translated design [14] (update eq. 

(3.18)-(3.20)), e) 'state trans-Cauchy' refers to the same adaptive algorithm as (c) but with a 

state translated design updated as in eq. (3.18)-(3.20), f) 'modified Wiener' represents WSL 

calculated after the limiter using YL  (k) as discussed in section-3.3.2. A total of 105  samples 

was used to generate the convergence and performance plots using Matlab. In order to make a 

fair comparison of the relative performance of the algorithms the adaptation constant p is fixed 

as 6(m+n)  [15] for all the adaptive algorithms compared in this chapter. A large sample size 

and ensemble for simulations was taken to reach conclusions because of the impulsive (high 

variations in input signal amplitude) nature of a-stable noise. 

An ensemble of 100-runs was taken to generate convergence plots as shown in Figure 3.7 and 

Figure 3.9 at a SNR of 7.9 dB's. As can be observed the convergence behaviour of the LMS is 
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unstable. This can be attributed to the fact that the LMS is dependent on the magnitude of the 

instantaneous error, which varies a lot in an impulsive noise environments. Algorithms designed 

to minimise BER in a Gaussian noise environment converge more slowly than those specifically 

designed for the Cauchy noise environment. It is safe to conclude that the state translated design 

for Cauchy noise has faster and more stable convergence than the other algorithms. 

To observe the BER performance of these algorithms an ensemble of 1000-runs was taken. The 

- 

	

	equalisers were trained using the first 1000-samples of a particular run after which training was 

inhibited and the BER for that run measured. The final BER estimate was obtained by averaging 

over 1000 such runs in the ensemble. Figure 3.8 and Figure 3.10 summarise the results for the 

two channels used. It is observed at a BER of 5 x 10—  approximately 5 dB's is gained by 

using a minimum-BER criterion instead of an LMS algorithm. Again the Gaussian noise based 

LBER algorithms perform well with respect to Cauchy noise based LBER algorithms which 

are tailored to the particular environment. The state translated Cauchy noise based LBER DFE 

performs better than the other algorithms as is apparent from both Figure 3.8 and Figure 3.10. 

It is also interesting to observe that this MBER algorithm performs better than the WSL. 

While the WSL provides an optimal solution in the MSE sense, however it does not minimise 

the BER. However the LMS algorithm, which would normally find the MSE solution, fails to 

converge to this solution in this environment. The LBER algorithms, by their nature, seek the 

desired optimum MBER solution. LBER algorithms have been demonstrated to find the op-

timum BER solution with a computational complexity similar to that of the LMS, as obvious 

from eq. (3.16)-(3.17) [15]. From the simulations it is observed that the state-translated DFE 

for Cauchy distributed noise has better convergence and BER performance than the other algo-

rithms considered. LBER algorithms based on Gaussian noise [15] assumptions have also been 

demonstrated to perform well in a-stable noise environments. The close performance of Gaus-

sian noise based algorithms [15] to the Cauchy noise based ones can be attributed to the fact that 

the Gaussian mixtures may model a-stable distributions [80] [81] and to the presence of limiter 

at the DFE front-end which essentially limits the heavy tails of a-stable noise distribution. 

3.6 Conclusions 

A minimum bit error rate adaptive algorithm for impulsive noise modelled as a-stable noise has 

been proposed in this chapter. By introducing a limiter at the receiver front-end both SNR and 
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Figure 3.7: Convergence plot for Cauchy (a = 1) distributed noise for channel = [0.3482 
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Figure 3.8: Performance plot for Cauchy (a = 1) distributed noise for channel = [0.3482 
0.8704 0.3482] with SNR calculated after the limiter 
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Figure 3.9: Convergence plot for Cauchy (a = 1) distributed noise for channel = [1.0 0.5 0.25] 
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Figure 3.10: Performance plot for Cauchy (a = 1) distributed noise for channel = [1.0 0.5 
0.25] with SNR calculated after the limiter 
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Wiener solution can be calculated theoretically and by simulations. It is shown that for mini-

mum bit error design, the adaptation is a function of the noise density function. The comparison 

between various adaptive algorithms working in identical channel, noise and DFE structure has 

been drawn. The LBER-Cauchy and the state trans-Cauchy has faster convergence than the 

other adaptive algorithms in Cauchy noise environments, which is a special form' of a-stable 

noise. Extensive simulations strongly suggest that the state-translated design for the a-stable 

noise has better convergence and BER performance than the other algorithms, as the translation 

in space leads to linear seperability and reduction in states [14]. It is also interesting to observe 

that the adaptive algorithms based on a Gaussian noise assumption despite slow convergence in 

impulsive noise environments perform closer to those designed. with Cauchy noise assumption. 

Lastly, as expected, the LMS algorithm performs poorer that the other algorithms in a-stable 

noise environments. Observations from Figure 3.8 and Figure 3.10 suggests MB ER algorithms' 

superior performance, with respect to the WSL solution. It is worth mentioning that the overall 

performance of the different equalisers used in this chapter can be improved by increasing the 

equaliser taps order. 



LI 

Chapter 4 
Non-parametric maximum likelihood 

channel estimator in the presence of 
uncorrelated non-Gaussian noise 

The Gaussian random process has always been the dominant noise model in communications 

and signal processing, mainly because of the central limit theorem and the relative ease of an-

alytic manipulation. Unfortunately, in some communication channels, the observation noise 

exhibits non-Gaussian characteristics either due to. impulsive noise [70] or co-channel interfer-

ence. Impulsive noise is more likely to exhibit sharp spikes or occasional bursts of outlying 

observations than one would expect from normally distributed signals as discussed in details in 

the previous chapter. Co-channel interference is a dominant feature of modem radio communi-

cations systems in that virtually no radio link or system is alone in its allocated frequency band. 

Other radio transmitters, near and far, constantly cause interference [24]. The combinatiOn of 

CCI and thermal noise leads to observation noise that is drawn from a Gaussian mixture [82]. 

Thus the non-Gaussianity of the observation noise may be due to the presence of impulsive 

noise or CCI or unknown mixtures of both and it would be desirable to have channel estima-

tions techniques that address this non-Gaussian nature without requiring explicit knowledge of 

which form is present or their relative intensities. 

Channel estimation forms an integral part of a communication receiver [82]. The channel es-

timation in communication systems can be done in three ways: 1) blind, 2) semi-blind, and 

3) training based: In this chapter a training based channel estimator is addressed, where the 

channel is estimated over a block of data (similar to in GSM) [82]. As discussed above the 

observed noise at the receiver may not be Gaussian. This degrades the performance of a LS 

based channel estimators. Various statistical techniques like EM and method of moments based 

channel estimators have been proposed for communication systems in [83] [44]. However they 

usually limit (approximate) the interference as Gaussian distributed [84] [44], which may not 

be the case if there are only a few strong interferers. Other techniques based on joint de-

tection/estimation like in [63] and [64] which work on interference cancellation make certain 
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assumptions about the interferer, which cannot be generalised in practice. Such joint detection 

and estimation is out of scope of this chapter. In this chapter no assumption on the distribution 

(and number) of the interference is made, which makes the proposed technique robust to the 

nature of the observed mixture distribution. 

From [82] [80] [10] [85] it is clear that various types of observation noise encountered in com-

munications systems can be modelled as a Gaussian mixture. In this chapter two main classes of 

finite Gaussian mixture distribution are considered: a) uni-modal distribution where zero-mean 

processes of differing variances are mixed; b) multi-modal distribution where non-zero-mean 

processes with the same variance are mixed. The uni-modal form lends itself naturally to im-

pulsive noise [10] [86] [85] while the multi-modal form is appropriate for CCI [82] [87]. The 

most popular choice for ML system identification in a Gaussian mixture observation noise en-

vironment is to use the EM algorithm [47] [45] [88].  The EM and its variant space-alternating 

generalised EM algorithm (SAGE) [89] is used in [90] [10] [86] [43] and many more for param-

eter estimation and detection. Application of the EM algorithm to the problem usually requires 

a priori assumptions about the specific functional form of the pdf of the observation noise. The 

unknown parameters of the mixture (e.g. the means and variances of the mixtures) are grouped 

with the channel impulse response to form the vector to be estimated. For example in [10] [86] 

the specific case of impulsive noise modelled as a zero-mean,  Gaussian mixture is considered. 

In [43] it is shown that for deterministic channel estimation the problem reduces to RLS. 

In this chapter a generic non-parametric approach to ML channel estimation that is capable of 

addressing both the impulsive noise environment where the uni-modal frm is appropriate and 

the CCI environment where the multi-modal form is appropriate is presented. The technique 

can be applied without making any a priori assumptions about the number and nature of the 

means and variances of Gaussian mixture. In the impulsive noise environment this technique is 

shown to have similar performance to existing EM based algorithms. 

The key to this non-parametric approach is the use of kernel density estimation to charac-

terise the observation noise directly from the data. The theory developed in [91] and [92] to 

estimate the communication channel impulse response in a non-Gaussian noise environment 

is estimated. The relationship between the minimum error entropy (MEE) algorithm and the 

non-parametric ML (NPML) is also highlighted here. Improvements in the mean square error 

(MSE) performance with respect to the traditional LS channel estimate are examined and a 

comparison with EM is also considered. 
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The Cramer Rao bound (CRB) defines the lower bound on the channel estimator's performance. 

There is rich literature available on CRB formulations for both Gaussian and non-Gaussian 

noise scenarios in [42] [85] [93] [94] to name a few. The CRB for channel estimation in the 

two (unimodal and multi-modal) Gaussian mixture case is formulated in this chapter. First an 

analytical expression for the CRB is developed and then from simulations it is observed that 

NPML algorithm is closer to achieving the CRB than the LS technique. 

This chapter is organised as follows. First, the problem statement is formulated in section-

4.1 for a general communication system. A short discussion on kernel density estimators is 

provided in section-4.2. The non-parametric maximum likelihood algorithm using kernel den-

sity estimators is discussed in section-4.3. The iterative MEE channel estimator is derived and 

compared with NPML in section-4.4. The theoretical lower bounds on the channel estimator in 

non-Gaussian noise modelled as Gaussian mixtures is formulated in section-4.5. In section-4.6 

simulation results are presented. Conclusions based on analysis and simulation are drawn at 

the end. 

4.1 	Formulation of the problem 

The discrete-time model in the low-pass equivalent form of the communication system channel 

estimator is shown in Figure 4.1. Without loss of generality, the input signal is assumed to be a 

randomly generated birary anti-podal PAM signal, so that the transmitted symbols are x c{ ±11. 

Here y(k) represents the received signal and w(k) is the additive observation noise. The model 

is simplified by assuming that the channel is of order NT - 1 i.e.: h = [h(0), h(l), ..., h(NT - 

1)]. 

More precisely, the received signal y(k) sampled once per symbol can be written as: 

NT-1 

h(n)x(k—m)+w(k) 	 (4.1) 

The problem is to estimate the channel coefficients from the received signal, assuming that 

the input signal (in a supervised training mode) and the channel (tap) length is known at the 

receiver. Thus the problem reduces to the well known problem of system identification. In 

this chapter a block based channel estimator with training symbols, similar to that of the GSM 

system [82] is considered. As usually assumed for slow fading channels in GSM environments, 

43 



Non-parametric maximum likelihood channel estimator in the presence of uncorrelated 
non-Gaussian noise 

w(k) 

x(k) 	Channel 	 y(k) 

+± IF I 

(T) —r- 
Estimated Channel 

h 

Gradient 

Calculation 

Figure 4.1: A typical communication systems channel estimator 

the channel is assumed to be fixed for the burst (block) duration. 

There are various algorithms based on different criteria to estimate the channel taps. The LS 

solution is the optimum solution for the Gaussian noise environments where it is equivalent to 

an ML estimate [39].  However, here it is assumed that the observation noise is non-Gaussian 

and thus LS does not provide the ML solution. The pdf of the observation noise is assumed to 

be unknown at the receiver. Thus the channel estimator in this chapter performs two tasks: (i) 

estimation of the impulse response itself; (ii) estimating the pdf of the observation noise at the 

receiver to construct the likelihood. 

The pdf of the additive noise is modelled by a mixture of finite Gaussian distributions. The 

three justifications for using a Gaussian mixture model are (1) the set of Gaussian mixture 

distributions -include as approximation to Middleton's canonical class A model [95], (2) Fan's 

theorem [96] indicates that Gaussian mixture distributions can approximate a large class of 

pdfs, and (3) the Gaussian mixtures distribution naturally includes the Gaussian thermal noise 

that is present in communication systems [81]. In addition to these justifications, a generalised 

ME 



Non-parametric maximum likelihood channel estimator in the presence of uncorrelated 
non-Gaussian noise 

Gaussian mixture pdf model is used: 

NM 

(w) 	
Al 	

( 
(w  

fw 	
_thj)2 

= 	 exp 
1 	 - 2c? ) 	

(4.2) 
=1  

where w is the noise sequence, A1 represents the probability that w is chosen from the 11h 

term in the mixture pdf, with ENm A1 = 1 for NM number of mixtures. We will verify the 

robustness of the algorithm byassuming Vl; tbi = 0 for uni-modal noise and non-zero for multi-

modal noise distribution. It is interesting to note from [82] that the co-channel interference 

can be modelled as a Gaussian mixture of non-zero mean processes with identical variance 

(o? = '1... 	NM ). This will be discussed in detail later in this chapter. 

4.2 Kernel density estimation 

Non-paramertric density estimaton is a classical topic in statitics, where the two most com-

mon techniques are histogram and kernel density methods. A histogram is the simplest non-

parametric density estimator and the one that is most frequently encountered. To construct a 

histogram, the sampled data is divided into the intervals covered by the data values and then 

into equal sub-intervals, known as 'bins'. Every time, a data value falls into a particular sub-

interval, then a block of size equal to the binwidth is placed on the top of it. The disadvan-

tages with histogram plot are that, it does not provide a smooth estimate of the density, it is 

sensitivity to the end points of bins, and width of the bins. The problem of smoothing and 

end points in histogram can be overcome by using a smooth kertiel placed on the observed 

data point. The Figures 4.2 and 4.3 show estimated density plot for hypothetical sampled data 

[-0.90 —0.70 —0.50 —0.450 —0.35 0.25 0.35 0.50 0.70] from histogram and kernel method 

respectively, where a Gaussian kernel is used to estimate the density. Thus to estimate the pdf 

at the receiver the kernel density estimator technique is used in the thesis. Parzen's window 

technique or kernel density estimation assumes that the probability density is a smoothed ver-

sion of the empirical samples. Thus, for a collection of M measured data samples {y (j) } 

the estimate f(y)  (where f(y) is a random variable) of the underlying pdf f(y)  is the average 

of radial kernel functions centered on the M measured data samples: 

1(y) = 	K(y—y(j)) 	 (4.3) 
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K(.) is the Gaussian kernel (Parzen kernel) [82] defined as: 

	

K(y) X(0, u) = Lexp 
(-2) 	

(4.4) 
20. 

with variance (or kernel width) defined as o. Other choices of kernel like Epanechnikov kernel 

are possible. The Epanechnikov kernel is defined as [8]: 

- 2 
KE (y) { _(i_) : 

0 	 : elsewhere 

It can be shown that under the right choice of kernel function 1(y)  will converge to the true 

density f(y)  as M -* oc [97]. 

-1 	-0.8 	-0.6 	-0.4 	-0.2 	0 	0.2 	0.4 	0.6 	0.8 	1 

Y 

Figure 4.2: Histogram 	density 	estimate 	for 	[-0.90,-0.70,-0.50,-0.450, - 
0.35,0.25,0.35,0.50,0.701 
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Figure 4.3: Kernel density estimate for [-0.90,-0.70,-0.50,-0.450,-0.35,0.25,0.35,0.50,0.70j 

4.3 	Non-parametric miximum-likelihood (NPML) channel estima- 

tion 

For the communication system represented by eq. (4.1) the ML estimate forms the optimal 

estimator for the channel. The log-likelihood function can be represented as: 

I 	= log f(y I h) = 	log f(e(i)) 	 (4.5) 

where f(.) is the pdf of the independently identically distributed (i.i.d.) observation noise w 

(eq. (4.1)), e(j) = y(j) - 
	x(j - n)h(n) is the estimation error and M is the number 

of data points in a block. The optimal channel estimate is the solution to: 

VhL(h I = 	8h 	
= o 	 (4.6) 

If the noise was Gaussian then the solution to the above equation leads to the LS estimate. 

However, in communication systems where the noise is non-Gaussian closed form equation for 

f (.) do not exist in general. Even if f (.) was known and was genuinely a Gaussian mixture, 

no closed form analytic solution for eq. (4.6) exists. Hence to find the solution, an iterative 

gradient ascent based algorithm is proposed as follows. The gradient here is the first derivative 
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of the log-likelihood function with a constant multiplier. The update equation is: 

bk_i + .(k) Vhr(h I Y') I=_, 	 (4.7) 

log f(e(i))} I 
= bk_i+IL(k) 	8 	

(4.8). 
h 	I - Ih=hk_l 

where (k) is the adaptation step-size. Since the channel estimator is assumed to have no 

a priori knowledge of the pdf f,,(.), the unknown pdf is estimated using the kernel density 

estimator eq. (4.3) with Gaussian kernels as shown below. As the kernel estimators are known 

to be effective in density estimation over short data record, this technique is used over the 

available data (error) record to estimate the unknown density. Using the kernel density estimator 

[921 the estimated pdf is written as: 

fw(e)= > K(e —e(j)) 	 (4.9) 

Thus the estimated log-likelihood function becomes: 

M 

y) Ih=j = 
	

log 

( 	

M 

K(e(i) - e(i))) 

M M 

=E log >K(e(i) —e(j)) — log M 	(4.10) 
j=1 	j=1 

The gradient of the log-likelihood can be formulated as: 

Vh(b I ) Ih= 1 	I 

M o M  
>log >.K(e(i) e(j)) 

ah 
h=hk_l 

- 	. 	>' 	gK(e(i) - e(i)) 
- 	

K(e(i) - e(k)) h=iik_1 

1 M 	f. 1 (e(i) - e(j))(x(i) - x(j))K(e(i) - e(j)) 

a2 j=1 EM 1  K(e(i) - e(k)) 	 h=uik_j 
(4.11) 
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Thereby substituting this estimated log-likelihood into eq. (4.7) and iterating till 1k  converges 

to a unique ML channel estimate. The selection of the step-size p(k) is considered in the 

Appendix-A, this setp-size selection makes the channel estimator's update independent of the 

kernel width. Choosing the appropriate value of a, the kernel width or smoothing parameter, 

depends on the type of density. to be estimated. If the exact noise pdf was known at the re-

ceiver then an appropriate smoothing parameter could be chosen, which minimises the mean 

integrated square error between the actual and the estimated pdf. However since in this chapter 

no a priori knowledge of the noise pdf is assumed, thus a dynamic estimate for kernel width is 

used [98]: 

a = 0.9 min(standard deviation, interquartile range/1.34) M 115 	(4.12) 

The interquartile range is a measure of spread or dispersion. It is the difference between the 75th 

percentile (often called Q3) and the 25th  percentile (Qi). The formula for interquartile range 

is therefore: Q3 - Qi. This choice of width parameter works well as, when the samples are 

closer to Gaussian pdf then the 'standard deviation' is less than the 'interquartile range', thereby 

making the kernel width approximately equivalent to optimal (in trems of mean integrated 

squares error) kernel width for. On the other hand when the multi-modality is clear, then the 

parameter 'interqaurtile range' govern the kernel width. 

For sample size of iOO the skewness and the multi-modality of the density will be clear by 

choosing the a by the above technique. It is also noted from [98] that this smoothing parameter 

will do very well for a wide range of densities and it is trivial to evaluate. 

The NMPL channel estimator is initialised by the LS estimate and iterates on the per received 

block basis i.e. the eq. (4.7) is iterated over the received block till the channel estimates 

converge. The algorithm is depicted in Table-4. 1. 

The sample (training) size is taken as 100-symbols for the proposed algorithm. The effect of 

training block length for correlated multi-modal Gaussian distribution (i.e. CCI) is discussed 

in section-4.6.2. 

Being a gradient based solution to a non-linear optimisation problem the proposed algorithm 

may suffer from the usual problems of possible convergence to local maxima (minima). How-

ever it is found during simulations that the combination of LS initialisation and selection of 
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Initialise with LS estimate, hk = hLS 
Calculate estimation error, e(j) = y(j) 

- 	x(j - n)h(n) 
Estimate the gradient from estimated density, eq. (4.11) 

Update channel taps, eq. (4.7) 
Follow step 2) to step 4) till converged 

Table 4.1: NPML Channel Estimator 

step size as in the Appendix-A always provided solutions that were superior to the LS one. 

In other channel estimation techniques that address the non-Gaussian environment [62], [10], 

[43], the number of mixtures is assumed known at the receiver, and then the variance and other 

parameters are estimated iteratively. Here, in order to circumvent the difficulty of estimating 

the individual parameters of the likelihood (in this case estimation error) pdf, the kernel density 

estimator is used to estimate the likelihood function directly. By directly estimating the likeli-

hood, the receiver does not need to know (or estimate) the number, the relative probability or 

variance of different components of the mixture [81]. For the channel estimation problem the 

MEE algorithm is discussed and the similarity with the NPML algorithm is presented in the 

next section. 

4.4. Minimum error entropy algorithm 

In this section a channel estimator based on the MEE criterion is presented and the similarity 

with the ML channel estimator is observed. Entropy, introduced by Shannon [99], is a scalar 

quantity that provides a measure for the average information contained in the given probability 

distribution function. By definition, information is a function of the pdf, hence the entropy as 

an optimality criterion is more general than MSE. The MSE criterion minimises the energy 

between the desired and the system output. The minimum mean square error criteria is to-

tally dependent on the second order statistics of the system, which is normally not optimal for 

non-Gaussian non-linear environment. When the entropy is minimised all the moments of the 

error pdf, not only the second moments are constrained. The entropy criterion can generally 

be utilised as an alternative for MSE in supervised adaptation [100]. The MEE principle for 

minimisation of the distance between the two probabilities is employed here. In the following 

it will be clear that by minimising the error entropy is equivalent to minimising the distance 
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between the probability distributions of the desired and the system outputs. 

The estimation error-entropy is defined as: 

HE 	= E{— log f(e)} 	 (4.13) 

= _ f
oo 
 f(e)10f(e)de 	 (4.14) 

where f (e) is the pdf of estimation error for the block of length M. This measure is also known 

as the integral estimate of entropy [101]. As discussed in the previous section, the density is 

estimated by the kernel density estimator. Thus the non-parametric entropy for large block 

length and assuming ergodicity (or by re-substitution estimate) becomes [101]: 

HE = 	1ogf(e(i)) 

_ 1 M M 
= 	- j-> log >K(e(i) —e(j)) + log M 	 (4.15) 

j=1 	j=1 

Comparing the log-likelihood function of eq. (4.10) with the above equation, they differ only in 

the scaling term and sign. Since this cost function minimises the entropy, the update equation 

in eq. (4.7) is modified as: 

hk = bk_i - PH(k) VhftE Ih=hk _ l 	 (4.16) 

Substituting the gradient of eq. (4.15) in eq. (4.16) formulates an iterative solution. By sub-

stituting PH  (k) = a2  (refer Appendix-A) in eq. (4.16) the estimated channel taps always 

converge to the MEE estimate solution after a few iterations. Use of p H (k) = 0r2  as an effect 

makes the adaptation independent of the noise variance. 

43 Cramér-Rao bound for Gaussian mixture 

Earlier in this chapter an ML based channel estimation technique was discussed. To assess 

the performance of the proposed estimator the fundamental theoretical lower bound is found. 

The Cramer Rao lower bound defines a lower bound on the variance of an unbiased channel 

estimator. The lower bound placed on the estimator proves to be extremely useful in practice. 

At best, it allows to asses that an estimator is a minimum variance estimator. This is the case 
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when the estimator attains the bound for all the estimated parameters. At worst, it provides a 

benchmark against which the prformance of the unbiased channel estimator is compared. The 

CRB can generally be easily found in Gaussian noise environments. However it is generally 

impossible to find closed form lower bounds for non-Gaussian noise environments. Since it 

is known that the ML estimator is asymptotically unbiased and achieves CRB [42], the lower 

bounds for the channel estimator in non-Gaussian noise environment are formulated next. 

The CRBs for non-Gaussian noise have been studied explicitly in details in [85] [93] [94]. In 

[85] and later on in [93] the CRB for an autoregressive model was found. In the later work 

by Swami [94] the case of additive and multiplicative noise was dealt with. In [62] the CRB 

for estimation of the angle of arrival for complex impulsive noise was formulated. However 

cited earlier work on the CRB in presence of non-Gaussian noise has been done primarily for 

the impulsive noise modelled as a two mixture Gaussian process with zero mean. Inspired 

by [85] and [62] the CRB for the impulsive noise is formulated in this section. In addition 

to the above, we also consider the case of multi-modal Gaussian mixture noise, which is not 

considered explicitly in the earlier works. It is observed that the CRB for multi-modal Gaussian 

mixture depends on the noiseless channel states of the interferer (or means tj in eq. (4.2)) and 

the additive Gaussian noise variance o. 

First the CRB theory based on Fisher information is revisited and then the two specific non-

Gaussian noise scenarios are considered. Let us define a communication channel: 

y(k) = b(h; k) + w(k) 	 (4.17) 

where y(k) is the received symbol, b(h; k) =ENT-1 h(n)x(k - ft) represents the noiseless 

channel states and w(k) is the additive noise. 

The noise is assumed to be i.i.d. and symmetric with pdf f(w) which satisfies the regular-

ity conditions (condition for which the expectation of the first derivative of the log-likelihood 

function w.r.t. the parameter is zero) so that the CRB exists [42]. The CRB for any unbiased 

estimator i-ii of a component hi of h, is given by var(h1) ~! {Jh'Iii, where Jh is the Fisher 

information matrix (FIM) for h with elements 

JiJ = E{(a log 
fy(y)\(

(9 log 
fY(Y))} 	

(4.18) 
Oh2 )\ Oh3 

where column vector y = [y(1), ...,y(M)] is the set of observation with pdff(y) = {J 	f(y(k)— 
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b(h, k)). By the chain rule: 

a 	 49 
- f(y(k) —b(h,k)) = --f(w) 	

ôb(h,k) 
5h1 I 

(4.19) 

Thus element (i, j) of the FIM has the form [94]: 

M 
= 	ab(h, k) ôb(h, k) 

(4.20) 
k=1 0h 0h3  

where I depends on the pdf of the noise. For identically distributed observations I = Mr [42] 

where ,r is defined as: 

— 	{ 

(3log fw(w))2} 

f°° 
((f(w))2)9.  = 2J ((f))2 Ow (4.21) r E 	

Ow 	 f(w) 	 fw(w) ) 

The FIM reduces to a diagonal matrix (as the input sequence is independent and zero mean). 

Calculating the inverse is now trivial. Now eq. (4.20) and eq. (4.21) are applied to the two 

special cases where the observation noise can be described as a Gaussian mixture. 

4.5.1 Uni-modal mixture 

Impulsive noise is often modelled as a finite mixture of zero-mean Gaussian processes [10] 

[80]. The pdf has the form: 

NM  Al 	_ 2  
f(w) = --- 	

- exp (-----) 	
(4.22) 

Thus: 
2 	2 	NM NM 	

.3 

exp/-2 1 	1 

(- (w)  = 
(4.23) 

Ow 	/ 	
> 
1=1 q=1 I q 	

(— 
w 
— \ c7 j 	5q 1) 

and: 

T 	_ 
 f(w) I
Ti(O f() ) 2  2 

0 

MTMLexp Aq 	
(—w2(1 -- w2Ow 

i exp( 2 ) 

(4.24) 
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Thus the CRB in this case is similar to the one formulated for angle of arrival estimation in 

[62]: 

var(ui) > 	
1 	

(4.25) 
TMa2  

X  

where a is variance of the input symbols x (eq. (4.17)). 

4.5.2 Multi-modal mixture 

In deriving a. CRB for the multi-modal case it is assumed that the process is i.i.d. and the 

observed pdf can be written as: 

1 	
NM  

I A1 exp (_(w - wi)2 = 	 ) 	 (4.26) 
1=1 	 2o-2 	

(4.26) 
 

where o is the variance of the Gaussian noise (without loss of generality the Gaussian noise 

variance is assumed the same for all the mixture components). wj represents the different modes 

(or channel states of the interferer) for the distribution. Hence: 

(
8 f(w) 2  / -1 

1\2NMNM 

8w 	) 	J4,) > 	A1Aq(wwz) (wwq ) exp 	{(w - w1)2  + (w - wq) 21) 
1=1 q=1 

(4.27) 

Assuming that the interferer's channel states are equi-probable (A1 = ... = 

°° 	i 	( a 	2 

j_f(w) 8w 	) 
8w T = I 

2 	

fo 

oo 1(w _ w )(w _ wq) exp (w _ w )2 + (wwq)2}

aw  
NMa 	 ex1=1p ((w - w)2) 

Thus: 

var(Il) 	2 	 (4.29) 
TMO X  

4.6 	Simulation results 

The robustness and performance of the proposed adaptive algorithm (in section-4.3) is verified 

for two cases where the CRB has been derived. In the first case, the noise is simulated as 
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mixture of two zero mean Gaussian noises with different variances, to simulate impulsive noise. 

In the next set of simulations a communication channel model, like GSM, considering CCI with 

Gaussian noise as a multi-modal, i.i.d., Gaussian mixture interference as discussed in [82] is 

assumed. The performance loss by estimating the pdf by kernel density estimator for NPML 

is also compared with the case where it is assumed that the exact mixture pdf is known at the 

receiver. The performance of the channel estimator is calculated by normalised mean square 

error (NMSE), as shown in eq. (4.30). 

h)21 
(4.30) 

E{h} 

where h is the actual channel and I is the estimated channel. For all simulation results, the 

input symbols of length 100 and ensemble of 1000-runs is considered. 

4.6.1 Uni-modal Gaussian mixture 

As seen earlier, the uni-modal Gaussian mixture model has been used in many applications 

to model impulsive noise [85] [62]. This is achieved if V 1; ,&l = 0 in eq. (4.2) to obtain eq. 

(4.22) in this chapter. For a popular impulsive noise model from eq. (4.22), NM = 2 as in [85] 

[62] is considered. The variance o >> cr with relative probabilities A2 < A1, so that large 

noise samples with variance c4 occur with frequency A2 in a background of Gaussian noise 

with variance o. The performance of NPML estimator with other algorithms for a single-

tap channel (used to model flat-fading) in impulsive noise is compared. Then we take a more 

realistic 5-tap channel (usually used to simulate a GSM communication channel). 

In Figure 4.4 and Figure 4.5, the legends LS, NPMLestimated pdf'  NPMLkown pdf  and CRB impulsive 

stand for least squares estimate, NPML estimate when the estimated log-likelihood (eq. (4.10)) 

is used in eq. (4.7), NPML estimate (discussed in section-4.3) when the pdf in likelihood func-

tion in eq. (4.7) is known and Cramer Rao bound as estimated by eq. (4.25) respectively. 

The legend EM(2-mix) is where the EM algorithm of [81] was used, where EM assumed two 

mixtures. From Figure 4.4, it is observed that EM(2-mix) and NPMLkflOWflpdf have similar per-

formance. Performance loss by density estimation can also be observed. The EM algorithm as 

suggested in [8 11 performs closer to CRB and with less computation than NPML estimated pdf 

However, when the EM algorithm assumes 4-mixtures for channel estimation with the simula-

tion environment being the same, the over-parametrisation (since the impulsive noise is mod- 
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Figure 4.4: NPML comparison with 2-mixture EM for impulsive noise (EM(2-mix) and 
NPMLknown pdf  are overlaid) 
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Figure 4.5: NPML comparison with 4-mixture EM for impulsive noise (EM(4-mix) and 
NPMLestimated pdf  are overlaid) 
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elled as mixture of two Gaussian) by the EM in Figure 4.5 causes degradation in the EM-based 

channel estimator's performance. It is observed from Figure 4.5 that both the NPML and the 

EM(4-mix) algorithms performance coincides whereas the NPML known pdf outperforms both 

the EM(4-mix) and NPMLestimated pdf  Thus EM-based algorithm looses some of its perfor-

mance when over-parametrised, thus a priori knowledge of number of mixtures becomes an 

important factor for the EM-based estimator. Moreover it is observed that the algorithm in [8 11 

cannot be used for ISI affected channels in the presence of impulsive noise. For the second case, 

an 1ST affected communication channel modelled as h = [-0.227 0.460 0.688 0.460 -0.227] with 

the noise modelled as 4 = 411 for ) = 0.9 and )2 = 0.1 is considered. The proposed NPML 

algorithm has a fast and smooth convergence, as shown in Figure 4.13. It is also verified from 

the plots in Figure 4.6 that the noise pdf and the error pdf are quite closely matched for SNR = 

4.5dB, which confirms that the NPML algorithm estimates the likelihood function very closely. 

Impulsive noise is characterised by heavier tails than a normal distribution. The performance 

in the tails is better illustrated with Figure 4.7 which shows the 'log' of the actual noise and 

estimated (error) pdf. The MSE performance of the proposed algorithm is shown in Figure 4.8, 

the NPMLknown  pdf reaches, quite close to the CRBimpuis jve  in MSE terms. From Figure 4.8 it 

is observed that there is loss of 2dBs by using the kernel density estimator when comparing 

NPMLestimated pdfand NPMLk 0Wn  pdf curves. However there is significant gain by using the 

NPML algorithm instead of LS as apparent from comparing LS and NPML estimated pdf curves. 

Thus better (in terms of MSE) estimates and faster convergence is achieved by using NPML 

algorithm over LS for impulsive noise. 

4.6.2 Multi-modal Gaussian mixture 

In this set of simulations it can be assumed that the co-channel interference with additive Gaus-

sian noise is a manifestation of a Gaussian mixture with different means, however the overall 

mean (in ideal condition) of the whole Gaussian mixture processes is zero. Two cases of multi-

modal Gaussian mixture distribution are considered: first one for i.i.d. mixture and the next for 

correlated mixture typical of practical systems in the presence of CCI. 

Since the CRB (eq. (4.29)) of section-4.5.2 is only valid for an i.i.d. Gaussian mixture, the 

algorithm of section-4.3 is first assessed by generating i.i.d. noise with pdf identical to that 

of w(k) as in eq. (4.33). The performance of the proposed algorithm is compared in Figure 

4.9. The legends LS, NPMLestimated pdf, NPMLkOWPd1, and CRBcci represents the least 
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Figure 4.6: Comparison of pdffits achieved by NPML algorithm after convergence 

error e(k) and noise w(k) 

Figure 4.7: Comparison of pdf tails fits achieved by NPML algorithm after convergence 
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Figure 4.8: NMSEplotfor channel estimators for mixture when Vl; t6l = 0 

squares estimate, NPML estimate when the estimated log-likelihood (eq. (4.10)) is used in eq. 

(4.7), NPML estimate for known pdf likelihood function in eq. (4.7) and Cramer Rao bound as 

estimated by eq. (4.29) respectively. From comparing NPMLestimated pdf  with NPMLkfl0  pdf 

in Figure 4.9, it is observed that there is not much loss in using the kernel density estimators 

to estimate the likelihood function. As also observed, the NPML algorithm gets closer to the 

CRBj and also performs better than the LS estimator. Finally performance of the algorithm 

is considered when the CCI is correlated. A typical communication system affected by co-

channel interference is shown in Figure 4.10. The corrupting (noise + CCI) noise pdf deviates 

from Gaussianity as apparent from the Figure 4.11 at SNR = 24dBs and SIR = 10dB. Also 

for the GSM scenarios it was shown in [82] that noise pdf deviates from Gaussianity in the 

presence of interference. The co-channels are each of order NT - 1 and are represented as gp 

and interfering signal as 'u for p = 0, ..., P1 - 1, where P1 represents number of interferers. 
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Figure 4.9: NMSE plot for multi-modal noise (uncorrelated CCI) affected communication sys-
tem where h = [-0.227 0.460 0.688 0.460 -0.227], wj are interfering channel states, 
SIR =4. 73dB for 100-symbols over an ensemble of 1000-runs 
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The received signal can be represented as 

NT-1 	 PI -1 NT-1 

	

y(k) = 	h(n)x(k—n)+ 	g(n)ti(k—n)+n(k) 	(4.31) 
n=O 	 p=O n=O 

NT-1 
= E h(n)x(k—n)+w1(k)+n(k) 	 (4.32) 

NT-1 

	

= 	h(n)x(k - n) + w(k) 	 (4.33) 

where the middle (double summation) term on the RHS in eq. (4.31) represents the CCI (or 

the interfering noiseless channel states wj). The interfering channel states forms the means of 

the multi-modal mixture distribution which can take finite states and are symmetrical. n(k) is 

a zero mean, i.i.d., Gaussian noise process with variance cr and k = 1,. . . , M represents the 

number of symbols. Please note that cr in eq. (4.28) for CRB (eq. 4.29) is equal to cr. 

The above presented algorithm is verified for real stationary channel for NT = 5. The input 

signal is anti-podal random input sequence. The channels are assumed to be 

h = [4227 0.460 0.688 0.460 -0.227] and 

go = [-0.10 0.40 1.0 0.40 -0.10] 

where h suffers from amplitude and phase distortion [20], and go is the co-channel considered 

for the simulation. 

NPML formulation in eq. (4.8) assumes that w(k) is i.i.d. and thus the algorithm is sub-

optimal in this environment both in 'unknown' and 'known' pdf form. The w(k) pdf is iden-

tical to the form used to generate Figure 4.9, however w(k) is now generated from eq. (4.33). 

Figure 4.12 illustrates the performance of the algorithms in the correlated co-channel inter-

ference. The legends NPMLest imate,j pdf  and NPMLk o pdf  are the same as above, whereas 

NPMLcci(estimatedpdf) and NPMLj(kflo pdf)  represents the performance when the interfer-

ence is generated from eq. (4.33). Figure 4.12 illustrates the performance loss incurred in using 

the algorithm in a correlated CCI environment. From the simulations for co-channel interfer-

ence it is observed that the proposed algorithm has faster and stable convergence as shown 

in Figure 4.13 when step-size (k) in eq. (4.7) is chosen as ly . The effect of training symbol 

block length on various discussed estimators is also shown in Figure 4.14. There is a significant 

improvement in channel estimation with respect to standard LS and the estimated pdf version of 
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the algorithm is not degraded significantly w.r.t. the known pdf version. It is also interesting to 

note that the [8 11 algorithm is not suitable for CCI affected channels, as it converges to the LS 

solution when used for flat-fading channel estimation in presence of interference. The proposed 

NPML algorithm is robust to ISI and type of non-Gaussianity, as seen from the simulations and 

it reaches closer to the CRB than other algorithms. 

n(k) 

U 	 I 

2 	wtk) 

- 

Figure 4.10: A typical CCI affected communication system 

4.7 Conclusion 

It was shown that the channel estimator based on Gaussian noise assumption (LS) is inferior 

in the non-Gaussian noise. The non-Gaussian noise was modelled and estimated as a Gaussian 

mixture. It is seen that the difference between NPML and MEE is trivial for the channel estima-

tor. It was also shown that better channel estimates can be obtained by using iterative NPML 

based algorithm using Parzen's kernel for density estimation. The same algorithm (without 

making any change) can be used for channel estimation in uni-modal and multi-modal noise 

environments. It was demonstrated that an approximation to unknown (at receiver) noise pdf 

can be achieved iteratively by the NPML algorithm and that the quality of that approxima-

tion does not seems to significantly affect algorithm's performance. A generalised approach 
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Figure 4.11: Distribution of the estimation error by minimum entropy algorithm 'e' and addi-
tive noise 'w 'for CCI corrupted channels 
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Figure 4.12: NMSE plot for co-channel affected communication system where h = [-0.227 
0.460 0.688 0.460 -0.227], go = [-0.10 0.40 1.0 0.40 -0.10], SIR=4.73dB for 
100-symbols over an ensemble of 1000-runs 
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SNR = 22.4dB, SIR = lOdBs 
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Figure 4.13: Convergence plot for co-channel affected communication system for 100-samples 
over an ensemble of 100-runs at SNR = 22.4dB and SIR = 10dB 
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Figure 4.14: NMSE with various training length 
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tO calculate theoretical lower bounds for channel estimation in non-Gaussian noise was also 

presented. From the results it can be observed that kernel density estimator does not result in 

much loss in performance. The proposed algorithm also has faster and stable convergence and 

is immune to sudden changes in noise conditions. Thus the channel estimator based on the ML 

criterion using kernel density estimator forms a robust channel estimator for various additive 

non-Gaussian noise sources. 
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Chapter 5 
Non-parametric maximum likelihood 

channel estimator in the presence of 
correlated non-Gaussian noise 

This chapter is an extension of the algorithm developed in the previous chapter. In chapter 4, 

the noise distribution was modelled as uni-modal and multi-modal distributions. The uni-modal 

distribution was modelled as a mixture of two independent finite Gaussian processes with zero-

mean. For the multi-modal distribution, a finite Gaussian mixture process with various means 

was used to simulate the M. The NPML algorithm presented in the previous chapter assumes 

that the additive noise plus interference is independent. However by nature of CCI generation, 

the CCI is correlated. The performance loss due to the uncorrelated assumption was witnessed 

in the previous chapter. 

Since it is known that the interference .is correlated, this correlation is reduced by using an 

error whitening filter. Techniques which whiten the noise plus interference before suppressing 

the interference have been proposed earlier in [66] [65].  This forms a powerful technique to 

improve the performance, but since, in practice, the tap length of this whitening filter cannot 

be increased to a large value, the ideal assumption of white Gaussian noise (after the linear 

prediction error (LPE) filter [82]) does not hold. Thereby, in this chapter a joint maximum 

likelihood estimate of the channel taps and the whitening filter (LPE) coefficients is formulated. 

In this chapter no such (Gaussian) assumption on the distribution of the whitened noise is made, 

which makes this technique robust to various noise distributions. After whitening, the unknown 

whitened likelihood pdf is estimated by using a kernel density estimator at the receiver. Thereby 

combining the log-likelihood as a cost function with a whitening filter and a kernel density esti-

mate, a robust channel estimator for correlated noise environments is formed. The simulations 

for co-channel interference in the presence of Gaussian noise, confirms that a better estimate 

can be obtained by using the proposed technique as compared to the traditional least squares 

algorithm with whitening filter, which is optimal in Gaussian noise environments. 
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non-Gaussian noise 

The chapter is organised as follows. First, the problem statement is formulated in section-

5.1 for a general communication system with whitening filter. The non-parametric maximum 

likelihood channel estimator algorithm with LPE filter and kernel density estimator is discussed 

in section-5.2. In section-5.3 simulation results are presented. Conclusions based on analysis 

and simulation are drawn at the end. 

5.1 	Formulation of the problem 

The discrete-time model in the low-pass equivalent form of the communication system channel 

estimator is shown in Figure 5.1. Without loss of generality, the input signal is assumed to be 

randomly generated binary anti-podal PAM signal, so that the transmitted symbols are x f{ ± 1 }. 

Here 'y' represents the received signal and 'w' is a sequence of additive noise. The model is 

simplified by assuming that the channel is of order NT—i i.e. h = {h(0), h(1), ..., h(NT —1)]. 

w(k) 

x(k) 	Channel 	 LPE Filter 

Estimated Channel 	 LPE Filter
---"\ 1. 

+~__ T 
I 	 Gradient 

Calculation 

Figure 5.1: Communication systems channel estimator with LPE filter 

More precisely, the received signal y(k) sampled once per symbol can be written as 

NT-1 

y(k)= E h(n)x(k — n) + w(k) 	 (5.1) 

As in the previous chapter, the problem is to estimate the channel coefficients from the received 

signal assuming that the input signal (as in supervised training mode) and the channel (tap) 

length is known at the receiver. Thus the problem reduces to the well known problem of system 
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identification. There are various algorithms based on different criteria to estimate the channel 

taps. Usually the LS solution is taken as the optimum solution for the Gaussian noise environ-

ments where it is equivalent to a ML estimate [39]. However, here it is assumed that the noise 

in the presence of interference is correlated, thus LS does not provide the ML solution. To 

remove this correlation an LPE filter is used. Basically, as the order of the prediction error filter 

increases, successively the correlation between adjacent samples of the input process reduces, 

until ultimately a point is reached where for high enough an order it produces an output process 

that consists of a sequence of uncorrelated samples [16]. The whitening of the original process 

applied to the filter input will have thereby been accomplished. The problem then reduces to 

the one shown in Figure 5.1. 

The problem can now be written as: 

P 	 NT+P-1 

>d(i)y(k - i) = E x(k - 1)C(l) + c(k) 	 (5.2) 

where d = [d(0) = 1 d(1) = —(1) d(P) = —(P)J are the coefficients of the LPE 

filter and the equivalent channel taps vector C = [(0) (1) ... ((NT  + P - 1)], where (l) = 

Ei  d(i)h(l - i). Ideally the c(k) is a zero-mean white Gaussian process. Since from eq. (5.1), 

the model eq. (5.2) correspOnds to assuming 

	

P 	 P 	NT -1 	 NT+P-1 

d(i)y(k - i) = > d(i) E x(k - i - 1)h(l) = E x(k - l)(l) 	(5.3) 

	

i=0 	 i=0 	1=0 	 1=0 

and 

	

- 	
d(i)w(k - i) = €(k) 	 (5.4) 

Therefore, the effect of the LPE filter is that of whitening the additive disturbance w (k). The 

formulation eq. (5.2) permits the description of the channel plus the whitening filter as a vector 

inner product, which in turn allows the simultaneous estimation of the LPE coefficients and the 

equivalent channel taps at the output of the LPE filter [66]. In fact, letting = [e(1) ... 
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eq. (5.2) can be rewritten as 

y(k) 

[1 —(i) ... - 
y(k-1) 

y(k — P) 

or equivalently 

x(k) 

— 
= K(0) (1) ... 	

x(k 1) 
((NT  + P - 1)] 	

: 	
+ e(k)(5.5) 

x(k —NT —P+1) 

y(k —1) 	
x(k) 

y(k) = [(1) ... 	: 	+ [(0) C (1) ... ((NT  + P - 1)1 	
x(k-1)

: 	
+ e(k) 

y(k — P) 
x(k —NT—P+1) 

(5.6) 

= 	[ 	]v (k) + c(k) 	 (5.7) 

where v(k) = [y(k - 1) ... y(k - F) x(k) x(k - 1) ... x(k - NT - P + i)]T and with e(k) white. 

Usually it is assumed that due to LPE filter c(k) is Gaussian distributed, thus the log-likelihood 

function ofy(0),...,y(M - 1) given [ 	]and v(0),...,v(M —1) is: 

— log f(y(0),...,y(M —1) I [ C],v(0),...,v(.M —1)) = —log f(e(0),...,e(]t4 —1)) 
M-1 

= 	I y(k) - [ ç]v(k) 1 2  (5.8) 

(having neglected the constant term M log 2ira2). Therefore, assuming the knowledge of 

v(0), ..., v(M - 1), the ML estimate [ 	I of the vector [ 	] can be obtained by minimis- 

ing eq. (5.8) with respect to [ 	]. This corresponds to the least-squares estimation of the 

unknown parameters and C. Defining 

M-1 
(5.9) 

M-1 

P .= yj T, V ' j 	 (5.10) 
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The LS estimate would be: 

(5.11) 

A regularisation term (usually << 1) was introduced in [8] for the least squares solution. This 

term is however ignored in deriving the above equation. 

In a conventional receiver, the equaliser following the whitening filter uses the LPE filter output 

and the estimated channel . To have the Gaussian assumption (eq. 5.8) valid the tap-length 

of C should be large. However in practice the larger the tap-length of the LPE filter, the more 

the equaliser states, the more computational complexity [8] for maximum likelihood sequence 

equaliser. Thus in practice the tap-length of the LPE filter is usually restricted to either 1 or 

2-taps [8] [65].  This restriction leads c(k) to deviate from Gaussianity. The channel estimator 

proposed in this thesis does two tasks: (i) estimating the channel (and LPE coefficients); (ii) 

estimating the uncorrelated e(k) pdf at the receiver. 

5.2 Non-parametric maximum-likelihood channel estimation with 

LPE filter 

For the communication system represented by eq. (5.2) the ML estimate forms the optimal 

estimator for the channel. This problem can be viewed as the joint optimisation problem [82], 

where the likelihood is maximised with respect to and C. If the c(k) was Gaussian then the 

LS solution as found in [82] could have been applied directly. However, since it is assumed that 

c(k) is non-Gaussian and can be modelled as a Gaussian mixture, the kernel density estimator, 

as described in section-4.2, is used to estimate this unknown density. Since the kernel density 

estimator is essentially a Gaussian mixture formulation, a closed form estimate of the and 

cannot be obtained. Thus an iterative joint optimisation technique, smiliar to the one in the 

previous chapter is used here: 

= 	k-1 + p(k) VC( 	I y, 
k-l'Ck-1 

(5.12) 

= 	k-1 +ii(k) VC(,I y,) 1 
k-1 

(5.13). 

where (k) is the adaptation step-size, k  and k  are estimates of and C respectively at time 

instance k. Since the channel estimator is assumed to have no a priori knowledge of the error 
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pdf f,(.), this unknown pdf is then estimated by using the kernel density estimator eq. (4.3) with 

Gaussian kernels as shown below. As the kernel density estimators are known to be effective 

in density estimation over short data record, a technique over the available data (error) record, 

of length M, to estimate this unknown density is used. From the definition of kernel density 

estimation [92]: 

h  = 
M 1:

(5.14) 

Thus the estimated (joint) log-likelihood function can be written as: 

M 	M 

I y) 	 = 	log (K(f(i) _€(i))) 

= >log>K(f(i) —f(j))—logM 	(5.15) 
j=1 	j=1 

The gradient 4 of the joint log-likelihood can be formulated as: 

I = 	I ) 
	

M EM,  K(f(i) - €(j)) 
= 	

K((i) - f(k)) 

(5.16) 

Similarly gradient for : 

= I Y,) 

 Ej=l 'K(c(i) -€(j))

i=1  EMI 

	- 
= 	

K(f(i) - €(k)) 

(5.17) 

Thereby substituting the estimated gradients in eq. (5.12) and (5.13) respectively, and iterating 

till G  and Ck.  converge. After convergence the ML estimate of the channel h is obtained by 

deconvolution. The algorithm is initialised by the LS estimate and p (k) is chosen as explained 
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in [82] and [87] respectively. During simulations the algorithm did not converge to a local 

maxima, however this is not always guaranteed (as explained in previous chapter). 

Two possible update methods can be used here to maximise the joint likelihood. In the first 

method, the 4 is updated followed by and then the likelihood is estimated for the next update. 

The procedure is repeated till both 4  and converge. Second update method is to first have 

converged and then have C converged given the converged on estimated likelihood, and then 

iterate till no significant changes are observed in and . In this chapter, the first method of 

update is used. 

5.3 Simulation results 

For simulation study a communication channel model, similar to GSM, considering CCI with 

Gaussian noise as a multi-modal, i.i.d., Gaussian mixture interference as discussed in [82] is 

used. The performance of the channel estimator is calculated by NMSE as shown in eq. (4.30). 

For all simulation results, the input symbols of length 100 and ensemble of 1000-runs are 

considered. 

A typical communication system affected by co-channel interference is shown in previous chap-

ter's Figure 4.10. The system representation in eq. (4.31)-(4.33) is still valid for the simula-

tions in this chapter. The above presented algorithm is verified for real stationary channel for 

NT = 5, and the LPE filter of order 2 is assumed. The input signal is anti-podal random,input 

sequence. The channels are assumed to be 

h = [-0.227 0.460 0.688 0.460 -0.2271 and 

go = [0.1 0.3 0.8 0.3 0.1] where h suffers from amplitude and phase distortion [20],  and go  is 

the co-channel considered for the simulation. 

Two different sets of simulations are performed to verify the robustness of the proposed al-

gorithm. First Figure 5.2 depicts the SNR performance plot for the channel estimator pre-

sented in this thesis, where the SIR is fixed at 5dBs. The legends 'LS', 'LSwhite', 'NPML' and 

'NPMLwhite' represent LS without LPE filter, LS with LPE filter, NPML without LPE filter 

and NPML with LPE filter respectively. It is observed that the NPMLwhite  performs better than 

other proposed techniques. There is a considerable gain at high SNRs by whitening the noise 

and interference before doing the channel estimation. A little performance gain can be achieved 
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by using the traditional LS technique with LPE filter. 

Secondly, the Figure 5.3 represents the performance plots when the channel estimation is per-

formed with SNR fixed at 30dBs and interference power varied. As anticipated, the proposed 

algorithm performs better than other techniques in high interference channel conditions. Con-

siderable power gains can be achieved at low SIRs. Thus it would be appropriate to conclude 

that the NPML algorithm with LPE filter provides better channel estimates in high SNR and 

low SIR environments, typical of indoor wireless communications channel. 

5.4 Conclusion 

It was shown that the channel estimator with whitening filter forms a robust channel estimator 

for correlated non-Gaussian noise (or CCI) channel. It was reconfirmed that the LS estimate 

with LPE filter produces better channel estimates for interference limited channels than LS esti-

mate without LPE filter. Due to practical constraints, the Gaussian assumption on the whitened 

noise is not guaranteed, hence a kernel density estimate based ML channel estimator was pro-

posed. From Figure 5.2 and Figure 5.3 it is observed that better channel estimates can be 

obtained by jointly estimating the whitening filter and the channel estimates by using the kernel 

density estimator. Thus by combining kernel density estimator with whitening filter forms a 

robust channel estimator for interference limited communication channels. 
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Figure 5.2: MSE plot for co-channel affected communication system where h = [-0.227 0.460 
0.688 0.460 -0.2271, SIR=5dBs for 100-symbols over an ensemble of 1000-runs 

10"L__ 
-10 	 -5 	 0 	 5 	 10 	 15 

SIR 

Figure 5.3: MSE plot for co-channel affected communication system where h = [-0.227 0.460 
0.688 0.460 -0.227], SNR=30dBs for 100-symbols over an ensemble of 1000-runs 
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Chapter 6 
Non-parametric maximum likelihood 

channel estimator and equaliser for 
OFDM systems 

Orthogonal frequency division multiplexing is a promising multi-carrier digital communication 

technique for transmitting data at high bit-rates over wireless or wireline channels. The high-

speed serial data are converted into many low bit rate streams that are transmitted in parallel, 

thereby increasing the symbol duration and reducing the 1ST. These features have led to an in-

crease in the use of OFDM or related techniques in many high bit rate communication systems. 

Discrete multi-tone modulation which is quite similar to OFDM is extensively used in DSL 

communication systems. OFDM has been chosen for digital audio broadcasting (DAB) and 

digital video broadcasting (DVB). It is also used for the 2.4 GHz wireless local area networks 

(WLAN) i.e. IEEE 802.1 ig and worldwide interoperability for microwave acccess (WiMAX) 

i.e. IEEE 802.16. 

Coherent OFDM transmission invariable requires estimation of the channel frequency 'response 

(i.e. the gains of the OFDM tones). Currently there can be three possible solution: 1) blind, 2) 

semi-blind, and 3) pilot aided. In blind channel estimation techniques, the channel is estimated 

without the knowledge of the transmitted sequence. It is attractive as the throughput is higher 

as no bits are lost in training. However it requires large amount of data to be stored before 

channel estimation can begin, which invariably introduces delays. The pilot based technique 

estimates the channel by transmitting a known (at the receiver) training sequence along with the 

unknown data at the receiver. The receiver estimates the channel using some criterion based on 

comparing the change in these pilots due to channel. The semi-blind techniques try to reduce 

the size of the training sequence by exploiting both the known and the unknown (blind) portions 

of the data. 

Channel estimation in OFDM is critical to the overall performance of the communication sys- 

tem. The insertion of pilots in OFDM symbols provides a base for reliable channel estimates. 
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There has been considerable increase in channel estimation research over the years [102], [103], 

[104] to name a few. However most of the current work is based on channel estimation for 

Gaussian channels or assuming that the interference is very low. This assumption is however 

not always valid in scenarios where there are a small number of interferers (e.g. Bluetooth 

device [105] or microwave oven operating in presence of a WLAN). With the co-existence of 

various wireless equipment in home and office environments the interference from neighbour-

ing devices has become a major concern [106]. In interference affected channels the algorithms 

designed for Gaussian assumption are not optimal [42] [87]. As in the previous chapters, the 

traditional Gaussian assumption channel estimator (which assumes zero or negligible interfer-

ence) is refered to as an LS channel estimator. 

The algorithm discussed in [44] specifically deals with synchronous interference and after mod-

ifications for asynchronous interference [107]. However in [44], [107] and [84] it was noted 

that interference was modelled as Gaussian, which may not be the case if only a few or infact 

one major interferer as in [106] [105] are present. In this chapter no such a priori assumption 

on the distribution of the interfering received signal is made. Moreover no individual parameter 

of the interferer is estimated specifically. The channel is assumed to be stationary for a given 

block. In this chapter the fading channel is estimated in the presence of interference directly 

in time domain using an ML technique. In fact, the presence of interference along with Gaus-

sian noise is jointly considered as a Gaussian mixture noise [87] and [82]. In this chapter it 

is noted that traditional zero forcing equalisation (usually used in OFDM receivers) technique 

falls short of the performance in the presence of interference. Thus a MAP symbol-by-symbol 

equaliser to improve the BER performance is proposed. Simulation results confirm the non-

optimal estimates when LS is used and improved BER performance by using the proposed 

channel estimator and equaliser algorithms. 

The chapter is organised as follows: section 6.1 the problem statement is formulated for a gen-

eral OFDM communication system. A brief discussion on kernel density estimator for com-

plex density estimation is described in section 6.2. The iterative NPML channel estimator for 

OFDM is described in section 6.3. Section 6.4 discusses the modified non-parametric symbol-

by-symbol equaliser. To test the robustness of the algorithm, in section 6.5 the simulations 

results are presented for both flat and multi-path fading. Conclusions based on analysis and 

simulation are drawn in section 6.6. 
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6.1 	Formulation of the problem 

6.1.1 OFDM system model 

The baseband equivalent representation of a typical OFDM system as in Figure 6.1 is con-

sidered here. The discussion on the estimation of one OFDM symbol instead of a sequence 

of symbols is justified below. At the transmitter side, the serial input data is converted into 

M parallel streams, and each data stream is modulated by a linear modulation scheme, such 

as QPSK, 16QAM or 64QAM. If QPSK is used, for instance, the binary input data of 2M 

bits will be converted into M QPSK symbols by the serial-to-parallel converter (SIP) and 

the modulator. The modulated data symbols, which are denoted by complex-valued variables 

X(0), ...,X(m), ...,X(M - 1), are then transformed by the inverse fast Fourier transform 

(IFFT), and the complex-valued outputs x(0), ..., 	..., x(M - 1) are converted back to se- 

rial data for transmission. A guard interval is inserted between symbols to avoid 1ST. If the 

guard interval is longer than the channel delay spread, and if the samples of the guard at the 

receiving end are discarded, the 1ST will not affect the actual OFDM symbol. Therefore, the 

system can be analysed on a symbol-by-symbol basis. OFDM system is also exhibits high 

peak-to-average poer ratio (PAPR). Namely, the peak values of some of the transmitted signals 

could be much larger than the typical values. This could lead to a necessity of suing circuits 

with linear characteristics within a larger dynamic range, otherwise the signal clipping at high 

levels would yield a distortion of the transmitted signal and out-of-band radiations. In this 

chapter, it is assumed that the received OFDM signal is not affected by PAPR problem. At 

the receiver side, after converting the serial data to M parallel streams, the received samples 

y(0),...,y(k),...,y(1W- 1) are transformed by the FFT into Y(0),...,Y(m),...,Y(M— 1) 

[102]. 

Using the notations for the OFDM symbols, the output of the channel can be written as 

NT-1 	 P11 NT-1 

y(k) = E h*(l)x(k  —1) + E E g(l)u(k —1) + n(k),0 < k < M - 1 (6.1) 
1=0 	 P=O 1=0 

where h and x represents desired user's channel and data respectively. Without loss of general-

ity, the complex conjugate h*  instead of h is chosen in the above equation [16]. NT represents 

the channel length and n(k) is the i.i.d. additive white Gaussian noise. Pi represents the num-

ber of interferers where gp  and u, are the interfering channel and signal respectively. Note that 

y(k), x(k), n(k), h(l), u(k) and gp(l) are all complex valued.* It is assumed that the channel 
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Figure 6.1: A typical OFDM communication system 

and interference doesn't change during the block transfer (assuming  quasi-stationary channel) 

and interference is synchronous which makes the above representation possible. 

To maintain orthogonality between tones, it is necessary to ensure that the symbol time contains 

one or multiple cycles of each sinusoidal tone waveform. This is normally the case, because 

the system numerology is constructed such that tone frequencies are integer multiples of the 

symbol period. In absolute terms, to generate a pure sinusoidal tone requires the signal to start 

at time minus infinity. This is important, because tones are the only waveform than can ensure 

orthogonality. Fortunately, the channel response can be treated as finite, because multipath 

components decay over time and the channel is effectively band-limited. By adding a guard 

time, called a cyclic prefix, the channel can be made to behave as if the transmitted waveforms 

were from time minus infinite, and thus ensure orthogonality, which essentially prevents one 

subcarrier from interfering with another (called intercarrier interference, or. Id). Figure 6.2 

shows three tones over a single symbol period, where each tone has an integer number of 

cycles during the symbol. 

The cyclic prefix is actually a copy of the last portion of the data symbol appended to the front 

of the symbol during the guard interval. Multipath causes tones and delayed replicas of tones 

to arrive at the receiver with some delay spread. This leads to misalignment between sinusoids, 
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which need to be aligned to be orthogonal. The cyclic prefix allows the tones to be realigned at 

the receiver, thus regaining orthogonality. As discussed above, if a cyclic prefix is used for the 
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Figure 6.2: Integer number of sinusoid periods 

guard interval, intercarrier interference (ICI) in a multipath channel can 'also be avoided. Then 

it can be shown that the following simple relation between Y(m) and X(m) holds: 

NT 

	

Y(m) = ( 
	

h*(l)exP(32 )) X(m) 

(PI 

	

-1NT—i

+ 
	

g(l) exp(2')  u(rn) 
) 

) + N(m) 	(6.2) 
P=O 1=0  

= H(m)X(m)+1(m)+N(m),O < m < M — 1 	" (6.3) 

= H(m)X(m) + N'(m),O <m < M —1 	 (6.4) 

where H(m) is the complex frequency response of the channel at the subchannel m, 1(m) be 

the complex interference at that subchannel m and N(0), ..., N(M - 1) are the discrete Fourier 

transform (DFT) of n(0),...,n(M-1). From [42]-example 15.3 it is observed that DFT of i.i.d. 

Gaussian n(0), ..., n(M —1) are i.i.d Gaussian as well. It is assumed that the interfering signals 

..., Up  (M - 1) are also OFDM signals, with same block and cyclic pre-fix lengths, and 

they are block synchronous with the desired signal. The system is depicted in Figure 6.3. Eq. 

(6.4) shows that the received signal is the transmitted signal attenuated and phase shifted by the 
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Figure 6.3: OFDM communication system in presence of interference and noise 

frequency response of the channel at the subchannel frequencies due to fading in the presence of 

interference and noise [102]. It is assumed tobe that noise is represented as complex i.i.d. with 

vector n = [n(0), n(1), ..., n(M - i)]T with each component of n distributed as C .N(jij, o j) 

and are also independent. The multivariate complex • Gaussian pdf is just the product of the 

marginal pdfs or 

M-1 

f(n) = fl f(n(i)) 
	

(6.5) 

which follows from the usual property of the pdf for real independent random variables, this 

can be written as 

1 	
M-1 

f(n) = 
lr M1_

I
M 	2 

exp - 	I n(i) 1 2 	 (6.6) 
I j=O 

Or 
i=O ni 

Since the joint pdf depends on R(n) and £.'(n) (where R and stands for real and imaginary 

components of a complex variable) only through n, the joint pdf can be viewed to be that of the 

'scalar random variable ii'. This pdf eq. (6.6) is called a 'complex Gaussian pdf' for a scalar 

complex random variable and is denoted by C f(0, or 2 [42] (without loss of generality noise 

is assumed to be zero mean). 
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6.1.2 Asynchronous interferer 

Asynchronous interference occurs when the cyclic prefix of the interferer does not align with the 

desired user's cyclic prefix. The receiver is usually synchronised with the desired user's trans-

mitter. For an asynchronous interferer in a rich multipath environment, the received frequency-

domain measurement is highly correlated. The frequency offset causes the loss of orthogonality 

and causes ICI in the interferer [108]. In many cases the algorithms designed for synchronous 

interference fail when the asynchronous interference is encountered. The algorithm discussed 

later in this chapter does not require any change when asynchronous interference is encoun-

tered. 

The interference model described in eq. (6.4) is not valid for asynchronous interference. The 

interference in eq. (6.6) is now modelled as: 

P1-1M-]. 

1(m) = 	u(k)G(k) sin(ir(k - m + AF)) 	(jir(k - m + AF)(M - 1) 
Msin((k - m + AF) IM) exp 

	
M 

P=O k=O 
	 ) 

(6.7) 

where U, G represent the 	interferer's input signal and channel respectively. AF repre- 

sents the (normalised) frequency offset [108] [109] [110], which is normalised by the subcarrier 

spacing which is roughly AF fQFDM/M, where fOFDM  is the total occupied bandwidth 

by OFDM. 

6.2 Kernel density estimation 

Since both the noise and interference are complex, they can be modelled by a 'complex Gaus-

sian mixture' pdf, where the real and imaginary components are assumed independent as dis-

cussed earlier. Parzen window or kernel density estimation assumes that the probability density 

is a smoothed version of the empirical sample. Its estimate J(y)  of a complex random variable 

y = R{y} + i{y} is simply the average of radial kernel functions centered On the points in a 

sample M of the instance of y: 

f(y) = 	K(y - y(j)) 	 (6.8) 
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As in previous chapters, K(.) is assumed to be Gaussian kernel (Parzen kernel) [82]: 

K(y) =.Af(0,a2 ) = 	exp 
1 	(_II2 \ 

	

2a ) 	
(6.9) 

variance defined as a2. The joint pdf 1(y)  depends on the real and complex components 

through y, the pdf can be viewed as that of the scalar random variable y, as the notation suggest 

[42]. 

6.3 Non-parametric ML channel estimation 

Performance of the OFDM system depends highly on the quality of the channel estimate, this 

makes the channel estimator one of the most useful part of a OFDM communication receiver. 

Due, to increased bit-rate performance of the OFDM systems, there has been considerable in-

terest in developing better channel estimators for various channel conditions. However, for 

Gaussian noise channels a simple technique based on LS (also known as zero-forcing estima-

tor) [111] is usually used. The LS channel estimate is formed as, 

	

H(m) = X(m) 1Y(m), 0 <m < M - 1 	 (6.10) 

for a training symbol, i.e. X (m) is considered known at the receiver. There are various tech-

niques for channel estimation in flat and Rayleigh fading channels ([104], [112], [113], [114] 

to name a few), however most of these techniques assume presence of Gaussian noise. The 

algorithm discussed in [44] can be used for channel estimation in the presence of interference, 

however it assumes interferers as Gaussian distributed. In this section, no assumption on the 

distribution of the interference is made, which makes this technique robust for both synchronous 

and asynchronous interference. 

The typical channel impulse response components h = [h (0), ..., h(NT - 1)] are independent 

complex-valued Gaussian random variables (which represents a frequency-selective Rayleigh 

fading channel). In a regular OFDM system, the channel delay spread NT is much smaller than 

the number of subcarriers M, which leads to a high correlation among the channel frequency 

responses H(m), even when h(l)VI, are independent [114]. Thus the channel impulse response 

h = [h(0), ..., h(NT - 1)] is estimated directly as they are independently specified and the 

number of parameters in the time domain is smaller than that in the frequency domain [102]. 
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The combined interference and AWGN N'(m) in eq. (6.4) is together taken as a noise that 

is non-Gaussian because of the presence of interference [87] [82]. As also discussed in [87] 

[82] the least squares estimator does not find the optimal solution in the case of non-Gaussian 

noise. The mean square error criterion which minimises the energy between the desired and 

the system output does not converge to the optimal solution. Also the least squares estimator 

is not minimal sufficient statistics (refer Appendix-B), and hence the ML estimator is used for 

this Gaussian mixture formulation. 

As discussed in previous chapters, if the noise is Gaussian then the LS estimate leads to the ML 

estimate. However, in communication systems where the noise is non-Gaussian (or approx-

imated as Gaussian mixture) then no closed form ML solution exists for such non-Gaussian 

distributions. Thus an iterative algorithm to find the ML estimate of the channel is used. The 

algorithm is initialised with the LS channel estimate based on the pilots. The first likelihood 

estimate is obtained by using the LS channel taps. After estimating this likelihood, the ML 

solution is sought iteratively exploiting the pilot symbols. The classical stochastic gradient al-

gorithm is used with log-likelihood being the cost function i.e. the gradient here is the first 

derivative of the log-likelihood function with a constant multiplier (similar to the well known 

gradient ascent algorithm) [115]. The update equation is represented as: 

1 k-1 +p(k).Vh £(h I 	 (6.11) 

where i(k) is the adaptation constant and Vh represents the gradient of the cost function. 

Referring to eq. (6.4) and eq. (6.11) the likelihood function can be written as: 

L(h I Y)Ihk = f(Y I h) 	fNI(E(i)) 

where fN' (.) is scalar pdf of 'complex Gaussian mixture' of data length from i = 1, ..., M and 

the previous estimation error is defined as: 

NT-1 

E(i) = Y(i) - ( 
	

h(l) exP 2 4)) X(i) 	 (6.12) 

Kernel density estimators are known to be effective in estimating the pdf over short data record 

and also provide a differentiable smooth estimated pdf. From the definition of kernel density 
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estimator [92]: 

(6.13) 

where M is the number of subcarriers. The log-likelihood function can then be written as: 

h= 	
= 	log (f Nl(E(i))) 	 (6.14) 

1   

Mf M 

>log (>K(E(i)_E(i)) 
i=1 \ j=1 

M M 

	

= 	>log >K(E(i)—E(j))— log M 	(6.15) 
j=1 	j=1 

Maximising the log-likelihood function w.r.t the channel weight vector. By definition of com-

plex vector differentiation [16], 

Vh £(h I 	 I Y) 	
M EM aK(E(i)—E(j)) I 

- 	L.ej=1 	ôh 	I 

	

I 	(6.16) 
Oh - - 

Ih=hk _ l 	z 	K(E(i) - E(j)) 
Ih=flk_1 

Thereby substituting, this gradient in eq. (6.11) gives an iterative solution. As with any stochas-

tic gradient algorithm the choice of optimal p(k) varies with the application and requirements. 

	

As discussed in Appendix-A, i(k) = 	is chosen in eq. (6.11) and convergence is witnessed 

in a few iterations. The a is chosen as or = (1/M)(1 / 6)a, as found analytically in [82] for 

estimating complex Gaussian distribution. 

6.4 Non-parametric symbol-by-symbol MAP equaliser 

Once the frequency-domain channel response ft is found, the estimate of the transmitted signal 

can be obtained by solving 

)'(m)=arg min Y(m)—fI(m)X(m)I 2 , Om< M-1 	(6.17) 
XEC 

which leads to the final estimate of the transmitted signals (assuming X E C) as follows: 
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t(rn) = Quantisation { 
	}, 0< 

rn < M —1 	 (6.18). 

The above formulation is equivalent to the zero-forcing equaliser and is optimal for Gaussian 

noise assumption. This forms a popular 'one-tap equaliser' used in many practical OFDM 

communication systems. 

Similar to the channel estimator discussed before, the conventional detector (equaliser [102]) 

is not optimal for the interference affected channels. The performance of this zero-forcing 

equaliser [102] is highly sensitive to the quality of estimated channel and the ratio of interfer-

ing received signal with estimated channel, in addition to typical constraints of a zero-forcing 

equaliser. 

(m) = Quantisation 	= Quantisation 
f 

X(m)H(m) + 1(m) + N(m) } {y(m)  
0 	 ft(rn) 

/ 	 (6.19) 

The impact of imperfect channel estimation in case of Gaussian noise is studied in details in 

[116]. The decision boundary for the said equaliser is clearly non-linear due to the presence 

of interference and the imperfect channel estimation. Thus the assumption that the decision 

boundary being linear (based on Gaussian assumption) is no longer valid. It can be observed 

from Figure 6.4, that the noise in presence of interference forms a Gaussian mixtur. This 

makes the decision boundary non-linear and as can be observed from eq. 6.19. 

Here a• probabilistic symbol-by-symbol MAP equaliser whose decision is based on the esti-

mated likelihood is used. The endevour is to maximise the probability of correct decision for 

the received symbol i.e. maximise F(X(m) I Y(m)); c = 1, ..., C. The decision criterion is 

based on selecting the signal corresponding to the maximum of the set of posteriori probabilities 

{F(X(m) I Y(m))}. This decision criterion is called the maximum a posteriori probability 

criterion. Using Bayes' rule, the posterior probability is expressed as: 

f(Y(m) X(m))F(X(m)) 
(6.20) F(X(rn) I Y(m)) = 	f(Y(m)) 

where f(Y(m) I X(m)) is the conditional pdf of the observed vector given X(m), and 

85 



Non-parametric maximum likelihood channel estimator and equaliser for OFDM systems 

0.14-  

- -4 91(E)  
5{E) 

(a) PDF of Difference Signal (E) on Gaussian assumption 

Figure 6.4: Distribution plot 
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Figure 6.5: Signals at various stages of receiver for synchronous multi-path fading channel in 

presence of synchronous interference 

F (X (m)) is the a priori probability of the eth signal being transmitted. The denominator 

of eq. (6.20) may be expressed as 

f(Y(m)) = 	f(Y(rn) I X(m))F(X(m)) 	 (6.21) 

From eq. (6.20) and eq. (6.21), it is observed that the computation of the posterior probabil-

ities F(X(m) I Y(m)) requires knowledge of the a priori probabilities F(X(m)) and the 

conditional pdfs f(Y(m) I X(m)) for c = 1, ..., C. 

Some simplification in the MAP criterion is possible when the C signals are equally probable 

a priori, i.e., F(X(m)) = 1/CVc. Furthermore, the denominator in eq. (6.20) is independent 

of the transmitted symbol. Consequently the decision rule based on finding the signal that 

maximises F(X(m) I Y(m)) is equivalent to finding the signal that maximises f(Y(m) I 

X(m)) [201. 

The conditional pdf f (Y (m) I X (m)) is called as the likelihood function as seen previously. 

Thus the decision criterion for the said problem, the MAP detection, reduces to detecting the 
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ML symbol. For the estimated channel impulse response hk (after convergence) from eq. (6.11) 

and taking its Fourier transform, the ML estimate of the transmitted signal can be obtained by 

= arg max (fE(Y(m) I ft  (,M)) I 	 (6.22) 
XeC 	 h=fik  

It should be noted that the estimated pdf fE for detection is generated by using eq. (6.13). 

Based on the higher probability of occurrence the hard-decision (or Quantisation) is taken on 

- 1) to generate the output data as shown in Figure 6.1. From simulation 

results it is observed that significant BER improvement is achieved by using this probabilistic 

equaliser. 

6.5 	Simulation results 

A packet based OFDM communication system (similar to WLAN) with the first symbol known 

at the receiver is assumed. The channel estimation is done on this first OFDM symbol, while the 

remaining payload is the useful information as in Figure 6.6. A typical OFDM communication 

system is considered as shown in Figure 6.1. The raw binary input data is fed to the rate 1/2 

encoder. The encoder used is specified in [117], where a original 1/3 encoder is used and 

then puncturing is performed to form a 1/2 rate coder. The encoded serial bit stream is then 

converted to parallel by SIP. The parallel data are then mapped (modulated) to QPSK signal 

constellation, where it is then passed to IFFT processor. The output of IFFT x (0), ..., x (M - 1) 

is then converted into serial stream by P/S and after appending guard interval (to avoid 1ST), the 

serial stream is then transmitted over a fading channel. It is assumed throughout the chapter 

that the guard interval is long enough to avoid any 1ST and a cyclic prefix is introduced in the 

guard interval to avoid any ICI. At the receiver, the reverse process as that at the transmitter 

takes place. First the guard bits are removed followed by serial to parallel converter. Then fast 

Fourier transform (FFT) is performed on y(0), ..., y(M - 1) to obtain Y(0), ..., Y(M - 1), 

which is then demodulated by QPSK demodulator. The demodulated bits are then converted 

to serial stream and then decoded using the Viterbi decoder [118]. Input and output serial data 

streams are then compared to calculate the bit error rate. 

The robustness of the above proposed adaptive algorithm is verified for two special case of 

fading channels; flat-fading and multi-path fading. In multi-path fading two special cases of 
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synchronous and asynchronous interference are considered. The channel is considered to be 

slowly fading, i.e. the channel remains static (generally defined as quasi-static) for each OFDM 

packet (of size 64-subcarriers and 8-symbols). Using the formula discussed in [102], a bit rate 

of i-Mbps at 1-GHz with vehicle speed of 6-mph (which is sufficient for indoor environment) 

can be achieved. To verify the robustness of the algorithm, simulations were carried out on 

Matlab for ensemble of 1000-runs. The performance measure is average BER for fixed SNR 

and for various values of SIR. The SIR is defined as (eq. 6.3): 

SIR -- E{(HX)(HX)*} 	
(6.23) 

E{II*} 

00 -0 
o 0 
o o 

Training 

0 Data 

o, 0 
o o 
o 

Time 

Figure 6.6: OFDM Packet structure 

6.5.1 Flat fading 

The performance evaluation for the proposed estimator and equaliser begins by using a flat-

fading channel. Figure 6.7 and Figure 6.8 shows the performance for fixed SNR=16.5dBs and 

SIR varied for range of values. The channel model is chosen as: 

H(z) = aoexp(jOo) 	 (6.24) 

whereas the interfering channel is chosen as: 

Go (z) =alexp(jOi) 	 (6.25) 
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where a, al are the i.i.d random variables with Rayleigh distribution, and 00, Oi are i.i.d. 

random variables with uniform distribution. 

The legend, in Figure 6.7, 'LS channel estimator' and 'NPML channel estimator' represent 

when the flat fading channel is estimated at the receiver by eq. (6.10) and eq. (6.11) respec-

tively. It is seen that considerable improvement in terms of NMSE is achieved by using the 

proposed NMPL channel estimation algorithm. The legend, in Figure 6.8, 'Uncoded-LS' refers 

to the LS estimator for channel estimation and Gaussian assumption MAP equaliser i.e. eq 

(6.18) is used fordetection of symbols following the training (pilot) sequence as in Figure 6.6. 

'Uncoded-LS with MAP' refers to the scenario when the channel is estimated by LS estimator 

followed by a non-parametric equaliser (using this estimated channel and residual error) from 

eq (6.22). The 'Uncoded-NPML with MAP' refers to the NPML algorithm for channel estima-

tion followed by non-parametric MAP equaliser. The 'Uncoded-Exact with MAP' represents 

when the exact channel is known at the receiver followed by a non-parametric MAP equaliser. 

The prefix 'Uncoded' is used when raw binary input is transmitted, whereas prefix 'Coded' is 

used when the raw binary input data stream is coded by 1/2-rate encoder. It is observed that 

the algorithm with NPML as channel estimator and non-parameteric symbol-by-symbol MAP 

equaliser gives the' best performance, except in hypothetical case' when receiver has a priori 

channel' information. Comparing 'LS with MAP' and 'NPML with MAP' for both un-coded 

and coded input data highlights the performance gain achieved by using NPML channel esti-

mator as compared to the LS estimator (as used in [8]). It is interesting to observe that gains 

achieved by using NPML decreases when the interference power decreases i.e. at high SIR. It 

is also observed that the coding for flat-fading doesn't improve the BER performance for the 

said simulation set-up, which can be attributed to the fact that the channel decoder is based 

on Gaussian noise assumption. Thus using NPML in conjunction with non-parametric MAP 

equaliser forms a robust communication receiver for interference limited channels. 

6.5.2 Multipath fading 

The channel is defined as a two-path Rayleigh fading channel with transfer function [102]: 

H(z) = 0.8co exp(j0o) + 0.6ai exp(j01)z 	 (6.26) 
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Figure 6.7: Average NMSE performance in flat fading channel 
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Figure 6.8: Average BER performance in flat fading channel 
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The interfering channel is defined as: 

GO (z) = 0.5a2 exp(j02) + 0.1a3 exp(j03)z 1 	 (6.27) 

where co, cvi, a2, 03 are the i.i.d random variables with Rayleigh distribution, and 00, 01, 02, 

03 are i.i.d. random variables with uniform distribution. 

6.5.2.1 Synchronous Interference 

The synchronous interference model as represented by eq. (6.2) is considered for these set of 

simulations. The average NMSE plot is shown in Figure 6.9 and the average BER plot is shown 

in Figure 6.10. The legends define the similar techniques as discussed for flat-fading channel. 

The SNR is kept fixed at 17.63 dBs while SIR is varied over a large range. The significant 

BER improvement is obtained by using the non-parametric symbol-by-symbol MAP equaliser 

as compared to other techniques. By using the NPML channel estimator the performance gain 

of about 8dBs can be obtained by using NPML channel estimator as compared to LS estimator 

with non-parametric MAP equaliser estimating density on residual error from both the estimator 

respectively. It is also worth noting that there is a little difference when this equaliser is used 

with NPML estimator and exact channel knowledge, this also confirms that the NPML estimates 

are closer to the exact channel. As observed from the simulation results, the BER gain for 

NPML based channel estimator and equaliser amplifies for the coded bit stream as compared 

to the uncoded one. The received, estimated and interfering signal are illustrated in Figure 6.5 

for the said simulation environment. It is also interesting to observe that the performance plots 

follow the pattern as noted in [82]. 

6.5.2.2 Asynchronous Interference 

Figure 6.11 and Figure 6.12 shows the results for the asynchronous interference model as rep-

resented by eq. (6.7). The frequency offset is set as AF = 0.1 for the results. The SNR is kept 

fixed at 17.63 dBs while SIR is varied over a large range. There is a huge performance gain by 

using proposed techniques as compared to the traditional approach of doing channel estimation 

and equalisation based on Gaussian assumptions. As seen earlier, the NPML estimator with 

non-parametric symbol-by-symbol MAP equaliser enhances performance instead of using LS 

estimator and its residual error pdf for MAP equalisation. The receiver's a priori knowledge of 
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the transmission channel forms a lower bound on the performance. It is observed that when SIR 

increases the Gaussian assumption detector performs better than non-parametric MAP equaliser 

(except when exact channel is known at the receiver), this is because at high SIR the N' in eq. 

(6.4) can be approximated as Gaussian distributed. The asynchronous interference being more 

correlated than synchronous interference, at low SIR, a considerable difference in performance 

of 'Coded-NPML with MAP' is observed in both Figure 6.10 and Figure 6.12. However, from 

simulation results it is safe to conclude that the proposed algorithm and technique could be used 

for both synchronous and asynchronous interferer without any modification. 

10°  
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SiRaverage  

Figure 6.11: Average NMSE performance in multipath frequency-selective fading channel with 

asynchronous interference, where AF = 0.1 

6.6 Conclusion 

It is shown that the channel estimator based on Gaussian noise assumption is inferior in inter-

ference affected channels. It is also shown that the traditional, zero forcing equaliser produces 

non-optimal detection in non-Gaussian (interference affected channel), resulting in poor BER 

performance. The NPML channel estimator and MAP equaliser used together results in im-

proved performance in non-Gaussian noise. This non-Gaussian noise was estimated using ker-

nel density estimator to estimate the likelihood function. It is seen that significant performance 

gains were achieved for both flat and multipath fading scenarios. The algorithm showed robust- 
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Figure 6.12: Average BER performance in multipath frequency-selective fading channel with 
asynchronous interference, where AF = 0.1 

ness towards non-Gaussianity from both synchronous and asynchronous interference. It was 

also highlighted that major performance gain is achieved by using the non-parametric symbol-

by-symbol MAP equaliser in interference limited channels. 



Chapter 7 
Conclusion 

The work described in this thesis is primarily concerned with developing adaptive algorithms 

with the adaptation cost function depending on the distribution. The developed algorithms are 

applied to two most common applications of adaptive signal processing in digital communica-

tions; channel estimation and equalisation. The deviation from the traditional approaches of 

using second order statistics based cost functions is the motivation for developing these tech-

niques. The developed algorithm is applied to various theoretical models and is also shown to 

improve performance for practical communication systems. To this end, our analysis and re-

suits have shown that the distribution dependent based adaptive learning has better performance 

than the traditional approaches. 

In the next section (section 7.1), the work performed is first summarised and specific achieve-

ments accomplished are highlighted. In section 7.2, the limitations of the current work accom-

plished is discussed and some new directions to future work are proposed. 

7.1 	Summary and specific achievements of work performed 

The work examined in the thesis can be broken down into two major parts. In the first part, 

chapter 3, the problem of MBER equaliser for alpha stable noise is considered. In the second 

part, chapters 4, 5 and 6, the non-parameteric maximum-likelihood algorithm is developed, 

thoroughly analysed and applied to various digital communication systems. The major outline 

of each chapter is given in the following paragraphs. 

The chapter 3 addresses the problem of developing an LMS style decision feedback equaliser 

algorithm for minimising bit error rate in impulsive noise environments characterised by the 

alpha stable distribution. The objective of chapter 3 was to develop an MBER DFE equaliser 

for alpha stable noise environment. First the details about the impulsive noise modelled as al-

pha stable distribution and various parameters characterising the alpha stable distribution were 

studied. A brief discussion about the state translated DFE structure was discussed next. The 
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development exploits the stable nature of the alpha distribution and the concepts build on earlier 

work [14] [15] in a Gaussian noise environment. By introducing a limiter at the receiver front-

end both SNR and Wiener solution can be calculated theoretically and by simulations. Further, 

a Wiener-filter-with-limiter solution was also presented and used as a performance bench mark. 

It was shown that for minimum bit error design, the adaptation is a function of the noise density 

function. The comparison between various adaptive algorithms working in identical channel, 

noise and DFE structure has been drawn. The LBER-Cauchy and the state trans-Cauchy has 

faster convergence than the other adaptive algorithms in Cauchy noise environments, which is a 

special form of a-stable noise. Extensive simulations strongly suggest that the state-translated 

design for the a-stable noise has better convergence and BER performance than the other al-

gorithms. It is also interesting to observe that the adaptive algorithms based on a Gaussian 

noise assumption despite slow convergence in impulsive noise environments perform closer to 

those designed with Cauchy noise assumption. Lastly as expected the LMS algorithm performs 

poorer that the other algorithms in a-stable noise environments. Observations from perfor-

mance plots in chapter 3 suggest the MBER algorithms' superior performance with respect to 

the WSL solution. 

The second part of the thesis examines the non-parameteric .density estimation based adaptive 

algorithms for channel estimation and equalisation. The work in chapter 4 primarily deals with 

the channel estimation algorithm development in non-Gaussian noise scenarios. The prob-

lem statement was formulated in the beginning of chapter 4, and was shown that the proposed 

channel estimator does two major tasks; channel estimation and density estimation. The ad-

ditive noise was modelled as a generalised Gaussian mixture process. The Gaussian mixture 

was used to generate (or model) both uni-modal and, multi-modal noise distributions. The uni-

modal mixture noise was used to model impulsive noise and the multi-modal mixture noise was 

used to model co-channel interference. A brief discussion about kernel density estimation was 

also presented. It was shown that the LS channel estimator does not find the optimal solution 

in the case of a Gaussian mixture noise and no-closed form solution exists for the Gaussian 

mixture noise channel estimator. Thus an iterative NPML channel estimator was presented and 

parallels with MEE criterion were also drawn. The bounds on the step-size selection for the 

adaptive algorithm were also formed in this chapter (as in Appendix A). With this step size and 

initialising the algorithm with the LS estimate, the proposed NPML algorithm was shown to be 

a robust algorithm to various noise conditions. The algorithm was compared with the tradition-

ally used EM algorithm [62] [10] and was shown to have more flexibility than EM algorithm. 

97 



Conclusion 

The proposed algorithm is robust to ISI, various noise conditions (uni-modal or multi-modal), 

and correlated or uncorrelated noise. The lower bounds on channel estimation, i.e. CRB, are 

also presented in this chapter. From simulations it is observed that the proposed algorithm per-

forms close to the CRB. A further addition to the chapter is on channel order adaptation, where 

the assumption (for channel estimator) of known channel order is also relaxed from the pro-

posed algorithm and the robustness of proposed algorithm to simultaneously adapt the channel 

weights and the order are discussed in Appendix C. 

Chapter 5 extends the algorithm discussed in chapter 4 for CCI case. In this chapter the loss 

in performance due to the assumption that the mixture noise (AWGN + interference) is un-

correlated is discussed. The fundamental idea behind the whitening filter and its effect on the 

problem definition (of chapter 4) is discussed. As it is known that the CCI is correlated, the 

whitenining filter was used to whiten the CCI. After whitening, the tap weights are updated 

iteratively using the NPML algorithm. The enhanced MSE performance is achieved by using 

the proposed technique over the traditional Gaussian assumption based techniques [8] [65]. 

Chapter 6 considers the application of NPML techniques for channel estimation and equalisa-

tion. The purpose of the chapter was to introduce and compare the performance of the NPML 

channel estimator and equaliser with the traditional methods for the OFDM communications 

systems. The problem definition was formulated and the case of both synchronous and asyn-

chronous interference was discussed. A brief discussion on traditional channel estimator for 

pilot training based OFDM systems was presented. The NPML channel estimator formula-

tion for OFDM systems was discussed next. It was shown that the decision boundary for the 

OFDM linear equaliser was no longer linear due to channel estimation imperfections and the 

"interference estimated channel" ratio effect. Thus a non-parametric symbol-by-symbol MAP 

equaliser was proposed which uses the density estimated during the channel estimation proce-

dure to make the decision on the received symbol. The simulation results for flat-fading, and 

multi-path frequency-selective fading for synchronous and asynchronous interference limited 

channels were also shown at the end. 

7.2 	Limitations of current work and proposal for future work 

This section discusses some of the limitations of the performed work and directions for future 

research. 
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One major short coming of the work is to have an optimal kernel width parameter. The perfor-

mance of the algorithm is dependent on the proper choice of the kernel width, specially when 

short training sequence is available. 

Other limitation of the work is that the proposed NPML technique is based on block based 

training method. The scenarios for sample (symbol) based adaptation or development of track-

ing algorithm would be a interesting area to explore. Also the application of the algorithm for 

semi-blind channel estimation would be interesting to explore. In addition, as with iterative 

techniques, arnethod for finding global minima/maxima is warranted. 

In this work the performance improvement in single input single output systems was consid-

ered. Recently there has been considerable work on multiple input multiple out (MIMO) sys-

tems [119] [120]. Thus extending this work for MEMO channels would be a natural next step 

forward. 
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Appendix A 
Step size calculation 

The Hessian H to get an estimate of the step-size M(k), for the gradient ascent NPML algorithm 

is formulated [121] as: 

- 11  Vh C(hIy)II 
,u (k) = 	 (A.1) 

VhL1(h I y)tHVhj(h  I 

where H depends on h, and thus indirectly on k. H is the Hessian matrix of second partial 

derivatives This is then the optimal choice of M(k) given the assumptions men-

tioned [121]. First the diagonal elements of the Hessian are calculated, 

r) 	
M 	K(e(i) - e(j))){ 	K(e(i) - e(j))} - 	&K(e(i) - e(j)))2 

K(e(i) e(j)))2  

(A.2) 

M 	 M 

K(e(i) - e(j)))2 [{K(e(i) e(j)) 

( 1(x(i) 	xv(j))2(e(i) - e(j))2K(e(i) - e(j)) 

4a4  

- X"  ( j)) 	- e(j)) 

2a2  

{

M 	
2 

K 	- e(j))(e(i) - e(j))(xv(i) - xv())}] 	 (A.3) 

M 	 MM 

= 	 K(e(i) - e(j) [ 	
K(e(i) - e(j))K(e(i) - e(p)) 

{ (x(i) - x(j))(e(i) - e(j)) - (x(i) - x(p)) (e(i) - e(p)) 
12  

M 

-- K(e(i) - e(j)) 	(x(i) - x(j))2K(e(i) - e(j)) 	 (A.4) 

j=1 	 j=1 
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Step size calculation 

Based on the assumptions about the system model discussed in chapter 4 and for large M 

I r)
M -M 

___ 	—1 	1_1(x(i) - x(j))2K(e(i) - e(j)) 
 

ah2 K(e(i) - e(j)) 

—M 
 

This formulation is also supported in [122] where large kernel size allowed the quadratic ap-

proximation and in [43] where the Taylor series expansion upto second order was taken as 

sufficient for channel estimation. Based on similar assumptions, the Hessian reduces to ap-

proximately diagonal form for large M, the non-diagonal term becomes insignificant, thus 

p(k) 	—H'. Thereby p(k) in the channel estimator of eq. (4.7) discussed in this thesis is 

restricted as: 

0<p(k)!5 	 S 	
(A.7) 

Also note that eq. 5(A.6) being negative also ensures that local maximum are being sought by 

the iterative algorithm. 
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Appendix B 
Minimal sufficient statistics 

The maximum likelihood estimator reduces to the least squares estimator when the noise is 

Gaussian and in the absence of interference. The minimal sufficient statistic is formulated, 

which allows the greatest data reduction without loss of information when the estimated pa-

rameter is formulated and it is verified if the LS estimator forms the minimal sufficient statis-

tics. The Lehmann and Scheffe's method for finding a minimal sufficient statistics for the given 

problem is used in eq. (6.4). By Lehmann and Scheffe's method, it is assumed that the r.v. Z is 

i.i.d and distributed as fy(Z I h), the likelihood ratio is 

L(h I Y) - fl 1{fy(Y(i) I h)} 	
(B.1) 

L(h I Z) 	fl 1{fy(Z(i) I h)} 

For simplicity, let us assume P = 1 i.e. one major interferer and NT = 1. Thus the interfering 

user's noiseless channel states are E {±I} 

L(h I Y) - fl 1{exp ((Y(i) -H(i)X(i) + 1(i))2) +exp (r(Y(i) - H(i)X(i) - I(i))')} 

L(h I Z) - fli1{exp (4(Z(i) - H(i)X(i) + 1(i))2) + exp (r(Z(i) - H(i)X(i) - 
(B.2) 

{ 	 M 	 M 
-1 -1 	 2 	1 

= 	exp(- 	I Y(i) 1 2) exp( - 	I H(i)X(i)  I ) exp(-72 

i1 	 j1 	 j1 

M 

2 
exp(I*(i)I(i)) H cosh({I(i) (H(i)X(i) - Y(i))*})} / 

a 
j=1 

{ 	 M 	 M 	 M 
-1 

exp(- 	I Z(i) 1 2) exp(- 	I H(i)X(i) 12 ) exp(- > R{H(i)X(i)Z*(i)}) 

j=1 	 j=1 	 j=1 

exp(jI*(i)I(i)) fJ cosh (R{I(i)(H(i)X(i) - Z(i))*}) } 
	

(B.3) 
j=1 
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M 	 M 	 M 	 M 
—1 1 

= exp(— 
2a 	I Y(i) 1 2  - 	I Z(i) 12 ) exp(—

a 	
{H(i)X(i)Y* ()J> JI{H(i)X(i)Z*(i)}) 

i=1 	 j=1 	 i=1 	 j=1 

cosh ({I(i)(H(i)X(i) - UT 

i= cosh({I(i)(H(i)X(i) - 	
(B.4) 

OIT 

This is independent of H*(i)  if either Z = Y or all the order statistics match i.e. Y(i) = 

Z(i), 1/(2) = Z(2), ••• Y(M) = z(M). Therefore the minimal sufficient statistics for the Gaussian 

mixture are the set of order statistics for Y, and hence LS does not form the minimal sufficient 

statistics for the given case [123]. 
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Appendix C 
Channel order adaptation 

The proposed non-parameteric maximum likelihood (NPML) channel estimator shows superior 

performance to the LS estimator in the presence of non-Gaussian noise. The derivation of the 

NPML estimator assumed perfect knowledge of the channel order, which, however, does not 

comply with most applications. In this section, first the study of effects of inaccurate order 

assumption on the NPML estimator is done and it is shown that the traditional order selection 

criteria like the Akaike's information criterion (AIC) are unreliable to apply for the NPML es-

timator. Then a simple method is proposed to trace the channel order where the order selection 

and channel estimation are carried out simultaneously. 

Although an old topic, the order estimation remains an incompletely solved problem [124]. The 

most widely used order estimation criteria are the AIC [125], the Final Prediction Error (FPE) 

[125] and the Minimum Description'Length (MDL) [126], all of which, however, are unreliable 

to apply when the noise is non-Gaussian. All other order estimation algorithm are evaluated 

against the above three popular criteria. Usually the criterion indices for the possible orders are 

calculated, before making the final order selection. This brute-force approach demands high 

computation, impeding its application to on-line systems. Although some approaches (e.g. 

[127]) can carry out the order selection and channel estimation simultaneously, they are limited 

to specific applications and hard to be applied to the NPML estimator. 

For a channel estimator, the order "under-estimate" is more serious a problem than the order 

"over-estimate" in terms of performance. Thus in practice, it is usually not necessary, if not 

impossible, to have a precise order estimate as long as the order is not underestimated, thereby 

making it possible to use simpler methods to estimate the channel order. Recently, Gong (et 

al.) proposed a novel variable tap-length adaptive algorithm which can be used to track the 

channel order on-line [128]. However, based on the symbol-based adaptive algorithm such as 

the LMS algorithm, the proposed algorithm cannot be used for the NPML estimator which is 

block-based. 

In this appendix, first the influences of the inaccurate order assumption on the NPML channel 

104 



Channel order adaptation 

estimator is investigated. Then, after showing that the classic AIC criterion is unreliable to 

apply in presence of non-Gaussian noise, a simple method to search for the channel order 

where the order selection and channel estimation can be carried out simultaneously is proposed. 

Simulation results are presented at the end. 

C.1 	Non-parametric ML channel estimator 

P 	3 	4 	5 	6 	7 	8 	9 	10 	11 
NMSE 0.0961 0,0215 0.0018 0.0023 0.0029 0.0034 0.0038 0.0047 0.0055 

Table C.1: NMSE for different assumed channel order 

According to Figure 4.1, and assuming M as the total number of samples and NT as the true 

channel order, the channel output vector can be expressed as: 	 - 

yXNThNT+W, 	 (C:1) 

where hNT  is the channel vector, w is the noise vector, and XNT  is the channel input matrix 

which is given by: 	 . 

X(I) 	0 	0 ... 	0 

x(2) 	x(1) 	0- 	0 
XNT  = 	. 	 . 	 . 	. 	 . 	 (C.2) 

x(M) x(M - 1) ... x(M - NT +1) 

The ML estimator maximises the log-likelihood function 

I 	= log f(y I h) = 	log f(e(n)) 	 (C.3) 

with respect to the channel estimator vector hNT,  where the assumed channel order is NT and 

f(.) is the scalar pdf of the channel noise w(k). 

As has been shown in chapter 4, the ML estimator can be obtained by the gradient ascent search 
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as: 
aC(hIy) 	

(C.4) 
I 

hk+1 = 'k + /1 
Dh 

Since, in our system model, it is assumed that the noise distribution is "unknown" (in (C.3)), a 

kernel density estimator is used to estimate this density as, 

M 

Jw(e) = 	 (C.5) 
n=1 

where K(.) is the Gaussian kernel from chapter 4. Then from (C.3) and (C.5), and with some 

manipulations: 

y) 	1 M  EMI (e(n) -e(i))(x(n) -x(i))K(e(n) -e(i) 

Lhk  3h 	- -:; 	 - M 	 (C.6) 
Ih=hk 	. 	 L=i K(e(n) - e(i)) 

Finally substituting (C.6) into (C.4) gives the NPML estimator. 

C.2 	Channel order mis-estimation 

In general, if the channel order is assumed inaccurately, the estimation error comes from two 

parts: the coefficient-estimation error in the assumed model space and the space-estimation 

error between the true model and assumed model spaces [1291. As the assumed order increases, 

the coefficient-estimation error always increases, while the space-estimation error decreases 

until the assumed order is equal to, or larger than, the true channel order. 

To be specific, if the channel order is under estimated, i.e.. 1 < NT, only the first 1 coefficients 

of the channel can be effectively estimated, and the received signal can be expressed as: 

y(k) = 
	

h(i)x(k - i) + w'(k), 	k = 1,••• , M 	 (C.7) 

where w'(k) = h(l + 1)x(k - 1 - 1) +... + h(NT)x(k - NT) 4- w(k). Then the problem 

reduces to estimating the first 1 channel coefficients with the equivalent channel noise of &(k). 

Hence when 1 < NT, beside that there are NT - 1 taps "missing", even the estimation errors 

corresponding to the first 1 coefficients is larger than those when 1 = NT since U2,> 

Therefore the order under-estimate results in significant performance loss. 

It is interesting to observe that &(k) basically forms a Gaussian mixture. Thus under rare cir- 
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cumstance, can w'(k) be Gaussian. Further noting that NPML estimator demonstrates signif-

icantly superior performance tothe LS estimator of chapter 4 in the presence of non-Gaussian 

noise. Thus the NPML estimator is always better than, or more robust to, the LS estimator 

when the channel order is under-estimated. 

On another front, if the channel order is over-estimated (i.e. 1 > NT), the "space-estimation 

error" disappears and only the "coefficient-estimation error" remains. Then the estimator vector 

can be expressed as: 

[hT 0T]T +Afi, (C.8) 

where Afi can be regarded as a perturbation to the ideal estimate. In general, the larger the M 

is, the smaller the perturbation term is. Particularly, it can be easily verified that, if x(k) and 

w(k) are independent to each other and either of them has zero mean: 

lim Z 	= 0 	 (C.9) 
N—oo hLS 

Thus if the data number is large enough, the last 1 - NT coefficients of the estimator are very 

small. 

As anexample, a system with presence of CCI is considered where SNR=20dB, h = [1 0.8 0.6 0.4 0•2]T 

with NT = 5, the interfering channel has SIR of 10dB, and the total number of samples is 100. 

Table C.1 shows the NMSE of the NPML estimator when the assumed channel order varies 

from 3 to ii respectively. The NMSE is a performance index to measure the "goodness" of an 

estimator and is defined as 

E[1(h(n) - ji(m))2] 	
(C.10) 

T  

NMSE = 	
h3hNT 

It is clearly shown in Table C. 1 that the NMSE reaches the minimum at 1 = NT. But when 

1 > NT, the NMSE are within a narrow range, all significantly below those for 1 < NT. This 

indicates that the order under-estimation is more serious a problem than the order over-estimate 

in terms of performance, though the latter imposes more complexity. 
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C.3 NPML estimator with order estimation 

In this section, first it is shown that the traditional AIC is unreliable to apply for the case 

of estimated Gaussian pdf and the estimated non-Gaussian pdf, and then a simple method to 

estimate the channel order is proposed. 

C.3.1 Order estimation based on AIC 

P 	I 	No CCI 	I 	No CCI 	 SIR = 10dB 

4 -179.63 -286.81 -85.21 -64.04 -54.92 -100.15 
5 -464.65 455.82 -193.96-211.84 -57.72 -106.89 
6 -465.80 -454.01 -192.40 -210.10 -55.93 -105.25 
7 -470.73 -453,39 -201.67 -208.40 -54.21 -103.78 
8 -468.73 -451.38 -199.69 -206,71 -55.64 -107.21 
9 467.33 -449.36 -198.09 -205.06 -53.89 -105.70 

10 -466.22 -449.22 .205.55 -207.00 -51.97 -111.96 
11 -468.58 -451.17 -203.81 -205.54 -56.78 -110.22 

Table C.2: AIC for different scenarios 

AIC is the most widely used order selection criterion which is defined as [12511: 

AIC = -2r(h1 I y) + 21, 	 . 	(C.11) 

where. C(hi I y) is defined in (C.3). When the noise is Gaussian, (C.1 1) can be simplified to: 

AICa2 = M log  ô 2  +21, 	 ' (C.12) 

where &2 = (11M)EM, e'(n). 

Unfortunately, neither AICZ nor AIC2 is reliable to estimate the channel order for the NPML 

estimator: first, although the kernel density estimation (C.5) can be used to estimate the likeli-

hood, it is not accurate enough to calculate the AIC; second, AICa2 is only limited to Gaus-

sian cases. 

For illustration, the AIC for the same channel is calculated as that used in the previous section, 

and the results are shown in Table C.2, where the minimum values are highlighted in bold. 

Recall the true channel order NT is 5. In the first case, a pure Gaussian channel is considered, 

where SNR=20dB, the number of sample M = 100 and no M. It is clear that AIC2 has its 

minimum at 1 = 5 but AICt  at 1 = 7 which is biased away from NT. In the second case, 
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the same channel but M is decreased to 50. It is observed that AIC&2 still finds the true order, 

but AIC E  has the minimum which is further away from NT. This is not surprising because, 

as M decreases, the density estimation becomes poorer and so does estimated AIC. In the 

last case, the interfering channel is introduced where SIR=lOdB, the SNR is increased to 40dB, 

by which the channel becomes totally different from Gaussian. Under such scenario, neither 

AICZ nor AIC2 estimates the channel order well. In conclusion, the AIC is unreliable for use 

with NPML estimator for order selection 

C.3.2 A simple order estimation method for the NPML estimator 

A simple method to estimate the channel order is proposed below. The idea is based on the 

previous observation that, when the channel order is over-estimated, the extra taps are usually 

small compared to the others 

To be specific, at every iteration of the NPML estimation, the summation of squares for the last 

V coefficients of the estimator is measured. If it is smaller than V times of a pre-set threshold 

c, then the order is decreased by 1; otherwise, if the summation of squares for 'the last V - 1 

taps is larger than (V - 1)e, the order is increased by 1, and if none of the above then the order 

remains unchanged. In summary, the fQllowing procedure combining the order selection and 

the NPML channel estimation together is employed: 

For every iteration , k = 1, 2, 3,... 

Do the kernel density estimation based on (C.5). 

Update the estimator according to (C.4). 

if 	i=l(k)-V+1 "'1(k) < V 

l(k + 1) = 1(k) - 1 

else if 1 
i=1(k)--V+2 "1(k) < (V — 1) . 

l(k+i)=l(k) 

else 

l(k + 1) = 1(k) + 1 

end 

end 

In the above procedure, 1(k) is the tap-length at the kth iteration and V is an integer no less than 

1. V has two effects: first, to create a "guard margin" so that the estimation is based on V, rather 
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than 1, coefficient values; second, to make the search escape from the local minima which are 

the zero coefficients within the range of the channel spread. Then if the threshold value e is 

properly chosen, 1(k) will converge to within the range of [NT, NT + V - 1]. Obviously this 

method tends to over-estimate the order. 

The threshold c depends on both, the channel specifics and the channel estimator. When the 

number of samples M is large enough, the extra taps are normally very small, thus allowing us 

wider range to choose c from. When M is small, the NPML estimator significantly outperforms 

the LS estimator as the former can explore the "local statistics" much better than the LS. In fact 

with a fixed e = 0.01 extensive simulations under different scenarios such as different channel, 

SNR, and M were under taken. The results show that the proposed method always works well 

as long as M is reasonably large (e.g. M > 30). 

Alternatively, a dynamic threshold may be used, i.e. € varies at each iteration. It has been shown 

in Section C.2 that the channel estimation consists of the true channel plus a perturbation term. 

It is obvious that, the larger M is, or the smaller &2  is, the smaller the perturbation is and then 

the smaller the c should be. Inspired by this observation, a dynamic threshold is suggested: 

- ______ 
(C.13) 

M 

where C is a constant. To make the algorithm robust, it is ensured that the 6min < €(k) < emax, 

where €max  and mjfl are maximum and minimum values for the threshold respectively. 

C.4 Simulation study 

For the simulations in this section, the channel is the same as that for the previous examples in 

this paper, V = 3, the dynamic threshold based on (C.13) is used where C = 10, 6,,ax = 0.05 

and 6min = 0.005. All results are based on one typical run. The learning curves of the tap-

length and the second tap coefficient of the estimator are shown in (a) and (b) respectively for 

each figure. 

Figure C. 1 investigates the proposed algorithm for different initialisation of the estimator's tap-

length, where SNR= 20dB, SIR= 10dB and M = 100. It is clear that, for all initialisations, the 

individual tap-lengths converge to '6' which is in the range of [NT, NT + V - 1] as expected. 

Figure C.2 compares the results for different sample number M, where SNR=20dB and SIR=lOdB. 
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(a) Tap-length learning curve. 	(b) 2 nd  tap learning curve. 

Figure C.1: Learning curves for different tap-length initialisation. 

It is observed that even if M is as low as '20', the algorithm can still track the order, although 

it oscillates between '6' and 7 as shown in Figure C.2 (a). Accordingly, the slower coefficient 

convergence for M = 20 is also observed in Figure C.2 (b). 

Figure C.3 shows the results for different SNR-s, where the SIR= 10dB and M = 50. It is 

obvious that the proposed algorithm works well for all these-SNR-s. From Figure C.3 (b), it is 

interesting to note that NPML algorithm performs better for SNR20dB than for 40dB, as the 

former converges closer to the true 2nd coefficient (which is 0.8) of the channel. This is because 

that, in presence of CCI, the channel with SNR at 40dB is further "away" from Gaussian than 

that with SNR at NO, resulting in less accuracy for the kernel density estimation. 
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Figure C.2: Learning curves for different number of samples. 
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(a) Tap-length learning curve. 	(b) 2nd  tap learning curve. 

Figure C.3: Learning curves for different SNR. 
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Abstract 

This paper addresses the problem of developing a least mean squares (LMS) style decision feedback equaliser 
algorithm for minimising bit error rate (BER) in impulsive noise environments characterised by the alpha stable 
distribution. The development exploits the stable nature of the alpha distribution and the concepts build on earlier 
work in a Gaussian noise environment. Further, a Wiener-filter-with-limiter solution is also presented and used as a 
performance bench mark. An improvement in convergence and BER performance is achieved by using a minimum 
bit error rate (MBER) cost function instead of a conventional LMS based design. The ability of least BER (LBER) 
equalisers based on a Gaussian noise assumption to operate in an alpha stable noise environment is also highlighted. 

1. INTRODUCTION 

The Gaussian process has always been the dominant noise model in communications and signal 
processing, mainly because of the central limit theorem. In addition, the Gaussian assumption often leads 
to analytically tractable solutions [4]. Unfortunately, in some communication channels, the observation 
noise exhibits impulsive, as well as Gaussian characteristics. The sources of impulsive noise may be either 
natural (e.g. lightning, ice-cracking), or man-made. It may include atmospheric noise or ambient noise. It 
might come from relay contacts, electro-magnetic devices, electronic apparatus, or transportation systems, 
switching transients, and accidental hits in telephone lines [6], [7].  Most of the present day systems 
are optimised under the Gaussian assumption and their performance is degraded by the occurrence of 
impulsive noise [3] 

Impulsive noise is more likely to exhibit sharp spikes or occasional bursts of outlying observations 
than one would expect from Gaussian distributed signals. A variety of impulsive noise models have been 
proposed in [7] and [8]. However, a common model to represent impulsive phenomena is the family 
of cr-stable random variables [4]. Stable distributions share defining characteristics with the Gaussian 
distribution, such as the stability property and central limit theorems. The empirical data indicates that the 
probability density functions (pdf's) of the impulsive noise processes exhibit a simlarity to the Gaussian 
pdf, being bell shaped, smooth and symmetric, but at the same time having significantly heavier tails [6]. 

In [1] it was shown that adaptive linear equalisation based on probability of error performs better than 
that based on a least squared error cost function. Further, it was shown that the state-translated design 
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achieves a lower BER than conventional DFE structures [9]. However the adaptive least BER algorithm 
of [l] was derived on the basis that the noise was drawn from a Gaussian distribution. While general 
purpose adaptive algorithms for alpha-stable noise environments have been proposed (e.g. [4] and [5]), 
they are based on the L norm of the error rather than BER. 

In this paper, we develop a class of adaptive equalisers (similar in complexity to the LMS algorithm) 
where the BER is minimized in an alpha stable noise environment. The least BER rate algorithms of [1] 
are shown to be particular cases of these algorithms when the noise is Gaussian. Generally, in adaptive 
equalisation, the Wiener solution is taken as a point of reference in measuring performance. However in 
alpha stable noise the variance of the input signal to the equaliser is infinite and the Wiener solution is 
not defined. In practice, every receiver has a finite input dynamic range which limits the amplitude of 
received samples and produces finite variances. Using this assumption we derive the 'Wiener solution 
with limiter' (WSL) for alpha stable noise environments. As pointed out in [2] the limiter facilitates the 
use of standard correlation based algorithms in alpha stable noise. Simulation results show that the LMS 
algorithm fails to converge to this WSL solution while the proposed alpha-stable-noise least-BER (LBER) 
algorithm seeks the optimum BER solution for comparable computational complexity. Robustness of the 
Gaussian-noise LBER algorithms of [1] in alpha stable noise is also demonstrated through simulation. 

The paper is organised as follows: a brief overview of stable processes is provided in section 2; an 
overview of the state-translated DFE structure is presented in section 3; the WSL in alpha stable noise is 
derived in section 4; the LBER adaptive algorithm for alpha stable noise is derived in section 5; simulation 
techniques, assumptions and results are discussed in section 6; finally conclusions are drawn in section 7. 

2. THE CLASS OF STABLE RANDOM VARIABLES 

The main characteristics of a non-Gaussian stable random variable (RV) is that the tails of its probability 
density function (pdf) are heavier than those of the normal density. The symmetric a-stable (SaS) pdf is 
defined by means of its characteristic function F(w) = exp(öiw - 7IwI). The parameters a, 'y and a describe 
completely an SaS distribution. The characteristics exponent a (0 < a < 2) controls the heaviness of the 
tails of the stable density: a = 2 is the Gaussian case; smaller a values are associated with heavier tails. 
The dispersion parameter 'y ('y > 0) plays an analogous role to the variance and refers to the spread of 
the distribution. Finally, the location parameter 8 is comparable with the mean of the distribution. 

Theoretical justification for using the stable distribution as a basic statistical modelling tool comes 
from the generalized central limit theorem. Unfortunately, no closed-form expressions exist for the stable 
density, except for the Gaussian (a = 2), Cauchy (a = 1) and Pearson (a = ) distributions. An important 
property of all non-Gaussian stable distributions is that only the lower moments are finite. That is, if x 
is a non-Gaussian stable RV, then E {IxI} < oc if p < a. A well known consequence of this property 
is that all stable RV's with a < 2 have infinite variance [3]. For further discussion on a-stable RV's and 
their properties can be found in [4]. 

Alpha stable noise 	
Limiter 

f) k_ 	 rL(k) 

P~~ 	

_ L(, ) 
Equaliser  

Fig. 1. Typical Communication System 
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3 

3. EQUALISER STRUCTURES 

The channel is modelled as a finite impulse response filter with an additive noise source, and the 
received signal at sample k is 

r(k) = f (k) + e(k) = E as(k - i) + e(k) 

where (k) denotes the noiseless channel output; n,, is the channel length and a2  are the channel tap 

weights; the white noise e(k) has zero mean and is drawn from an alpha stable distribution with dispersion 

'y and characteristic exponent c; the symbol sequence {s(k)} is independently identically distributed (lID) 

and has a M-PAM (pulse amplitude modulation) constellation defined by the set [9] 

s=2i—M-1,1<i<M 

Throughout this paper M 2 for 2-PAM is considered. For a conventional linear-combiner DFE the 

decision variable z at time k is a linear combination of received samples and past decisions: 

z(k) = wTr(k) - bT b (k) 

where r(k) = [r(k)r(k-1) ... r(k _ m+1)]T is the channel observation vector, 9b(k) = [.(k—d-1) .(k — 

d - 2) ... 	- d - )]T is the past detected symbol vector, w = [w0 w1 ... Wm_i ]T  is the feedforward 

coefficient vector and b = [b1  b2 ... b]T is the feedback coefficient vector. The integers d, m and n will 
be referred to as the decision delay, the feedforward delay and feedback taps respectively. Without loss of 
generality, d =n,, -  1, m = a and n = na - 1 will be used as this choice of DFE structure parameters 
which is sufficient to guarantee the linear separability of the subsets of the channel states related to the 
different decisions [9]. Alternatively the linear-combiner DFE can be expressed in state translated form 

[10]: 
z(k) = w  (r(k) - F2b(k)) = wTrI(k) 	 (1) 

where F2  is constructed by partitioning the channel impulse response matrix F = IF, F2], where: 

a0  a1 	ana Jl 

F1= 0 a
0  

a1  
0 0 a0  

0 	0 	... 	0 

afla _1 	0 

F2 	a 0_2 a_i 	0 

0 
a1 	an.-2. 

Since the linear-combiner DFE is a special case of the generic DFE structure, by performing translation 
of eq. (1), it is reduced to the equivalent linear equaliser 'without decision feedback': 

	

f'(r'(k)) = wTr'(k) 	 (2) 

The decision boundary of this equivalent linear equaliser consists of M - 1 hyperplanes defined by: 

r' : wTrI = 2i - M, 1 <i < M - 1. These M - 1 parallel hyperplanes can always be designed properly 

to separate the M subsets of the translated channel states 	1 < i < M. In particular, for M = 2, 
the decision boundary, r' : wTr! = 0, is a hyperplane passing through the origin of the r'(k)-space. It is 

shown, in [9],  that in the state translation the channel states remain separable despite translation. The 
states can be made separable by applying ,a simple initial condition. The performance of state translated 
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linear combiner DFE is shown to be better than conventional minimum mean square error (MMSE) DFE, 
however performance depends on the accuracy of the built-in channel estimator [9]. 

The Wiener or MMSE solution is often said to provide the optimal w and b. It is however optimal only 
with respect to the mean sqiare error criterion. Obviously, there must exist a solution w which achieves 
the best equalisation performance for the structure of eq. (2). We refer to this w00 as the minimum bit 
error rate (MBER) solution of the linear-combiner DFE. The MMSE linear-combiner DFE is generally 
not this MBER solution. A natural question is how different the MMSE and MBER solutions can be. The 
difference in performance of MMSE and MBER solutions for Gaussian distributed noise is demonstrated 
in [9]. 

4. MINIMUM BIT ERROR RATE EQUALISATION. 

It is obvious that the MBER and MMSE solutions are different as discussed in [9].  In this section 
we first describe the MBER criterion for a general DFE structure. The calculation of MMSE solution 
is not possible for a-stable noise because of infinite variance. However by introducing practical design 
constraint of a limited dynamic range we can estimate the Wiener solution (the, conventional way). For 
clarity we describe it as the WSL. 

MBER criterion 
The bit error rate (BER) observed at the output of the equaliser is dependent on the distribution of the 

decision variable z(k) which in turn is a function of the equaliser tap weights. To be more specific, the 
probability of error, PE,  is: 

PE = P(sgn(s(k - d))z(k) <0) 

The sign adjusted decision variable z8 (k) = sgn(s(k - d))z(k) is drawn from a mixture process. From 
the definition of z(k), 

z3(k) = sgn(s(k - d))(wTFs(k) - bT b(k)) + sgn(s(k - d) )WT  e(k) 

= 	sgn (s (k — d)) z'(k) + e'(k) 	 (3) 

e(k) = [e(k) e(k—l)... e(k—d—n)]T  is the vector of noise samples; s(k) = [s(k) s(k-1) ... s(k_d_nn j]T 

is the vector of transmitted symbols. The first term on the right hand side of eq. (3), sgn(s(k - d))z'(k), 
is the noise-free sign-adjusted equaliser output and is a member of a finite set with N elements - these 
are the local means of the mixture. Without noise the combination of channel and DFE is a finite state 
machine whose state is defined by the vector s(k). Thus if s(k) E {si ... s 	5N }' the state si uniquely 

defines the state of z'(k), r(k), s(k - d) and b (k) - label these z, r, s, and 9bi  respectively. Note that 

while s(k) has N states, s(k - d) has 2 possible values (2-PAM). However since s(k - d) is a component 

of the vector s(k), the state. of s(k) uniquely defines the value of s(k - d). The second term e'(k) is a 

zero mean a-stable white noise process with dispersion 'y(>1 IwI')ii and characteristic exponent a - 
defining the distribution about the local means. 

Wiener Solution with limiter 

In an a-stable noise environment with a < 2 the variance of the noise is infinite [4] making the use 
of the traditional Wiener solution meaningless. Nevertheless, all receivers in practice have a finite input 
dynamic range. This is achieved by using the structure as shown in Fig-l. The limiter at the front end of 
the receiver is assumed to be an ideal saturation device, with transfer function 

X 	: IxI<G L(x, G) = { sgn(x)G : elsewhere 
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G being the saturation point of the limiter. The saturation limit level G is kept at a reasonable distance 
from noiseless channel states to preserve the noise structure and not limit (clip) the noiseless channel 
state instead. 

Provided G > max((k)), the received signal at the output of the limiter, rL(k), is the sum of the 
noise-free channel output f(k) and what is termed a truncated a—stable noise process, eL(k): Vk. The 

pdf of this truncated a—stable noise process is given by: 

fa (s, G) = fa(S) fJ(s, G) + Ij(—G)6(s + G) + Ir(G)6(S - G) 	 (4) 

where 	
Ii : —G<s<G 

G) = 0 : elsewhere 

II = f f(S)d5,Ir 
00 	 IG 

where f (s) represents the alpha stable distribution. The pdf of the channel states (assuming equi-probable) 
is impulses at the channel centres. 

N3 

f(s) = 	— 8(s—) 	 (5) 
Sci=1 

Since the truncated alpha stable noise process of eq. (4) and the noise-free scalar channel states of eq. 
(5) are independent, the combined pdf is given by: 

frL(S) = (6) 
j=1 	 j=1 

where N8 = 	is the number of the scalar centres 	of the channel, i.e., = aT.sChI (i = 1, 2 7  ..., N8 ), 
where a = [ao ... an_i]T  and Sch 	[5(k) ... S(kfla+1)IT  are all the possible combinations for the channel 
input vector. This pdf is same as that observed at the output of the receiver, which confirms independence. 
The limiter "L(x, G)" truncates the pdf of the received signal and its tails are concentrated at the points 
±G, where they appear as Dirac impulses 6(s). The noise variance can be calculated theoretically from 
[3], with knowledge of a, limiting level G and noiseless channel states ?. 

From classical Wiener filter theory [11], the WSL is w0  = R'p, where w0  is the optimum tap-weight 
vector, R = E{rLrLT} is the input autocorrelation matrix, p = E{rL s} is the cross-correlation vector 
and rL = [rL(k) rL(k - 1) ... rL(k - m + i)]T. The autocorrelation matrix is simply the sum of two 
autocorrelation matrices: (i) the autocorrelation matrix associated with the noise free channel output; (ii) 
a scaled identity matrix. The scale factor is the variance of the truncated alpha stable process and thus the 
scale factor is f s2 f(s, G)ds. The cross-correlation matrix is simply the cross-correlation of the noise free 
channel output with the target symbol. Because the variance of the truncated alpha stable noise process 
is a function of both the parameter a and the limiter value G, the WSL will be as well. 

Thus we can calculate the theoretical Wiener solution after the limiter using the independence property, 
which was not obvious from [3]. 

5. STOCHASTIC GRADIENT ADAPTIVE EQUALISERS 

In this section we directly address the problem of minimising BER in an alpha stable noise environment 
and derive a stochastic gradient algorithm for the task. As the development is in terms of probability of 
error rather than mean squared error the requirement for a limiter is removed. 

Consider the noise density function p(x) associated with the zero mean random variable x. The density 
function is symmetrical and normalised such that the variance or dispersion is unity. The associated 
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distribution function is P(x). The "generalised" error function is Q(x) = 1 - P(x) and its derivative is 

Q1  (x) = - p(x). The probability of error at the output of a linear or state translation equaliser with N 
noise free states as a function of the weight rn-vector w is: 

N 
1 

PE (W) = 
N 
—Q(g(w)) 

i=1 

where gj(W) is the signed decision variable associated to the i' state, normalized by the "strength" of 
the noise. In the Gaussian case [1] 

9i(W) = 
wTrsj 	

(7) 
IIwIIa 

where r  is the 	noise free received vector; the Euclidean norm is Iwli = 	IwI); si is the 

transmitted symbol associated with that vector; p•2  is the noise variance. In the a-stable case: 

T 

	

9i (W) 	
w rs 	 (8) 

IIWU0'Ya 

	

where the "a-norm" is defined as: IwII = (> 	IwjI)k For adaptive filters, derivatives of the form 

5PE/5w : Vj are required. 

N 	 5g(w) 

	

SPE 	1 -  - : Q' w)) 

	

5WN 	
(g (

5w3 
i=1 

N 	 5g(w) 

= —p(gi(w)) 
i=1 

In the Gaussian case the derivative of eq. (7) is given by: 

5g (w) =  0 	w ' rs 

	

Swj 	Sw (11W11 ) a 

- 1 (1T wTw r2s 

liwil 	IIw 1 2 ) a 

where 1i  is an rn-vector with all zero elements apart from the j entry which is unity. In the a-stable 
case the derivative of eq. (8) is taken: 

t9g(w) - S (_wT 
	r.s2 

	

0w 	- awj IIwIL) 'y 

- 1 

- WIIQ 	 IIwU 	) 

Since the a-stable case is more general we will work with it from now on. Multiply out gives: 

	

0g(w) - 1 	( - zj wjI1sgn(wj)"\ Si  

	

- 	ITt3 	 Q 	j L 19wj 	T1 W\ 	 1* 
where rij is the jth  element of ri  and zi 	w T  ri i.e. the equaliser output associated with the i noise 
free state. Collecting partial derivatives together to form a gradient vector we have: 

VPE(W) = _ 	
(ri - _____) 

8' 
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where (w) is an rn-vector with j1h  element is wI° 1sgn(w). Since the norm of the weight vector does 
not affect PE in the binary signalling case it can be set to unity at each iteration thus: 

VPE(W) = ----i-  2 
N 
 I zs \ 

P ( -j- J (ri - (w) z) S1  
\yJ 

Using the kernel density ideas developed in [1] leads to an LMS-style least bit error rate (LBER) algorithm. 
Filter output: 

z(k) = wT(k)r(k) 

Update weights: 

W  + 1) = w(k) + up 
(z(k)S(k - d)\ 	 s(k - d) 

j (r(k) - (w(k))z(k)) 	 (9) 
/ 

The equaliser tap weights are normalised after each update. The final decision, .(k - d), is made on the 

filter output wT(k)rl(k). 

6. SIMULATION STUDY 

In this paper, the SNR of the limited received signal rL(k) is used for performance evaluation in 
environments where the noise variance is infinite. By using the limiter the SNR is always finite and 
hence measurable. This is referred as the SNR at the receiver. Simulations were performed for anti-podal 

signalling (M = 2), assuming that the noise is Cauchy distributed i.e. a = 1 and the limiter, at DFE 
front-end, is at ±4 [3] to avoid being close to noiseless channel states at the transmitter output. The 
variance of the truncated alpha stable process eL(k) is calculated as discussed in [3].  Fig-i represents the 
receiver architecture considered in simulations. 

As the performance of equalisers are highly dependent on the nature of the channel, considered two 
channels which have been well studied in the literature were chosen to characterize performance. These 
channels have impulse responses [0.3482 0.8704 0.3482] and [1.0 0.50 0.25]. The DFE structure is chosen 
to be d = 2, rn = 3 and n = 2. The legends in Fig-2, Fig-3, Fig4 and Fig-5 depict: a) 'LMS' refers 
to a conventional LMS algorithm for both the feedforward and feedback taps of a conventional DFE, b) 
'LBER-Gaussian' refers to a LBER algorithm for adapting both feedforward and feedback equaliser taps 
of a conventional DFE assuming that the noise is Gaussian [i], c) 'LBER-Cauchy' refers to adapting both 
the feedforward and feedback taps of a conventional DFE assuming Cauchy distributed noise using eq. 
(9), d) 'state trans-Gaussian' refers to the same adaptive algorithm as (b) but with state translated design 
[9], e) 'state trans-Cauchy' refers to the same adaptive algorithm as (c) but with a state translated design, 
1) 'modified Wiener' represents WSL calculated after the limiter using r L(k) as discussed in section-4. 

A total of 101  samples were used to generate the convergence and performance plots using Matlab. In 
order to make a fair comparison of the relative performance of the algorithms the adaptation constant j.t is 

fixed as rn+ 6(n) 
for all the adaptive algorithms compared in this paper. A large sample size and ensemble 

for simulations was taken to reach conclusions because of the impulsive (high variations in input signal 
amplitude) nature of alpha-stable noise. 

An ensemble of 100-runs was taken to generate convergence plots as shown in Fig-2 and Fig-4 at a 
SNR of 7.9 dB's. As can be observed the convergence behaviour of the LMS is. unstable. This can be 
attributed to the fact that the LMS is dependent on the magnitude of the instantaneous error, which varies 
a lot in an impulsive noise environments. Algorithms designed to minimise BER in a Gaussian noise 
environment converge more slowly than those specifically designed for the Cauchy noise environment. It 
is safe to conclude that the state translated design for Cauchy noise has faster and more stable convergence 
than the other algorithms. 

To observe the BER performance of these algorithms an ensemble of 1000-runs was taken. The 
equalisers were trained using the first 1000-samples of a particular run after which training was inhibited 
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and the BER for that run measured. The final BER estimate was obtained by averaging over 1000 such 
runs in the ensemble. Fig-3 and Fig-5 summarize the results for the two channels used. At a BER of 
5 x 10 we can gain approximately 5 dB's by using a minimum-BER criterion instead of an LMS 
algorithm. Again the Gaussian noise based LBER algorithms perform well with respect to Cauchy noise 
based LBER algorithms which are tailored to the particular environment. The state translated Cauchy 
noise based LBER DFE performs better than the other algorithms as is apparent from both Fig-3 and 
Fig-5. It is also interesting to observe that this MBER algorithm performs better than the WSL. 

While the WSL provides an optimal solution in a MSE sense it does not minimise MBER. However 
the LMS algorithm, which would normally find the MSE solution, fails to converge to this solution in this 
environment. The LBER algorithms, by their nature, seek the desired optimum MBER solution. LBER' 
algorithms have been demonstrated to find the optimum BER solution with a computational complexity 
similar to that of the LMS. From the simulations we observe that the state-translated DFE for Cauchy 
distributed noise has better convergence and BER performance than the other algorithms considered. 
LBER algorithms based on Gaussian noise [1] assumptions have also been demonstrated to perform well 
in a-stable noise environments. 

7. CoNcLusioNs 

An minimum bit error rate adaptive algorithm for impulsive noise modelled as a-stable noise has been 
proposed in this paper. By introducing a limiter at the receiver front-end both SNR and Wiener solution 
can be calculated theoretically and by simulations. It is shown that for minimum bit error design, the 
adaptation is a function of the noise density function. The comparison between various adaptive algorithms 
working in identical channel, noise and DFE structure has been drawn. The LBER-Cauchy and the state 
trans-Cauchy has faster convergence than the other adaptive algorithms in Cauchy noise environments, 
which is a special form of a-stable noise. Extensive simulations strongly suggest that the state-translated 
design for the a-stable noise has better convergence and BER performance than the other algorithms. It 
is also interesting to observe that the adaptive algorithms based on a Gaussian noise assumption despite 
slow convergence in impulsive noise environments perform closer to those designed with Cauchy noise 
assumption. Lastly as expected the LMS algorithm performs poorer that the other algorithms in a-stable 
noise environments. Observations from Fig-3 and Fig-5 suggests MBER algorithms' superior performance 

with respect to the WSL solution. 
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ABSTRACT 

A maximum-likelihood channel estimator for the orthogo-
nal frequency division multiplexing (OFDM) communica-
tion environments, in presence of interference is discussed 
here. We study a training based scenario, where the chan-
nel is estimated based on pilots that precede the transmis-
sion of the information. To reduce the number of estima-
tion parameters, we estimate the channel iteratively in time-
domain. Since interference from other users provides no use-
ful information we do not estimate parameters of the inter-
ference and neither we neglect the affect of the interference 
instead interference along with Gaussian noise is perceived 
as non-Gaussian noise. The algorithm assumes no apriori 
knowledge about the interfering channel and signal at the re-
ceiver, further no-assumption on the statistical properties of 
the interferer is assumed which makes this algorithm robust. 
The estimated channel information along with the estimated 
distribution are then utilized to equalize the subsequent data 
blocks. 

1. INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) is a 
promising multi-carrier digital communication technique for 
transmitting data at high bit-rates over wireless or wire-line 
channels. The high-speed serial data is converted into many 
low bit rate streams that are transmitted in parallel, thereby 
increasing the symbol duration arid reducing the intersymbol 
interference (ISI). These features have led to an increase in 
the use of OFDM or related techniques in many high bit rate 
communication systems. Discrete multi-tone modulation 
which is quite similar to OFDM is extensively used in digital 
subscriber line (xDSL) communication systems. OFDM has 
been chosen for digital audio broadcasting (DAB) and digi-
tal video broadcasting (DVB). It is also used for the 2.4 GHz 
wireless local area networks (IEEE 802.11 g). 

Coherent OFDM transmission invariable requires estima-
tion of the channel frequency response (i.e. the gains of the 
OFDM tones). Currently there can be three possible solu-
tions: 1) blind, 2) semi-blind, and 3) pilot aided. In blind 
channel estimation techniques, the channel is estimated with-
out the knowledge of the transmitted sequence. It is attrac-
tive as the throughput is higher as no bits are lost in training. 
However it requires large amount of data to be stored before 
channel estimation can begin, which invariably introduces 
delays. The pilot based technique estimates the channel 
by transmitting a known (at the receiver) training sequence 

This research was sponsored by the UK Engineering and Physical Sci-
ences Research Council and lEE Hudswell Bequest Fellowship 

along with the unknown data at the receiver. The receiver 
estimates the channel using some criterion based on compar-
ing the change in these pilots due to channel. The semi-blind 
techniques try to reduce the size of the training sequence by 
exploiting both the known and the unknown (blind) portions 
of the data. 

Channel estimation in OFDM is critical to the overall per-
formance of the communication system. Insertion of pilots 
in OFDM symbols provides a base for reliable channel esti-
mates. There has been considerable increase in channel esti-
mation research over the years [1], [2] etc. However most of 
the current work is based on channel estimation for Gaussian 
channels or assuming that the interference is very low. This 
assumption is usually based on two reasons: first the inter-
ference to have tractable mathematical models and by central 
limit theorem. This assumption is however not always valid 
in scenarios where there are a small number of interferers 
(e.g. Bluetooth device or microwave oven operating in pres-
ence of a WLAN). With the co-existence of various wireless 
equipments in home or office environments the interference 
from neighboring devices has become a major concern [3]. 
In interference affected channels we can be sure that algo-
rithms designed for Gaussian assumption are not optimal [4]. 
From here on we refer to the traditional Gaussian assumption 
estimator (which assumes zero or negligible interference) as 
least squares (LS) estimator. 

Here we estimate the fading channel in presence of inter-
ference directly in time domain using maximum likelihood 
(ML) technique. The channel is assumed to be deterministic 
for a given block. The algorithm discussed in [2] specif-
ically deals with the synchronous interference, however it 
was noted that interference was modelled as Gaussian, which 
may not be the case if only a few (or in fact one major inter-
ferer as in [5]) are present. In this paper we make no such 
apriori assumption on the interfering received signal distri-
bution. Moreover no parameter of the interferer is estimated 
specifically. In fact, the presence of interference along with 
Gaussian noise is jointly considered as a Gaussian mixture 
noise [41 and  [6].  It is noted that traditional zero forcing 
equalization technique fall short of performance in presence 
of interference. Simulation results confirm the non-optimal 
estimates when LS is used and improved bit error rate (BER) 
performance by using the presented algorithm. Throughout 
the paper capitalized variables represents frequency domain 
values while the bold variables represents vectors. Also R 
and S represents real and imaginary part. 

The paper is organized as follows. In section-2 the 
problem statement is formulated for a general OFDM com-
munication system followed by brief discussion on den- 
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sity estimation. The iterative non-parametric maximum-
likelihood (NPML) channel estimator is described in section-
3. Section-4 discusses the modified non-parametric symbol-
by-symbol equalizer. To test the robustness of the algorithm, 
in section-5, the simulation results are presented. Conclu-
sions based on analysis and simulation are drawn at the end. 

2. FORMULATION OF THE PROBLEM 

2.1 OFDM System Model 

The baseband equivalent representation of a typical OFDM 
system as in Fig-i is considered here. We focus our dis-
cussion on estimation of one OFDM symbols instead of a 
sequence of symbols for the reasons justified below. At 
the transmitter side, the serial input data is converted into 
M parallel streams, and each data stream is modulated by 
a linear modulation scheme, such as QPSK, I6QAM or 
64QAM. If QPSK is used, for instance, the binary input 
data of 2M bits will be converted into M QPSK symbols 
by the serial-to-parallel converter (SIP) and the modula-
tor. The modulated data symbols, which are denoted by 
complex-valued variables X(0),...,X(m),...,X(M - 1), are 
then transformed by the IFFT, and the complex-valued out-
puts x(0),...,x(k),...,x(M —1) are converted back to serial 
data for transmission. A guard interval is inserted between 
symbols to avoid inter-symbol interference (ISI). If the guard 
interval is longer than the channel delay spread, and if we 
discard the samples of the guard at the receiving end, the ISI 
will not affect the actual OFDM symbol. Therefore, the sys-
tem can be analyzed on a symbol-by-symbol basis. At the 
receiver side, after converting the serial data to M parallel 
streams, the received samples y(0), ...,y(k), ...,y(M - 1) are 
transformed by the FFT into Y(0), ...,Y(m), :..,Y(M —1) [1]. 
Using the notations for the OFDM symbols, the output of the 
channel can be written as 

L.-1 	 P-IL-I 
y( k) = 	h*(l)x(k_l)+ 	g,(l)up(k-1)+n(k), (1) 

1=0 	 p=O 1=0 
O<k<M-1 

where h and x represents desired user's channel and data re-
spectively. Without loss of generality we choose complex 
conjugate h* instead of h in above equation [7].  L repre-
sents the channel length and n(k) is the additive white Gaus-
sian noise. P represents the number of interferers where 

gp and u, is the interfering channel and signal respectively. 
Note that y(k), x(k), n(k), h(l), u(k) and g p(l) are all com-
plex valued. It is assumed that the channel and interference 
doesn't change during the block transfer and interference is 
synchronous which makes the above representation possible. 

If cyclic prefix is used for the guard interval, intercarrier 
interference (ICI) in multipath channel can also be avoided. 
Then it can be shown that the following simple relation be-
tween Y(m) and X(m) holds: 

L-1 
Y(m) = ( 	h*(l) ex p(_J2 )) X(m) 

'1=0 
7P_IL_I 

+ ( 	, 	
g (l)expz Up(m) J +N(n() 

	

\p=O1=0 	 J 
= H(m)X(m)+l(m)+N(m),Om<M—1 (3) 

	

= H(m)X(m)+N'(m),Om<M—i 	(4)  

where H(m) is the complex frequency response of the chan-
nel at the subchannel m, 1(m) be the complex interfer-
ence at that subchannel m and N(0),...,N(M - 1) are the 
DFT of n(0),..., n(M — 1). If n(0),..., n(M — 1) are i.i.d. 
Gaussian random variables, so are the transformed variables 
N(0), ...,N(M - 1). It is assumed that the interfering sig-
nals U(0),...,U(M— I) are also OFDM signals, with same 
block and cyclic pre-fix lengths, and they are block syn-
chronous with the desired signal. Eq. (4) shows that the 
received signal is the transmitted signal attenuated and phase 
shifted by the frequency response of the channel at the sub-
channel frequencies due to fading in presence of interference 
and noise [1]. It is assumed to be that noise is represented 
as complex independent identically distributed (i.i.d.) with 
vector ii = [n(0),n(l),...,n(M— i)}T with each component 

of n distributed as C #(l1i 3 O) and are also independent. 
The multivariate complex Gaussian pdf is just the product of 
the marginal pdf or 

M-1 
f(n)= flf(n(i)) 	 (5) 

i=0 

which follows from the usual property of the pdf for real in-
dependent random variables, this can be written as 

1MI 

f(n) = 	2exp - 	I n(i) 12] 	(6) 
MHM_1

,i2  
1=1 

Since the joint pdf depends on 91 and only through n, we 
can view the pdf to be that of the 'scalar random variable 
n'. This pdf eq. (6) is called a 'complex Gaussian pdf' 
for a scalar complex random variable and is denoted by C 
.jV(O,a) [8]. 

3. KERNEL DENSITY ESTIMATION 

Since we have complex noise and interference we can model 
it as a 'complex Gaussian mixture' pdf, where the real 
and complex are assumed independent as discussed earlier. 
Parzen window or kernel density estimation assumes that 
the probability density is a smoothed version of the empir-
ical sample. Its estimate f(y) of a complex random variable 
y = IR{y} + i {y} is simply the average of radial kernel func-
tion centered on the points in a sample M of the instance of 

1(y) = L 0 (y—y(j)) 	 (7) 
j=I 

We here assume 0 to be Gaussian kernel (Parzen kernel) [6]: 

__ 
(y) = A."(O,a2) = 1 1 
	

exp ( 
2a2  ) 	

(8) 

variance defined as 	The joint pdf f(y) depends on the 
real and complex components through y, we can view the pdf 
to be that of the scalar random variable y, as the notation sug-
gest [8]. Other choices of kernel like Epanechnikov kernel 
are also possible. It can be shown that under the right condi-
tions f(y) will converge to the true density f(y) as I M - oo. 

126 



T,nxmiIIer 	 the likelihood function can be written as: 

X(0) ... X(M-1) 	x(0) ... x(M-1) 

fj 
 

k~ 
 s/P 	Modu

F] 
— 	

IFFT 	pis 	
Airn 
O,urd 

tafinn 	 I,t,rv,I 

Mttipth 
Fading 

Channel 
Y(0) Y(M-1) 	y(0) .y(M-I) 

Data I 	 - 	 - 

p/S-1 Interval r : 	 pvr 	si H' 
Gnard 

 

Figure 1: A typical OFDM communication system 

4. NON-PARAMETRIC ML CHANNEL 
ESTIMATION 

The channel impulse response h = [h(0),...,h(L —1)] are 
independent complex-valued Gaussian random variables 
(which represents a frequency-selective Rayleigh fading 
channel). In regular OFDM system, the channel delay spread 
L is much smaller than the number of subcarriers. This 
leads to a high correlation between the channel frequency 
responses H(m),0 < m < M - 1, even when h1,0 < I < 
L - 1,are independent [1]. We estimate the channel impulse 
response h = [h(0),...,h(L— 1)1 directly, as the channel fre-
quency response H (0), ... , H (M - 1) are generally correlated 
among each other (as discussed above) and the impulse re-
sponse may be independently specified, thus the number of 
parameters in the time domain is smaller than that in the fre-
quency domain. 

The combined interference and AWGN N' (m) in eq. (4) 

is together taken as a noise that is non-Gaussian because of 
the presence of interference [6]. As also discussed in [6] the 
LS estimator does not find the optimal solution in the case 
of non-Gaussian noise. If the noise was Gaussian then the 
solution to the ML leads to the LS estimate. However, in 
communication systems where the noise is non-Gaussian (or 
Gaussian mixture) i.e. Gaussian in presence of interference, 
no closed form ML solution exists for such non-Gaussian 
distributions. Thus we rely on the iterative algorithm to find 
the ML estimate of the channel. In this algorithm we first 
initialize channel update algorithm with LS estimate, then 
we estimate the likelihood on the pilots. After estimating 
likelihood we find the ML solution iteratively on the pilot 
symbol. The classical stochastic gradient algorithm is used 
with a log-likelihood being the cost function i.e. the gradient 
here is the first derivative of the log-likelihood function with 
a constant multiplier (similar to well known gradient ascent 
algorithm) [9]. The update equation is: 

Ilk = Ilk_I +i-t(k) Vh 	(hIY)IhkI 	(9) 

where p (k) is the adaptation constant and Vh represents the 
gradient of the cost function. Referring to eq. (4) and eq. (9) 

M 
L(h I )Ih=k_, =f (Y I h) =fJfN#(E(i)) 

1=1 

fN'(.) is scalar pdf of 'complex Gaussian mixture' of data 
length from i = I,...,M and the previous estimation error is 
defined as: 

L_I 

	

E(i) = Y(i) - (L 
h(I)exp12 ) X(i) 	(10) 

1=0 

Kernel density estimators are known to be effective in es-
timating the pdf over short data record and also provide a 
differentiable smooth estimated pdf. Using kernel density 
estimator we obtain: 

	

fNs(E) = - 	 (E—E(j)) 	(11) 
M 

j=I 

where M is the number of subcarriers. 

	

I ')L=_ = 	log(fNe(E(i))) 

	

=E log Y O(E(i) —E(j))—log I MI 	(12) 
1=1 	j=I 

Maximizing the log-likelihood function w.r.t to channel 
weight vector. By definition of complex vector differentia-
tion [7] we obtain, 

M TM d(E(i)—E(j)) 

Vh ..(h Y) Ih=iik_, 	
, E 1 (E(i)— E(j)) 	

(13) 

Thereby substituting this gradient in eq. (9) gives an itera-
tive solution. As with any stochastic gradient algorithm the 
choice of optimal g(k) varies with application and require- 

ments. As discussed in [9] we choose p(k) = 1 in eq. (9) 
(where a is chosen as in [61) and witnessed convergence in a 
few iterations. 

5. NON-PARAMETRIC SYMBOL-BY-SYMBOL 
EQUALIZER 

Similar to the channel estimator discussed before, the con-
ventional detector (equalizer [1]) is based on the Gaussian 
assumption that is again not optimal for the interference af-
fected channels. The performance of this zero-forcing equal-
izer [1] is highly sensitive to the quality of estimated chan-
nel and the ratio of interfering received signal with estimated 
channel. Thus for the said equalizer structure the decision 
boundary is clearly non-linear. Thereby we use a probabilis-
tic equalizer whose decision is based on the estimated likeli-
hood. For the estimated channel impulse response i1k (after 
convergence) from eq. (9) the ML estimate of the transmitted 
signal can be obtained by 

	

£(m) = argmax_.. (fE(Y(m) I A(m))I h 	(14) 

where uI(m) is the frequency response of the estimated chan-
nel and without loss of generality it is assumed that X is 
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ABSTRACT 

The presence of co-channel interference has been a ma-
jor hindrance in improving the performance of present day 
communication systems. In this paper we discuss a itera-
tive block based maximum-likelihood algorithm using ker-
nel density estimates to improve channel estimation in pres-
ence of co-channel interference. As it is known that the 
interference is correlated, we first reduce this correlation by 
using a whitening filter. After whitening, we estimate this 
unknown whitened likelihood pdf by using kernel density 
estimator at the receiver. Thereby combining log-likelihood 
as cost function with whitening filter and kernel density es-
timate, a robust channel estimator for correlated noise envi-
ronments is formed. The simulations for co-channel inter-
ference in presence of Gaussian noise, confirms that a better 
estimate can be obtained by using the proposed technique as 
compared to the traditional least squares algorithm, which 
is optimal in the Gaussian noise environments. 

1. INTRODUCTION 

',In communication systems that experience multiple access 
interference (MAI) or co-channel interference (CCI) the ob-
served noise (noise plus interference) deviates from Gaus-
sianity [1]. -Most of the present day systems are optimized 
under the Gaussian assumption and their performance is de-
graded by the\pccurrence of correlated non-Gaussian noise 
i.e. Gaussian noise in presence of coloured interference. 
The least squares (LS) criterion is considered optimal and 
is equivalent to maximum-likelihood (ML) for channel esti-
mation when the transmitted symbols are equi-probable, un-
known parameters are de'termin'istic and the noise is additive 
Gaussian. However, in scenarios where the received data is 
not a sufficient statistics [ 1 ] or is corrupted by non-Gaussian 
noise, the traditional LS-based methods are inefficient and 
the LS estimator may not be as efficient (or equivalent) to 
ML estimator. From here on, in order to avoid confusion, 

the traditional (Gaussian assumption) ML is referred to as 
the LS solution. 

In this paper we take a training based channel estimator, 
where the channel is estimated over a block of data (similar 
to GSM) [1]. As discussed above due to presence of co-
channel interference the observed noise at the receiver does 
not remain Gaussian. This degrades the performance of tra-
ditional LS based channel estimators. We developed a chan-
nel estimator in [2] which showed considerable improve-
ment in the estimates in presence of interference. However 
in [2] we assumed that the input noise plus interferenceial-
though correlated, could be modelled by independent and 
identical distribution. In this paper, we extend this ear-
lier work by first whitenening the noise plus intereference 
and finding a ML estimnate for the channel as well as the 
whitening filter. Techniques which whiten the noise plus in-
terference before suppressing the interference has been pro-
posed in [3, 4]. This forms a powerful technique to improve 
the performance, but since, in practice, the tap length -of 
this whitening filter cannot be increased to a large value, -the 
ideal assumption of white Gaussian noise (after the linear 
prediction error (LPE) filter [1]) does not hold. In this paper 
we make no such (Gaussian) assumption on the distribution 
of the whitened noise, which makes this technique robust to 
the various noise distributions. 

It is observed from [1, 5, 6] that various types of noises 
encountered in communications can be modelled as a Gaus-
sian mixture. In order to estimate this unknown noise pdf 
at the receiver we use the kernel density estimator. This is 
a non-parametric method of density estimation that allows 
the data to define the density directly. We here propose ker-
nel density estimation based technique operating iteratively 
on a given block of data at each iteration. It is assumed 
that the corrupting noise pdf can be effectively modelled by 
a Gaussian mixture. We here make no apriori assumption 
on the number of Gaussian mixtures or their relative prob-
abilities. Instead the received data is exploited using kernel 
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density estimators to estimate this pdf. An improvement in 
mean square error (MSE) performance in channel eitima-
tion over the traditional LS estimate is observed by using 
the proposed algorithm. 

The paper is organized as follows. First, the problem 
statement is formulated in section-2 for a general comnuni-
cation system. Followed by short discussion on kernel den-
sity estimators in section-3. The non-parametric maximum 
likelihood algorithm using LPE filter and kernel density es-
timator is discussed in section-4. In section-5 simulation 
results are presented. Conclusions based on analysis and 
simulation are drawn at the end. 

2. FORMULATION OF THE PROBLEM 

The discrete-time model in the low-pass equivalent form 
of the communication system channel estimator is shown 
in Fig. 1. Without loss of generality, the input signal is 
assumed to be randomly generated binary anti-podal PAM 
signal, so that the transmitted symbols are a€{±i}. Here 
'r' represents the received signal and w' is a sequence of 
additive noise. The model is simplified by assuming that the 
channel is of order N—i i.e. h = [h(0), h(1), ..., h(N— 1)]. 

More precisely, the received signal r(k) sampled once 
per symbol can be written as 

r(k)=h(n)a(k—n)+w(k) 	(1) 

The problem is to estimate the channel coefficients from 
the received signal assuming that the input signal (as in 
supervised training mode) and the channel (tap) length is 
known at the receiver. Thus the problem reduces to the well 
known problem of system identification. There are vari-
ous algorithms based on different criterions to estimate the 
channel taps. Usually the LS solution is taken as the opti-
mum solution for the Gaussian noise environments where 
it is equivalent to a ML estimate [7]. However here we as-
sume that the noise in presence of interference is correlated, 
thus LS does not provide the ML solution. To remove this 
correlation we use a LPE filter. The problem then reduces 
to the one shown in Fig. 1. 

The problem can now be written as: 

P 	 L+P-1 
z(i)r(k - i) = 	a(k - l)((l) + E(k) (2) 

where z = [z(0) = lz(i) = —a(i) ... z(p) = —(p)] are 
the coefficients of the LPE filter and the equivalent channel 
taps vector C = [((0)(i) ... ((L + P - 1)], where (l) = 
Ej  z(i)h(l—i). Ideally the €(k) is a zero-mean white Gaus-
sian process. Since from eq. (1), the model eq. (2) corre- 

sponds to assuming 

P 	 P 	L-1 	 L+P-1 
z(i)r(k—i) E z(i) E a(k—i—l)h(l) = E a(k—l)((1) 

(3) 
and 

	

z(i)w(k - i) = e(k) 	 (4) 

Therefore, the effect of the LPE filter is that of whitening the 
additive disturbance w(k). The formulation eq. (2) permits 
the description of the channel plus the whitening filter as a 
vector inner product, which in turn allows the simultaneous 
estimation of the LPE coefficients and the equivalent chan-
nel taps at the output of the LPE filter [3]. In fact, letting 

= [(1) ... a(p)}, eq. (2) can be rewritten as 

r(k) 
— 

[1 - o(1)... - 	
r(k i) 

 

r(k - F) 

a(k) 

=[((0)((i)...((L+P-1)] 	
a(k-1)

: 	+e(k) (5) 

a(L+P-1) 

or equivalently 

r(k —1) 

r(k) = [c(i) ... c(p)J 

r(k P) 

a(k) 
a(k 1) 

+e(k) (6) 

a(L+P—i) 

=[a]v(k)+e(k) 	 (7) 

where v(k) = [r(k - 1)...r(k - P)b(k = i) ... b(k - 
L - P + i)]T and with f(k) white. Usually it is assumed 
that due to LPE filter €(k) is Gaussian distributed. However 
in practice the larger the tap-length of the LPE filter, the 
more the equalizer states, the more computational complex-
ity [1] for maximum likelihood sequence equalizer. Thus 
in practice the tap-length is usually restricted [1, 41. This 
restriction leads f(k) to non-Gaussianity. The channel esti-
mator proposed in this paper does two tasks: (i) estimating 
the channel; (ii) estimating the uncorrelated €(k) pdf at the 
receiver. 
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Fig. 1. Communication systems channel estimator with 
LPE filter 

3. KERNEL DENSITY ESTIMATION 

To estimate the pdf at the receiver we use the kernel density 
estimator technique. Parzen window or kernel density esti-
mation assumes that the probability density is a smoothed 
version of the empirical sample. Its estimate f(y)  of a ran-
dom variable Y is simply the average of radial kernel func-
tions centered on M-realizations of Y: 

M 

1(9) = 

	

	
(8) 

j=1  

We here assume ç to be Gaussian kernel (Parzen kernel) [1]: 

1 	( _ y2  

(y) 

	

	 (9) = jV(O,ci) = 
v 	

exp  

estimator is essentially a Gaussian mixture formulation we 
can't get a closed form estimate of the c and C. We then use 
the iterative scheme as used in [2]: 

= 	k-1 + p(k) VcC( r, ()  

(k 	k-1 + u(k) 	r, a)  

where 1z(k) is the adaptation step-size. Since the channel es-
timator is assumed to have no apriori knowledge of the pdf 

f(.), this unknown pdf is then estimated by using the ker-
nel density estimator eq. (8) with Gaussian kernels as shown 
below. As the kernel estimators are known to be effective in 
density estimation over short data record, we use this tech-
nique over the available data (error) record, of length M, 
to estimate the unknown density. Using the kernel density 
estimator [9] we obtain: 

= 	K(e—e(j)) 	(12) 

Thus the estimated (joint) log-likelihood function can be 
written as: 

I r) Ia=k_1,C=k_j 

M/ M 

	

= 	log ( 	>K(e(i) - 
i=1 \ j=1  

M M 
=>log 	K(e(i)_e(j))_ log IMI 	(13) 

	

i1 	j=1 

The gradient a of the log-likelihood can be formulated 

I r,) L=&kl,kl = 	I 
where a2  is defined as the kernel variance (or width) [8]. 

Other choices of kernel like Epanechnikov kernel are also 
possible. It can be shown that under the righé conditions 
f(y) will converge to the true density f(y) as I M - oo 
[9]. 

Similarly gradient for : 

M i:M  --K(e(i)—e(j)) 
= 

K(e(i) - 

(14) 

4. NON-PARAMETRIC MAXIMUM-LIKELIHOOD 
(NPML) CHANNEL ESTIMATION WITH LPE 

For the communication system represented by eq. (2) the 
ML estimate forms the optimal estimator for the channel. 
This problem can be viewed as the joint optimization prob-
lem [1], where we maximize the likelihood with respect to 
a and C. If the c(k) was Gaussian then the LS solution as 
found in [1] could have been applied directly. However, 
since we assume that c(k) is non-Gaussian and can be mod-
elled as a Gaussian mixture we use the kernel density es-
timator to estimate this density. Since the kernel density 

- 	
= r, c) 

IC=Ck1,a=Sk1 

MM =K(e(i) - 

E'f1. K(e(i) - 

(15) 

Thereby substituting the estimated gradients in eq. (10) 
and (11) respectively, and iterating till &k and (k  converge 
we get the ML estimated channel h by deconvolution. The 
algorithm is initialized by the LS estimate and p as ex-
plained in [1] and [2] respectively. During simulations we 

131 



did not converge to a local maxima, however this is not al-
ways gauranteed (as with most iterative techniques). How-
ever, initializing the channel and whitening filter's taps with 
the LS estimate reduces the chances of converging to local 
maxima. 

Two possible update methods could be used here to max-
imize the likelihood. In the first method, we update & then 
update ( and then estimate the updated likelihood for the 
next update. The procedure is repeated till both & and (con-
verge. Second update method is to first have & converged 
and then have ( converged given the converged & on esti-
mated likelihood, and then iterate till no significant change 
is observed in & and C. In this paper we use the first method 
of update. 

5. SIMULATION RESULTS 

For simulation study, we assume a communication chan-
nel model, like global system for mobile (GSM), consider-
ing CCI with Gaussian noise as a multi-modal, iid, Gaus-
sian mixture interference as discussed in [1]. The perfor-
mance of channel estimator is calculated by normalized-
mean square error (NMSE), as shown in eq.(16). 

NMSE = E{ (h - i)2} 
(16) 

E{ h2} 

where h is the actual channel and h is the estimated channel 
(after deconvolution). For all simulation results, the input 
symbols of length 100 and ensemble of 1000-runs is con-
sidered. 

A typical communication system effected by co-channel 
interference is shown in Fig. 2. The co-channels are each of 
order N - I and are represented as hi  and interfering signal 
as a2  for i - 2, ...J, where I - 1 represents number of 
interferers. The received signal can be represented as 

N-i 	 I N-i 

r(k) = 
n0 	 j2 n=O 

= 	hl(naa(k_n+w(k 	
(17) :  

where the middle (double summation) term on the RHS in 
eq. (17) represents the CCI and n(k) is a zero mean, iid, 
Gaussian noise process and k = 1,. . . , M represents the 
number of symbols. 

The above presented algorithm is verified for real sta-
tionary channel for N = 5. The input signal is anti-podal 
random input sequence. The channels are assumed to be 

hi  = [-0.227 0.460 0.688 0.460 -0.227] and 
h2  = [1.0 0.8 0.6 0.4 0.2] where h1  suffers from am-

plitude and phase distortion [10], and h2  is the co-channel 
considered for the simulation. 

channel k, 
n+ IL 

-------------- 
n(k) 

ask) 	co—channel 	

wtk) 

co—channel

h.  

Ji 

------------------- 

Fig. 2. A typical CCI effected communication system 

Fig. 3 depicts the performance plot for the channel esti-
mator presented in this paper. The legends 'LS', 'LSwhite' 

and 'NPMLwh ite ' represent LS without LPE filter, LS with 
LPE filter and NPML with LPE filter respectively. To ob-
serve the proformance of the algorithm, the signal to noise 
ratio (SNR) is kept fixed at 30dBs while signal to interfer-
ence ratio (SIR) is varied from —13dBs to 9dBs. We can 
observe that by using the LPE filter with NPML based tech-
nique we can gain upto 3.5 dBs at NMSE of 10 —i. 

6. CONCLUSION 

It was shown that after noise whitening better channel esti-
mates can be obtained. It was reconfirmed that the LS esti-
mate with LPE filter produces better channel estimates for 
interference limited channels than LS estimate without LPE 
filter. Due to practicle constriants, the Gaussian assump-
tion on the whitened noise is not gauranteed, hence a kernel 
density estimate based ML channel estimator was proposed. 
From Fig. 3 we Observe that better channel estimates can be 
obtained by jointly estimating the whitening filter and the 
channel estimates by using kernel density estimator. Thus 
by combining kernel density estimator with whitening fil-
ter forms a robust channel estimator for interference limited 
communication channels. 
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Fig. 3. MSE plot for co-channel effected communica-
tion system where h1  = [4227 0.460 0.688 0.460 -0.2271, 
SNR=30dBs for 100-symbols over an ensemble of 1000-
runs 
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