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Abstract

The aim of this thesis is to develop algorithms and techniques for édaptive signal processing in
non-Gaussian noise environment with applications to communications channel estimation and

equalisation.

Practical communication systems are affected by thermal noise, caused by the thermal (Brow- -
nian) motion of particles in components. Thermal noise is readily modelled as a stationary
independent Gaussian stochastic process popularly known as additive white Gaussian noise
(AWGN). The adaptive signal processing for communication systems has been predominated
by this AWGN assumption. Channel estimation and equalisation forms an integral part of com-
munications receivers which are usually designed using the Gaussian noise assumption. In
some communication channels, the observation noise exhibits impulsive, as well as Gaussian
characteristics. On the other hand, recent increase in the use of wireless devices results in many
such wireless devices operating in the vicinity of another wireless device. This has caused
an increase in interference from the other wireless devices operating in the same band, which
effectively causes ‘the noise in the presence of interference to deviate from Gaussianity. Thus
in practice the Gaussian noise assumption does not hold for practical communication systems
and scenarios. To improve the performance of adaptive algorithms, we develop algorithms
adapted on the noise characteristics rather than adapting only on second order statistics. The

developments in this thesis can be classified in two major works.

First work is on developing a minimum bit-error rate (MBER) decision feedback equaliser
(DFE) for impulsive noise modelled as an a-stable distribution. ‘The development exploits
the stable nature of the a-distribution and the concepts build on earlier work in a Gaussian
noise environment. Further, a Wiener-filter-with-limiter solution is also presented and used as a
performance bench mark. An improvement in convergence and BER performance is achieved
by using a minimum bit error rate (MBER) cost function instead of a conventional least mean
. square (LMS) based désign. The ability of least BER (LBER) equalisers based on a Gaussian

noise assumption to operate in an q-stable noise environment is also highlighted.

In the second work, a block based maximum-likelihood algorithm using kemel density esti-

mates to improve channel estimation in non-Gaussian noise environment is proposed. The



likelihood pdf is assumed unknown and is estimated by using a kernel density estimator at the
receiver. Thereby combining log-likelihood as a cost function with a kernel density estimator
provides a robust channel estimator, which could be used for various non-Gaussian noise en-
vironments without any modification. The performance of the proposed estimator is compared
with the theoretical lower bounds for associated noise distribution. The simulations for impul-
sive noise and co-channel interference (CCI) in the presence of Gaussian noise, confirms that a
better estimate can be obtained by using the proposed technique as compared to the traditional
algorithms. The proposed algorithm is then applied to orthogbnal frequency division multiplex-
ing (OFDM) communication systems. A considerable performance improvement is observed
when using a non-parametric channel estimator in cdnjunction with a symbol-by-symbol non-
parametric maximum a posteriori probability (MAP) equaliser. Since, in practice, CCI is cor-
related in nature, a whitening filter based approach for channel estimation is proposed. In order
to make the channel estimation technique robust to channel order mismatch, a novel techniqﬁe

to simultaneously adapt the channel order and channel coefficient is discussed.
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Chapter 1
Introduction

The field of adaptive signal processing has seen several advances in recent years primarily
due to explosive growth in digital communications. The demand for increasing bit throughput
for multimedia and data services is driving advances in communication technology. Various
"~ new modulation, diversity, coding techniques have been developed in recent years to match
the demands of today’s bit hungry applications. The operating frequencies for communication
systems have also been going up from MHz to GHz. Thus bandwidth efficiency is a major

concern in the communication research community today.

In real life, communication systelhs are affected by channel noise and interference from differ-
ent users. To improve the performance of communication systems in noisy and/or interference
limited varying channel conditions the use of adaptive signal processing techniqhes is highly
desirable. This thesis deals with developing such adaptive algorithms and techniques which -
perform better than those based on Gaussian stationary noise assumptions used in communica-

tion systems.

The chapter begins with an exposition of the principal motivation behind the work undertaken
in this thesis. Section 1.2 outlines the contributions made in this thesis. Lastly, the thesis layout

is described in section 1.3.

1.1 Motivation for work

The revolution in dfgital communication techniques can be aitributed to the invention of the
automatic linear adaptive equaliser in the late 1960’s [1]. From the modest start, adaptive
equalisers have gone through many stages of deQelopment and refinement in the last 40 years.
Early eqlilalisefs were based on linear adaptive filter algorithrﬁs [2] with or without a decision
feedback. Alternatively, the maximum likelihood sequence estimator (MLSE) [3] were im-
plemented using the Viterbi [4][5] algorithm. The MLSE requires knowledge of the channel,
~ which was readily available from using a least squares estimation. These methods have been

applied for several years.primarily for two main reasons.

1



Introduction

Firstly, both forms of equalisers prbvide two extremes in terms of performance achieved. The
linear equaliser has low complexity but has poor performance in severe conditions. An infinitely
length MLSE has better performance in severe channel conditions, however the computational
complexity is quite high. Until recent years Gaussian noise was considered to be a major imped-
iment to the communication receiver’s performance, where the above two equalisers perform

fairly well, depending on the channel conditions.

Secondly, rapid advances in digital signal processing (DSP) techniques have provided scope for
very large scale integration (VLSI) implementation. The DSP chips specialise in signal process-
ing functions like multiply and add much faster than other central pfocéssing units (CPUs). The
power of DSPs has been increasing and their cost has come down brapidly, thanks to advances™

in VLSI technology.

Owing to'the aforementioned reasons the rapid growth of communication systems both in wire-
line and wireless communications took off. In wireline communications, digital subscriber line

(DSL) technology has been gaining popularity asa high speed network access technology, capa-
- ble of the delivery of multimedia services [6]. A major impairment for DSL is impulse noise in
the telephone line. In wireless communicationé, the interference from co-channel and adjacent
channel are major impairments [7]. The co-channel interference (CCI) in presence of Gaus-
sian noise is successfully modelled as non—Gaussian'noise. It is well known that non-Gaussian
noise can cause significant performance degradation in traditional communication systems de-
signed under the Gaussian stationary linear assumption [8] [9] [10]. In [8] it is shown that by
using non-parametric techniques and relaxing the Ga'ussian noise assumption the performance
of global system for mobile (GSM) receiver can be improved in interferenée limited channels.
In [9] and [10] it is shown that for impulsive noise channels Gaussian assumption based sig-
nal processing is not viable, and other statistically based signal processing algorithms lead to
improvement in performance. Also a well known example is the matched filter for coherent
reception of deterministic signals in Gaussian white noise. If the noise statistics deviate from
the Gaussian model, serious degradation in performance occurs, such as increased false alarm

rate or error probability [11] [12].

That means, when the perforrhance degradation due to the ideal Gaussian assumption in a non-
Gaussian environment can not be tolerated, the underlying signal processing methods must be
revisited and redesigned taking into account the non-Gaussian noise statistics. Thus finding bet-

ter signal processing techniques based on exploiting this non-Gaussian phenomenon motivates

\



- : » Introduction

the research in this thesis. Some of the advantages of using such approaches in equalisation has

already been witnessed in [8] [13] [14] and [15].

1.2 Thesis contributions

In this thesis, new signal processing algorithms for channel equalisation and estimation are
proposed. The proposed algorithms exploit the non-Gaussian behaviour of noise in channel

estimation and symbol detection/equalisation.

The first part of the thesis is concerned with the development of a minimum bit error rate
(MBER) decision feedback equaliser (DFE) working in impulsive noise environments. The
impulsive noise is modelled as an a-stable distribution as in [13]. In [13] it was observed that
the Bayesian equaliser working in an a-stable environment performs better than the Gaussian
noise based algorithms in similar environments. Moreover, an MBER version of algorithms
for Gaussian noise channels was shown to perform better than least mean square (LMS)-based
valgorithms in [14] [15]. In this thesis, an MBER equaliser for a-stable distributiqri is pro-
posed. The comparison of the proposed equaliser with the traditional LMS-based equaliser and

Gaussian assumption based MBER equaliser is also explored.

The later part of the thesis concentrates on the development of non-parametric techniques for
channel estimation and equalisation. An adaptive non-parametric channel estimator for non-
Gaussian noise is proposed.: The proposed channel estimator is found to be robust for both im-
pulsive noise and co-channel interference limited communication channels. Both the impulsive
noise and co—chénnel interference, type of non-Gaussianity is modelled as a mixture of finite
Gaussian processes. Analysis on the step-size selection for the proposed channel estimator is
also developed in this .thesis. Channel estimation in the time domain based communication
system is considered first in this theéis, The performance of the proposed algoﬁthm is com-
pared with the theoretical lower bounds defined by the Cramér Rao bound. The concept of -
totally adaptive channel estimator where the channel tap length is also dynamically adapted

along with the tap coefficients is also explored in the thesis.

Since CCI is correlated in practice, a.whitening filter based solution is presented. An error
whitening based technique is used to reduce the correlation and then estimate the channel
based on this whitened error log-likelihood function. The proposed channel estimation al-

gorithm is then modified for the frequency domain based communication systems. A non-

3



Introduction

paramétric symbol-by-symbol maximum a posteriori probability (MAP) equaliser for orthog-
onal frequency domain multiplexing (OFDM) communication systems is proposed. Consid-
erable performance gains are achieved by using this MAP equaliser with the non-parametric

channel estimator.

1.3 Thesis outline

The rest of the thesis is organised as follows:

Chapter 2 presents background and puts the work described in the thesis in perspective. A brief
“review on adaptive signal processing with applications to communications channel estimation
and equalisation are the focus of this chapter. The models and notations used throughout the

thesis are also explained in this chapter.

Chapter.3 is devoted to development of the minimum bit error rate adaptive decision feedback
equaliser for impulsive noise environment. A Wiener solution for the said simulation envi-
ronment is formulated for performance analysis. Comparison with the MBER algorithm for

Gaussian distribution and LMS-algorithm is also presented in this chapter.

Chapter 4 discusses an adaptive non-parametric channel estimator for non-Gaussian noise en-
vironments. Two specific cases of non-Gaussian noise are analysed throughout the chapter.
A comparison with popular techniques for channel estimation in non-Gaussian noise environ-
ments is drawn in this chapter. The performance of the algorithm is evaluated for the impulsive
noise and (correlated and uncorrelated) the co-channel interference in the presence of Gaussian

noise.

Chapter 5 is an extension of the algorithm developed in the previous chapter. Here the case of
channel estimation with whitening filter in co-channel interference limited communication sys-
tems is considered. Monte Carlo simulations support the viability of the framework discussed

in this chapter.

Chapter 6 provides a non-parametric channel estimator and a non-parametric symboleby—symbol
MAP equaliser for OFDM communication systems. As the OFDM is increasingly used in next
generation- of mobile devices, interference amongst different commhnication standards work-
ing in-band and in vicinity have become a major concern. The proposed algorithm is tested for

in-band interference limited communication system.
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Chapter 7 summarises the work undertaken in this thesis and points to possible directions for

future research.



Chapter 2
Background

The term estimator or filter is commonly used to refer to a system that is designed to extract
information about a prescribed quantity of interest from noisy data. With such a broad aim, es-
timation (filter) theory finds applications in many diverse fields: communications, radar, sonar,
na\-/igation,‘seismology, biomedical engineering, and financial engineering. In this thesis the
focus is adaptive channel estimation and equalisation for digital communication systems where
the noise is considered as impulsive and in the presence of interference from other sources.
This chapter gives an overview of adaptive signal processing, for detailed discussion on adap-
tive signal processing the reader is referred to work in [16]v [17] [18]. In order to present the
work in this thesis in perspective and introduce the nomenclature used throughout the thesis,
a background survey on adaptive signal processing is presented in this chapter with digital

communications as an application area.

First a brief description of linear optimal filters and adaptive filters is presented. Some typical
classes of adaptive filters are discussed in section 2.3. Two application areas of adaptive signal
processing are considered in section 2.4, where first the equalisation problem, followed by the

channel estimation problem are discussed.

2.1 Linear optimal filter

In this section, a brief overview about linear optimal filtering is presented. Consider a filter

o0

y(k) = h(i)z(k i), k _ 0,1,2,... Q)
=0 :

where y(k) is the linear convolution sum of input z(k) and filter A(¢) with 7 being the index to

the number of taps (or delay elements)_. From Figure (2.1),
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Input ’ Output Desired response
x(0), x(1), X(2).... | Linear discrete-time | k) y(k)
— ™ filter ; - r je—

(0), h(1), h(2),...

Estimation error
e(k)

Figure 2.1: Block diagram representation of linear filtering problem

= input signal applied to the adaptive filter;

(k)

y(k) = Tteceived, desired signal;
(k) = outputof adaptive filter;
(k)

= y(k) — 9(k) = estimation error

At some discrete time , the filter produces an output Q(k) This output is used to provide an
estimate of a desired response designated by y (k). In particular, the estimation error, denoted by
e(k), is defined as the difference between the desired response y(k) and the estimated response
(k). The requirement is to make the estimation error e(k) “as small as pdssible” in some
statistical sense. The filter is assumed to be linear to make the mathematics simpler. Also it is
assumed that the filter operates in discrete time to make its implementation on digital computer

hardware or software possible.

The purpose of the filter in Figure 2.1 is to produce an estimate of the desired response y(k).
We assume that the filter input and the desired response are single realisations of a jointly wide
sense stationary stochastic process, with zero mean. To optimisé the filter design, we choose to
minimise the mean-square value of e(k). We thus define the cost function as the mean-square
error : o ‘

T =E{ (k) ' 2.2)

¢

where E{.} denotes the statistical expectation operator. The requirement is therefore to deter-
mine the operating conditions under which J attains its minimum value. For the cost function J

to attain its minimum value, all the elements of the gradient vector VJ must be simultaneously
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equal to zero; that is

~

ViJ=0, i=0,1,2,... @3

Under this set of conditions, the filter is said to be optimum in the mean-square error sense,

where

ViJ = 2E{e(@)%§l%} | 2.4)

Thereby taking gradient of eq. (2.2) and then cancelling common terms, it finally yields
ViJ = —2E{z(k —i)e(k)} (2.5)

that is equivalent to
E{z(k —i)es(k)} =0 ' (2.6)

which represents the special value of e, that results when the filter operates in its optimum

condition. The above equation forms the powerful principle of orthogonality.

"From the Wiener-Hopf equations we see that,

E{z(k — &) (y(k) = 3 ho(v)a(k — v))}.= 0 2.7)

v=0

where ho(v) is the vth coefficient in the impulse response of the optimal filter (subscript ‘0’)

. also known as the Wiener filter. Expanding and re-arranging the terms,

3" ho)E{a(h — i)a(k — )} = Efa(k — Jy(k)} 2.38)

v=0

The two expectation in eq. (2.8) are interpreted as follows:

1) The expectation E{z(k — i)z(k — v)} is equal to the autocorrelation function of the filter

input for lag v — 4. It can be expressed as,

rea(v — 1) = E{z(k — i)z(k — v)} (2.9)

2) The expectation E{z(k — 7)y(k)} is equal to the cross-correlation between the filter input
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z(k — 1) and the desired response y(k) for a lag of —3, thus

ray(—i) = E{a(k — i)y(k)} 2.10)

By using the definitions of eq. (2.8) and eq. (2.9) in eq. (2.10), an infinite large. system of

equations as the necessary and sufficient condition for the optimality of the filter:

oo

. Z ho(v)r;z(v — 1) = rgy(—1) = 1ye () (2.11)

v=0

The eq. (2.11) defines the ‘optimal filter coefficients, in the most generalised setting. However,
in practice there are certain constraints in using Wiener filters for many applications. Firstly,
the statistics of z(k) and y(k) may not be known,.thus exact knowledge of 7z, (v —4) and 74y (7)
is not guaranteed. In many applications the statistics change with time. Léstly, computing the
inverse of rzz(v — ¢) may constrain the use of Wiener filters in real time application. These
. applications involve processing of signals that are generated by systems whose characteristics
are not known a priori. Under this condition, a significant improvement in performance can be

achieved by using adaptive rather than Wiener (or fixed) filters.

2.2 Adaptive' filters

An adaptive filter is a self-designing filter that uses a recursive algorithm (known as adaptation
algorithm or adaptive ﬁltefing algorithm) to design itself. The algorithm starts from an initial
guess, chosen based on the a priori knowledge available to the system, then refines the guess
in successive iterations, and converges, eventually, to the optimal Wiener solution in some
statistical sense. The performance of an adaptive filtering algorithm is evaluated based on one

[

or more of the following factors [16]:

Rate of convergence: This quantity describes the transient behaviour of the algorithm. This is
defined as the number of iterations required for the algorithm, under stationary conditions, to

converge close enough to the optimum Wiener solution in the mean square sense.

Misadjustment: This quantity describes steady-state behaviour of the aigorithm. This is a quan-
titative measure of the amount by which the ensemble averaged final value of the mean-squared

error exceeds the minimum mean-squared error produced by the optimal Wiener filter.
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Computational Requirements: This is an important parameter from a practical point of view.
The parameters of interest include the number of operations required for one complete iteration
of the algorithm and the amount of memory needed to store the required data and also the
program. These quantities influence the price of the computer needed to implement the adaptive

filter.

Numerical Robusmess: The implementation of adaptive filtering algorithms on a digital com-
puter, which inevitably operates using finite word-lengths, results in quantisation errors. These
errors sometimes can cause numerical instability of the adaptation algorithm. An adaptive
filtering algorithm is said to be numerically robust when its digital implementation using finite-

word-length operations is stable.

Another practical measure of performance is the number of computations needed for the adap-
tive filter to reach steady étate. This measure combines t_hé rate of convergence and computa-
tional requirements and is the product of the number of iterations needed for the algorithm to
converge close enough to the optimum solution and the number of computations needed per

iteration [19].

However with all the above considerations and practical constraints, the most common linear
adaptive filters can be modelled as a tap-delay line filter. The aim is to find the solution to

* Wiener-Hopf equations; an iterative approach is used to obtain the solution. The most common
method of linear optiniisation of steepest-gradient [16] is used. The cost function, also referred
to as the “index of performance”; defined as mean square error is used here. This method re-
quires the use of gradient vector, the value of which depends on two parameters: the correlation
matrix of the tap inputs in the linear filter and the cross-correlation vector between the desired
response and the same tap inputs. When the instantaneous value for correlation described in

“eq. (2.8) is used, so as to drive an estimate of the gradient vector, making it assume a stochastic ‘

character, it is referred to as the LMS algorithm. In essence it can be represented as

updated value old value learning— [ tap—
error
of tap — weight | = | oftap — weight. |-+ * rate input .
signal
vector vector parameter vector :

where the “learning rate parameter” defines the rate of adaptation. Too large a value of this

10
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parameter this algorithm may never converge and too small a value could result in longer time to
converge. Hence, this parameter value is application dependent and on the type of cost function
used. It is usually defined over a range of values. There are various modification (and/or
combinations) to LMS algorithm available such as leaky LMS, normalised LMS, frequency
domain LMS, block LMS, signed LMS and variable s-tep size LMS. Another approach to the
development of linear adaptive filtering is based on the method of least squares. In this method,
the cost function is defined as the sum of weighted error squares, where the error is itself defined
as the difference between the derised and the actual filter output. One of the most popular
methods that uses the method of least squares is recursive least squares (RLS) algorithm. Other
forms than standard RLS include square-root RLS and Fést RLS [16].

2.3 Classes of application - .

The ability of adaptive filters to work satisfactorily in the unknown environment and tracking
the variations in.the system has made adaptive filters attractive for control and signal processing
community. The application areas of the adaptive filters is thus enormous communications,
radar, sonar, seismology, and biomedical engineering. The application areas are quite diverse,
they usually have one basic thing in common: An input vector and a desired response, which
- are used to compute an estimation error, which in turn is used to control the values of a set
of adjustable filter coefficients. The major difference between various applications of adaptive
filters is the way the problem is defined, however four broad classifications for adaptive filters

can be macle [16].

The four basic classes of the adaptive filtering applications depicted in Figure 2.2-2.5 are as

follows:

1) System Identification: The system identification as shown in Figure 2.2 uses an adaptive
-filter to provide a best fit to the unknown “Plant”. The same input is fed to the plant and the
adaptive filter, and respective outputs compared. Adaptive filter’s coefficients are updated by

some criterion, like LMS or RLS, using the estimation error.

2) Inverse Modelling: The adaptive filter in this class, finds the best fit to the inverse of the

. unknown Plant as shown in Figure 2.3. The requirement is to have “System output” the same - -

as the delayed “System input”, thereby requiring adaptive filter to compensate the effect of the

plant.

11
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Figure 2.2: Adaptive filter applied for system identification

/ System
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> Plant x(k) »| Adaptive Filter

System
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Figure 2.3: Adaptive filter applied for inverse modelling

3) Prediction: The function of the adaptive filter is to predict the current sample based on the
past samples as in Figure 2.4. Thus the adaptive filter uses the past informatiop to find the best
fit to the current input (desired) signal. Depending on the application of interest, the adaptive
ﬁlter output or the estima_tibn (prediction) error may serve as the system output. In the first

case, the system operates as a predictor; in the latter case, it operates as a prediction;error filter.

/ VSystcm

output 2
Adaptive Filter S >

Delay k)

Random
signal

k)

System

R output L _

Figure 2.4: Adaptive filter applied for prediction

4) Interference cancellation: The unknown interfering signal is cancelled from the primary

signal (information alongside interference signal), with cancellation being optimised in certain

12
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.sense. The primary signal serves as the desired response for the adaptive filter as in Figure 2.5.
The reference signal is applied to the adaptive filter, where it is assumed that the information-

bearing signal component is weak or essentially undetectable.

\ Reference )
signal (k) /
i Adaptive Filter A
— ¥ R
. ek) .

e T w

signal !
]
]
' System N
R output 1 _

Figure 2.5: Adaptive filter applied for interference cancellation

24 Applications

J

The various classes of adaptive filter discussed above are applied in some-way or another in
modern digital comrﬁunication systems. A typical digital communication system is shown
the Figure 2.6. The “data soufce” constitutes the signal generation system that generated the
information to be transmitted. Some of the typical examples are speech ¢coders, video coders
and scanners. The raw data (information) is then coded by the “encoder”. The “encoder” adds
redﬁndancy to the transmitted information to add reliability to the transmitted data. Some of
_the typical examples are “convolutional codes”, “gray codes” and “block codes”. The digital
data transmission requires very large bandwidth. Ihe efficient use of available bandwidth is
achieved through the “transmitter filter”, also called the modulating ﬁltér. The modulator on
the other hand places the signal over a high frequency carrier for efficient transmission. Some
of the typical schemes used in the digital communication are amplitude shift keying (ASK),
frequency shift keying (FSK), pulse amplitude mbdulation (PAM), phase shift keying (PSK)
modulation and quadrature phase shift keying (QPSK). The “channel” is the medium through
which the information propagates from the transmitter to the receiver. The channel can be .
fixed, flat or multipath fading erending on the applicaﬁon area. At the receiver the signal
is first “demodulated” to recover the baseband transrrﬁtted signal. This demodulated signal is
» processed by the “receiver filter”, also termed as receiver demodulating filter, which should

ideally match to the transmitted filter and channel. Normally, the i)ropagation channel is not

13
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known at the recei?er, thus the receiver filter is matched to the transmitter filter onl)". The
“equaliser” in the receiver removesv the impairments, inter-symbol interference (SI) and ICI
introduced due to the communication chénnel. The “decision device” provides the estimate of
the encoder transmitted signal. The “decoder” reverses the work of the encoder and removes

the encoding effect revealing the transmitted information symbols.

Data source

/
=]
=
o
3
a.
&
4]
=
2}
y
=
S
a.
=1
=3
3
=]

De-modulator

Y

Filter 9,, Equaliser || Decision device | .., Decoder

RECEIVER

Figure 2.6: A typical digital communication system

2.4.1 Propagation channel

This section discusses the channel impairments that limit the pérfoi‘mance of a digital commu-

-nication éystem. The ideal transmission of the digital pulses over an analogue communication
channel would require infinite bandwidth. A band-limited channel such as a telephone channel
is characterised as a linear filter having an equivalent low-pass frequency-response character-
stics, Ho(f) [20], defined as: ‘

Hc(f) =| He(f) | exp(j6(f)) (2.12)

where H¢(f) represents the Fourier transform (FT) of the channel and 6(f) represents the.
phase response of the channel. The amplitude response of the channel | He(f) | can be defined

as,

) ) S ¢ ‘
\Ho(hy 1= ™ IS @.13)

0, |flI>fe
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- Figure 2.7: Raised cosine pulse and its spectrum

where x; is a constant and f, is the upper cut-off frequency. The channel group delay charac-

teristic is given by,

() = —-237;"—(2(;—) =k C@19)
where k9 is an arbitrary cbnstant. The conditions described in éq. (2.13) and eq. (2.14) con-
stitute fixed amplitude and linear phase characteristics df a channel. This channel can provide
distortion free transmission 'of analogue signal band limited to f.. Transmission of the infinite
~ bandwidth digital signal over a band limited channel of f. will obvioﬁsly cause distortion. This
demands for the infinite bandwidth digital signal be band limited to at least f., to guarantee dis-
tortion free transmission. This work is done with the aid of the transmitter and receiver ﬁfters

shown in Figure 2.6. The combined frequency response of the physical channel, transmitter

filter and the receiver filter can be represented as,

H(f) = Hr(f)Ho(f)Hr(f) (2.15)

where, Hr(f), He(f), and Hr(f) represent the FT of the transmitter filter, propagation chan- .
nel, and the receiver filter respectively. When the receiver filter is matched to the combined
response of the propagation channel and the transmitter filter, the system provides optimum

signal to noise ratio (SNR) at the sampling instant [7] [20]. Since the channel response is not
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known beforehand, the transmitter and receiver filter are matched, thus

Hp(f) = Hz(f) (2.16)
ha(t) = hr(-t) @17

where * means complex conjugates, and hg(t), hr(t) denote time-domain representation of
receiver and transmitter filter. For ideal channel presented in eq. (2.12), the design of the
transmitter and receiver filters is critical for achieving distortion free transmission. One such

filter capable of satisfying this criterion is the raised cosine filter given by,

T, 0<f<iFf
Hrr(f)={ T +eoslF(f1-F)Nh S <IFISH
0, ‘ | £ 1> 5
| Hrg = Hp(f)Ha(f) . O 218)

T is the source symbol period and 8, 0 < 8 < 1, is the excess bandwidth and Hrp is the
FT of the combined response of transmitter and receiver filter. The plot of this combined filter
response is shown in Figure 2.7. Figures 2.7-(a) and 2.7-(b) represent the time and frequency
domain responses of the combined filter respectively. A distortion free transmission can be
achieved, if the receiver output is sampled at the correct time. A sampling timing error causes
inter-symbol interference (ISI), which reduces with an increase in 8. In the time-domain the

impulse response in Figure 2.7-(a) can be represented as:

sin(Zt) cos(%2!)
1 4p%2

hrr(t) = —L— (2.19)
T 1-(37)
and for the special case of 8 = 0 provides a pulse satisfying the condition,
sin(Zt : ‘
hrr(t) = ;T) (2.20)
‘ T

Under this condition the channel can provide the highest signalling rate, T = ﬁ At the other
extrema, 3 = 1 provides a signalling rate equal to the reciprocal of the bandwidth, T = }1: In

this process selection of S provides a compromise between quality and signalling speed.

Here, it has been assumed that the physical channel is an ideal low pass filter eq. (2.12).
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However, in reality all physical channels deviate from this behaviour. This introduces ISI even
* though the received signal is sampled at the correct time. The presence of this ISI requires an

equaliser to provide proper detection.

In general all types of communication systems are effected by ISI. The combined channel due
to the transmission filter, propagation channel and the receiver filter and the T-spaced sampler
‘can be modelled by the digital finite impulsive response (FIR) filter represented in Figure 2.1.
Here the channel observed output y(k) is given by the sum of the noise free channel output
7(k) and noise. §(k) in turn is formed by the convolution of the transmitted sequence z(k)
with the channel taps h(3), 0 < 1 < Np — 1, where N is the number of taps. The z-domain

transfer function of the impulse response can be represented by the equation

H(z) = Z h(3)z~ ' (2.21)

the channel provides a dispersion of up to Np samples. This discrete time model will be
used throughout the thesis, with minor modification, which will be explained in that chapter in

details.

2.4.2 Equalisation

As observed in the previous section, ISI in the communication channel is almost impossible

to avoid, and therefore an equaliser forms a vital part of a modern day communications re-

ceiver. In general the family of adaptive equalisers can be divided into supervised equaliser

and un-supervised equaliser. Supervised equalisation requires a set of training sequence to be
transmitted: A replica of this training sequence is available at the receiver and the comparison
of the two sequeﬁces with a certain rule form the supervised equaliser. After this initial train-
ing, the equaliser is then switched to decision directed mode, where the equaliser can update its
parameters based on the past detected samples. In digital television and digital radio there is no
scope for the use of training signal, hence the equalisers used in these applications are called
un-supervised or blind-equalisers. The equalis;:r can also be categorised as linear and nonlinear

equalisers based on their structure.

The linear equaliser often provides sufficient performance over typical telephone channels for ‘
data transmission. However, for a typical radio channel with multipath propagation and large

delay spread, the linear equaliser forms a poor choice. The nonlinear equalisers are used in such

17



Background

situations where distortion is too severe for a linear equaliser to handle. Two very effective
nonlinear equalisation techniques which offer substantial improvements compared to linear
equalisation techniques commonly used are: a) decision feedback equaliser and b) maximum

likelihood sequence estimator.

The basic idea behind the DFE [21][22][23] is that when a decision has been made on an in-
formation (input) symbol, the ISI that it induces to the following symbols can be estimated
and subtracted out before detection of the successive symbols. In principle the feedback part
takes away the ISI caused by earlier detected symbols [24]. Several different cost functions
are available to optimise the equaliser’s performance, namely, the peak distortion criterion -
_[25][1][26], the minimum mean square error (MMSE) criterion [25]{20] and the MBER cri-
terion [27](28][14]. The equaliser optimised for peak distortion criterion is called the zero-
forcing (ZF) equaliser. In recent years however, the ZF equaliser has become less popular [20].
The current implementations of equaliser are normally based on the MMSE and MBER cri-
terion. In developing training strategies for DFEs, it is convenient to adopt an MMSE cost
function as this facilitates the use of standard adaptive “filter techniques” such as the LMS and
recursive least squares (RLS) algorithms-. However it has long been undérstood that the MMSE
cost function is not optimal in this application; the MBER cost function being the more appro-
priate choice [27]. Further, the BER rate of a DFE optimised using an MMSE criterion can be
distinctly inferior to tﬁe true optimum solution [14]. Over the recent years there has been con-
siderable interest in developing the MBER based eqﬁalisers and their modifications [14][15]
‘[28][29]. The MEER cost function has also shoWn performance improvemenfs in various ap-
plications such as adaptive beamforming [30] [31], multiuser detection for direct sequence code
division multiple access (DS-CDMA) systems [32] [33], multiuser detection for OFDM sys-
tems [34] and many more. In general, the relative performance of equalisers designed using
MMSE and MBER criteria is very much depéndent upon specific channel conditions. Further

exposition on MBER criterion is provided in the next chapter.

The other popular nonlinear equaliser is the MLSE equaliser, which forms a robust equaliser
for various channel conditions. The basic idea behind the MLSE is to test all possible data.
sequences and choose the data sequence with the maximum probability as the output [3]. This
implies that a MLSE scheme has a large computational requirement compared to tréditional
methods where the decoding is carried out symbol-by-symbol. MLSE is optimal in the sense

that it minimises the probability of sequence error. MLSE can be implemented by using the

v
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Viterbi algorithm thereby reducing the'comﬁutational complexity of verifying all the possible
combinations [-4].JThe basic block diagram of a MLSE equaliser [35] is shown in Figure 2.8.
The MLSE requires knowledge of the channel characteristics in order to compute the metrics
for making decisions and also knowledge of the statistical distribution of the noise corrupting -
the signal. Thus, the probability distribution of the noise determines the form of the metric for-
optimum detection of the received signal. In case of Gaussian noise the metric can be reduced
to the calculation of the Euclidean distance. From [8] we observe that in the presence of co-
channel interference the noise deviates from Gaussianity and thus the Euclidean distance is not
an appropriate metric. The probability distribution of noise (including interference) is used-as
- the metric in [8]. The MLSE equaliser’s performance is sensitive to the quality of the .channel

estimate, thus a good channel estimate can vastly improve the MLSE equaliser’s performance.

Channel Estimated
output. data sequence
(1) ' nt) . r(n) x(n) -
l__. Matched 8 » MLSE -
Filter 4

A

Y

Delay

+ |
@ o Channel e
-— i

‘ Estimator

e(n) — 1

Figure 2.8: Block diagram of MLSE equaliser

2.4.3 Channel estimation

As discussed earlier a good channel estimate can vastly improve a communication receiver’s
performance. The channel estimation in communication systems can be done in three ways: 1)

blind, 2) semi-blind, and 3) ftraining based.

In blind channel estimation techniques, the channel is estimated without the exact knowliedge
of the transmitted sequence. This technique is attractive as the overall throughput is higher,

as no bits are lost in training. However, blind estimation techniques require large amount of
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data to be stored before channel estimation can begin, which invariably introduces delays. For
those channel estimators based on a single-input single-output (SISO) channels, higher than
second-order statistics or nonlinear optimisation are often required [36] [37] [38], which causes

problems such as local and slow convergence [39] [40] for blind channel estimation.

Although non-data-aided or blind techniques for channel estimation have received considerable
attention recently, many current digital communications systems employ a pilot sequence to
probe the channel. The training based techniques estimate the channel by transmitting a known
(at the receiver) training sequence (also known as pilots) along with the unknown data at the
receiver. The receiver estimates the communication channel based on estimating the change in
these training bits due to the channel. This technique provides a simple yet effective way of
retrieving information about the channel, therefore facilitating all succeeding processing steps
such as equalisation and symbol detection [41]. Training sequence also help in synchronisation

and user identification.

There are various estimators/techniques such as the least squares (LS) estimator, maximum-
likelihood (ML) estimator [42], expectation ﬁlaximization (EM) [43], and methods of moments
[44] are used for training based channel estimation in practice. However, the most common
training sequence based channel estimator is the traditional LS estimator. The LS channel esti-
mator forms an optimal estimator-for channel evstimatioﬁ in Gaussian noise environments [42].
However when the communication channel is affected by an interfering user then the traditional
LS based estimation technique does not sufﬁcé. Interference when considered together with the
Gaussian noise-can be represehted as a Gaussian mixture [8]. The channel estimation problem
can be viewed as a parameter estimation problem in Gaussian mixture. To find the ML pa-
rameter estimate of a Gaussian mixture:the EM based techniques are widely used [45][46][47].
The EM algorithm basically breaks the Gaussian mixture into an assumption that each obser-
vation is from one of the mixture components which ié Gaussian distributed. Thus the complex
' parameter estimation in Gaussiah mixture is broken down into parameter estimation of many

simpler estimation problems by the EM algorithm.

Semi-blind estimation algorithmé have been proposed in [48] [49] [50] in a_nticipation of im-
proved performance. These algorithms suggest the use of all the known information in the
transmitted frame in contrast to either blind-only or training-only estimation algorithms. A de-
terministic and Gaussian ML approach is taken in [48] [49] and associated Cramér-Rao bounds
are derived. In [50], a semi-blind cost function is proposed by combining a training and blind ‘

-
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cost function. In [51] a stochastic ML semi-blind channel estimation method is used. Fortu-
nately, the hidden Markov model framework and associated estimation algorithms [52] [53]
[54] [55] [56] provide a computationally efficient solution to the resulting optimisation prob-
lem. The semi-blind techniques try to reduce the size of the training sequence by exploiting
both the known and the unknown (blind) portions of the data. There are various other semi-
‘blind channel estimation techniques discussed in [57]. Recently, the semi-blind techniques
have been applied for rapidly varying channels in [58], for 3rd-generation (3G) code division

multiple access (CDMA) standard in [59] and for OFDM fading channels in [60].

With blind, semi-blind, and training based channel estimation methods discussed above, the
training based methods still remains the most popular. One such successful example is the
GSM communication systems receiver, where MLSE equaliser is used with a channel estima-
tor as in Figure 2.8. Channel estimation of wireless channels becomes challenging with many
criterion effecting the estimation. The wireless channel could be a fast or slow fading channel
with flat or multipath fading. Thus considerable research has been undertaken in [43] [44] [61]
[10] [62] where statistical methods are used to get a reliable channel estimate. With the recent
proliferatibn of wireless communication devices, the communication channel is increasingly
becoming interference limited rather than noise limited as considered in past. Thus alternative
techniques based on joint estim'ation [63] and [64] have been proposed for communications re-
ceiver. Recently, with the advent and advantages of using mﬁlfip,lc antennas, some techniques
based on multiple antennas with whitening (linear prediction filter as in section-2.3) are dis-

cussed in [65] and [66].

) 2.5 Conclusions

In this chapter a brief overview of the adaptive filters and their various configurations were
discussed in the beginning. A typical digital communication systém was also presented. The
‘constrain‘ts of a practical communication system and need for adaptive signal processing in a
typical communications receiver was discussed in details. A brief review of the communication

channel equaliser and estimator was provided at the end.
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Chapter 3
Stochastic gradient algorithm for
equalisers in alpha stable noise

‘ Equalisers are used to combat ISI at the receiver in a communication channel as discussed
in Chapter 1. Channel equalisation dafeé back to the early work of Lucky [1], Proakis and
Miller [67], who established the theory of adaptive transversal (or tapped-delay-line) equalisers
' adjusted by thev zero-forcing or the MSE criteria. The early work aimed almost entifely at the
telephone channel, which can essentially be characterised as a linear time-invariant ISI channel.
Later work was related to the line-of-sight microwave channel; which may be considered as
a very slowly time-varying ionosphéric and tropospheric channel. It was soon realised that
linear equalisers were not able to provide tﬁe performance requirements for highly dispersive
channels thus non-linear techniques were sought. DFE and trellis equalisers based on symbol-
by-symbol MAP estimation or MLSE are the non-linear fechniques used for equalisation [8].
Recently there has been renewed interests in the MBER equaliser [14], [15] which is discuss

later in this chapter.

In some communication channels, the observation noise exhibits impulsive, as well as Gaus-
sian characteristics. Thé sources of impulsive noise may be either natural (e.g. lightning,
ice-cracking), or man-made. It may include atmospheric noise or ambient noise. It might come
from relay contacts, electro-magnetic devices, electronic apparatus, or transporcatiori systems,
and switching transients [68] [69], as a result causing degradation in receiver’s performance.
Most of the present day systems are optimised under the Gahssjan assumption and their per-
formance is degraded by the occurrence of impulsive noise [9]. Impulsive noise is more likely
to exhibit sharp -spikes or occasional bursts of outlying observations than one would expect
from Gaussian distributed signals. A variety of impulsive noise models have been proposed
in [69] and [70]. However, a common model to represént impulsive phenomena is the fam-
ily of a-stable random variables [71]. Stable distributions share defining characteristics with
the Gailssian distribution, such as the stability property and generalised central limit theorem.

Empirical data indicate that the probability density functions (pdf’s) of the impulsive noise pro-
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cesses exhibit a similarity to the Gaussian pdf, being bell shaped, smooth and symmetric, but

at the same time having significantly heavier tails [68].

In [15] it was shown that adaptive linear equalisationvbased on probability of error performs
better than that based on a least squared error cost function. Further, in [14] it was shown that
the state-translated desfgn with the MBER critera achieves a lower BER than conventional DFE
- structure. However the édaptive least BER (LBER) (with or without state translation) algorithm

of [15] was derived on the assumption that the noise was drawn from a Gaussian distribution.

The general purpose adaptive algorjthms for a-stable noise environments have been proposed
in the literature [71] and [72], however they are based on the L, norm (where 0 < p < @) of
the error rather than BER. In this chapter, a class of adaptive equalisers (similar in complexity -
to the LMS algorithm) where the BER _is minimised in an a-stable noise environment is devel-
oped. Generally, in adaptive equalisation, the Wiener solution is taken as a point of reference
in measuring performance. However in a-stable noise the variance of the input signal to the
equaliser is theoretically infinite and thus the Wiener solution is not defined. In practice, every
receiver has a finite input dynamic rarige; which limits the amplitude of the received samples
a'nld produces finite variances. As pointed out in [73] the limiter facilitates the use of standard
correlation based algorithms in a-stable noise. Using this limiter the ‘Wiener solution with
limiter’ (WSL) for a-stable noise environments is dédQed. Simulation results show that the
LMS algorithm fails to converge to this WSL solution while the proposed a-stable noise LBER
algorithm seeks the optimum BER solution for-comparable computational compléxity. Robust-
ness of the Gaussian noise LBER algoﬁthms of [15] in q-stable noise is also suggested through

simulation.

The chapter is organised as follows: a brief overview of stable processes is provided in section
3.1; an overview of the state-translated DFE structure is présented in section 3.2; the WSL
in a-stable noise is derived in section 3.3; the LBER adaptive aigorithm for a-stable noise is
derived in section 3.4; simulation techniques, assumptions and results are discussed in section

3.5; finally conclusions are drawn in section 3.6.

3.1 The‘class of stable random variables

The family of stable random variables is defined as a direct generalisation of the Gaussian law

and in fact include the Gaussian density as a limiting case. The symmetric'stable densities
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have many features of the Gaussian distribution. They are smooth, unimodal, symmetric with
respect to (w.r.t.) the median and bell-shape. However, the main characteristics of a non-
Gaussian stable aensity function is that its tails are heavier than those of the normal density.
. This is one of the main reasons why the stable law is regarded suitable for modelling signals

and noise of impulsive nature.

The univariate symmetric a-stable (SaS) pdf fo(s) of a random variable (RV) S is defined by

means of its characteristic function:
Fy(w) = exp(biw — v|w|%) (3.1

where z'. = +/—1. The parameters a, v and § describe completely an SasS distribution.
The characteristics exponent, o

The characteristics exponent controls the heaviness of the tails of the stable density and hence
the impulsiveness of the respective stable process. It can take values in the interval (0,2]; a
smaller value of o implies heavier tails (i.e. severe impulsiveness), while a value of « close to
2 indicates a more Gaussian type behaviour. When o = 2, the stable distribution is reduced to

the Gaussian density.
The scale parameter, v

The scale parameter, also called the dispersion, can be positive number. It plays an analogous
role to variance and refers to the spread of the distribution. When o = 2 the variance of the

Gaussian distribution equals 2. _ A
The location parameter, §

This parameter is identical to the mean of the distribution. Throughout the thesis the SaS noise

is assumed to be zero mean, hence the location parameter equals zero.

The a-stable distribution is the inverse Fourier transform of F, (w), and can therefore be written

as

fals) = FT o) = o= / : Fa(w) exp(jws)dw 3.2)
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Figure 3.1: The symmetric o-stable probability density function for four different values of the
" characteristic exponent c, including the Gaussian case (v =1and § = 0)

When the random variable is symmetric around zero (§ = 0), then eq. (3.1) reduces to

\

Fo(w) l6=0= exp(—dlwla) - 33

in which case the characteristics function is real and even. That is, the density function can be

written as - . ,
1 00

fol(s) == / exp(—7|w|*) cosws dw (34)
™ Jo :

. Unfortunately, no clbsed—fOrm expressions éxist for the stable density, except for the Gaussian
(o = 2), Cauchy (a« = 1) and Pearson (o = %) distributions [71] [74]. An important property
of all non—rGaussian staBlé distributions is that only thq lower moments are finite, so for example
the Kurtosis is not defined for o < 2. That is, if s is a non-Gaussian stable RV, then Es {|s|P} <
oo iff p < . A well known consequence of this property is that all stable RV’s with o < 2

theoretically have infinite variance [9].

Figure 3.1 demonstrates the effects of a on the tails of a stable distribution. Four symmetric
stable distributions are plotted, all with vy = 1 and § = 0 but with o = 0.5,1.0,41.5 and 2.0.

With o = 2 corresponding to the Gaussian density with zero-mean and variance equal to 2, and
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a = 1 corresponding to the Cauchy density. The symmetric a-stable distributions are smooth,
unimodal, symmetric with respect to the median and bell-shaped, just like the Gaussian density.
A detailed comparison between the normal and the stable density functions shows that non-
Gaussian stable distributions depart from the corresponding Gaussian density in the following
ways. For small absolute valués of s, the a-stable densities are more peaked than the normal.
For some intermediate range of | s |, the a-stable distributions have lower densities than the
normal. Most importantly, unlike the Gaussian distribution, the stable densities have algebraic
tails which decay less rapidly. Further discussion on a-stable RV’s and their properties can be

found in [71].

3.2 . Equaliser structures

The channel is modelled as a finite impulse response filter with an additive noise source, and
the received signal at sample k (as in Figure 3.2) is

Nr—1 :
y(k) = 9(k) +w(k) = Y hz(k—i) +wk) = (5
i=0
where (k) denotes the noiseless channel outpdt; Nr is the ch;clnnel length and h(z) are the
channel tap weights; the white noise w(k) has zero mean énd is drawn from an o-stable dis-
tribution with dispersion « and characteristic exponent c; the symbol sequence {z(k)} is in-
dependent and identically distributed (i.i.d.) and has an standard C-PAM constellation [20]
defined by the set [14] '
' r;=21-C-1,1<i<C

Alpha stable noise

Wk ‘Limiter

x(k) y (k) R(k—d)

R |
k k
| Chell]nnel ¥( )V m y(k) f . Equaliser

Figure 3.2: Typical communication system

Throughout this chapter C = 2 for 2-PAM is considered. For a conventional linear-combiner

DFE (shown in Figure 3.3) the decision variable z at time k is a linear combination of received
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samples and past decisions:
2(k) = aTy(k) = b5 (k)

where y(k) = [y(k) y(k — 1)...y(k — m + 1)]7 is the channel observation vector, %,(k) =
[k —d—-1)&(k —d—2)..8(k — d - n)]T‘is the past detected symbol vector, a =
[a(0) a(1) ...a(m — 1)]T is the feedforward coefficient vector and b = [b(1) b(2) ... b(n)]T
is the feedback coefficient vector. The integers d, T and n. will be referred to as the deci-
sion delay, the feedforward delay and feedback taps respectively. Without loss of generality,
d=Nr-1, m= Nt and n = Nt — 1 will be used as this choice of DFE structure i)arameters
which is sufficient to guarantée the linear separability of the subsets of the channel states related
to the different decisions [14]. Alternatively, the linear-combiner DFE can be expressed in state
translated form [75]:

' 2(k) =aT (y(k) — Foko(k)) = aTy'(k) (3.6)

The translation of the original input (to the equaliser i.e. received) vector y(k) to transformed
" new input (to the equaliser) vector y’(k) is done as y’(k) = y(k) — bT%,(k), assuming that
the feedback vector %;(k) is correct (shown in Figure 3.4). The matrix Fy is constructed by

partitioning the channel impulse response matrix F = [F Fy], where:

‘[ ho) m1) - B(Np—1) ]
r, |0 h(0) :
- h(1)
| 0 0 A0 |
[ 0 0 o ]
h(NT —1) 0
Fy; = h(NT—2) h(NT —_1) ) 0 .
. | .
| aQ) o R(Np—2) R(Np—1)

The above translation performed on y(k) removes the contribution of past detected symbols
% (k), which essentially reduces the requirement of having multiple conditional decision func-

tion for each feedback pattern [76]. By performing. the translation of eq. (3.6), the linear
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[

combiner DFE is reduced to an equivalent linear equaliser ‘without decision feedback’:

f'(y'(k)) = aTy' (k) GB.7

The decision boﬁndary of this equivalent linear equaliser consists of C'— 1 hyperplanes defined
Cby: y:aTy'=2i—C,1 < i < C — 1. In particular, for C = 2, the decision boundafy,
y’ :aly’ = 0, is a hyperplane passing through the origin of the y’(k)-space. It is shown, in
[14], that in the state translation the channel states remain separable despite translation. The
states can be made separable by applying a simple initial condition [14). The performance of
the state translated linear combiner DFE is shown to be better than conventional MMSE DFE,

however performance depends on the accuracy of the built-in channel estimator [14].

-1 e _1
z zZ
y(k) y(k-1) y(k—m+1) |
Y | . N
. x(k—d)
filtering .| decision ~
device
[\
/\ .
x(k~d-n) X(k-d-2) X(k=d-1)
_1 L __1 _1

Figure 3.3: Generic decision feedback equaliser

The Wiener> or MMSE solution is often said to provide the optimal a and b. It is however
optimal only with respect to the mean square error criterion. Obviously, there must exist a
solution agpt which' achieves the best equalisation performance for the structure of eq. (3.7).
The a,py is refered to as the MBER solution of the linear—'combiher DFE. The MMSE linear-
combiner DFE is generally not this MBER solution. A natural question is how different the
MMSE and MBER solutions can be. The difference in performance of MMSE and MBER

- solutions for Gaussian distributed noise is demonstrated in [14].

28



Stochastic gradient algorithm for equalisers in alpha stable noise

h(N, — 1% - h(N, - 2)(%) h(l)
y(0 SN + X + 1
;! 51 _,@ S
y' (k) y'(k=1) Y(k-2) y (k-m+1)
filtering
¥
decision
device
- -1
VA
| X(k—d) X(k—d—1)

Figure 3.4: Translated decision feedback equaliser

3.3 Minimum bit error rate equalisation

Itis ob?ious that the MBER and MMSE solutions are different as discussed in [77]. In this
section the MBER criterion for a general DFE structure is described first. The calculation of
MMSE solution is not possible for a—'st.able noise because of infinite variance. However, by
introducing a practical design constraint of a limited dynamic range the Wiener solution (the

conventional way) is estimated. For clarity we describe it as the WSL.

3.3.1 MBER criterion

The bit error rate (BER) observed at the output of the equaliser is dependent on the distribution
of the decision variable z(k) which in turn is a function of the equaliser tap weights. To be

more specific, the probability of error, Pg, is:

Pp = P(sgn(z(k — d))z(k) < 0)
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The sign adjusted decision variable zs(k) = sgn(z(k — d))z(k) is drawn from a mixture pro-

cess. From the definition of z(k),

' zs(k) = sgn(z(k —- d))(aTFx(k) —bT%,(k)) + sgn(z(k — d))aT w(k)
= sgn(z(k — d))2'(k) +w'(k) | (3.8)

where w(k) = [w(k)w(k = 1)...w(k — d — n)]T is the vector of noise samples; x(k) =
[z(k)z(k — 1)...z(k — d — Nr)]7T is the vector of transmitted symbols. The first term on
~ the right hand side of eq. (3.8), sgn(z(k — d))2'(k), is the noise-free sign-adjusted equaliser
output and is a member of a finite set with N » elements. These N, elements forms the noiseless
channel states i.e. the local means, of the mixture z,(k). Without noise the combination of the
channel and DFE is a finite state machine whose state is completely defined by the vector x(k).'
Thus if x(k) € {x; -+ x; --- xp,}, then x; represent one such state of possible N, states.
Since 2/ (k) (from eq. (3.8)) and y(k) (from eq. (3.5)) are functions of input signal, the vector
x; uniquely defines the 3 state of 2/(k), y(k), z(k — d) and %,(k) - label these 2i, ¥i» Z; and
Xp; respectively. Note that while x(k) has N, states, z(k — d) has 2 possible values (2-PAM).
However since z(k — d) is a component of the vector x(k), the state of x(k) uniquely defines
the value of z(k — d). The second term w’(k) is a zero mean a-stable white noise process with
dispersion 7(Z—T=1‘|aj|a)i and characteristic exponent « - defining the distribution about the

“local means.

3.3.2 Wiener solution with limiter

In an a-stable noise environment with o < 2 the variance of the noise is infinite [71] making
the use of the traditional Wiener solution theoretically meaningless. Nevertheless, all receivers
in practice have a finite input dynamic range. This is achieved by using the structure as shown
in Figure 3.2. The limiter at the front end of the receiver is assumed to be an ideal saturation
device, with transfer function
z : |zl £ G

L(z,G) = ’ 2l <

sgn(z)G : elsewhere

G being the saturation point of the limiter. The saturation limit level G is kept at a reasonable
distance from noiseless channel states to preserve the noise structure and not limit (clip) the

noiseless channel state. Provided G > max(g(k)), the received signal at the output of the
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limiter, i (k), is the sum of the noise-free channel output (k) and what is termed a truncated
a—stable noise process, wy,(k): Vk. The pdf of this truncated o—stable noise process is given

by: '
fa(S, Gy, G2) = fa(S)H'[Gl,Gﬂ(s, G, Gz) + Il(—G1)5(S + Gl) + Ir(Gz)J(S — Gz) 3.9

where

I ( ) 1 @ —-G1<s< Gy
G1,G2)\8) =
[61.G2] 0 : elsewhere

Gi : ' 00
Il("Gl) = fa(s)dsa I‘r(G2) = c fa(s)ds

where f,(s) represents the a-stable distribution. Since the limiter is assumed to be symmetrical
G1 = G5 = G is considered. The pdf of the channel states (assuming equi-probable) is a delta

function at the channel centres.

fals) = = > b(s - ) (3.10)

Since the truncated o-stable noise process of eq. (3.9) and the noise-free scalar channel states -

of eq. (3.10) are ivndeperident, the combined pdf is given by:

NBC NSC

fyL - N nyL|C. = Zfa ', C'LaG Z‘_) (é.ll)

where Ny, = 277 is the number bf the scalar cehtres ¢; of the channel, i.e., &= hT. Xeh; (1 =
1,2, ..., Ng),.-where h = [R(0)...A(N7 — 1)]T and Xcn; = [z(k)...x(k — Np +1)]T are all the
possible combinations for the channel input vector. This pdf is the same as that observed at the
output of the receiver, which confirms independence. The limiter “L(z, G)” truncates the pdf of
the received signal and its tails are concentrated at the points &G, where they appear as Dirac
impulses §(s). The noise variance can be calculated theoretically from [9], with knowledge of ‘

o, limiting level G and noiseless channel states ¢;.

From classical Wiener filter theory [16], the WSL is a, =_R_1p, where a,, is the optimum tap-
weight vector, R = E{yr,y1,T} is the input autocorrelation matrix, p = E{yrz} is the cross-
correlation vector and y1, = [y (k) yr(k—1) ...yL(k—m+ 1)]T. The autocorrelation matrix is

simply the sum of two autocorrelation matrices: (i) the autocorrelation matrix associated with
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the noise free channel output; (ii) a scaled identity matrix. The scale factor is the variance of the
truncated a-stable process and thus the scale factbr is [ szfa(s, G)ds. The cross-correlation
. matrix is simply the cross-correlation of the noise free channel output with the target symbol.
Because the variance of the truncated a-stable noise process is a function of both the parameter

o and the limiter value G, the WSL will be as well.

Thus the WSL is formulated after the limiter using the independence property, which was not

obvious from [9].

3.4 Stochastic gradient adaptive equalisers

In this section the problem of minimising BER in an a-stable noise environment is addressed
directly and a stochastic gradient algorithm for the task is derived. As the development is in
terms of probability of error rather than mean squared error the réquirement for a limiter is

removed..

Consider the noise density function f(z) associated with the zero mean random variable z. The
density function is symmetrical and normalised such that the variance or dispersion is unity. The
associated distribution function is P(z). The “generalised” error function is Q(z) = 1— P(z)
and its derivative is Q'(z) = — f(z). The probability of error at the output of a linear or state

translation equaliser with N noise free states as a function of the weight m-vector ais:

where g,-(a) is the signed decision variable associated to the 3%” state, normalised by the “strength”

of the noise. In the Gaussian case [15]:

gi(a) Tallo (3.12)
where y; is the i* noise free received vector; the Euclidean norm is ||a|| = (3072, |a;]?) 3, 24

is the transmitted symbol associated with that vector; o2 is the noise variance. In the a-stable

case:
T
a yiZ;

: 3.13)
llallay=

gi(a) =
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where the “a-norm” is defined as: [[a|[e = (3272, |aj|°‘)§ For adaptive filters, derivatives of

the form 9Pg/0a; : Vj are required.

oP, | 1 N ' 0 il

Taf N;Q(gi(a)) ga(j)
N o

- -2 fatan 2

i=1

In the Gaussian case the derivative of eq. (3.12) is given by:

P dmla) _ 9 (&) ym
da; N Oaj \|lal|/ ¢

1 T aTaj YiT; , ;

= T (1j ”3”2) ‘ (3.14)

where 1, is an m-vector with all zero elements apart from the j** entry which is unity. In the

a-stable case the derivative of eq. (3.13) is taken:

bgi(a) _ i( a” )H_
Oa da; \llally /) ~a
T, . |a—1 , e
_ _1_ ( T — a |a.7| Sgn(aj)) yz“f" (3.15)
fall, lall, "

The a-stable case being more general is used in the derivations from now on. Thus multipling

out gives:

Ala'gi(a) _ 1 ( o zilaj|a"13gn(ajv)>vﬁ.
6a; ~ Tl Bl )

where y;; is the j** element of y; and 2; = ay; i.e. the equaliser output associated with the

i*? noise free state. Collecting partial derivatives together to form a gradient vector we have:

VPa(a) = —~ f: e (a)) : (y ("‘)a) Z
o(a) = —— .  _ Z1\%/a ) T
. NS 7 el 71 lally /43

where (a),, is an m-vector with j** element equal to |a;[* !sgn(a;). Since the norm of the
weight vector does not affect Pg in the binary signalling case it can be set to unity at each

iteration thus:

N .
VPE . - Zf <Zz$z) i — (a),2) T

Nve i=1

The key to developing the LMS algorithm from its related steepest descent algorithm is to
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replace the ensemble average of the gradient with a single point estimate of the gradient. The
same concept can also be employed to develop an LMS-style update algorithm to train a MBER
DFE [15]. Thus the final update equation is modified as an LMS-style update:

a(k-+1) = a(k) + uf (-—(5’—””;(’“—‘—@> )~ @)D 616
bk +1) = b(k) — uf (Z(’“)x(f - ‘”) z(k - D 2 (k) | 3.17)
- . ")’a 'ya

For a state-translated DFE, eq. (3.16) is modified by replacing y (k) with y' (k)

a(k + 1) = a(k) + uf (—@M) 'K - (@®)zk)ZEZD Gas)
’70 ")’a
where
y(k) = y(k) - Fa(B)%(K) (3.19)

Eq. (3.17) is not used here, rather an Ly-norm (equivalent to a-norm discussed earlier) is
considered to form an estimate of the impulse response vector h = [h(0)h(1)...A(NT — nT:

‘ k—d ‘ k—d
hip1 =hg +p o ) ) y(k — d) — T (k) z( _ )' - (320

Xy Xp
a

The equaliser tap weights are normalised after each update. The final decision, £(k — d), is

made on the filter output aT (k)y’ (k).

35 Simulation study

In this chapter, the SNR of the liﬁﬁted received signal yr (k) is used for performance evaluatioﬁ
in environments where the noise variance is infinite. By using the limiter the SNR is always
finite and hence measurable. This is referred as the SNR at the receiver. Simulations were
performed for anti-podal signalling (C = 2), assuming that the noise is Cauchy distributed i.e.
.a = 1 and the limiter, at DFE frbnt-end, is at £4 [9] to avoid being close to noiseless channel
states at the transmitter output. Method developed by Chambers, Mallows and Stuck [78] is

used in this thesis to generate random noise. The same procedure was used in [79] and [13].

34



Stochastic gradient algorithm for equalisers in alpha stable noise

The variance of the truncated a-stable process wy, (k) is calculated as discussed in [9]. Figure

3.2 represents the receiver architecture considered in simulations.

As the pe&omance of equalisers are highly dependent on the nature of the channel considered,
two channels which have been well studied in the literature [13] were chosen to characterise
the performance. These channels have impulse responses [0.3482 0.8704 0.3482] and [1.0
0.50 0.25]. The location of poles and zeros fdr both the channels is shown in Figure 3.5 and
the frequency respose in Figure 3.6. As observed from the figures, the char;nel response of
Figure 3.5-a) is more difficult to equalise than the channel of Figure 3.5-b). The presence of
a zero outside the unit circle, as in Figure 3.5-a), results in the channel being non-inQertible
leading to difficulty for linear equali‘ser. As observed from the frequency response a high noise
enhancement will result if an linear transversal equaliser was used since the gain required to
equalise the channel [0.3482 0.8704 0.3482] at higher frequency tends to be much larger than '
for the second channel [1.0 0.5 0.25] as also seen from Figure 3.6., The DFE provides better
equalisation than linear equaliser in such deep fade communication channels. The performance
of the'DFE equaliser can be improved by increasing the order of feed-forward and feed-back
taps. However to have limited computational complexity, the DFE structure is.chosen to be .‘

d=2,m=3andn =2,

Kims T T T 2r T T
. : 0 = zeros . :
: X = poles
: : 15¢
2t :
1_ ........
1k :
. : 0.5 - :
t- : € ; o
& ; & '
[ : 2
g oo ................. .o % g 0 ..................... % ....................
o . o
E ; E o
: -0.5
~1F
b T
-2t
-1.5}
-3 ' i L oL s i L 1
-2 =1 0 1 -1 -05 0 0.5 1
Real Part Real Part

a) pole-zero plot for channel = [0.3482 0.8704 0.3482]  b) pole—zero plot for channel = [1.0 0.50 0.25]

Figure 3.5: Pole zero plots for the communication channels to be equalised
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a) Frequency response of channel = [0.3482 0.8704 0.3482] b) Frequency response of channel = {1.0 0.5 0.25]
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Figure 3.6: Frequency response of the‘ communication channels to be equalised

The legends in Figure 3.7, Figure 3.8, Figure 3.9 and Figure 3.10 depict: a) ‘LMS’ refers to a
conventional LMS algorithm for both the feedforward and feedback taps of a conventional DFE,
b) ‘LBER-Gaussian’ refers to a LBER algorithm for: adapting both feedforward-and feedback
equaliser taps of a conventional DFE assuming that the noise is Gaussian [15] (using eq. (3.16)-
(3.17) with density f () being Gaussian distributed) , ¢) ‘LBER-Cauchy’ refers to adapting both
the feedforward and feedback taps of a cohventional DFE assuming Cauchy distributed noiée
using eq. (3.16)-(3.17) with density f(.) being Cauchy distributed, d) ‘state trans-Gaussian’
refers to the same adaptive algorithm as (b) but with state translated design [14] (update eq.
(3.18)-(3.20)), c) ‘state trans-Cauchy’ refers to the same adaptive algorithm as (c) but with a
state translated design updated as in eq. (3.18)-(3.20), f) ‘modified Wiener’ represents WSL
calculated after the limiter using yr,(k) as discussed in section-3.3.2. A total of 10° samples
was used to generate the convergence and performance plots using Matlab. In order to make a
fair comparison of the relative performance of the algorithms the adaptation constant y is fixed
'Vas 3 ml_'_n' [15] for all the adaptive algorithms compared in this chapter. A large sample size
and ensemble for simulations was taken to reach conclusions because of the impulsive (high

variations in input signal amplitude) nature of o-stable noise.

An ensemble of 100-runs was taken to generate convergence plots as shown in Figure 3.7 and
/7

Figure 3.9 at a SNR of 7.9 dB’s. As can be observed the convergence behaviour of the LMS is
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unstable. This can be attributed to the fact that the LMS is dependent on the magnitude of the
instantaneous error, which varies a lot in an impulsive nqise environments. Algorithms designed
to minimise BER in a Gaussian noise environment convérge more slowly than those specifically
designed for the Cauchy noise environment. It is safe to conclude that the state translated design

" for Cauchy noise has faster and more stable convergence than the other algorithms.

To observe the BER performance of these algorithms an ensemble of 1000-runs was taken. The
equalisers were trained using the first 1000-samples of a particular run after which training was
inhib_ited and the BER for that run measured. The final BER estimate was obtained by averéging
over 1000 such runs in the ensemble. Figure 3.8 and Figure 3.10 summarise the results for the
two channels used. It is observed at a BER of 5 x 10~3 approximately 5 dB’s is gf:lined by
using a minimum-BER criterion instead of an LMS algorithm. Again the Gaussian noise based
v LBER algorithms perform well with respect to Cauchy noise based LBER algorithms which
are tailored to the particular envirpnment. The state translated Cauchy noise based LBER DFE
performs better than the other algorithms as is apparent from both Figure 3.8 and Figure 3.10.
It is also interesting to observe that this MBER algorithm performs better than the WSL.

\

While the WSL provides an optimal solution in the MSE sense, however it does not minimise

the BER. HoWever the LMS algorithm, which would normally find the MSE solution, fails to
‘ converge to this sdlution in this environmeﬂt. The LBER algorithms, by their nature, seek the
desired optimum MBER solution. LLBER algorithms have been demonstrated to find the op-
timdlrn BER solution with a computational complexity similar to that of the LMS, as obvious
from eq. (3.16)-(3.17) [15]. From the simulations it is observed that the state-translated DFE
for Cauchy distributed noise has better convergence and BER performance than the other algo-
rithms considered. LBER. algorithms based on Gaussian noise [15] aséumptions have also been
demonstrated to perform well in o-stable noise environments. The close perfdrmaince of Gaus-
sian noise based algorithms [15] to the Cauchy noise based.ones can be attributed to the fact that
the Gaussian mixtures may model o-stable distributions [80] [81] and to the presence of limiter

at the DFE front-end which essentially limits the heavy tails of o-stable noise distribution.

3.6 Conclusions

A minimum bit error rate adaptive algorithm for impulsive noise modelled as a-stable noise has

been prdposed in this chapter. By introducing a limiter at the receiver front-end both SNR and
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Figure 3.7: Convergence plot for Cauchy (a = 1) distributed noise for channel = [0.3482
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Figure 3.8: Performance plot for Cauchy (o = 1) distributed noise for channel = [0.3482
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Wiener solution can be calculated theoretically and by simulations. It is shown that for mini-
mum bit error design, the adaptation is a function of the noise density function. The comparison
between various adaptive algorithms working in identical channel, noise and DFE structure has
been drawn. The LBER-Cauchy and the state trans—Cauchy has faster coqvergence than the
other adaptive algorithms in Cauchy noise environments, which is a special form of a-stable
noise. Extensive simulations strongly suggest that the state-translated desigh for the a-stable
noise has better convergence and BER performance than the other algorithms, as the translation
in space leads to linear seperability and reduction in states [14]. It is also interesting to observe
that the adaptive algorithms based on a Gaussian noise assumptidn despite slow convergence in
impulsive noise environments perform closer to those designed. with Cauchy noise assumption.
Lastly, as expected, the LMS algorithm performs poorer that the other algorithfns in a-stable
noise environments. Observations from Figure 3.8 and Figure 3.10 suggests MBER algorithms’
superior performance with respect to the WSL solution. It is worth mentioning that the overall
performance of the different equalisers used in this chapter can be improved by increasing the

equaliser taps order.
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Chapter 4

Non -parametric maximum likelihood
channel estimator in the presence of
~uncorrelated non-Gaussian noise

The Gaussian random process has always been the dominant noise model in communications
and signal processing, mainly because of the central limit theorem‘ and the relative ease of an-
alytic manipulation. Unfortunately, in some communiéation channels, the observation noise
exhibits non-Gaussian characteristics either due to impulsive noise [70] or co-channel interfer-
ence. Impulsive noise is more likely to exhibit sharp spikes or occasional bursts of outlying
observations than orie would expect from normally distributed signals as discussed in details in
the previous chapter. Co-channel interferéncé is a dominant feature of modern radio communi-
cations systems in that virtually no radio link or system is alone in its allocated frequency band.
Other radio transmitters, near and far, constantly cause interference [24]. The combination of
CCI and thermal noise leads to observation noise that is drawn from a Gaussian mixture [82].
Thus the non-Gaussianity of the observation noise may be due to the presence of impulsive
noise or CCI or unknown mixtures of both and it would be desirable to have channel estima-
tions techniques that address this non-Gaussian nature without requiring explicit knowledge of

which form is present or their relative intensities.

Channel estimation forms an integral part of a communication receiver [82]. The channel es-
timation in communication systems can be done in three ways: 1) blind, 2) semi-blind, and
3) training based. In this chapter a training based channel estimator is addressed, ‘Where fhe
channel is estimated over a block of data (similar to in GSM) [82]. As discussed above'thg
observed noise at the receiver may not be Gaussian. This degrades the performance of a LS
based channel estimators. Various statistical techniques like EM and method of moments based
channel estimators have been proposed for communication systems in [83] [44]. However they
usually limit (approximate) the interference as Gaussian distributed [84] [44], which may not
be the case if there afe only a few strong interferers. Other techniqueé based on joint de-

tection/estimation like in [63] and [64] which work on interference cancellation make certain
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non-Gaussian noise

assumptions about the interferer, which cannot be generalised in practice. Such joint detection
and estimation is out of scope of this chapter. In this chapter no assumption on the distribution
(and number) of the interference is made, which makes the proposed technique robust to the

nature of the observed mixture distribution.

From [82] [80] [10] [85] it is clear that various types of observation noise encountered in com-
munications systems can be modelled as a Gaussian mixture. In this chapter two main classes of
finite Gaussian mixture distribution are considered: a) uni-modal distribution where zero-mean
processes of differing variances are mixed; b) multi-modal distribution where noﬁ-zero-mean
processes with the same variance are mixed. The uni-modal form lends itself naturally to im-
pulsive noise [10] [86] [85] while the multi-modal form is appropriate for CCI [82] [87]. The
most popular choice for ML system identification in a Gaussian mixture observation noise en-
virc_mment is to use the EM algorithm [47] [45] [88]. The EM and its -variant space-alternating
generalised EM algorithm (SAGE) [89] is used in [90] [10] [86] [43] and maﬁy more for param-
eter estimation and detection. Application of the EM algorithm to the problem usually requires
a priori assumptions aBQut the specific functional form of the pdf of the observation noise. The
unknown parameters of the mixture (e.g. the means and variances of the mixtures) are grouped
with the channel impulse response tb form the vector to be estimated. ‘For example in [10] [86]
the specific case of impulsive noise modelled as a zero-mean Gaussian mixture is considered.

In [43] it is shown that for deterministic channel estimation the problefn reduces to RLS.

In this chapter a generic non-parametric approach to ML channel estimation that is capable of
addressing both the impulsive noise environment where the uni-modal form is appropriate and
.the CCI environment where the multi-modal form is appropriate is presented. The technique
can be applied without making any a priori assumptions about the number and nature of the
means and variances of Gaussian mixture. In the impulsive noise environment this technique is

shown to have similar performance to existing EM based algorithms.

The key to this non—parémetric approach is the ﬁse of kernel ‘density estimation to charac-
terise the observation noise directly from the data.. The theory developed in [91] and [92] to
estimate the communication channel impulse response in a non-Gaussian noise environment
is estimated. The relationship between the minimum error entropy (MEE) algorithm and the
" non-parametric ML (NPML) is also highlightéd here. ImproVements in the mean square error
(MSE) performance with respect to the traditional LS channel estimate are examined and a

comparison with EM is also considered.
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The Cramér Rao bound (CRB) defines the lower bound oh the channel estimator’s performance.
There is rich literature available on CRB formulations for both Gaussian and non-Gaussian
n_dise scenarios in [42] [85] [93] [94] to name a few. The CRB for channel estimation in the
two (uni;rﬁodal and multi-modal) Gaussian mixture case is formulated in this chapter. First an
analytical expression for the CRB is developed and then from simulations it is observed that

NPML algorithm is closer to achieving the CRB than the LS technique.

This chapter is orgaﬁised as follows. First, the problem statement is formulated in section-
4.1 for a general communication system. A short discussion on kernel density estimators is
provided in section-4.2. The non-parametric maximum likelihood algorlthm using kernel den-
sity estimators is discussed in sectlon 4.3. The iterative MEE channel estimator is derived and
compared with NPML in section-4.4. The theoretical lower bounds on the channel estimator in
non-Gaussian noise modelled as Gaussian mixtures is formulated in section-4.5. .In séctibon-4.6
simulation results are presented. Conélusions based on analysis and simulation are drawn at

the end.

4.1 Formulation of the problem

The discrete-time hodel in the low-pass equivalent form of the communication system channel
estimator is shown in Figure 4.1. Without loss. of generality, the input signal is assumed to be a
‘randomly generated birfary anti;podal PAM signal, so that the transmitted symbols aré xe{+1}.
Here y(k) represents the received signal and w(k) is the additive observation noise. The model
is simplified by assuming that the channel is of order Nt — 1 i.e.: h = [h(0), (1), ..., h(NT —

1)].

More precisely, the received signal y(k) sampled once per symbol can be written as:

Np-1

Z h(n)z(k — n) + w(k) 4.1)

The problem is to esfimate the channel coefficients from the received signal assuming that
the input signal (in a supervised training mode) and the channel (tap) length is known at the
receiver. Thus the problem reduces to the well known problem of system identification. In
this chapter a block based channel estimator with traiping symbols, similar to that of the GSM

system [82] is considered. As usually assumed for slow fading channels in GSM environments,
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Figure 4.1: A typical communication systems channel estimator

the channel is assumed to be fixed for the burst (block) duration.

There are various algorithms based on different criteria to estimate the channel taps.  The LS
solution is the optimum solution for the Gaussian noise environments where it is equivalent to
an ML estimate [39]. However, here it is assumed that the observation noise is rion-Gaussian
and thus LS does not provide the ML solution. The pdf of the observation noise is assumed to
be unknown at the receiver. Thus the channel estimator in this chapter performs two tasks: (i)
estimation of the impulse response itself; (ii) estimating the pdf of the observation noise at the

receiver to construct the likelihood.

1

The pdf of the additive noise is modelled by a mixture of finite Gaussian distributions. The
three justifications for using a Gaussian mixture model are (1) the sét of Gaussian mixture
distributions-include as approximation to Middléton’s canonical class A model [95], (2) Fan’s
theorém [96] indicates that Gaussian mixture distributions can épproximate a large class of
pdfs, and (3) the Gaussian mixtures distribution naturally includes the Gaussian thermal noise

that is present in communication systems [81]. In addition to these justifications, a generalised
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Gaussian mixture pdf model is used:

. Np ~
fww) = A exp (MM) 4.2)

where w is the noise sequence, A; represents the probability that w'is chosen from the [**
term in the mixture pdf, with Ef_]__ M A = 1 for Nps number of mixtures. We will verify the
robustness of the algorithm by-assuming V [; %; = 0 for uni-modal noise and non-zero for multi-
modal noise distribution. It is interesting to note from [82] that the co-channel interference
can be modelled as a Gaussian mixture of non-zero mean processes with identical variance

(0% =03..= 0'12VM). This will be discussed in detail later in this chapter.

4.2 Kernel density estimation

Non-paramertric density estimaton is a classical topic in statitics, where the two most com-
‘mon techmques are hlstogram and kernel density methods. A histogram is the simplest non-
parametrlc dens1ty estimator and the one that is most frequently encountered. To construct a
histogram, the sampled data is divided into the intervals covered by the data values and then
into equal sub-intervals, known as ‘bins’. Every time a data value falls into a pamcular sub-
interval, then a block of size equal to the binwidth is placed on the top of it. The disadvan-
tages with histogram plot are that, it does not provide a smooth estimate of the density, it is
sensitivity to the end points of bins, and width of the bins. The problem of smoothing and
end points in histogram can be overcome by using a smooth kernel placed on the observed
data point. The Figures 4.2 and 4.3 show estimated density plot for hypothetical sampled data
[-0.90 —0.70 —0.50 —0.450 —0.35 0.25 0.35 0.50 0.70] from histogram and kernel method
respectively, where a Gaussian kemei is used to estimate the density. Thus to estimate the pdf
at the receiver the kernel density estimator technique is used in the thesis. Parzen’s window

technique or kernel density estimation assumes that the probability density is a smoothed ver-

M
=1

the estimate f(y) (where f (y) is a random variable) of the underlying pdf f(y) is the average

sion of the empirical samples. Thus, for a collection of M measured data samples {y(4)

of radial kernel functions centered on the M measured data samples:

R 1M ’
f) =57 D K-y @3)
j=1 '
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K (.) is the Gaussian kernel (Parzen kernel) [82] defined as:

o
K(y) =N(0,0) = 2; - exp( y) (4.4)

202

with variance (or kernel width) defined as . Other choices of kernel like Epanechnikov kernel

are possible. The Epanechnikov kernel is defined as [8]:

—iz(l—‘z;) : *}2;<1

Kp(y) =< T
0 : elsewhere

It can be shown that under the right choice of kernel function f (y) will converge to the true

density f(y) as M — oo [97].
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Figure 4.2: Histogram ~ density  estimate  for,  [-0.90,-0.70,-0.50,-0.450,-
0.35,0.25,0.35,0.50,0.70]
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Figure 4.3: Kernel density estimate for [-0.90,-0.70,-0.50,-0.450,-0.35,0.25,0.35,0.50,0.70]

4.3 Non-parametric maximum-likelihood (NPML) channel estima-

tion

For the communication system represented by eq. (4.1) the ML estimate forms the optimal

“estimator for the channel.. The log-likelihood function can be represented as:

E(hly) logfylh Zlogfw @.5)

where fy,(.) is the pde of the independently identically distributed (i.i.d.) observation noise w -
(eq. (4.1, e(j) = y(§) — N2 2(j — n)h(n) is the estimation error and M is the number

of data poinfs in a block. The optimal channel estimate is the solution to:

0L(h |y)

5h =0 ) (4.6)

Vnl(h|y) =

If the noise was Gaussian then the solution to the above equation leads to the LS estimate.
' However, in communication systems where the noise is non-Gaussian closed form equation for
fw(.) do not exist in general. Even if fw(.) was known and was genuinely a Gaussian mixture,
no closed form anailytic solution for eq. (4.6) exists. Hence to find the solution, an iterative

gradient ascent based algorithm is proposed as follows. The gradient here is the first derivative
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of the log-likelihood function with a constant multiplier. The update equation is:

-~

hy

b1 + u(k) VaL(b | Y) lues, . (@7

A{X M log fu(e(3))}

f)‘k-—l + /J'(k) Sh

4.8).
h=hy_,

where p(k) is the adaptatlon step-size. Since the channel estimator is assumed to have no

a priori knowledge of the pdf f,(.), the unknown pdf is estimated usmg the kernel density

estimator eq. (4.3) with Gaussian kernels as shown below. As the kernel estimators are known

to be effective in density estimation over short data record, this technique is used over the

available data (error) record to estimate the unknown density. Using the kernel density estimator

[92] the estimated pdf is written as:

fw(e

Thus the estimated log-likeliﬁood function becomes:

1

L(|Y) lhes

The gradient of the log-likelihood can be formulated as:

k-1

VaLl(h[Y) lhai

M
Z e — e(j (4.9)
M L M
e = 2log | 37D K(e) —e()
i=1 =1
M M ’
= ZlogzK(e(z) —e(j)) —logM 4.10)
=1 7=1
0 4
imiv|
.z—logzK
=1 h=ﬁk—l'
M M 3
23—1 ahK( e(i ) e(]))
; Zk:l K(e(i) — e(k))
1 §8 T )~ ) )~ el =)
o? i=1 ‘ Yali K(e(i) — e(k)) h=h,_;
@11
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Thereby substituting this estimated log-likelihood into eq. (4.7) and iterating till hy converges
to a unique ML channel estimate. The selection of the step-size u(k) is considered in the
“Appendix-A, this setp-size selection makes the channel estimator’s update independent of the
kernel width. Choosing the appropriate value of ¢, the kernel width or smoothing parameter,
depends on the type of density.to be estimated. If the exact noise pdf was known at the re-
ceiver then an appropriate smoothing parameter could be chosen, which minimisés the mean
integrated square error between the actual and the estimated pdf. However since in this chapter
no a priori knowledge of the noise pdf is assumed, thus a dynamic estimate for kernel width is

used [98]:

o = 0.9 min(standard deviation, interquartile range/1.34) M -1/5 4.12)

The interquartile ra;lge is a measure of spread or dispersion. It is the difference between the 758
percentile (often called Q3) and the 25" percentile (Q1). The formula for interquartile range
is therefore: @3 — Q1. This choice of width parameter works well as, when the samples are
. closer to Gaussian pdf then the ‘standard deviation’ is less than the ‘interquartile range’, thereby'
making the kernel width approximately equivalent to_opti}nal ( in trems of mean integrated
squares error) kernel width for. On the other hand when the multi-zmodality is clear, then the

N

parameter ‘interqaurtile range’ govern the kernel width.

For sample size of 100 the skewness and the multi-modality of the density will-be clear by
choosing the ¢ by the above technique. It is also noted from [98] that this smoothing parameter

will do very well for a wide range of densities and it is trivial to evaluate.

The NMPL channel estimator is initialised by the LS estimate and iterates on the per received
block basis i.e. ‘the eq. (4.7) is iterated over the received block till the channel estimates

converge. The algorithm is depiéted in Table-4.1.

The sample (training) size is taken as 100-symbols for the proposed algorithm. The effect of
training block length for correlated multi-modal Gaussian distribution (i.e. CCI) is discussed

in section-4.6.2.

Being a gradient based solution to a non-linear optimisatioﬁ problem the proposed algorithm
may suffer from the usual problems of possible convergence to local maxima (minima). How-

ever it is found during simulations that the combination of LS initialisation and selection of
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-

—

Initialise with LS estimate, hy = hyg
Calculate estimation error, e(j) = y(j) — Son%a - (j — n)h(n)
Estimate the gradient from estimated density, eq. (4.11)
Update channel taps, eq. (4.7)

Follow step 2) to step 4) till converged

(V]

] w
e N [ [ [

o

Table 4.1: NPML Channel Estimator

R step size as in the Appendix-A always provided solutions that were superior to the LS one.

In other channel estimation tec}{niques that address the non-Gaussian environment [62], [10],
[43], the number of mixtures is assumed known at the rebeiver, and then the variance and other
parameters are estimated iteratively. Here, in order to circumvent the d‘ifﬁculty of estimating
the individual parameters of the likelihood (in this case estimation error) pdf, the kernel density
: estimafor is used to estimate the likelihood function directly. By directly estimating the likeli-
hood, the receiver does not need to know (or estimate) the number, the relative probability or
variance of different components of the mixture [81]. For the channel estimation problem the
MEE algorithm is discussed and the similarity with the NPML algorithm is presented in the

next section.

4.4 Minimum error entropy algorithm

In this section a channel estimator based on the MEE criterion is presented and the similarity
with the ML channel estimator is observed. Entropy, introduced by Shannon [99], is a scalar
quantity that provides a measure for the average information contained in the given probability
distribution function. By definition, information is é function of the pdf, hence the entropy as
an optimality criterion is more general than MSE. The MSE criterion minimises the energy
between the desired and the system output. The minimum mean square>err6‘r criteria is to-
tally dependent on the second order statistics of the system, which is normally not optimal for
non-Gaussian non-linear environment. When the entropy is minimised all the moments of the
error pdf, not only the second moments are constrained. The entropy criterion can generallyv
bé‘utilised as an alternative for MSE in supervised adaptation [100]. The MEE’pn'nciple for
minimisation of the distance between the two probabilities is employed here. In the following

it will be clear that by minimising the error entropy is equivalent to minimising the distance
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between the probability distributions of the desired and the system outputs.

The estimation error-entropy is defined as:

Hp = E{-logf(e)} | 4.13)
= —/_ f(e)log f(e) de 4.14)

where f (e) is the pdf of estimation error for the block of length M. This measure is also known
as the integral estimate of entropy [101]. As discussed in the previous section, the density is
estimated by the kernel density estimator. Thus the non-parametric entropy for large block

length and assuming ergodicity (or by re-substitution estimate) becomes [101]:

. M
Hg = —Zlogf(e(z))
-1 w o ‘ .
= ﬁ;bg;K(e(i)—e(j))HogM S
= L= . .

Comparing the log-likelihood function of eq. (4.10) with the above eqhation, they differ only in
the scaling term and sign. Since this cost function minimises the entropy, the update equation

in eq. (4.7) is modified as:

h = hy—1 — pr (k) VoHE |hh,_, _ (4.16)

Substituting the gradient of eq. (4.15) in eq. (4.16) formulates an iterative solution. By sub- -
stituting pg(k) = o? (refer Appendix-A) in eq. (4.16) the estimated Channel taps always
converge to the MEE estimate solution after a few iterations. Use of p (k) = o? as an effect

makes the adaptation independent of the noise variance..

4.5 Cramér-Rao boilnd for Gaussian mixture/

Earlier in this chapter an ML based channel éstimation technique was discussed. To assess
the performance of the proposed estimator the fundamental theoretical lower bound is found.
The Cramér Rao lower bound defines a lower bound on the variance of an unbiased channel
estimator. The lower bound placed on the estimator proves to be extremely useful in practice.

At best, it allows to asses that an estimator is a minimum variance estimator. This is the case
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when the estimator attains the bound for all the estimated parameters. At worst, it provides a
benchmark against which the performance of the unbiased channel estimator is compared. The
CRB can generally be easily found in Gaussian noise environments. However it is generally
impossible to find closed form lower bounds for non-Gaussian noise environments. Since it
is known that the ML estimator is a§ymptotically unbiased and achieves CRB [42], thcvlowcr

bounds for the channel estimator in non-Gaussian noise environment are formulated next.

The CRBs for non-Gaussian noise have been studied explicitly in details in [85] {93] [94]. In
[85] and later on in [93] the CRB for an autdrcgrcssive model was found. In the later work
by Swami [94] the case of additive and multiplicative noise was dealt with. In [62] the CRB
for estimation of the angle of arrival for complex impulsive noise was formulated. However
cited earlier work on the CRB in presence of non-Gaussian noise has been done primarily for
the impulsive noise modelled as a two mixture Gaussian .process with zero meaﬁ. Inspifcd
by [85] and [62] the CRB for the impulsive noise is formulated in this section. In addition
to the above, we also consider the case of multi-modal Gaussian mixture noise, which is not
considered explicitly in the earlier works. It is observed that the CRB for multi-modal Gaussian
mixture depends on the noiseless channel states of the interferer {or means w; in eq. (4.2) ) and

the additive Gaussian noise variance 02,

First the CRB theory based on Fisher information is revisited and then the two specific non-

Gaussian noise scenarios are considered. Let us define a communication channel:
y(k) = b(h; k) + w(k) @

where y(k) is the received symbol, b(h; k) = S"N7-1 h(n)z(k —n) represents the noiseless

channel states and w(k) is the additive noise.

The noise is assumed to be 1i.d. and symmetric with pdf f;u(w) which satisfies the regular-
ity conditions (condition for which the expectation of the first derivative of the log-likelihood
function w.r.t. the parameter is zero) so that the CRB exists [42]. The CRB for any unbiased
estimator f; of a component k; of h, is given by var(iz,-) > [Jn"Ys, where Jy, is the Fisher

information matrix (FIM) for h with elements

sy = (L850) (25500 s

where column vector y = [y(1), ..., y(M)] is the set of observation with pdf fy(y) = [T, fu(y(k)—
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b(h, k)). By the chain rule:

g Foluk) = b, ) = 5 fulw) | )| @19
Thus clement (i, §) of the FIM has the form [94]:
M. 9b(h, k) b(h, k)
Jij = I; oh O, (4.20)

where Z depends on the pdf of the noise. For identically distributed observations Z = M [42]

where 7 is defined as:

610gfw(w))2 | /°° ((f’ (w))® ) /°° ( (fe (w))?) '

=E{ | ————= = 2w =2 ———10 4.21

" { (Z5 ot )Ty Uy )0 20
The FIM reduces to a diagonal matrix (as the input sequence is independent and zero mean).

Calculating the‘inverse is now trivial. Now eq. (4.20) and eq. (4.21) are applied to the two

special cases where the observation noise can be described as a Gaussian mixture.

4.5.1 Uni-modal mixture

Impulsive noise is often modelled as a finite mixture of zero-mean Gaussian processes [10]

[80]. The pdf has the form:

N .
' 1 M Al —w2)

» - e — 422
folw) = 7= > e (57 “2)

Thus: N N

M X /\l/\ —w 1
( fw(’w)> \/%\/27;; qexP( 5 (02+ 3)) (4.23)
and:

( i )>26 2 /ooZ{i“fZﬁM%%ep(%ﬁ(;%h%))

w = o 5
vm Jo o 2= exp(54r)

fw
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Thus the CRB in this case is similar to the one formulated for angle of arrival estimation in
[62]:

1
TMo?2

var(h) > (4.25)

where O'g is variance of the input symbols z (eq. (4.17)).

4.5.2 Multi-modal mixture

In deriving a.CRB for the multi-modal case it is assumed that the process is i.i.d. and the

observed pdf can be written as:

N
1 o —(w — wy)?
fuwlw) = \/ﬂ;/\ze@ (“UT?:“)) (4.26)

where o2 is the variance of the Gaussian noise (without loss of generality the Gaussian noise
variance is assumed the same for all the mixture components). w; represents the different modes

(or channel states of the interferer) for the distribution. Hence:

0 fuw(w) 2__ ? Nog R 1 2 2
(%) ‘(@Wﬂ) 12;;“ u “"’)e"p(z (o= + (o we)})
@.27)

Assuming that the interferer’s channel states are equi-probable (A= .. = ANy )

2 4 S —w)w — wg)oxp (5 {( —w) + (w-wg)})
- w
Nuy/2na208 Jo Zi}iAf exp (i}(w - 'wl)z)
(4.28)
Thus: ‘-
~ 1
var(h) 2 M2 4.29)

8

4.6 Simulation results

The robustness and performance of the proposed adaptive algorithm (in section-4.3) is verified

-for two cases where the CRB has been derived. In the first case, the noise is simulated as
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mixture of two zero mean Gaussian noises with different variances, to simulate impulsive noise.
In the next set of simulations a communication channel model, like GSM, considering CCI with
Gaussian noise as a multi-modal, i.i.d., Gaussian mixture interference as discussed in [82] ig
assumed. The performance loss by estimating the pdf by kernel density estimator for NPML
is also compared with the case where it is assumed that the exact mixture pdf is known at the
receiver. The performance of the channel estimator is calculated by normalised mean square

error (NMSE),. as shown in eq. (4.30).

E{(h — h)?}

NMSE = =g

(4.30)
where F is the actual channel and A is the estimated channel. For all simulation results, the

input symbols of length 100 and ensemble of 1000-runs is considered.

4.6.1 Uni-modal Gaussian mixture

As seen earlicr,‘ the uni-modal Gaussian mixture model has been used in many applications
* to model impulsive noise [85] [62]. This is achieved if VI;1; = 0 in eq. (4.2) to obtain eq.
(4.22) in this chapter. For a popular impulsive noise.model from eq. (4.22), Nps = 2 aé in {85]
[62] is considered. Thé variance o2 3> o2 with relative probabilities Ae < );, so that large

noise samples with variance o2 occur with frequency g in a background of Gaussian noise

with variance 0?. The performance of NPML estimator with other algorithms for a single-
tap channel (used to model flat-fading) in impulsive noise is compared. Then we take a more

realistic 5-tap channel (usually used to simulate a GSM communication channel).

In Figure 4.4 and Figure 4.5, the legends LS, NPML estimated pdfs NPMLknown pdf and CRBjmpulsive
stand for least squares estimate, NPML estimate when the estimated log-likelihood (eq. (4.10))

is used in eq. (4.7), NPML estimate (discussed in section-4.3) whén the pdf in likelihood func-
tion in.eq. (4.7) is known and Cramér Rao bound as estimated by eq. (4.25) respcctivel‘y.‘
The legend EM(2-mix) is where the EM algorithm of [81] was used, where EM ass;.lmcd two
mixtures. From Figure 4.4, it is observed that EM(2-mix) and NPMLyown pat have similar per-
formance. Performance loss by density estimation can also be observed. The EM algorithm as '

suggested in [81] performs closer to CRB and with less computation than NPML gstimated pdt -

However, when the EM algorithm assumes 4-mixtures for channel estimation with the simula-

tion environment being the same, the over-parametrisation (since the impulsive noise is mod-
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T ...

- LS :
' NPMLes\imaledpdf .

- EM(2-mix)
' CRE nownpdf |

impuisive

MSE

2 4 6 8 10 12 14 16 18

Figure 4.4: NPML comparison with 2-mixture EM for impulsive noise (EM(2-mix) and
NPMLyyown pdt are overlaid)

T
LS
NPML

N estimated pdf

‘|- 8- EM{4-mix)

1T e PMLknownpdf
- CRB

*

Impulsive

MSE .

Figure 4.5: NPML comparison” with 4-mixture EM for impulsive noise (EM(4-mix) and
' NPMLestimated pdf are overlaid)
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elled as mixture of t“.IO Gaussian) by the EM in Figure 4.5 causes degradatiori in the EM-based
channel estimator’s performance. It is observed from Figure 4.5 that both the NPML and the
EM(4-mix) algorithms performance coincides whereas the NPMLynown pdf outperforms both
the EM(4-mix) and NPMLéstimatedpdf. Thus EM-based algorithm looses some of its perfor-
mance when over-parametrised, thus a priori knowledge of number of mixtures becomes an
important factor for the EM-based estimator. Moreover it is observed that the algorithm in [81]
cannot be u‘sed for ISI affected channels in the presence of impulsive noise. For the second case,
an ISI affected communication channel modelled as h = [-0.227 0.460 0.688 0.460 -0.227] with
the noise modelled as %% = 411 for \; = 0.9 and Xy = 0.1 is considered. Thé proposed NPML
algorithm has a fast and smooth convergence, as shown in Figure 4.13. It is also verified from
- the plots in Figure 4.6 that the noise pdf and the error pdf are quite closely matched for SNR =
4.5dB, which confirms that the NPML algorithm estimates the likelihood function very closely.
- Impulsive noise is characterised by heavier tails than a normal distribution. The performance
| in the tails is better illustrated with Figure 4.7 which shows the ‘log’ of the actual noise and
estimated (error) pdf. The MSE performance of the proposed algorithm is shown in Figure 4.8,
the NI,’MLI;nown pdfn reaches quite close to the CRBimpylsive in MSE terms. From Figure 4.8 it
is observed that there is loss of 2dBs by using the kernel density estimator when comparing
NPML stimated pdf ad NPMLynown pdt curves. However there is signiﬁcant gain by using the
NPML algorithm instead of LS as apparent from comparing LS and NPML etimated pdf curves.
Thus better (in terms of MSE) estimates and faster convergence is achieved by using NPML

algorithm over LS for impulsive noise.

4.6.2 Multi-modal Gaussian mixture

In this set of simulations it can be assumed that the co-channel interference with additive Gaus-
sian noise is a manifestation of a Gaussian mixture with different means, however the overall
mean (in ideal condition) of the vs:hole Gaussian mixture processes is zero. Two cases of multi-
modal Gaussian mixture distribution"are considered: first one for i.i.d. mixture and the next for

correlated mixture typical of practical systems in the presence of CCIL

Since the CRB (eq. (4.29)) of section-4.5.2 is only valid for an i.i.d. Gaussian mixture, the
algorithm of section-4.3 is first assessed by generating i.i.d. noise with pdf identical to that
of w(k) as in eq. (4.33). The performance of the proposed algorithm is compared in Figure

. 4.9. The legends LS, NPMLegtimated pdf» NPMLinownpdf. and CRBccy represents the least
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PDF

error e(k) and noise w(k)

Figure 4.6: Comparison of pdf fits achieved by NPML algorithm after convergence

log,, PDF

error e(k) and noise wk)

Figure 4.7: Comparison of pdf tails fits achieved by NPML algorithm after convergence
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estimated pdf
own pdf

p

NMSE

SNR

Figuré 4.8: NMSE plot for channel estimators for mixture when ¥V l;w; = 0

squares estimate, NPML estifhate when the estimated log-likelihood (eq. (4.10)) is used in eq.
4.7, NPML estimate for known pdf likelihood function in eq. (4.7) and Cramér Rao bound as
estimated by eq. (4.29) reépectively. From comparing NPML ¢stimated pat With NPMLynown pdt
in Figure 4.9, it is observed that there is not much loss in using th(;, kernel density estimators
" to estimate the likelihood function. As also observed, the' NPML algorithm gets closer to the
CRBc(r and also performs better than the LS estimator. Finally performance of the algorithm
is considered when the CCI is correlated. A typical communication system affected by co-
channel interference is shown in Figure 4.10. The corrubting (noise + CCI) noise pdf deviates
from Gaussianity as apparent from the Figure 4.11 at SNR = 24dBs and SIR = 10dB. Also
for the GSM scenarios it was shown in [82] that noise pdf deviates frdm Gaussianity in the
prese'nce. of interference. The co-channels are each of order N — 1 and are represented as g,

and interfering signal as up for p = 0, ..., P — 1, where P represents number of interferers.
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Figure 4.9: NMSE plbi Jor multi-modal noise (uncorrelated CCI) affected communication 5ys-
tem where h = [-0.227 0.460 0.688 0.460 -0.227 ], w,; are interfering channel states,

SIR=4.73dB for 100-symbols over an ensemble of 1000-runs

.
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The received signal can be represented as

Nr-1 P;—1Np-—-1

yk) = > hn)ztk—n)+ > Y gpln —n) +n(k) 4.31)
n=0 p=0 n=0
Np—1 ' _
= Z h(n)z(k — n) + wi (k) + n(k) (4.32)
NT—I ' .
= Y h(m)e(k —n) +w(k) @33
n=0 )

where the middle (double summation)wterm on the RHS in eq. (4.31) represenfs the CCI (or
the interfering noiseless channel states w;). The interfering channel states forms the means of
the multi-modal mixture distribution which can take finite states and are symmetrical. n(k) is
a zero mean, i.i.d., Gaussjan noise process with variance o2 and k = 1,..., M represents the

number of symbols. Please note that crfu ineq. (4.28) for CRB (eq. 4.29) is equal to cr,%.

The above presented algorithm is verified for real stationary channel for N7 = 5. The input

signal is anti-podal random input sequence. The channels are assumed to be
h =[-0.227 0.460 0.688 0.460 -0.227] and
go = [-0.10 0.40 1.0 0.40 -0.10]

where h suffers from amplitude and phase distortion [20], and gg is the co-channel considered

for the simulation.

NPML formulation in eq. (4.8) assumes that w(k) is i.i.d. and thus the algorithm is sub-
optimal in this environment both in ‘unknown’ and ‘known’ pdf form. The w(k) pdf is iden-
tical to the form used to generate Figure 4.9, however 'w(k) is now generated from eq. (4.33).
Figure 4.12 illustrates the performance of the algorithms in tf)e correlated co-channel inter-
ference. The legends NPMLestimat;d pdf aﬁd NPMI;]mown pdf are the same as above, whereas
NPML cci(estimated paf) and NPMLéci(known pdf) Tepresents the performance when the interfer-
ence is generated from eq. (4.33). vFigure 4.12 illustrates the performance loss incurred in using
the algorithm in a correlated CCI environment. From the simulations for co-channel interfer-
ence it is observed that the proposed algorithm has faster and stable convergence as shown
in Figure 4.13 when step-size u(k) in eq. (4.7) is chosen as ”—A; The effect of training symbol -
block length on various discussed estimators is also shown in Figure 4.14. There is a significant

improvement in channel estimation with respect to standard LS and the estimated pdf version of
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the algorithm is not degraded significantly w.r.t. the known pdf version. It is also interesting to
note that the [81] algorithm is not suitable for CCI affected channels, as it converges to the LS
solution when used for flat-fading channel estimation in presence of interference. The proposed
NPML algorithm is robust to ISI and type of non-Gaussianity, as seen fr;)m the simulations and

it reaches closer to the CRB than other algorithms.
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Figure 4.10: A nypical CCI affected communication system

4.7 Conclusion

It was shown that the channel estimator based on Gaussian noise assumption (LS) is inferior
in the non-Gaussian noise. The non-Gaussian noise was modelled and estimated as a Gaussian

mixture. It is seen that the difference between NPML and MEE is trivial for the channel estima-
»- tor. It was also shown that better channel estimates can be obtained by using iterati\}e NPML
based algorithm using Parzen’s kernel for density estimation. The same algorithm (without
making any change) can be used for channel estimation in uni-modal and multi-modal noise
environments. It was demonstrated that an approximation to unknown (at receiver) noise pdf
can be achieved iteratively by the NPML algorithm and that the quality of that approxima-

tion does not seems to significantly affect algorithm’s performance. A generalised approach
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Figure 4.11: Distribution of the estimation error by minimum entropy algorithm ‘e’ and addi-
tive noise ‘w’ for CCI corrupted channels
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Figure 4.12: NMSE plot for co-channel affected communication system where h = [-0.227
0.460 0.688 0.460 -0.227], go = [-0.10 0.40 1.0 0.40 -0.10], SIR=4.73dB for
100-symbols over an ensemble of 1000-runs
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Figure 4.13: Convergence plot for co-channel affected communication system for 100-samples
over an ensemble of 100-runs at SNR = 22.4dB and SIR = 10dB

SNR'- 300B SIR « 4.8208

Figure 4.14: NMSE with various training length
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t6 calculate theoretical lower bounds for channel estimation in non-Gaussian noise was also
presented. From the results it can be observed that kernel density estimator does not result in
much loss in performance. The proposed algorithm also has faster and stable convergence and
is immune to sudden changes in noise conditions. Thus the channel estimator based on the ML
criterion using kernel density estimator forms a robust channel estimator for various additive

non-Gaussian noise sources.
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o Chapter 5
Non-parametric maximum likelihood
channel estimator in the presence of

“correlated non-Gaussian noise

. This chapter is an extension of the algorithm developed in the previous chapter. In chapter 4,
the noise distribution was modeiled as uni-modal and multi—modai distributions. The uni-modal
distribution was modelled as a mixture of fwo independent finite Gaussian processes with zero-
mean. For the multi-modal distribution, a finite Gaussian mixture process with various means
was used to simulate the CCI. The-NPML algorithm preSented in the previous chapter assumes
tHat the additive noise plus interference is independent. However by nature of CCI generation,
the CCl is correlated. The performance loss due to the uncorrelated assumption was witnessed

in the previous chapter.

Since it is known that the interference .is cbrrelated, this correlation is reduced by using an
error whitening filter. Techniques which whiten the noise plus interference before suppressing
the interference have been proposed earlier in [66] [65]. This forms a powerful technique to
improve the performance,‘but since, in practice, the tap length of this whitening filter cannot
be increased to a large value, the ideal assumpfion of white Gaussian noise (after the linear
prediction error (LPE) filter [82]) does not hold. Thereby, in this chapter a joint maximum

likelihood estimate of the channel taps and the whitening filter (LPE) coefficients is formulated.

In this chapter no such (Gaussian) assumption on the distribution of the whitened noise is .made,
which makes this technique robust to various noise distributions. After whitening, the unknown
whitened likélihood pdf is estimated by using a kemel‘c.lensi.ty estimator at the receiver. Thereby
cofnbin'mg the log-likelihood as a cost function with a whitening filter and a kernel density esti-
mate, a robust channel estimator for correlated noise environments is formed. “The simulatibns
for co-channel interference in the presence of Gaussian noise, confirms that a better estimate
can be obtained by usihg the proposed technique as compared to the traditional least squares

algorithm with whitening filter, which is optimal in Gaussian noise environments.
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The chapter is organised as follows. vFirst, the problem statement is formulated in section-
5.1 for a general communication system with whitening filter. The non-parametric maximum

likelihood channel estimator algorithm with LPE filter and kernel density estimator is discussed
in section-5.2. .In section-5.3 simulation results are presented. Conclusions based on analysis

and simulation are drawn at the end.

5.1 Formulation of the problem

The discrete-time model in the low-pass equivalent form of the communication system channel
estimator is shown in Figure 5.1. Without loss of generality, the input signal is assumed to be
randomly generated binary anti-podal PAM signal, so that the transmitted symbols are x e{%1}.
Here ‘y’ represents the received signal and ‘w’ is a sequéncé of additive noise. The model is

simplified by assuming that the channel is of order Ny —1i.e. h = [h(0), h(1), ..., h(NT —1)].

w(k)
x(k) Channel y(k) LPE Filter
. —— —— ’
h : d
e(k)
\ UK ‘ =
Estimated Channel LPE Filter

N ™

h d - _/

4
Gradient
Calculation |

Figure 5.1: Communication systems channel estimator with LPE filter

More precisely, the received sighal y(k) sampled once per symbol can be writteﬁ as

Np—1
y(k) = Y h(n)z(k —n)+w(k) - (5.1)
n=0 .

As in the previous chapter, the problem is to estimate the channel coefficients from the received
signal assuming that the input signal (as in supervised training mode) ard the channel (tap)

length is known at the receiver. Thus the problem reduces to the well known problem of system
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identification. There are various algorithms based on different criteria to estirﬁate the channel
taps. Usually the LS solution is taken as the optimum solution for the Gaussian noise environ-
ments where it is eqhivalent to a ML estimate [39]. However, here it is assumed that the noise
in the presence of interference is correlated, thus LS does not provide the ML solution. To
remove this correlation an LPE filter is used. Basically, as the order of the prediction error filter
. increases, successively the correlation between adjacent samples of the input proceés reduces,
until ultimately a point is reached where for high enough an order it produces an output process
that consists of a sequence of uncorrelated samples [16]. The whitening of the original process
applied to the filter input will have thereby beén accomplished. The problem then reduces to

the one shown in Figure 5.1.

The problem can now be written as:

P Nr+P-1 ‘
D d@yk—i)= Y (kD) + (k) 5.2)
1=0 =0

where d = [d(0) = 1d(1) = —€(1)...d(P) = —¢(P)] are the coefficients of the LPE
filter and the equivalent channel taps vector ¢ = [((0) (1) ... (Nt + P — 1)}, where {(I) =
>-; d(@)h(l — 1). Ideally the e(k) is a zero-mean white Gaussian process. Since from eq. (5.1),

the model eq. (5.2) corresponds to assuming

P Nr—-1 )NT+P—1

P
Yodiy(k—i)=>_di@) > sk—i-Dhl)= Y, sk-1¢Q - 3
i=0 i=0 =0 =0 ¢
and
P .
> d()w(k —i) = e(k) (5.4)
=1 :

Therefore, the effect of the LPE filter is that of whitening the additive disturbance w(k). The
formulation eq. (5.2) permits the description of the channel plus the whitening filter as a vector
inner product, which in turn allows the simultaneous estimation of the LPE coefficients and the

equivalent channel taps at the output of the LPE filter [66]. In fact, letting & = [£(1) ... £(P)],
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eq. (5.2) can be rewritten as

y(k) z(k)
o y(k—1) ' z(k=1)
[1—¢(1)... —¢(P)] : = [£(0)¢(1) ..¢(Nr + P —1)] .
| y(k—P) | | 2(k— Np— P+1)
or equivalently
[ z(k
y(k—1) z(k(_)l)
y(k) = [£(1)...&(P)] +{¢(0)¢(1) . ¢(Nr + P —1)] :
y(k - P)
i z(k— Nr—P+1)

= [£ CJv(k) +e(k)

where v(k) = [y(k —1)...y(k — P) z(k) z(k—1)..z(k— Ny — P+ 1)]T and with é(k) white.
Usually it is assumed that due to LPE filter e(k) is Gaussian distributed, thus the log-likelihood
" function of y(0),...,y(M — 1) given [€ ¢] and v(0),...,v(M — 1) is:

—log f(y(0), --;y(M — 1) [ [€ ¢],v(0), ..., v(M — 1)) = —log f(e(0), ..., e(M — 1))
] M2
202

k=0

(having neglected the constant term M log 2mo?). .Therefore, assuming the knowledge of

v(0), ..., v(M — 1), the ML estimate [ {] of the vector [¢ ¢] can be obtained by minimis-

ing eq. (5.8) with respect to [£ ¢]. This corresponds to the least-squares estimation of the

unknown parameters £ and ¢. Defining

1 M-1
=0
1 M-1 ‘
1=0 '

+ e(k)(5.5)

(5.6)
5.7

> 1 ylk) - [€ CIvik) [ 5.8)
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The LS estimate would be:
‘ {l=R7p - (5.11)

A regularisation term (usually < 1) was introduced in [8] for the least squares solution. This

* term is however ignored in deriving the above equation.

In a conventional receiver, the equaliser following the whitening filter uses the LPE filter output
and the estimated channel f . To have the Gaussian assumption (eq. 5.8) valid the tap-length
of ¢ should be large. However in practice the larger the tap-length of the LPE filter, the more
the equaliser states, the more computational complexity [8] for maximum likelihood sequence
equalisef. Thus in practicé the tap-length of the LPE filter is usually restricted to either 1 or
2-taps [8] [65]. This restriction leads e(k) to deviate from Gaussianity. The channel estimator
prqposed in this thesis does two tasks: (i) estimating the channel (and LPE coefﬁcients);. (i1)

estimating the uncorrelated e(k) pdf at the receiver.

5.2 Non-parametric maximum-likelihood channel estimation with

LPE filter

For the communication system represented by eq. (5.2) the ML estimate forms the optimal
estimator for the channel. This problem can be viewed as the joint optimisation problem [82],
where the likelihood is maximised with respect to £ and ¢. If the e(k) was Gaussian then the
LS solution as found in [82] could have been applied directly. HoWever, since it is assumed that
e(k) is non-Gaussian and can be modelled as a Gaussian mixture, the kernel density estimator,
as described in section-4.2, is used to estimate this unknown density. Since the kernel density
estimator is essentially a Gaussian mixture formulation, a closed form estimate of the £ and
¢ cannot be obtained. Thus an iterative joint optimisation technique, smiliar to the one in the

previous chapter is used here: .

& = &t VL&Y Oleg oo (5.12)
o = Gt nB)VeLCI YO g e g (5.13)

where u(k) is the adaptation step-size, £ 1 and ¢ & are estimates of £ and ¢ respectively at time

. instance k. Since the channel estimator is assumed to have no a priori knowledge of the error

’
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pdf fe(.), this unknown pdf is then estimated by using the kernel density estimator eq. (4.3) with
Gaussian kernels as shown below. As the kernel density estimators are known to be effective
in density estimation over short data record, a technique over the available data (error) record,
of length M, to estimate this unknown density is used. From the definition of kernel density

. estimation [92]:

M
Z e —e(j ' (5.14)
Thus the estimated (joint) log-likelihood function can be written as:

LECIN ey oo = Zlog( Zx(e@ —e(y)))

AY

= ZlogZK(ﬁ(i)—e(j))‘-logM . (5.15)

The gradient £ of the joint log-likelihood can be formulated as:

/

\ ' 8
VL€ lpg e, = wE6IMOl . .

~ izj"ilfgx(e(')—eu»
- Shry K(e(i) - e(k))

6 £k—1’c=ék—l
(5.16)
Similarly gradient for ¢
Vi - 2
VOl e = (C'y’@’c=c}_,,§=ék-1
| _ iz%&mem—-em)
= AR COR DR
ENCRT))

Thereby substituting the estimated gradients in eq. (5.12) and (5.13) respectively, and iterating
till é & and ¢ . converge. After convergence the ML estimate of the channel h is obtained by

deconvolution. The algorithm is initialised by the LS estimate and p(k) is chosen as explained
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in [82] and [87] respectively. During simulations the algorithm did not converge to a local

maxima, however this is not always guaranteed (as explained in previous chapter).

Two poséible update methods can be used here to maximise the joint likelihood. In the ﬁrst
method, the f is updated followed by E‘ and then the likelihobd is estimated for the next update.
The procedure is repeated till both £ and ¢ converge. Second update method is to first have €
converged and then have f converged given the converged £ on estimated likelihood, and then
iterate till no significant changes are observed in f and f . In this chapter, the first method of

update i$ used.

5.3 Simulation results

For simulation study a communication channei model, similar to GSM, consideﬁng CCI with
Gaussian noise as a multi-modal, i.i.d., Gaussian mixture interference as discussed in [82] is
used. The performance of the channel estimator is calculated by NMSE as shown in eq. (4.30).
For all simulation results, the input symbols of length 100 and ensemble of 1000-runs are

considered. J

A typiéal communication system affected by co-channel interference is shown in previous chap-
ter’s Figure 4.10. The system representation in eq. (4.31)-(4.33) is still valid for the simula-
tions in this chapter. The above presented algorithm is verified for real stationary channel for
Nr = 5, and the LPE filter of brder 2 is assumed. The input si gnéll is anti-podal random.input

sequence. The channels are assumed to be
h =[-0.227 0.460 0.688 0.460 -0.227] and

go = [0.1 0.3 0.8 0.3 0.1] where h suffers from amplitudé and phase distortion [20], and gy is

the co-channel considered for the simulation.

Two different sets of simulgtiohs are performed to verify the robﬁstness of the proposed al-
gorithm. First Figure 5.2 depicts the SNR performance plot for the channel estimator pre-
sented in this thesis, where the SIR is fixed at 5dBs. The legends ‘LS’, ‘LS white’» ‘NPML’ and
‘NPMLynite’ represent LS without LPE filter, LS with LPE filter, NPML without LPE filter
and NPML with LPE filter respectively. It is observed that the NPML ;e performs better than
other proposed techniques. There is a considerable gain at high SNRs by whitening the noise

and interference before doing the channel estimation. A little performance gain can be achieved
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by using the traditional LS technique with LPE filter.

Secondly, the Figure 5.3 represents the performance pldts when the channel estimation is per-
formed with SNR fixed at 30dBs and interference power varied. As anticipated, the proposed
algorithm performs better than other techniques in high interference channel conditions. Con-
siderable power gains can be achieved at low SIRs. Thus it would be appropriate to conclude
that the NPML algdrithm with LPE 'ﬁlter provides better channel estimates in high SNR and

low SIR environments, typical of indoor wireless communications channel.

5.4 Conclusion

It was shown that the channel estimator with whitening filter forms a robust channel estimator
for correlated non-Gaussian noise (or CCI) channel. It was reconfirmed that the LS estimate
with LPE ﬁltef produces better channel estimates for interference limited channels than LS esti-
mate without LPE filter. Due to practical constraints, the Gaussian assumption on the whitened
noise is not guaranteed, hence a kernel density estimate based ML channel estimator was pro-
posed. From Figure 5.2 and Figure §.3 it is observed that better- channel estimates can be
obtained by jointly estimating the whitening filter and the channel estimates by using the kernel
density estimator. Thus by combining kernel density estimator with whitening filter forms a

robust channel estimator for interference limited communication channels.

73



Non-parametric maximum likelihood channel estimator iri the presence of correlated
non-Gaussian noise

107 i i i ; i
10 15 20 25 30 35 40
SNR

Figure 5.2: MSE plot for co-channel affected communication system where h = [-0.227 0.460
0.688 0.460 -0.227], SIR=5dBs for 100-symbols over an ensemble of 1000-runs

MSE
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Figure 5.3: MSE plbt for co-channel affected communication system where h = [-0.227 0.460
0.688 0.460 -0.227], SNR=30dBs for 100-symbols over an ensemble of 1000-runs
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Chapter 6
Non-parametric maximum likelihood

“channel estimator and equaliser for
| OFDM systems

Orthogonal frequerncy division multiplexing is a promising multi-carrier digit'all communication
technique for transmitting data at high bit-rates over wireless or wireline channels. The High-
speed serial data are converted into many low bit rate streams that are transmitted in parallel,
thereby increasing the symbol duration and reducing the ISI. These features have led to an in-
crease in the use of OFDM or related techniques in many high bit rate communication systems.
Discrete multi-tone modulation which is quite similar to OFDM is extensively used in DSL
communication systems. OFDM has been chosen for digital audio broadcasting (DAB) and
digital video broadcasting (DVB). It is also used for the 2.4 GHz wireless local area networks
 (WLAN) i.e. IEEE 802.11g and Worldwide interoperability for microwave acccess (WiMAX)
i.e. IEEE 802.16. '

Coherent OFDM transmission invariable requires estimation of the channel frequency“fesponsc
(‘i.é. the gains of the OFDM tones). Currently there can be three possible solution: 1) blind, 2)
semi-blind’, and 3) pﬂot aided. In blind channel estimation techniques, the channel is estimated
without the knowledge of the transmitted sequence. It is attractive as the throughput is higher
as no bits are lost in training. However it requires large amount of data to be stored before
channel estimation can begin, which invariably introduces delays. The pilot based technique
estimates the channel by transmitting a known (at the receiver) training sequence along with the .
unknown data at the receiver. The receiver estimates the channel using some criterion based on
comparing the change in these pilots dué to channel. The semi-blind techniques try to reduce
the size of the training sequence by exploiting both the known and the unknown (blind) portions
of the data. '

Channel estimation in OFDM is critical to the overall performance of the communication sys-

tem. The insertion of pilots in OFDM symbols provides a base for reliable channel estimates.
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There haé been considerable increase in channel estimation research over the years [102], [103],
[104] to name a few., However most of the current work is based on channel estimation for
~ Gaussian channels or assuming that the interference is very low. This assumption is however
not always valid in scenarios where there are a small number of interferers (e.g. Bluetooth
device [105] or microwave oven operating in presence of a WLAN). With the co-existence of
various wireless equipmént in home and office environments the interference from neighbour-
ing devices has become a major concern [106]. In interference affected channels the algorithms
designed for Gaussian assumption are not optimal [42] [87]. As in the previous chapters, the
traditional Gaussian 'assumption channel estimator (which assumes zero or negligible interfer-

ence) is refered to as an LS channel estimator.

The algorithm disc‘ﬁssed in [44] specifically deals with synchronous interference and after mod-
ifications for asynchronous interference [107]. However in [44], [107] and [84] it was noted
that interferénce was modelled as Gaussian, which may not be the case if only a few or infact
one major interferer as in [106] [105] are present. In this chapter no such a priori assumption -
on the distribution of the interfering received signal is made. Moreover no indiviciual parameter
of the interferer is estimated speciﬁcaliy. The channel is assumed to be stationary for a given
block. In this chapter the fading channel is estimated in the presence of interference directly
in time domain using an ML technique. In fact, the presence of interference along with Gaus-
sian noise is jointly considered as a Gaussian mixture noise [87] and [82]. In this chapter it
is noted that traditional zero forcing equalisation (usually used in OFDM receivers) techniquei
falls short of the performance in the presence of interference. Thus a MAP symbol-by-symbol
equaliser to improve the BER performance is proposed. Simulation results confirm the non-

optimal estimates when LS is used- and improved BER performance by using the proposed

channel estimator and equaliser algorithms.

The chapter is organised as follows: section 6.1 the problem statement is formulated for a gen-
eral OFDM communication system. A brief discussion on kernel density estimator for com-
plex.density estimation is described in section 6.2. The iterative NPML channel estimator for
"~ OFDM is described in section 6.3. Section 6.4 discusses the modified non-parametric symbol-
by-symbol equaliser. To test the robustness of the algorithm, in section 6.5 the simulations
results are presented for both flat and multi-path fading. Conclusions based on analysis and -

simulation are drawn in section 6.6.
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6.1 Formulation of the problem

6.1.1 OFDM system model

The baseband equivalent représentation of a typical OFDM system as in Figure 6.1 is con-
sidered here. The discussion on the estimation of one OFDM symbol instead of a sequence
of symbols is justified below. At the transmitter side, the serial input data is converted into
M parallel streams, and each data stream is modulated by a linear rﬁodulation scheme, such
as QPSK, 16QAM or 64QAM. If QPSK is used, for instance, the binary input data of 2M
bits will be converted into M QPSK symbols by the serial-to-parallel converter (S/P) and
the modulator. The modﬁlated data symbols, which are denoted by complex-valued variables
X(0),...,X(m), ..., X(M — 1), are then transformed by the inverse fast Fourier transform
(IFFT), and the complex-valued outputs z(0), ..., z(k), ..., z(M — 1) are converted back to se-
rial data for transmission. A guard interval is inserted between symbols to avoid ISI. If the
guard interval is longer than the channel delay spread, and if the samples of the guard at the
receiving end are discarded, the ISI will not affect the actual OFDM symbol. Therefore, the
system can be analysed on a symbol-by-symbol basis. OFDM system is also exhibits high
peak;to-average poer ratio (PAPR). Namely, the peak values of some of the transmitted signals
could be much larger than the typical values. This could lead to a necessity of suing circuits
‘with linear characteristics within a larger dynamic range, otherwise the signal clipping at high
levels would yield a distortion of the transmitted signal and out-of-band radiations. In this
chapter, it is assumed thaf the received OFDM signal is not affected by PAPR problem. At
the receiver side, after converting the serial data to M parallel streams, the received samples
(0, ...y y(k), ooy y (M — 1) are transformed by the FFT into Y(0),...,Y (m),...,Y (M — 1)
[102].

Using the notations for the OFDM symbols, the output of the channel can be written as

Nr—1 P;r—1 Np~1

yk) =Y K Ozk =0+ Y. D gup(k—1)+nk),0<k<M-1 61
1=0 =0 [=0 )

where h and z represents desired user’s channel and data respectively. Without loss of general-
ity, the complex conjugate h* instead of & is chosen in the above equation [16]. Nt représents
the channel length and n(k) is the i.i.d. additive white Gaussian noise. P; represents the num-
ber of interferers where g, and u,, are the interfering channel and signal réspectively. Note that

y(k), z(k), n(k), h(l), up(k) and gp(!) are all complex valued. It is assumed that the channel
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Figure 6.1: A typical OFDM communication system

and interference doesn’t change during the block transfer (assuming quasi-stationary channel)

and interference is synchronous which makes the above representation possible.

To maintain orthogonality between tones, it is necessary to ensure that the symbol time contains
one or multiple cycles of each sinusoidal tone waveform. Th'}s is normally the case, because
the system numerology is constructed such that tone frequencies are integer multiples of the
symbol period. In absolute terms, to generate a pure sinusoidal tone requires the signal to start
at timel minus infinity. This is important, because tones are the only waveform than can ensure
orthogonality. Fortunately, the channel response can be treated as finite, because multipath
components decay over time and the channel is effectively band-limited. By adding a guard
time, called a cyclic prefix, the channel can be made to behave as if the transmitted waveforms
were from time minus infinite, and thus ensure orthogonality, which essentially prevents one
subcarrier from interfering with another (called intercarrier interference, or ICI). Figure 6.2
sliows three tones over a single symbol period, where each tone has an integer number of

" cycles during the symbol.

The cyclic preﬁx is actually a copy of the last portion of the data symbol appended to the front
of the symbol during the guard interval. Multipath causes tones and delayed replicas of tones

to arrive at the receiver with some delay spread. This leads to misalignment between sinusoids,
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which need to be aligned to be orthogonal. The cyclic prefix allows the tones to be realigned at

the receiver, thus regaining orthogonality. As discussed above, if a cyclic prefix is used for the

T 2 s A% T

| - —©~ First orthogonal sub-carrier

1 -~ B~ Second orthogonal sub-carrie
: - =& Third orthogonal sub-carrier
ETLE U S ER

Figure 6.2: Integer number of sinusoid‘ periods

guard interval, intercarrier interference (ICI) in a multipath channel can also be avoided. Then

it can be shown that the following simple relation between Y (m) and X (m) holds:

Np—1
Y(m) = ( Z h*(l)ekp(_j2"%)) X(m)
=0 '

P;—1Np-1
+1Y Y a0 expI2750) U (m) | + N(m) 6.2)

=0 =0 )
= H(m)X(m)+I(m)+ N(m),0 <m < M—1 ~ (6.3)
= H(m)X(m)+N'(m),0<m<M-1 - | 6.4)

where H(m) is the complex frequency response of the channel at the subchannel m, I (m) be
the complex interference at that subchannel m and N(0), ..., N(M — 1) are the discreté Fourier
transform (DFT) of n(0), ..., n(M —1). From [42]-example 15.3 it is observed that DFT of i.i.d.
Gaussian n(0), ..., n(M —1) are i.i.d Gaussian as well. It is assumed that the interfering signals
U,,(Q), oery Up (M — 1) are also OFDM signals, with same block and cyclic pre-fix lengths, and
they are block synchronous with the desired signal. The system is depicted in Figure 6.3. Eq.

(6.4) shows that the received signal is the transmitted signal attenuated and phase shifted by the
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Figure 6.3: OFDM communication system in presence of interference and noise

frequency response of the channel at the subchannel frequencies due to fading in the presence of
interference and noise [102]. It is assumed to'be that noise is represented as complex 1.i.d. with
‘vector n = [n(O), n(1),...,n(M —1)]T with each component of n distributed as C N(pi,o2)
and are also independent. The multivariate complex Gaussian pdf is just the product of the

marginal pdfs or

M-1 . o
fm) =[] f=G)) | (6.5)
1=0
; .
which follows from the usual property of the pdf for real independent random variables, this
can be written as ' 7 \
1 &
f(n) = ——=——exp [— — | n(3) |2} (6.6)
oML, ! o2 ,E_% Oni o

Since the joint pdf depends on R(n) and (n) (where R and  stands for real and imaginary
components of a complex variable) only through n, the joint pdf can be viewed to be that of the
‘scalar random variable n’. This pdf eq. (6.6) is called a ‘complex Gaussian pdf’ for a scalar
complex random variable and is denoted by C N/ '(0, ‘77211') [42] (without loss of generality noise

is assumed to be zero mean).
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6.1.2 Asynchronous interferer

Asynchronous interference occurs when the cyclic prefix of the interferer does not align with the
desired user’s cyclic prefix. The receiver is usually synchronised with the desired user’s trans-
mitter. For an asynchronous interferer in a rich multipath environment, the received frequency-
domain measurement is highly correlated. The frequency offset causes the loss of onhogonality
and causes ICI in the interferer [108]. In many cases the algorithms designed for synéhronous
interference fail when the asynchronoﬁs interference is cﬁqountered. The algorithm' discussed
later in this chapter does not require any change when asynchronoﬁs interference is encoun-

tered.

The interference model described in eq. (6.4) is not valid for asynchronqus interference. The

interference in eq. (6.6) is now modelled as:

Pr—1M-1 . :
d sin(r(k — m + AF)) jr(k —m+ AF)(M — 1)
I(m) = Up(k)Gp (k) : ex
z; kZ=0  Msin(n(k—m+ AF)/M) p( | M (67)>

where U, G, represent the pt? interferer’s input signal and channel respectively. AF repre-

sents the (normalised) frequency offset [108] [109] [110], which is normalised by the subcarrier
spacing which is roughly AF = forpm/M, where forpas is the total occupied bandwidth
by OFDM. ' ‘

6.2 Kernel density estimation

Since both the noise and interference are complex, they can be modelled by a ‘complex Gaus-
sian mixture’ pdf, where the real and imaginary components are assumed independent as dis-
cussed earlier. Parzen window or kernel density estimation assumes that the probability density
'is a smoothed version of the empirical sample. Its estimate f (y) of a complex random variable
y = R{y} +iS{y} is simply the average of radial kernel functions centered on the points in a

sample M of the insta)nccvof y

. 1 & '
fly) = i E K(y—y() (6.8)
=1 ‘
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As in previous chapters, K (.) is assumed to be Gaussian kernel (Parzen kernel) [8?]:

| 1 ~ly P
— 2y —
K(y) = N(0,0°%) = — exp ( oo \ (6.9)
variance defined as 0. The joint pdf f (y) depends on the real and complex components
through y, the pdf can be viewed as that of the scalar random variable y, as the notation suggest

(42].

6.3 Non-parametric ML channel estimation

Performance of the OFDM system depends highly on the quality of the channel estimate, this
makes the channel estimator one of the most useful part of a OFDM communication receiver.
Due. to increased bit-rate performance of the OFDM systems, there has been considerable in-
terest in developing better channel estimators fbr various channel conditions. However, for
Gaussian noise channels a simple technique based on LS (also known as zero-forcing estima-

tor) [111] is usually used. The LS channel estimate is formed as,
H(m)=X(m)~'Y(m), 0<m<M-1" (6.10)

for a training symbol, i.e. X (m) is considered known at the receiver. There are various tech-
niques for channel estimation in flat and Rayleigh fading chanhels ([104], [112], .[1 13], [114]
to name a few),' however most of these techniques assume presence of Gaussian noise. The
algorithm discussed in [44] can be used for channel estimation in the presence of interference,
however it assumes interferers as Gaussian distributed. In this section, no assumption on the
distribution of the interference is fnade, which makes this technique robust for both synchronous

and asynchronous interference.

‘The typical channel impulse response components h = [h(0), ..., (N — 1)] are independent
complex-valued Gaussian random variables (which represents a frequency-selective Rayleigh
fading channel). In a regular OFDM system, the channel delay spread N is much smaller than
the number of subcarriers M, which leads to a high correlation among the channel frequency
responses H (m), even when h(l)Vl , are independent [114]. Thus the channel impulse response
h = [(0),..., (N — 1)] is estimated directly as they are independently specified and the -

number of parameters in the time domain is smaller than that in the frequency domain [102].
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The combined interference and AWGN N'(m) in eq. (6.4) is together taken as a noise that
is non-Gaussian because of the presence of interference [87] [82]. As also discussed in [87]
[82] the least squares estimator does not find the optimal solution in the case of non-Gaussian
noise. The mean square error criterion which minimises the energy between the desired and
the system output does not converge to the optimal solution. Also the least squares estimator
is not minimal sufficient statistics (refer Appendix-B), and hence the ML estimator is used for

this Gaussian mixture formulation.

As discussed in previous chapters, if the noise is Gaussian then the LS estimate leads to the ML
estimate. However, in communication systems where the noise‘ is non-Gaussian (or approx-
imated as Gaussian mixture) then no closed form ML solution exists for such non-Gaussian
distributions. Thus an iterative algorithm to find the ML estimate of the channel is used. The
algorithm is initialised with the LS channel estimate based on the pilots. The first likelihood
estimate is obtained by using the LS channel taps. After estimating this likelihood, the ML
solution is sought iteratively exploiting the pilot symbols. The classical stochastic gradient al-
gorithm is used with log-likelihood being the cost function i.e. the gradient here is the first
derivative of the log-likelihood function with a constant multiplief (similar to the well known
gradient ascent élgorithm) [115]. The update equation is represented as:

hy =l + (k) Ve L(h | )|, _¢ (6.11)

k—1

where (k) is the adaptation constant and V', represents the gradient of the cost function.

Referring to eq. (6.4) and eq. (6.11) thé likelihood function can be written as:

. ” |
Lh | YV)lg,_ = (Y |0) =[] fv(BG)
i=1

where far(.) is scalar pdf of ‘complex Gaussian mixture’ of data length from ¢ = 1,..., M and

the previous estimation error is defined as:

Np—1 ‘ ,
B() =Y (i) - ( > h:(z)exp“ﬂﬂ%)) X@ 61

=0

Kernel density estimators are known to be effective in estimating the pdf over short data record

and also prox}ide a differentiable smooth estimated pdf. From the definition of kernel density
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estimator [92]:

1 M

fn(B) = 37 >_K(E - E(5))

j=1

N

(6.13)

where M is the number of subcarriers. The log-likelihood function can then be written as:

y |
Lhly)| . = Zlog(fN'(E(i))) . (6.14)

h=h;_;

M
= Solog L3 k(B0 - EG)
i=1 j=1

= ZlogZK ])) —log M (6.15)

Maximising the log-likelihood function w.r.t the channel weight vector. By definition of com-

plex vector differentiation [16],

Ve i Y)| V=§ﬁ(h—'.y) f i (6.16)
h=h;_; oh h=fl)¢_1 i=1 Z]"’l ( (2) - (.?)) h=ﬂk—1

Thereby substituting this gradient in eq. (6.11) gives an iterative solution. As with ‘al>1y stochas-
tic gradient algorithm the choice of optimal u(k) varies with the application and fequiremehts.
As discussed in Appendix-A, p(k) = gMz_ is chosen in eq. (6.11) and convergence is witnessed
in a few iterations. The o is chosen as ¢ = (1/M )(1/ oy, as found analytically in [82] for

estimating complex Gaussian distribution.

64 Non-parametric symbol-by-symbol MAP equalisef

Once the frequency-domain channel response: H is found, the estimate of the transmitted signal

can be obtained by solving

~ A

X(m) = arg min | Y(m)— Hm)X(m) |, 0<m<M-1 (6.17)

which leads to the final estimate of the transmitted signals (assuming X € C) as follows:
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N Y )

X (m) = Quantisation { — (m) , 0<m<M-1 (6.18) .
4 H(m) o

The above formulation is equivalent to the zero-forcing equaliser and is optimal for Gaussian

noise assumption. This forms a popular ‘one-tap equaliser’ used in many practical OFDM

communication systems.

Similar to the channel estimator discussed before, the conventional detector (equaliser [102])
is not optimal for the interference affected channels. The performance of this zero-forcing
equaliser [102] is highly sensitive to the quality of estimated channel and the ratio of interfer-
ing received signal with estimated channel, in addition to typical constraints of a zero-forcing

equaliser.

/

The impact of imperféct channel estimétion in case of Gaussian noise is studied in details in
[116]. The decision bdundary for the said equaliser is cleariy non-linear due to the presence
of interference and the imperfect channel estimation. Thus the assumption that the decision
‘boundary béing linear (based on Gaussian assumption) is no longer valid. It can be observed
from Figure 6.4, that the noise in presence of interference forms a Gaussian mixture. This

makes the decision boundary non-linear and as can be observed from eq. 6.19.

Here a probabilistic syrﬁbol-by-symbol MAP equaliser whose decision is based on the esti-
mated likelihood is used. The endevour is to maximise the probability of correct decision for
the received symbol i.e. maximise F(X.(m) | Y(m));c = 1,...,C. The decision criterion is
based on selecting the signal corresponding to the - maximum of the set of posteriori probabilities
{F(X.(m) | Y(m))}. This decision criterion is called the maximum a posteriori probability

criterion. Using Bayes’ rule, the posterior probability is expressed as:

f(Y(m) | X(m))F(X(m))
F(¥Y(m))

where f(Y(m) | X(m)) is the conditional pdf of the observed vector given X (m), and

F(Xc(m) | Y(m)) = (620)
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Figure 6.5: Signals at various stages of receiver for synchronous multi-path fading channel in
presence of synchronous interference '

F(X.(m)) is the a priori probability of the cth signal being transmitted. The denominator

of eq. (6.20) may be expressed as

c

f¥Y(m)) = F(¥ (m) | Xe(m))F(Xc(m)) (6:21)
c=1 : ’
From eq. (6.20) and eq. (6.21), it is observed that the computation of the posterior probabil-
ities F(X¢(m) | Y(m)) requires knowledge of the a priori probabilities F (X¢(m)) and the
conditional pdfs f(Y (m) | X.(m)) forc =1,...,C.

Some simplification in the MAP criterion is possible when the C signals are equally probable '
a pﬁori, ie., F(X.(m)) =1 /C Ve. Furthermore, the denominator in eq. (6.20) is independent
of the transmitted symbol. Consequeritly .the decision rule baséd on finding the signal that
maximises F(X.(m) | Y(m)) is equivalent to finding the signal that maximises f¥(m) |

X¢(m)) [20].

The conditional pdf f(Y(m) | X¢(m)) is called as the likelihood function as seen previously.

Thus the decision criterion for the said problem, the MAP detection, reduces to detecting the
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ML symbol. For the estimated channel impulse response hy (after convergence) from eq. (6.11)

and taking its Fourier transform, the ML estimate of the transmitted signal can be obtained by

~

X (m) = arg max (fe(Y (m) | H(m)) b, (6.22)

It should be noted that the estimated pdf f g for detection is generated by using eq. (6.13).
Based on the higher probability of occurrence the hard-decision (or Quantisation) is taken on
X(0),...,X (M — 1) to generate the output data as shown in Figure 6.1. From simulation
results it is observed that significant BER improvement is achieved by using this probabilistic

équaliser.

6.5 Simulation results

A packet based OFDM communication system (similar to WLAN) with the first symbol known
at the receiver is assumed.. The channel estimation is done on this first OFDM symbol, while the
. remaining payload is the useful information as in Figure 6.6. A typical OFDM communication
systém is considered as shown in Figure 6.1. The raw binary input data is fed to the rate 1/2
encoder.. The encoder used is specified in [117], where a original 1/3 encoder is used and
then puncturing is performed to form a 1/2 rate coder The encoded serial bit stream lS then
converted to parallel by S/P. The parallel data are then mapped (modulated) to QPSK signal
constellation, where it is then passed to IFFT processor. The output of IFFT z(0), ..., a:(M 1)
is then converted into serial stream by P/S and after appending guard interval (to avoid ISI), the
serial stream is then transmitted over a fading éhannel. It is assumed throughout the chapter
. that the guard interval is long enough to avoid any IST and a cyclic prefix is introduced in the
guard interval to avoid any ICL At the receiver; the reverse process as that at the transmitter
takes place. First the guard bits are removed followed by serial to parallel converter. Then fast
Fourier transform (FFT) is performed on y(0), ...,by(M 1) to obtain Y (0),...,Y (M — 1),
which is then demodulated by QPSK demodulator. The demodulated bits are then converted
to serial stream and then decoded using the Viterbi decoder [118]. Input and output serial data

streams are then compared to calculate the bit error rate.

The robustness of the above proposed adaptive algorithm is verified for two special case of

fading channels; flat-fading and multi-path fading. In multi-path fading two special cases of
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synchronous and asynchronous interference are considered. The channel is considered to be
slowly fading, i.e. the channel remains static (generally defined as quasi-static) for each OFDM
packet (of size 64-subcarriers and 8-symbols). Using the formula discussed in [102], a bit rate
of 1-Mbps at 1-GHz with vehicle speed of 6-mph (which is sufficient for indoor environment)
can be achieved. To verify the robustness of the algorithm, simulations were carried out on
Matlab for ensemble of 1000-runs. The performance measure is average BER for fixed SNR

and for various values of SIR. The SIR is defined as (eq. 6.3):

E{(HX)(HX)"}

SIR ==

6.23)

000
OO0
OO0

@ Training

Frequency

O Data

000
00O
1000

‘Time

Figure 6.6: OFDM Packet structure

6.5.1 Flat fading

The performance evaluation for the proposed estimator and equaliser begins by using a flat-
fading channel. ngure 6.7 and Figure 6.8 shows the performance for fixed SNR=16.5dBs and

SIR varied for range of values. The channel model is chosen as:
H(z) = ap exp(j6o) 6.24)
whereas the interfering channel is chosen as:
Go(z) = e exp(j61) (6.25)
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where o, o are the i.i.d random variables with Rayleigh distribution, and g, 6; are i.i.d.

random variables with uniform distribution.

The legend, in Figu;e 6.7, ‘LS channel estimator’ and ‘NPML channel estimator’ represent
when the flat fading channel is estimated at the receiver by eq. (6.10) and eq. (6.11) respec-
tively. It is seen that considerable improvement in terms of NMSE is achieved by using thé
proposed NMPL channel estimation algorithm. The legend, in Figure 6.8, ‘Uncoded-LS’ refers
to the LS estimator for channel estimation and Gaussian assumption MAP equaliser i.e. eq
(6.18) is used for detection of symbols following the training (pilot) sequence as in Figure 6.6.
‘Uncoded-LS with MAP’ refers to the scenario when the channel is estimated .by LS estimator
followed by a non-parametric equaliser (using this estimated channel and residual error) from
eq (6.22). The ‘Uncoded-NPML with MAP’ refers to the NPML algorithm for channel estima-
tion followed by non-parametric MAP equaliser. The ‘Uncoded-Exact with MAP’ represents
when the exact channel is khown at the receiver followed by a non-parametric MAP equvaliser‘
The prefix ‘Uncoded’ is used when raw binary input is transmitted, whereas prefix ‘Coded’ is
used when the raw binary input data stream is coded by 1/2-rate encoder. It is observed that
the algorithm with NPML as channel estimator aﬁd non-parameteric symbol-by-symbol MAP
equaliser gives the-best performance, except in hypothetical case when receiver has a priori
channel information. Comparing ‘LS with MAP’ and ‘NPML with MAP’ for both un-coded
and coded input data highlights the performance gain achieved by using NPML channel esti-
mator as compared to the LS estimator (as used in 8. Itis interesting to observe that gains
achieved by using NPML decreases when the interference power decreases i.e. at high SIR. It
is also observed that the coding for flat-fading doesn’t improve the BER performance for the
said simulation set-up, which can be attributed to the fact that the channel decoder is based
on Gaussian noise assumption. Thus using NPML in conjunction with n‘on-parametric MAP

equaliser forms a robust communication receiver for interference limited channels.

6.5.2 Multipath fading

The channel is defined as a two-path Rayleigh fading channel with transfer function [102]:

H(z) = 0.8ag exp(j60) + 0.601 exp(j61)z~" - (6.26)
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Figure 6.7: Average NMSE performance in flat fading channel

)

T T
-+ Uncoded-LS

- ©- Uncoded-LS with MAP

- A« Uncoded-NPML with MAP
- 8- Uncoded-Exact with MAP

"""" N —+ Coded-LS

o, - o) e~ Coded-LS with MAP
i —A~ Coded-NPML with MAP
—&- Coded-Exact with MAP

average

BER

'Figure 6.8: Average BER performance in flat fading channel
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The interfering channel is defined as:
Go(z) = 0.50r3 exp(jfa) + 0.1az exp(j3)z ™" 6.27)

where o, a1, g, as are the 1.i.d random variables with Rayleigh distribution, and 09, 61, 02,

3 are i.i.d. random variables with uniform distribution.

6.5.2.1 Synchronous Interference

The synchronous interference model as represented by eq. (6.2) is considered for these set of
simulations. The average NMSE plot is shown in Figure 6.9 and the average BER plot is shown
in Figure 6.10. The legends define the similar techniques as discussed for flat-fading channel.
The SNR is kept fixed at 17.63 dBs while SIR is varied over a large range. The significant
BER improvement is obtained by using the non-parametric symbol-by-symbol MAP equaliser
as compared to other techniques. By using the NPML channel estimator the performance gain
of about 8dBs can be obtained by using NPML channel estimator as compared to LS estimator
with non-parametric MAP equaliser estimating density on residual error from both the estimator
respectively. It is also worth noting that there is a little difference when this equaliser is used
with NPML estimator and exact channel knowledge, this also confirms that the NPML estimates
are closer to the exact channel. As observed from the simulation results, the BER gain for
NPML baséd channel estimator and equeﬂisér amplifies for the coded bit stream as compared
to the uncoded one. The received, estimated and interfering signal are illustrated in Figure 6.5
for the said simulation environment. It is also interesting to observe that the performance plots

follow the pattern as noted in [82].

6.5.2.2 Asynchronous Interference

Figure 6.11 and Figure 6.12 shows the results for the asynchronous interference model as rep--
resented by eq. (6.7). The frequency offset is set as AF = 0.1 for the results. The SNR is kept
fixed at 17.63 dBs while SIR is varied over a large range. There is a huge performance gain by
using proposed techniques as compared to the traditional approach of doing channel estimation
and equalisation based on Gaussian assumptions. As seen earlier, the NPML estimator with
non-parametric symbol—by—symbol'MAP equaliser enhances performance instead of using LS

estimator and its residual error pdf for MAP equalisation. The receiver’s a priori knowledge of
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Figure 6.9: Average NMSE performance in multipath frequency-selective fading channel with

synchronous interference !
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Figure 6.10: Average BER performance in multipath frequency-selective fading channel with
synchronous interference
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the transmission channel forms a lower bound on the performance. It is observed that when SIR
increases the Gaussian assumption detector performs better than non-parametric MAP equaliser -
(except when exact channel is known at the receiver), this is because at high SIR the N’ in eq.
(6.4) can be approx’imated as Gaussian distributed. The asynchronoué interference being more
correlated than synchronous interference, at low SIR, a considerable difference in performance
of ‘Coded-NPML with MAP’ is observed in both Figure 6.10 and Figure 6.12. However, from
simulation results it is safe to conclude that the proposed algorithm and technique could be used

for both synchronous and asynchronous interferer without any modification.

1 - PP g =
——+— LS channel estimator - |-
—aA— NPML channel estimatoy] -

107

average

NMSE

-2

107E:

SIR

average

Figure 6.11: Average NMSE perforrﬁance in multipath frequency-selective fading channel with
asynchronous interference, where AF = 0.1 '

6.6 Conclusion

It is shown that the channel estimator based on Gaussian noise assumption is inferior in inter-
ference affected channels. It is also shown that the traditional zero forcing equaliser produces
non-optimal detection in non-Gaussian (interference affected channel), resulting in poor BER A
pérformance. The NPML channel estimator and MAP equaliser used together results in im-
proved performance in non-Gaussian noise. This non-Gaussian noise was estimatéd using ker—
nel density estimator to estimate the likelihood function. It is seen that significant performance

gains were achieved for both flat and multipath fading scenarios. The algorithm showed robust-
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Figure 6.12: Average BER performance in multipath frequency-selective fading channel with .
asynchronous interference, where AF = 0.1

ness towards non-Gaussianity from both synchronous and asynchronous interference. It was
also highlighted that major performance gain is achieved by using the non-parametric symbol-

by-symbol MAP equaliser in interference limited channels.
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Chapter 7
Conclusion

The work described in this thesis is primarily concerned with developing adaptive algorithms
with the adaptation cost function depending on the distribution. The developed algorithms are
applied to two most common applications of adaptive signal processing in digital communica-
tions; channel estimation and equalisation. The deviation from the traditional approaches of
usihg secénd order statistics based cost functioné is the motivation for developing these tech-
niques. The developed algorithm is applied to various theoretical models and is also .shown to
improve performance for practical communication systems. To this end, our analysis and re-
sults have shown that the distribution dependent based adaptive learning has better performance

than the traditional approaches.

In the next section (section 7.1), the work performed is first summarised and specific achieve-
ments-accomplished are highlighted. In section 7.2, the limitations of the current work accom-

plished is discussed and some new directions to future work are proposed.

7.1 Sumlhary and specific achievements of work performed

The work examined in the thesis can be broken down into two major parts. In the first part,
chapter 3, the problem of MBER equaliser for alf)ha stable noise is considered. In the second
part, éhapters 4, 5 and 6, the hon-parameteric maximum-likelihood algorithm is developed,
thoroughly analysed and applied to variou‘s digital communication systems. The major outline

of each chapter is given in the following paragraphs.

The chapter 3 addressés the problem of developing an LMS style decision feedback equaliser
algorithm for minimising bit error rate in impulsive noise environments characterised by the
alpha stable distribution. The objective of chapter 3 was to develop an MBER DFE equaliser
for alpha stable noise enviroﬂment. First the details about the impulsive noise modelled as al-
pha stable distribution and various parameters characterising the alpha stable distribution were

studied. A brief discussion about the state translated DFE structure was discussed next. The
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deveiopment exploits the stable nature of the alpha distribution and the concepts ‘build on earlier
work [14] [15] in a Gaussian noise environment. By introducing a limiter at the receiver front-
end both SNR and Wiener solution can be calculated theoretically and by simulations. Further,
a Wiener—ﬁlter-With-limiter solution was also presented and used as a performance bench mark.
It was shown that for minimum bit error design, the adaptation is a function of the noise density
function. The comparison between various adaptive algorithms working in identical channel,
noise and DFE structure has been drawn. The LBER-Cauchy and the state trans-Cauchy has
faster convergence than the other adaptive aigorithnis in Cauchy noise environments, which is a
special form of a-stable noise. Extensive simulations strongly suggest that the state-translated
design for the a-stable noise has better convergence and BER performance than the other al-
gorithms. It is also interesting to observe that the adaptive algorithms based on a Gaussian
noise assumption despite slow convergence in impulsive noise environments perform closer to
those designed with Cauchy noise assumption. Lastly as expected the LMS algorithm performs
poorer that the other algorithms in c-stable noise environments. Observations from perfor—
mance plots in chapter 3 suggest the MBER algorithms’ superior performance with respect to

the WSL solution.

The second part of the thesis examines tHe non-parameteric .density estimation based adaptive
algorithms for channel estimation and equalisation. The work in chapter 4 primarily deals with
the channel estimation algorithm development in non-Gaussian noise scenarios. The prob-
lem statement was foﬁnulated in the beginning of chapter 4, and was shown that the proposed
channel estimapof does two major tasks; channel estimation and density estimation. The ad-
ditive noise was modélled as a generalised Gaussian mixture process. The Gaussian mixture
was used to generate (or model) both uni-modal and. multi-modal noise distributions. The uni-
modal mixture noise was used to model impulsive noise and the multi-modal mixture noise was
used to model co-channel interference. A brief discussion about kernel density estimation was
also présented. It was shown that the LS channel estimator does not find the optimal solution
in the case of a Gaussian mixture noise and no-closed form solution exists for the Gaussian

mixture noise channel estimator. Thus an iterative NPML channel estimator was presented and |
parallels with MEE criterion were also drawn. The bounds on the step-size selection for the
adaptive algorithm were also formed in this chapter (as in Appendix A). With this step size and
initialising the algorithm with the LS estimate, the proposed NPML algorithm was shown to be
a robust algorithm to various noise conditions. The algorithm was compared with the tradition-

ally used EM algorithm [62] [10] and was shown to have more flexibility than EM algorithm.
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The proposed algorithm is robust to ISI, various noise conditions (uni-modal or multi-modal),
and édrrelated or uncorrelated noise. The lower bounds on channel estimation, i.e. CRB, are
also presented in this chapter. From simulations it is observed that the proposed algorithm per-
forms close to the CRB. A further addition to the chapter is on channel order adaptation, where
the assumption (for channel estimator) of known channel order is also relaxed from the pro-
poséd algorithm and the robustness of proposed algorithm to simultaneously adapt the channel

weights and the order are discussed in Appendix C.

Chapter 5 extends the algorithm discussed in chapter 4 for CCI case. In this chapter the loss
“in performance due to the assumption that the mixture noise (AWGN + interference) is un-
correlated is discussed. The fundamental idea behind the whitening filter and its effect on the
problem definition (of chapter 4) is discussed. As it is known that the CCI is correlated,'l the
whitenining filter was used to whiten the CCI. After whitening, the tap weights are updated
iteratively using the NPML algorithm. The enhanced MSE performance is achieved by using

the proposed technique over the traditional Gaussian assumption based techniques [8] [65].

Chapter 6 considers the application of NPML techniques for channel estimation and equalisa-
tion. The purpvose of the chapter was to introduce and compare the performance of the NPML
channel estimator and equaliser with the traditional methods for the OFDM communications
systems. The problem definition was formulated and the case of both synchronous and asyn-
chronous interference was discussed. A brief discussion on traditional channel estimator for
pilot training based OFDM systems was presented. The NPML channel estimator formula-
tion for OFDM systems was discussed next. It was shown that the decision boundary for the
OFDM linear equaliser was no longer linear due to channel estimation imperfections and the
“interference estimated channel” ratio .effect. Thus a non-parametric symbol-by-symbol MAP
equaliser was proposed which uses the density estimated during the channel estimation proce-
dure to make the decision on the received symbol. The simulation results for flat-fading, and
multi-path frequency-selective fading for synchronous and asynchronous interference limited

channels were also shown at the end.

7.2 Limitations of cﬁrrent work and proposal for future work

This section discusses some of the limitations of the performed work and directions for future

research.
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One major short coming of the work is to have an optirhal kernel width parameter. The perfor-
mance of the algorithm is dependent on the proper choice of the kernel width, specially when

short training sequence is available.

Other limitation of the work is that the proposed NPML technique is based on block based
training method. The scenarios for sample (symbol) based adaptation or development of track-
ing algorithm would be a interesting area to explore. Also the application of the algorithm for
semi-blind channel estimation would be interesting to explore. In addition, as with iterative

techniques, a-method for finding global minima/maxima is warranted.

In this work the performance improvement in single input single output systems was consid-
ered. Recently there has been considerable work on multiple input multiple out (MIMO) sys-
tems Tl 19] [120]. Thus extending this work for MIMO channels would be a natural next step

forward.
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- Appendix A
‘Step size calculation

The Hessian H to get an estimate of the step-size (), for the gradient ascent NPML algorithm

is formulated [121] as:

IVt p Il
#k) = G b [y HVuL]y)

(A.1)

where H depends on h, and thus indirectly on k. H is the Hessian matriz of second partial

. ,
derivatives %}%&l' This is then the optimal choice of y(k) given the assumptions men-

tioned [121]. First the diagonal elements of the Hessian are-calculated,
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Step size calculation

Based on the assumptions about the system model discussed in chapter 4 and for large M

-1 M ZJle(.’L‘v(Z)

8%L(h | 1) — z(4)) K (e(d) — e(5))
T 257 2. W K(ei) - <) )
~ —0_1;4 ' (A.6)

This formulation is also supported in [122] where large kernel size allowed the quadratic ap-

proximation and in [43] where the Taylor series expansion upto second order was taken as

sufficient for channel estimation. Based on similar assumptions, the Hessian reduces to ap-

proximately diagonal form for large M, the non-diagonal term becomes insignificant, thus

p(k) &~ —H~. Thereby u(k) in the channel estimator of eq. (4.7) discussed in this thesis is

restricted as:

(A7)

=%

0< (k) <

Also note that eq. (A.6) being negative also ensures that local maximum are being sought by
, :

the iterative algorithm.
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Appendix B
Minimal sufficient statistics

The maximum likelihood estimator reduces to the least squares éstimator when the noise is
Gaussian and in the absence of interference. The minimal sufficient statistic is formulated,
which allows the greatest data reduction without loss of information when the estirﬁated pa-

rameter is formulated and it is verified if the LS estimator forms the minimal sufficient statis-
tics. The Lehmann and Scheffe’s method for finding a minimal sufficient statistics for the given
problem is used in eq. (6.4). By Lehmann and Scheffe’s method, it is assumed that the r.v. Z is
1.1.d and distributed as fy(Z | h), the likelihood ratio is

Lo |Y) _ [ (V6 [B) e

Lh|Z) " [ {fv(Z()|h)}

For simplicity, let'us assume P = 1 i.e. one major interferer and Ny = 1. Thus the interfering

user’s noiseless channel states are € {£1}.

L(n |Y) _ TIZ {exp (53(Y(5) - HE)X(0) +1(:))*) +exp

_ 7
L(h|Z) Hi“il{exp (=2(2() - H(i)X (i) + 1)) + exp (2 (2() — HE)X () — 1(2))%)}

‘ (B.2)
| R o M
{eXP 557 Z | Y (i eXP Z | H(1)X(2) |2)eXP(;f—2 S R{HGHXEY*(E)})
: i=1 ; i=1
- exp( —I* Hcosh §R{I (1) (H (1) X (1) — Y(i))*})-}_/
M LM v 1M
{exp(z—aa Z | Z(3) IZ)EXP(W Z | H(3)X (1) IZ)_eXP(‘a—Q ZR{H(i)X(i)Z*(i)})
: M
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Minimal sufficient statistics

M M
= ep(og D1V P =301 26) Pexnl o Zm{H ve(i)}- Zm{H ()2 (0)})
i=1

(B.4)

ﬁ cosh(ZFR{I(3)(H()X (i) - Y (2))*})
cosh(SER{I()(H (1) X (i) — Z(5))*})

=1

This is independent of H*(:) iff either Z = Y or all the order statistics match ie. y;) =
Z(1)1Y(2) = 2(2)s 0 YM) = Z(M): Therefore the minimal sufficient statistics for the Gaussian
mixture are the set of order statistics for Y, and hence LS does not form the minimal sufficient

statistics for the given case [123].
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| | Appendix C
Channel order adaptation

The proposed non-parameteric maximum likelihood (NPML) channel estimator shows superior
performance to the LS estimatorlin the presence of non-Gaussian noise. The derivation of the
NPML estimator assumed perfect knowledge of the channel order, which, however, does not
comply with most applications. In this section, first the study of effects of inaccurate order
assumption on the NPML estimator is done and it is shown that the traditional order selection
criteria like the Akaike’s information criterion (AIC) are unreliable to apply for the NPML es-
timator. Then a simple method is proposed f(_) trace the channel order where the order selection

and channel estimation are carried out simultaneously.

Although an old topic, the order estimation remains an incompletely solved problem [124]. The
most widely used order estimation criteria are the AIC [125], the Final Prediction Error (FPE)
[125] and the Minimum Description'Length (MDL) [126], all of which, however, are unreliable
to apply when the noise is non-Gaussian. All other order estimation algorithm are evaluated
against the above three popular criteria. Usually the criterion indices for the possible orders are
caiculated, before making the final order selection. This brute-force approach demands high
computation, impeding its application to on-line systems. Although some approaches (e.g.
[_127]) can carry out the order selection and channel estimation simultaneously, they are limited

to spéciﬁc applications and hard to be applied to the NPML estimator.

For a channel estimator, the order “under-estimate” is more serious a problem than the order ‘
“over-estimate” in terms of performance. Thus in practice, it is usually not necessary, if not
impossible, to have a precise order estimate as long as the order is not underestimated, thereby
making it possible to use simpler methods to estimate the channel order. Recently, Gong (et
al.) proposed a novel variable tap-length adaptive algorithm which can be used to track the
channel order on-line [128]. However, based on the symbol-based adaptive algorithm such as
the LMS algorithm, the proposed algorithm cannot be used for the NPML estimator which is
block-based.

In this appendix, first the influences of the inaccurate order assumption on the NPML channel
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estimator is investigated. Then, after showing that the classic AIC criterion is unreliable to
apply in presence of non-Gaussian noise, a simple method to search for the channel order
where the order selection and channel estimation can be carried out simultaneously is proposed.

Simulation results are presented at the end.

C.1 Non-parametric ML channel estimator

D 3 4 5 6 7 8 9 10 11
NMSE | 0.0961 00215 0.0018 0.0023 0.0029 0.0034 0.0038 0.0047 0.0055

Table C.1: NMSE for different assumed channel order,

According to Figure 4.1, and assuming M as the total number of samples and N as the true

channel order, the channel output vector can be expressed as:
Y= XNThNT +w, . (Cl)

where hy,, is the channel vector, w is the noise vector, and X y,. is the channel input matrix

which is given by:

[ (1) 0 0 0 ]
XN'T _ :1:(.2) a:('l) 0-- | ? | €2
(M) z(M-1) (M — Np+1)

The ML estimator maximises the log-likelihood function

y «,
L(h|y)=logf(y|h) = log fule(n)) (C3)
) n=1 .

with respect to the channel estimator vector h .., where the assumed channel order is N7 and

fw(.) is the scalar pdf of the channel noise w(k).

As has been shown in chapter 4, the ML estimator can be obtained by the gfadient ascent search
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as:
9L(h | y)

5h (C4)

b1 = hy +p

h=flk
Since, in our system model, it is assumed that the noise distribution is “unknown” (in (C.3)), a

kernel density estimator is used to estimate this density as,

R 1 X .
fule) = — " K(e—e(n)), (C.5)

where K (.) is the Gaussian kernel from chapter 4. Then from (C.3) and (C.5), and with some

manipulations:
SLY)|  __ 1 L EM (e(n) - e(0)(x(n) = x(i) K (e(n) — e(i)
oh  |yep, Mo nz=:1 T K(e(n) —e(3) hehy ©o

Finally substituting (C.6) into (C.4) gives the NPML estimator.

| C.2 Channel order mis-estimation

In general, if the channel order is assumed inaccurately, the estimation error comes from two
parts: the coefficient-estimation error in the assurﬁed model space and the space-estimation
error between the true model and assumed model spaces [129]. As the assumed order increases,
the coefficient-estimation error always increases, while the §pace—estimation error decreases

until the assumed order is equal to, or larger than, the true channel order.

To be specific, if the channel order is under estimated, i.e. [ < N, only the first [ coefficients

of the channel can be effectively estimated, and the received signal can be expressed as:

y(k) =Y h@)zk—i)+w'(k), k=1---,M ‘ (C.7)
where w'(k) = h(l + 1)z(k — 1 — 1) + -+ + h(N7)z(k — N7) + w(k). Then the problem
reduces to estimating the first [ channel coefficients with the equivalent channel noise of w' (k).
Hence when | < N7, beside that there are Ny — [ taps “missing”, even the estimation errors
corresponding to the first [ coefficients is larger than those when [ = N since ofu,(k) > afu (k)"

Therefore the order under-estimate results in significant performance loss.

It is interesting to observe that w’(k) basically forms a Gaussian mixture. Thus under rare cir-
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cumstance, can w'(k) be Gaussian. Further noting that NPML estimator demonstrates signif-
icantly superior performance to.the LS estimator of chapter 4 in the presence of non-Gaussian
noise. Thus the NPML estimator is always better than, or more robust to, the LS estimator

when the channel order is under-estimated.

On another front, if the channel oraer is éver-estimated (ie. | > Nr), the “space-estimation
error” disappears and only the “coefficient-estimation error” remains. Then the estimator vector
can be expressed as:

h=[hT 01T + A, (C.8)

where A; can be regarded as a perturbation to the ideal estimate. In general, the larger the M
is, the smaller the perturbation term is. Particularly, it can be easily verified that, if z(k) and
w(k) are independent to each other and either of them has zero mean: ‘

lim A;

N5oco BLs

=0 (C.9)

Thus if the data number is large enough, the last [ — N coefficients of the estimator are very

small.

‘As an'example, a system with presence of CCl is considered where SNR=20dB, h = 1 0.8 0.6 0.4 0.2]T
with Nt = 5, the interfering channel has SIR of 10dB, and the total number of samples is 100.
Table C.1 shows the NMSE of the NPML estimator when the assumed channel order varies
from 3 to 11 respectively. The NMSE is a performance index to measure the “goodness” of an

estimator and is defined as

_ By, (h(n) — h(n))?] '
NMSE = T . (C.10)

It is clearly shown in Table C.1 that the NMSE reaches the minimum at ! = Nrp. But when
"> Nr, the NMSE are within a narrow range, all significantly below those for I < N. This
indicates that the order under-estimation is more serious a problem than the order over-estimate

in terms of performance, though the latter imposes more complexity.
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C.3 NPML estimator with order estimation

In this section, first it is shown that the traditional AIC is unreliable to apply for the case
of estimated Gaussian pdf and the estimated non-Gaussian pdf, and then a simple method to

estimate the channel order is proposed.

C.3.1 Order estimation.based on AIC

SNR=20dB, N=100 SNR=20dB, N=50 SNR=40dB, N=50

P No CCI NoCCI . . SIR = 10dB

AE_‘: AlC.2 AIC# AIC, 2 AIC ;£ AIC,2
3 -85.39 -144.77 -35.50 -64.05 -33.59 -51.75
4 -179.63 -286.81 -85.21 -64.04 -54.92 -100.15
5 -464.65 -455.82 -193.96 -211.84 -571.72 -106.89
6 -465.80 -454.01 -192.40 "-210.10 -55.93 -105.25
7 -470.73 453,39 -201.67 -208.40 -54.21 -103.78
8 -468.73 451.38 -199.69 -206.71 -55.64 -107.21
9 -467.33 -449.36 -198.09 -205.06 -53.89 . -105.70
10 -466.22 -449.22 -205.55 -207.00 -5797 -111.96
11 -468.58 451.17 -203.81 -205.54 -56.78 -110.22 !

. Table C.2: AIC for different scena‘rios '

AIC is the most widely used order selection criterion which is defined as [125]:

AIC; = —2L(h | y) + 2, | . (C.11)
Where,ﬁ(hl | y) is defined in (C.3). When the noise is Gaussian, (C.11) can be simpliﬁed_to:
AIC;2 = Mlogé? + 21, o - (C.12)

where 62 = (1/M) M | €2(n).

Unfortunately, neither AIC ¢z nor AIC;: is reliable to estimate the channel order for the NPML
estimator: first, although the kernel density estimation (C.5) can be used to estimate the likeli-
hood, it is not accurate enough to calculate the AIC 2 second, AIC;2 is only limited to Gaus-

sian cases.

For illustration, the AIC for the same channel is calculated as that used in the previous section,
and the results are shown in Table C.2, where the minimum valﬁes are highlighted in bold.
Recall the true channel order N is 5. In the first case, a pure Gaussian channel is considered,
where SNR=20dB, the number of sample M = 100 and no CCI. It is clear that AIC;,z has its

minimum at | = 5 but AIC 2 at ! = 7 which is biased away from Np. In the second case,
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the same channel but M is decreased to 50. It is observed that AIC 2 still finds the true order,
but AIC has the minimum which is further away from Nr. This is not surprising because,
as M decreases, the density estimation becomes poorer and so does estimated AIC ¢+ Inthe
last case, the interfering channel is introduced where SIR=10dB, the SNR is increaséd.to 40dB,
by which the channel becomes totally different from Gaussian. Under such scenario, neither
AIC; nor AIC;: estimates the channel order well. In conclusion, the AIC is unreliable for use

with NPML estimator for order selection:

C.3.2 A simple order estimation method for ihe NPML estimator

A simple method to estimate the channel order is proposed below. The idea is based on the
previous observation that, when the channel order is over-estimated, the extra taps are usually

small compared to the others.

To be specific, at every iteration of the NPML estimation, the summation of squares for the last
V coefficients of the estimator is measured. If it is smaller than V' times of a pre-set threshold
¢, then the order is decreased by 1; otherwise; if the summation of squares for the last V' — 1
taps is larger than (V — 1)e, the order is increased by 1, and if none of the above then the order
remains unchanged. In summary, the fo.llowingv procedure combining the order selection and

the NPML channel estimation together is employed:

For every iteration, £k =1,2,3,---
Do the kernel density estimation based on (C.5).
Update the estimator according to (C.4).
.if Z?:kz)(k)—VH lA‘?(k) <V-e |
I(k+1)=1k)-1
else if Sy o By < (V —1) ¢
Ik +1) = (k)
else
lk+1)=1k)+1
end
‘end

In the above procedure, (k) is the tap-length at the kth iteration and V is an integer no less than

1. V has two effects: first, to create a “guard margin” so that the estimation is based on V/, rather '
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than 1, coefficient values; second, to make the search escape from the local minima which are
. the zero coefficients within the range of the channel spread. Then if the threshold value € is
properly chosen, I(k) will converge to within the range of [Ny, Nr + V' — 1]. Obviously this

method tends to over-estimate the order.

The t;hreshold e depends on both, the channel specifics and the channel estimator. When the
number of samples M is large enough, the extra taps are nomally very small, thus allowing us
wider range to choose € from. When M is small, the NPML estimator significantly outperforms
the LS estimator as the former can explore the “local statistics” much better than the LS. In fact
with a fixed € = 0.01 extensive simulations under different scenarios such as different channel,
'SNR, and M were under taken. The results show that the proposed method always works well.

as long as M is reasonably large (e.g. M > 30).

Alternatively, a dynamic threshold may be used, i.e. € varies at each iteration. It has been shown
in Section C.2 that the channel estimation consists of the true channel plus a perturbation term.
It is obvious that, the larger M is, or the smaller 62 is, the smaller the perturbation is and then
the smaller the € should be. Inspired‘ by this observation, a dynamic threshold is suggested:

C - 6%(k)

e(k) = =7 (C.13)

where C is a constant. To make the algorithm robust, it is ensured that the Emin < e(k) < €maz»

where €0z and €4, are maximum and minimum values for the threshold respectively.

C.4 Simulation study

For the simulations in this section, the channel is the same as that for the previous examples in
this pai)er, V = 3, the dynamic threshold based on (C.13) is used where C' = 10, €maz = 0;05
and €4, = 0.005. All results are Based on one typical run. The learning curves of the tap-
length and the second tap coefficient of the estimator are shown in (a) and (b) respéctively for

each figure.

Figure C.1 inveétigates the proposed algorithm for different initialisation of the estimator’s tap-
length, where SNR= 20dB, SIR= IOdB and M = 100. It is clear that, for all initialisations, the ,

individual tap-lengths converge to ‘6’ which is in the range of [Ny, Ny + V — 1] as expected.

Figure C.2 compares the results for different sample number M, where SNR=20dB and SIR=10dB.
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Figure C.1: Learning curves for different tap-length initialisation.

It is observed that even if M is as low as ‘20’, the algorithm can still track the order, although

it oscillates between ‘6’ and “7° as shown in Figure C.2 (a). Accordingly, the slower coefficient

convergence for M = 20 is also observed in Figure C.2 (b).

Figure C.3 shows the results for different SNR-s, where the SIR= 10dB and M = 50. It is

obvious that the proposed algorithm works well for all these'SNR-s. From Figure C.3 (b), it is

interesting to note that NPML algorithm performs better for SNR=20dB than for 40dB, as the

former converges closer to the true 2nd coefficient (which is 0.8) of the channel. This is because

that, in presence of CCI, the channel with SNR at 40dB is further “away” from Gaussian than

" that with SNR at 20dB, resulting in less accuracy for the kernel density estimation.
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Tap-lengths of the estimator p(k)
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Abstract

This paper addresses the problem of developing a least mean squares (LMS) style decision feedback equaliser
algorithm for minimising bit error rate (BER) in impulsive noise environments characterised by the alpha stable
distribution. The development exploits the stable nature of the alpha distribution and the concepts build on earlier
work in a Gaussian noise environment. Further, a Wiener-filter-with-limiter solution is also presented and used as a
performance bench mark. An improvement in convergence and BER performance is achieved by using a minimum
bit error rate (MBER) cost function instead of a conventional LMS based design. The ability of least BER (LBER)
equalisers based on a Gaussian noise assumption to operate in an alpha stable noise environment is also highlighted.

1. INTRODUCTION

“The Gauss1an process has always been the dominant nois¢é model in communications and signal
processing, mainly because of the central limit theorem. In addition, the Gaussian assumption often leads
to analytically tractable solutions [4]. Unfortunately, in some communication channels, the observation
noise exhibits impulsive, as well as Gaussian characteristics. The sources of impulsive noise may be either
natural (e.g. lightning, ice-cracking), or man-made. It may include atmospheric noise or ambient noise. It
might come from relay contacts, electro-magnetic devices, electronic apparatus, or transportation systems,
switching transients, and accidental hits in telephone lines [6], [7]. Most of the present day systems
are optlmlsed under the Gaussian assumption and thelr performance is degraded by the occurrence of
impulsive noise [3]:

Impulsive noise is more likely to exhibit sharp spikes or occasional bursts of outlying observations
than one would expect from Gaussian distributed signals. A variety of impulsive noise models have been
proposed in [7] and [8]. However, a common model to represent impulsive phenomena is the family
of a-stable random variables [4]. Stable distributions share defining characteristics with the Gaussian
distribution, such as the stability property and central limit theorems. The empirical data indicates that the
probability density functions (pdf’s) of the impulsive noise processes exhibit a simlarity to the Gaussian
pdf, being bell shaped, smooth and symmetric, but at the same time having significantly heavier tails [6].

In [1] it was shown that adaptive linear equalisation based on probability of error performs better than
that based on a least squared error cost function. Further, it was shown that the state-translated design
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achieves a lower BER than conventional DFE structures [9]. However the adaptive least BER algorithm
of 1] was derived on the basis that the noise was drawn from a Gaussian distribution. While general
purpose adaptive algorithms for alpha-stable noise environments have been proposed (e.g. [4] and [5]),
they are based on the L, norm of the error rather than BER.

In this paper, we develop a class of adaptive equalisers (similar in complexity to the LMS algorithm)
where the BER is minimized in an alpha stable noise environment. The least BER rate algorithms of [1]
are shown to be particular cases of these algorithms when the noise is Gaussian. Generally, in adaptive
equalisation, the Wiener solution is taken as a point of reference in measuring performance. However in
alpha stable noise the variance of the input signal to the equaliser is infinite and the Wiener solution is
not defined. In practice, every receiver has a finite input dynamic range which limits the amplitude of
received samples and produces finite variances. Using this assumption we derive the ‘Wiener solution
with limiter’ (WSL) for alpha stable noise environments. As pointed out in [2] the limiter facilitates the
use of standard correlation based algorithms in alpha stable noise. Simulation results.show that the LMS
algorithm fails to converge to this WSL solution while the proposed alpha-stable-noise least-BER (LBER)
algorithm seeks the optimum BER solution for comparable computational complexity. Robustness of the
Gaussian-noise LBER algorithms of [1] in alpha stable noise is also demonstrated through simulation.

The paper is organised as follows: a brief overview of stable processes is provided in section 2; an
overview of the state-translated DFE structure is presented in section 3; the WSL in alpha stable noise is
derived in section 4; the LBER adaptive algorithm for alpha stable noise is derived in section 5; simulation
techniques, assumptions and results are discussed in section 6; finally conclusions are drawn in section 7.

2. THE CLASS OF STABLE RANDOM VARIABLES

The main characteristics of a non-Gaussian stable random variable (RV) is that the tails of its probability
density function (pdf) are heavier than those of the normal density. The symmetric a-stable (SaS) pdf is
defined by means of its characteristic function F(w) = exp(diw - 7¥|w|®). The parameters c, vy and ¢ describe
completely an SaS distribution. The characteristics exponent & (0 < @ < 2) controls the heaviness of the
tails of the stable density: o = 2 is the Gaussian case; smaller o values are associated with heavier tails.
The dispersion parameter y (v > 0) plays an analogous role to the variance and refers to the spread of
the distribution. Finally, the location parameter § is comparable with the mean of the distribution.

Theoretical justification for using the stable distribution as a basic statistical modelling tool comes
from the generalized central limit theorem. Unfortunately, no closed-form expressions exist for the stable
density, except for the Gaussian (« = 2), Cauchy (a = 1) and Pearson (a = %) distributions. An important
property of all non-Gaussian stable distributions is that only the lower moments are finite. That is, if x
is a non-Gaussian stable RV, then E, {2’} < oo iff p < . A well known consequence of this property
is that all stable RV’s with o < 2 have infinite variance [3]. For further discussion on a-stable RV’s and
- their properties can be found in [4].

Alpha stable noise -
e(k)

Limiter

Mk-d)

-

s(k) Channel (o )

t
2o |2

!

Equaliser -

Fig. 1. Typical Communication System
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. . .
3. EQUALISER STRUCTURES

The channel is modelled as a finite impulse response filter with an additive noise source, and the
received signal at sample k is .

n;—l

r(k) = 7(k) + e(k) = Y _ ais(k — ) + e(k)

i=0 :
where 7(k) denotes the noiseless channel output; n, is the channel length and a; are the channel tap
weights; the white noise e(k) has zero mean and is drawn from an alpha stable distribution with dispersion
~ and characteristic exponent c;. the symbol sequence {s(k)} is independently identically distributed (IID)
and has a M-PAM (pulse amplitude modulation) constellation defined by the set-[9]

s5i=2%-M-1,1<i<M

Throughout this paper M = 2 for 2-PAM is considered. For a conventional linear-combiner DFE the
decision variable z at time k is a linear combination of received samples and past decisions:

- 2(k) = wTr(k) — bT8(k) ‘

where r(k) = [r(k)7(k—1)...7(k—m+1)]" is the channel observation vector, (k) = [8(k—d—1) 3(k—
d—2)...3(k — d — n)]T is the past detected symbol vector, w = [wo w; v Wrm_1)T is the feedforward
coefficient vector and b = [b; by ... b,]T is the feedback coefficient vector. The integers d, m and n will
be referred to as the decision delay, the feedforward delay and feedback taps respectively. Without loss of
generality, d = n, — 1, m = n, and n = n, — 1 will be used as this choice of DFE structure parameters
which is sufficient to guarantee the linear separability of the subsets of the channel states related to the
different decisions [9]. Alternatively the linear-combiner DFE can be expressed in state translated form
[101]:

2(k) = w7 (r(k) — Fa8y(k)) = wir'(k) (1)
where F, is constructed by partitioning the channel impulse response matrix F = [F Fy], where:
. Gy a; v ana_’l
Fl — 0 Qg
T ai
0 0 agp
[ 0 0 0 ]
ana—l
F2 = Qn,—2 Qn,-1 e 0
. . 0
| G1 e Ong—2 . Ona-1 |

Since the linear-combiner DFE is a special case of the generic DFE structure, by performing translation
of eq. (1), it is reduced to the equivalent linear equaliser ‘without decision feedback’:

F1(r' (k) = wr' (k) | )

The decision boundary of this equivalent linear equaliser consists of M — 1 hyperplanes defined by:
v wlr' =2 — M,1<i<M~—1. These M — 1 parallel hyperplanes can always be designed properly-
to separate the M subsets of the translated channel states R®, 1 < ¢ < M. In particular, for M = 2,
the decision boundary, r' : wTr’ = 0, is a hyperplane passing through the origin of the r'(k)-space. It is
shown, in [9], that in the state translation the channel states remain separable despite translation. The
states can be made separable by applying a simple initial condition. The performance of state translated
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linear combiner DFE is shown to be better than conventional minimum mean square error (MMSE) DFE,
however performance depends on the accuracy of the built-in channel estimator [9].

The Wiener or MMSE solution is often said to provide the optimal w and b. It is however optimal only
with respect to the mean square error criterion. Obviously, there must exist a solution w,; which achieves
the best equalisation performance for the structure of eq. (2). We refer to this W,y as the minimum bit
error rate (MBER) solution of the linear-combiner DFE. The MMSE linear-combiner DFE is generally
not this MBER solution. A natural question is how different the MMSE and MBER solutions can be. The
difference in performance of MMSE and MBER solutions for Gaussian distributed noise is demonstrated
in [9].

4. MINIMUM BIT ERROR RATE EQUALISATION.

‘It is obvious that the MBER and MMSE solutions are different as discussed in [9]. In this section
we first describe the MBER criterion for a general DFE .structure. The calculation of MMSE solution
is not possible for a-stable noise because of infinite variance. However by introducing practical design
constraint of a limited dynamic range we can estimate the Wiener solution (the conventional way). For
clarity we describe it as the WSL.

A. MBER criterion

The bit error rate (BER) observed at the output of the equaliser is dependent on the distribution of the
decision variable z(k) which in tumn is a function of the equaliser tap weights. To be more specific, the
probability of error, Pg, is: :

Pg = P(sgn(s(k — d))z(k) < 0)

The sign adjusted decision variable z,(k) = sgn(s(k — d))z(k) is drawn from a mixture process. From
the definition of z(k), .

z(k) = sgn(s(k —d))(wTFs(k) — b"8,(k)) + sgn(s(k — d))wTle(k)

- = sgn(s(k —d))2'(k) + €'(k) ' ' (3)

e(k) = [e(k) e(k—1) ... e(k—d—n)]T is the vector of noise samples; s(k) = [s(k) s(k—1) ... s(k—d=nn,)]"
is the vector of transmitted symbols. The first term on the right hand side of eq. (3), sgn(s(k — d))2'(k),
is the noise-free sign-adjusted equaliser output and is a member of a finite set with IV, elements - these
are the local means of the mixture. Without noise the combination of channel and DFE is a finite state
machine whose state is defined by the vector s(k). Thus if s(k) € {s; « -« s; - - - sn, }, the state s; uniquely
defines the state of 2'(k), r(k), s(k — d) and 8,(k) - label these z;, r;, s; and §y; respectively. Note that
while s(k) has N, states, s(k—d) has 2 possible values (2-PAM). However since s(k—d) is a component
of the vector s(k), the state of s(k) uniquely defines the value of s(k — d). The second term €'(k) is a
zero mean o-stable white noise process with dispersion (3 72, |w;|*)a and characteristic exponent « -
defining the distribution about the local means.

B. Wiener Solution with limiter

In an o-stable noise environment with o < 2 the variance of the noise is infinite [4] making the use
- of the traditional Wiener solution meaningless. Nevertheless, all receivers in practice have a finite input
dynamic range. This is achieved by using the structure as shown in Fig-1. The limiter at the front end of
the receiver is assumed to be an ideal saturation device, with transfer function

_J =z s |z} £ G
L(z,G) = { sgn(z)G : elsewhere
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G being the saturation point of the limiter. The saturation limit level G is kept at a reasonable distance
from noiseless channel states to preserve the noise structure and not limit (clip) the noiseless channel
state instead.

“Provided G > max(7(k)), the received signal at the output of the limiter, r(k), is the sum of the
noise-free channel output 7(k) and what is termed a truncated a—stable noise process er(k): Vk. The
pdf of this truncated a—stable noise process is given by:

fa(8,G) = fa(s) [J(s:G) + L(-G)d(s + G) + [,(G)d(s — G) (4)

- where

_J1 : -G<s<LG@G
H(S’G)_{ 0 : elsewhere

I = /jofa(s)ds,Ir ="/G°o fa(8)ds

where f,(s) represents the alpha stable distribution. The pdf of the channel states (assuming equi-probable)
is impulses at the channel centres.

Nsc

Zas—f o (5)

Since the truncated alpha stable noise process of eq. (4) and the noise-free scalar ghannel states of eq.
(5) are independent, the combined pdf is given by:

Nge Nge
fr;, = N.. Zfrz,\c, zfa ¢, —-G-10,G— CL) (6)
g= ¢ =1

where N,. = 2™ is the number of the scalar centres ¢; of the channel, i.e., I =aT8en, (1 =1,2, ..., Nge)s
where a = [ag...an,_1)T and Sen, = [s(k)...s(k—n,+1)]T are all the possible combinations for the channel
input vector. This pdf is same as that observed at the output of the receiver, which confirms independence.
The limiter “L(z, G)” truncates the pdf of the received signal and its tails are concentrated at the points
+@, where they appear as Dirac impulses 6(s). The noise variance can be calculated theoretically from
[3], with knowledge of a, limiting level G and noiseless channel states ¢;.

From classical Wiener filter theory [11], the WSL is w, = R™'p, where w, is the optimum tap-weight
~ vector, R = E{rpr.T} is the input autocorrelation matrix, p = E{rps} is the cross-correlation vector
and v, = [rp(k)rp(k — 1)...7.(k — m + 1)]7. The autocorrelation matrix is simply the sum of two
autocorrelation matrices: (i) the autocorrelation matrix associated with the noise free channel output; (ii)
a scaled identity matrix. The scale factor is the variance of the truncated alpha stable process and thus the
scale factor is [ s?f,(s, G)ds. The cross- -correlation matrix is simply the cross-correlation of the noise free
‘channel output with the target symbol. Because the variance of the truncated alpha stable noise process
- is a function of both the parameter o and the limiter value G, the WSL will be as well.

Thus we can calculate the theoretical Wiener solution after the limiter using the independence property,
which was not obvious from [3]. '

5. STOCHASTIC GRADIENT ADAPTIVE EQUALISERS

In this section we directly address the problem of minimising BER in an alpha stable noise environment
and derive a stochastic gradient algorithm for the task. As the development is in terms of probability of
error rather than mean squared error the requirement for a limiter is removed.

Consider the noise density function p(z) associated with the zero mean random variable z. The density
- function is symmetrical and normalised such that the variance or dispersion is umty The associated
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distribution function is P(z). The “generalised” error function is Q(z) = 1— P(z) and its derivative is
Q ( ) = —p(z). The probability of error at the output of a linear or state translation equahser with N
noise free states as a functlon of the weight m-vector w is:

= < Z Qlgi(w

where' gi(w) is the signed de01s1on variable associated to the it state, normahzed by the “strength” of
the noise. In the Gaussian case [1] :
T

W' T;S;
g%(w) = —— @)
llwllo
where T; is the i*h noise free received vector; the Euclidean norm is ||w|| = >, |w;|?)7; s; is the
transmitted symbol associated with that vector; o2 is the noise variance. In the o-stable case:
wlr;s; ; ‘
gilw) = —— (®)
llwllaya i
where the “o-norm” is defined as: ||wlla = (371, |wj|")§ For adaptive filters, derivatives of the form
OPg /0w, : Vj are required. : '
BPE 1 ’ Bgi(w)
Bwj - N ZQ (gZ(W)) Bwj
=1
N
1 0g;(w
= —= Y p(g(w)) ai), )
In the Gaussian case the derivative of eq. (7) is given by: ‘ : ‘
dgi(w) _ 0 wT \ 1;s;
ou;  ow; \[W]

1 i wlw; \ r;s;
W wlf) o

where 1; is an m-vector with all zero elements apart from the 4 entry which is unity. In the a-stable
case the derivative of eq. (8) is taken:

ogiw) _ 0 ( w \rsi

dw; O (IIWIIQ) ya

_ 1 ( T_ Wlejl“_ISgn(wj)) IS;

wlla 7 wlla ve

~ Since the a-stable case is more general we will work with it from now on. Multiply out gives:

dgi(w) _ 1 ( _ awl 1sgn(wj>) s |
ow;  iwll, [Iwll ya

where r;; is the j** element of r; and z; = = wTr; i.e. the equaliser output associated with the 5t noise
free state. Collecting partial derivatives together to form a gradient vector we have:

Ve = NZ”’ I (‘H(Tm)‘)_
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where (w), is an m-vector with j®* element is |w;|* 'sgn(w;). Since the norm of the weight vector does
not affect Pg in the binary signalling case it can be set to unity at each iteration thus:

1 N 2;8;
VPs(w) =~ D7 (,ﬁ ) (£i = (W), 2) s

Using the kernel density ideas developed in [1] leads to an LMS-style least bit error rate (LBER) algorithm.
Filter output: ‘ :

Update weights:

z(k)’s(llc - d) s(k — d) ©)

i ) (e(k) — (wk))oz(k) 225
Ye Ye

The equaliser tap weights are normalised after each update. The final decision, 5(k — d), is made on the
filter output w7 (k)r' (k).

w(k+1) =w(k) +;Lp<

6. SIMULATION STUDY

In this paper, the SNR of the limited received signal rp(k) is used for performance evaluation in
environments where the noise variance is infinite. By using the limiter the SNR is always finite and
hence measurable. This is referred as the SNR at the receiver. Simulations were performed for anti-podal
signalling (M =2), assuming that the noise is Cauchy distributed i.e. « = 1 and the limiter, at DFE
front-end, is at +4 [3] to avoid being close to noiseless channel states at the transmitter output. The
variance of the truncated alpha stable process ey (k) is calculated as discussed in [3]. Fig-1 represents the °
receiver architecture considered in simulations.

As the performance of equalisers are highly dependent on the nature of the channel considered two
channels which have been well studied in the literature were chosen to characterize performance. These
channels have impulse responses [0.3482 0.8704 0.3482] and [1.0 0.50 0.25]. The DFE structure is chosen
tobe d = 2, m = 3 and n = 2. The legends in Fig-2, Fig-3, Fig-4 and Fig-5 depict: a) ‘LMS’ refers
to a conventional LMS algorithm for both the feedforward and feedback taps of a conventional DFE, b)
‘LBER-Gaussian’ refers to a LBER algorithm for adapting both feedforward and feedback equaliser taps
of a conventional DFE assuming that the noise is Gaussian [1], ¢) ‘LBER-Cauchy’ refers to adapting both
the feedforward and feedback taps of a conventional DFE assuming Cauchy distributed noise using eq.
(9), d) ‘state trans-Gaussian’ refers to the same adaptive algorithm as (b) but with state translated design
[9], e) ‘state trans-Cauchy’ refers to the same adaptive algorithm as (c) but with a state translated design,
f) ‘modified Wiener’ represents WSL calculated after the limiter using 7 (k) as discussed in section-4.
A total of 10° samples were used to generate the convergence and performance plots using Matlab. In
order to make a fair comparison of the relative performance of the algorithms the adaptation constant y is
fixed as Wml+_n) for all the adaptive algorithms compared in this paper. A large sample size and ensemble
for simulations was taken to reach conclusions because of the impulsive (high variations in input signal
amplitude) nature of alpha-stable noise.

" An ensemble of 100-runs was taken to generate convergence plots as shown in Fig-2 and Fig-4 at a
SNR of 7.9 dB’s. As can be observed the convergence behaviour of the LMS is. unstable. This can be
attributed to the fact that the LMS is dependent on the magnitude of the instantaneous error, which varies
a lot in an impulsive noise environments. Algorithms designed to minimise BER in a Gaussian noise
- environment converge more slowly than those specifically designed for the Cauchy noise environment. It
is safe to conclude that the state translated design for Cauchy noise has faster and more stable convergence
than the other algorithms. '

To observe the BER performance of these algorithms an ensemble of 1000-runs was taken. The
equalisers were trained using the first 1000-samples of a particular run after which training was inhibited
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and the BER for that run measured. The final BER estimate was obtained by averaging over 1000 such
runs in the ensemble. Fig-3 and Fig-5 summarize the results for the two channels used. At a BER of
5 x 10~% we can gain approximately 5 dB’s by using a minimum-BER criterion instead of an LMS
algorithm. Again the Gaussian noise based LBER algorithms perform well with respect to Cauchy noise
based LBER algorithms which are tailored to the particular environment. The state translated Cauchy
noise based LBER DFE performs better than the other algorithms as is apparent from both Fig-3 and
Fig-5. It is also interesting to observe that this MBER algorithm performs better than the WSL.

While the WSL provides an optimal solution in a MSE sense it does not minimise MBER. However
the LMS algorithm, which would normally find the MSE solution, fails to converge to this solution in this
environment. The LBER algorithms, by their nature, seek the desired optimum MBER solution. LBER”
algorithms have been demonstrated to find the optimum BER solution with a computational complexity
similar to that of the LMS. From the simulations we observe that the state-translated DFE for Cauchy
distributed noise has better convergence and BER performance than the other algorithms considered.
LBER algorithms based on Gaussian noise [1} assumptions have also been demonstrated to perform well
in a-stable noise environments. o :

7. CONCLUSIONS

An minimum bit error rate adaptive algorithm for impulsive noise modelled as a-stable noise has been
proposed in this paper. By introducing a limiter at the receiver front-end both SNR and Wiener solution
can be calculated theoretically and by simulations. It is shown that for minimum bit error design, the
adaptation is a function of the noise density function. The comparison between various adaptive algorithms
working in identical channel, noise and DFE structure has been drawn. The LBER-Cauchy and the state "
trans-Cauchy has faster convergence than the other adaptive algorithms in Cauchy noise environments,
which is a special form of a-stable noise. Extensive simulations strongly suggest that the state-translated
design for the a-stable noise has better convergence and BER performance than the other algorithms. It
is also interesting to observe that the adaptive algorithms based on a Gaussian noise assumption despite
slow convergence in impulsive noise environments perform closer to those designed with Cauchy noise
assumption. Lastly as expected the LMS algorithm performs poorer that the other algorithms in a-stable
noise environments. Observations from Fig-3 and Fig-5 suggests MBER algorithms’ superior performance
with respect to the WSL solution. : ‘
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ABSTRACT

A maximum-likelihood channel estimator for the orthogo-
nal frequency division multiplexing (OFDM) communica-
tion environments, in presence of interference is discussed
here. We study a training based scenario, where the chan-
nel is estimated based on pilots that precede the transmis-
sion of the information. To reduce the number of éstima-
tion parameters, we estimate the channel iteratively in time-
domain. Since interference from other users provides no use-
ful information we do not estimate parameters of the inter-
ference and neither we neglect the affect of the interference
instead interference along with Gaussian noise is perceived
as non-Gaussian noise. The algorithm assumes no apriori
knowledge about the interfering channel and signal at the re-
ceiver, further no-assumption on the statistical properties of
the interferer is assumed which makes this algorithm robust.
The estimated channel information along with the estimated
distribution are then utilized to equalize the subsequent data
blocks.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
promising multi-carrier digital communication technique for
transmitting data at high bit-rates over wireless or wire-line
channels. The high-speed serial data is converted into many
low bit rate streams that are transmitted in parallel, thereby
increasing the symbol duration arid reducing the intersymbol
interference (ISI). These features have led to an increase in
the use of OFDM or related techniques in many high bit rate
communication systems. Discrete multi-tone modulation
which is quite similar to OFDM is extensively used in digital
subscriber line (xDSL) communication systems. OFDM has
been chosen for digital audio broadcasting (DAB) and digi-
tal video broadcasting (DVB). It is also used for the 2.4 GHz
wireless local area networks (IEEE 802.11g).

Coherent OFDM transmission invariable requires estima-
tion of the channel frequency response (i.e. the gains of the
OFDM tones). Currently there can be three possible solu-
tions: 1) blind, 2) semi-blind, and 3) pilot aided.. In blind

channel estimation techniques, the channel is estimated with- -

out the knowledge of the transmitted sequence. It is attrac-
tive as the throughput is higher as no bits are lost in training.
However it requires large amount of data to be stored before
channel estimation can begin, which invariably introduces
delays. The pilot based technique estimates the channel
by transmitting a known (at the receiver) training sequence

This research was sponsored by the UK Engineering and Physicél Sci-
ences Research Council and IEE Hudswell Bequest Fetlowship

2Broadband Communications and Wireless System,
Department of Systems and Computer Engineering,
Carleton University,

Ottawa, ON K18 5B6, Canada

bm] @ee.ed.ac.uk email: ddf@sce.carleton.ca

along with the unknown data at the receiver. The receiver
estimates the channel using some criterion based on compar-
ing the change in these pilots due to channel. The semi-blind
techniques try to reduce the size of the training sequence by
exploiting both the known and the unknown (blind) portions
of the data. :

Channel estimation in OFDM is critical to the overall per-
formance of the communication system. Insertion of pilots
in OFDM symbols provides a base for reliable channel esti-
mates. There has been considerable increase in channel esti-
mation research over the years [1], [2] etc. However most of
the current work is based on channel estimation for Gaussian
channels or assuming that the interference is very low. This
assumption is usually based on two reasons: first the inter-
ference to have tractable mathematical models and by central
limit theorem. This assumption is however not always valid
in scenarios where there are a small number of interferers
(e.g. Bluetooth device or microwave oven operating in pres-
ence of a WLAN). With the co-existence of various wireless
equipments in home or office environments the interference
from neighboring devices has become a major concern [3].
In interference affected channels we can be sure that algo-
rithms designed for Gaussian assumption are not optimal [4].
From here on we refer to the traditional Gaussian assumption
estimator (which assumes zero or negligible interference) as
least squares (LS) estimator.

Here we estimate the fading channel in presence of inter-
ference directly in time domain using maximum likelihood
(ML) technique. The channel is assumed to be deterministic
for a given block. The algorithm discussed in [2] specif-
ically deals with the synchronous interference, however it
was noted that interference was modelled as Gaussian, which
may not be the case if only a few (or in fact one major inter-
ferer as in [5]) are present. In this paper we make no such
apriori assumption on the interfering received signal distri-
bution. Moreover no parameter of the interferer is estimated
specifically. In fact, the presence of interference along with
Gaussian noise is jointly considered as a Gaussian mixture
noise [4] and [6]. It is noted that traditional zero forcing
equalization technique fall short of performance in presence
of interference. Simulation results confirm the non-optimal
estimates when LS is used and improved bit error rate (BER)
performance by using the presented algorithm. Throughout
the paper capitalized variables represents frequency domain
values while the bold variables represents vectors. Also R
and 3 represents real and imaginary part.

The paper is organized as follows. In section-2 the
problem statement is formulated for a general OFDM com-
munication system followed by brief discussion on den-
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sity estimation. The iterative non-parametric maximum-
likelihood (NPML) channel estimator is described in section-
3. Section-4 discusses the modified non-parametric symbol-
by-symbol equalizer. To test the robustness of the algorithm,
in section-5, the simulation results are presented. Conclu-
sions based on analysis and simulation are drawn at the end.

2. FORMULATION OF THE PROBLEM
2.1 . OFDM System Model

The baseband equivalent representation of a typical OFDM
. system as in Fig-1 is considered here. We focus our dis-
cussion on estimation of one OFDM symbols instead of a
sequence of symbols for the reasons justified below. At
the transmitter side, the serial input data is converted into
M parallel streams, and each data stream is modulated by
a linear modulation scheme, such as QPSK, 16QAM or
64QAM. If QPSK is used, for instance, the binary input
data of 2M bits will be converted into M QPSK symbols
by the serial-to-parallel converter (S/P) and the modula-
tor. The modulated data symbols, which are denoted by
complex-valued variables X(0),...,X (m),..,X (M — 1), are
then transformed by the IFFT, and the complex-valued out-
puts x(0),...,x(k),...,x(M — 1) are converted back to serial
data for transmission. A guard interval is inserted between
symbols to avoid inter-symbol interference (ISI). If the guard
interval is longer than the channel delay spread, and if we
discard the samples of the guard at the receiving end, the ISI
will not affect the actual OFDM symbol. Therefore, the sys-
tem can be analyzed on a symbol-by-symbol basis. At the
receiver side, after converting the serial data to M parallel
streams, the received samples y(0),...,y(k),...,y(M — 1) are
transformed by the FFT into Y (0),...,Y (m), ...,Y (M —1) [1].
Using the notations for the OFDM symbols, the output of the
channel can be written as

L L= P—1L~1"
y) = Y e Oxtk=0)+ Y, Y gp(Duplk = +nk), (D
1=0 p=01=0

0<k<M-1

where & and x represénts desired user’s channel and data re-
spectively. Without loss of generality we choose complex
conjugate h* instead of & in above equation [7]. L repre-
sents the channel length and n(k) is the additive white Gaus-
sian noise. P represents the number of interferers where
gp and up is the interfering channel and signal respectively.
Note that y(k), x(k), n(k); h(l), up(k) and g,(!) are all com-
plex valued. It is assumed that the channel and interference
doesn’t change during the block transfer and interference is
synchronous which makes the above representation possible.

If cyclic prefix is used for the guard interval, intercarrier,

interference (ICI) in multipath channel can also be avoided.
Then it can be shown that the following simple relation be-
‘tween Y (m) and X (m) holds:

(g h'(l)exp('fz”'ﬁ)) X (m)

C o fP-1L-1
+ (Z ZgZ(l).cxp“ﬂ"ﬁ’Up(m)) +N (D)

Y (m)

P=01=0 .
= H(m)X(m)+I(m)+N(m),0<m<M-1(Q3)

H(m)X(m)+N'(m),0<m <M —1 @)

where H(m) is the complex frequency response of the chan-
nel at the subchannel m, I(m) be the complex interfer-
ence at that subchannel m and N(0),...,N(M — 1) are the
DFT of n(0),...,n(M —1). If n(0),..,n(M — 1) are i.id.
Gaussian random variables, so are the transformed variables
N(0),..,N(M —1). It is assumed that the interfering sig-
nals Up(0),...,Up(M — 1) are also OFDM signals, with same
block and cyclic pre-fix lengths, and they are block syn-
chronous with the desired signal. Eq. (4) shows that the
received signal is the transmitted signal attenuated and phase
shifted by the frequency response of the channel at the sub-
channel frequencies due to fading in presence of interference
and noise [1]. It is assumed to be that noise is represented
as complex independent identically distributed (i.i.d.) with
vector n = [1(0),n(1),...,n(M — 1)]7 with each component
of n distributed as C A" (14;,07) and are also independent. .
The multivariate complex Gaussian pdf is just the product of
the marginal pdf or

' M-l .
f(n)= 11 f(n(@) )

which follows from the usual property of the pdf for real in-
dependent random variables, this can be written as

' 1 | M
f) = ——rr e [- ¥ — (1) F| 6
ML of Lz
Since the joint pdf depends on R and 3 only through n, we
can view the pdf to be that of the ‘scalar random variable
n’. This pdf eq. (6) is called a ‘complex Gaussian pdf’
for a scalar complex random variable and is denoted by C

A (0,07) [8].

3. KERNEL DENSITY ESTIMATION

Since we have complex noise and interference we can model
it as a ‘complex Gaussian mixture’ pdf, where the real
and complex are assumed independent as discussed earlier.
Parzen window or kernel density estimation assumes that
the probability density is a smoothed version of the empir-
ical sample. Its estimate f () of a complex random variable
y =R{y}+iS{y}is simply the average of radial kernel func-
tion centered on the points in a sample M of the instance of
y: ‘

. 1M .
foy==Y 00-y() @)
M =1 ‘ .
We here assume ¢ to be Gaussian kernel (Parzen kernel) [6]:

—ly|2> ®

202

00) = # (0,07 = = (

variance defined as 62. The joint pdf f(y) depends on the
real and complex components through y, we can view the pdf
to be that of the scalar random variable y, as the notation sug-
gest [8). Other choices of kernel like Epanechnikov kernel
are also possible. It can be shown that under the right condi-

tions f(y) will converge to the true density f(y) as | M |- ce.
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Figure 1: A typical OFDM communication system

4. NON-PARAMETRIC ML CHANNEL
ESTIMATION

The channel impulse response h = [A(0),...,A(L — 1)] are
independent complex-valued Gaussian random variables
(which represents a frequency-selective Rayleigh fading
channel). In regular OFDM system, the channel delay spread
L is much smaller than the number of subcarriers. This
leads to a high correlation between the channel frequency
responses H(m),0 <m < M —1, even when £,0 <! <

— l,are 1ndependent [1]. We estimate the channel 1mpulse .

response h = [#(0),...,h(L — 1)] directly, as the channel fre-
quency response H (0), ...,H(M — 1) are generally correlated
among each other (as discussed above) and the impulse re-
sponse may be independently spemﬁed thus the number of
parameters in the time domarn is smaller than that in the fre-
quency domain.

The combined interference and AWGN N’ (m) in eq. (4)
is together taken as a noise that is non-Gaussian because of
the presence of interference [6]. As also discussed in [6] the
LS estimator does not find the optimal solution in the case
of non-Gaussian noise. If the noise was Gaussian then the
solution to the ML leads to the LS estimate. However, in
communication systems where the noise is non-Gaussian (or
Gaussian mixture) i.e. Gaussian in presence of interference,
no closed form ML solution exists for such non-Gaussian
distributions. Thus we rely on the iterative algorithm to find
the ML estimate of the channel. In this algorithm we first
initialize channel update algorithm with LS estimate, then
we estimate the likelihood on the pilots.

symbol. The classical stochastic gradient algorithm is used
with a log-likelihood being the cost function i.e. the gradient
here is the first derivative of the log-likelihood function with
a constant multiplier (similar to well known gradient ascent
algorithm) [9]. The update equation is: .

he =By + 00 Ve L | V)hos, ©)

where (1(k) is the adaptation constant and Vy, represents the
gradient of the cost function. Referring to eq. (4) and eq. (9)

After estimating ~
likelihood we find the ML solution iteratively on the pilot .

_the likelihood function can be written as:

L(h | Y)lhepy,, =f(Y |h

M
)=H,fN'(E(’))

fan(.) is scalar pdf of ‘complex Gaussian mixture’ of data
length from i = 1,...,M and the previous estimation error is
defined as:

E@i)=Y(i)— (L)il hZ(l)exp“”"’f’f)) X@) (10
1=0 ’

Kernel density ‘estimators are known to be effective in es-
timating the pdf over short data record and also provide a
differentiable smooth estimated pdf. Using kernel density
estimator we obtain:

fw(E) = Z¢(E E(j)) (1

where M is the number . of subcarriers.

M
L0 = Z{Iog (fwr(E(@))

M

=Z ogZ(f)(E
j=1

—E(j))—log | M| (12)

Maximizing the log-likelihood. function w.r.t to channel
weight vector. By definition of complex vector differentia-

tion [7] we obtain,
ZM a¢(5(;)-E(m
E()))

Vi 2(h|Y)|,_;

= 13
fut = LTV 6(E() - ()

v Thereby substituting this gradient in eq. (9) gives an itera-

tive solution. As with any stochastic gradient algorithm the
chmce of optimal p (k) varies with application and require-

ments. As discussed in [9] we choose p (k) = & ineq. (9)
(where o is chosen as in [6]) and witnessed convergence ina
few iterations.

5. NON-PARAMETRIC SYMBOL-BY-SYMBOL
EQUALIZER

Similar to the channel estimator discussed before, the con-
ventional detector (equalizer [1]) is based on the Gaussian
assumption that is again not optimal for the interference af-
fected channels. The performance of this zero-forcing equal-
izer [11 is highly sensitive to the quality of estimated chan-

"nel and the ratio of interfering received signal with estimated

channel.. Thus for the said equalizer structure the decision
boundary is clearly non-linear. Thereby we use a probabilis-
tic equalizer whose decision is based on the estimated likeli-
hood. For the estimated channel impulse response Ty (after
convergence) from eq. (9) the ML estimate of the transmitted
signal can be obtained by

R (m) = argmaxy_g (fe(Y (m) |H(m))|,g, (1D
where H (m) is the frequency response of the estimated chan-
nel .and without loss of generality it is assumed that X is
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ABSTRACT

The presence of co-channel interference has been a ma-
jor hindrance in improving the performance of present day
communication systems. In this paper we discuss a itera-
tive block based maximum-likelihood algorithm using ker-
nel density estimates to improve channel estimation in pres-
ence of co-channel interference. As it is known that the
interference is correlated, we first reduce this correlation by
using a whitening filter. After whitening, we estimate this
unknown whitened likelihood pdf by using kernel density
estimator at the receiver. Thereby combining log-likelihood
as cost function with whitening filter and kernel density es-
timate, a robust channel estimator for correlated noise envi-
ronments is formed. The simulations for co-channel inter-
ference in presence of Gaussian noise, confirms that a better

" estimate can be obtained by using the proposed technique as
compared to the traditional least squares algorithm, which
is optimal in the Gaussian noise environments.

\

N

1. INTRODUCTION

In communication systems that experience multiple access
iﬂte_,rfereqce (MAI) or co-channel interference (CCI) the ob-
served noise- (noise plus interference) deviates from Gaus-
sianity {1]. Most of the present day systems are optimized
under the Gaussian assumption and their performance is de-
graded by theroccurrence of correlated non-Gaussian noise
i.e. Gaussian noise in presence of coloured interference.
The least squares (L.S) criterion is considered optimal and
is equivalent to maximum-likelihood (ML) for channel esti-
mation when the transmitted symbols are equi-probable, un-
known parameters are deéterministic and the noise is additive
Gaussian. However, in scenarios where the received data is
not a sufficient statistics [1] or is corrupted by non-Gaussian
noise, the traditional LS-based methods are inefficient and
the LS estimator. may not be as efficient (or equivalent) to
ML estimator. From here on, in order to avoid confusion,

the traditional (Gaussian assumption) ML is referred to as
the LS solution.

In this paper we take a training based channel estimator,
where the channel is estimated over a block of data (similar
to GSM) [1]. As discussed above due to presence of co-
channel interference the observed noise at the receiver does
not remain Gaussian. This degrades the performance of tra-
ditional LS based channel estimators. We developed a chan-
nel estimator in [2] which showed considerable improve-
ment in the estimates in presence of interference. However
in [2] we assumed that the input noise plus interferencesal-
though correlated, could be modelled by independent and
identical distribution. In this paper, we extend this €ar-
lier work by first whitenening the noise plus intereference
and finding a ML estimnate for the channel as well as the
whitening filter. Techniques which whiten the noise plusin-
terference before suppressing the interference has been pro-
posed in [3, 4]. This forms a powerful technique to improve
the performance, but since, in practice, the tap length of
this whitening filter cannot be increased to a large value, the
ideal assumption of white Gaussian noise (after the linear
prediction error (LPE) filter [1]) does not hold. In this paper
we make no such (Gaussian) assumption on the distribution
of the whitened noise, which makes this technique robust to
the various noise distributions.

It is observed from [1, 5, 6] that various types of noises
encountered in communications can be modelled as a Gaus-
sian mixture. In order to estimate this unknown noise pdf
at the receiver we use the kernel density estimator. This is
a non-parametric method of density estimation that allows
the data to define the density directly. We here propose ker-
nel density estimation based téchnique operating iteratively
on a given block of data at each iteration. It is assumed
that the corrupting noise pdf can be effectively modelled by

. a Gaussian mixture. We here make no apriori assumption

on the number of Gaussian mixtures or their relative prob-
abilities. Instead the received data is exploited using kernel
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density estimators to estimate this pdf. An improvement in
mean square error (MSE) performance in channel estima-
tion over the traditional LS estimate is observed by using
the proposed algorithm.

The paper is organized as follows. First, the problem
statement is formulated in section-2 for a general commiuni-
cation system. Followed by short discussion on kernel den-
sity estimators in section-3. The rion-parametric maximum
likelihood algorithm using LPE filter and kernel density es-
timator is discussed in section-4. In section-5 simulation
results are presented. Conclusions based on analysis and
simulation are drawn at the end.

2. FORMULATION OF THE PROBLEM

The discrete-time model in the low-pass equivalent form
of the communication system channel estimator is shown
in Fig. 1. Without loss of generality, the input signal is
assumed to be randomly generated binary anti-podal PAM
signal, so that the transmitted symbols are a e{+1}. Here
‘r’ represents the received signal and ‘w’ is a sequence of
additive noise. The model is simplified by assuming that the
channel is of order N —1i.e. h = [R(0), A(1),..., (N -1)].

More precisely, the received signal (k) sampled once
per symbol can be written as

N-1

r(k) =3 h(n)a(k—n) +w(k) (1)

n=0

The problem is to estimate the channel coefficients from
the received signal assuming that the input signal (as in
supervised training mode) and the channel (tap) length is
known at the receiver. Thus the problem reduces to the well
known problem of system identification. There are vari-
ous algorithms based on different criterions to estimate the
channel taps. Usually the LS solution is taken as the opti-
mum solution for the Gaussian noise environments where
it is equivalent to a ML estimate [7]. However here we as-
sume that the noise in presence of interference is correlated,
thus LS does not provide the ML solution. To remove this
correlation we use a LPE filter. The problem then reduces
to the one shown in Fig. 1. '

The problem can now be written as:

’

P L+P—_1
Y 2k —i)= Y alk=D¢0) +ek) @
i=0 =0

where z = [2(0) = 12(1) = —a(1)...2(p) = —a(p)] are
the coefficients of the LPE filter and the equivalent channel
taps vector ¢ = [¢(0)¢(1)...{(L + P — 1)], where {(I) =
>; 2(3) h(l—1). Ideally the (k) is a zero-mean white Gaus-

sian process. Since from eq. (1), the model eq. (2) corre- -

sponds to assurning

P P L-1 L4-P-1:
Z'z(i)r(k—i) = Z 26) Y a(k—i-Dh) = Y a(k=1)¢(Q)
z'—O i=0 1=0 =0 (3)
and
P
3 z()w(k — i) = e(k) (4)

i=1

Therefore, the effect of the LPE filter is that of whitening the
additive disturbance w(k). The formulation eq. (2) permits
the description of the channel plus the whitening filter as a
vector inner product, which in turn allows the simultaneous
estimation of the LPE coefficients and the equivalent chan-
nel taps at the output of the LPE filter [3]. In fact, letting
a = [e(1)...a(p)), eq. (2) can be rewritten as

r(k)
r(k—1)
[1 - a1)... —a(p)] :
r(k — P)
a(k)
alk—1)
= [C(O)¢(D)-.¢(L + P~ 1)] : relk) ©
“a(L+P-1)
or equivalently
| rk-1)
r(k) = {a(1)...a(p)] :
. r(k — P)
a(k)
a(k —1)
+EO)(W)-C(L + P = 1) , +elk) ©
‘ a(L+ P -1)
= [a {]v(k) +e(k) M

where v(k) = [r(k — 1)..r(k — P)b(k — 1)..b(k —
L — P 4 1)]T and with (k) white. Usually it is assumed -
that due to LPE filter (k) is Gaussian distributed. However
in practice the larger the tap-length of the LPE filter, the
more the equalizer states, the more computational complex-
ity [1] for maximum likelihood sequence equalizer. Thus
in practice the tap-length is usually restricted [1, 4]. This
restriction leads e(k) to non-Gaussianity. The channel esti- -
mator proposed in this paper does two tasks: (i) estimating
the channel; (ii) estimating the uncorrelated e(k) pdf at the
receiver.
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3. KERNEL DENSITY ESTIMATION

To estimate the pdf at the receiver we use the kernel density
estimator technique. Parzen window or kernel density esti-
mation assumes that the probability density is a smoothed
version of the empirical sample. Its estimate f (y) of aran-
dom variable Y is simply the average of radial kernel func-
tions centered on M-realizations of ¥ '

. 1 X ’
fl)= ;2o -v()) ®
i=1

‘We here assume ¢ to be Gaussian kernel (Parzen kernel) [1]:

—_2
exp (Tf’z) ©)

B(y) = N(0,0) = \/2;—0

where o2 is defined as the kernel variance (or width) [8].
Other choices of kernel like Epanechnikov kernel are also
possible. It can be shown that under the right conditions

f(y) will converge to the true density f(y) as | M |- oo

[9].

4. NON-PARAMETRIC MAXIMUM-LIKELIHOOD
(NPML) CHANNEL ESTIMATION WITH LPE

For the communication system represented by eq. (2) the
ML estimate forms the optimal estimator for the channel.
This problem can be viewed as the joint optimization prob-
lem [1], where we maximize the likelihood with respect to
a and . If the e(k) was Gaussian then the LS solution as
found in [1] could have been applied directly. However,
since we assume that (k) is non-Gaussian and can be mod-
elled as a Gaussian mixture we use the kernel density es-
timator to estimate this density. Since the kernel density

estimator is essentially a Gaussian mixture formulation we
can’t get a closed form estimate of the  and . We then use
the iterative scheme as used in [2]:

Q)
= .
il

O k-1 + p(k) Vo l(a l r,() |a=&k_114=5k_g10)
et + (k) VL | 100) gy aman (1D

o
a
Il

where p(k) is the adaptation step-size. Since the channel es-
timator is assumed to have no apriori knowledge of the pdf
fe(.), this unknown pdf is then estimated by using the ker-
nel density estimator eq. (8) with Gaussian kernels as shown
below. As the kernel estimators are known to be effective in
density estimation over short data record, we use this tech-
nique over the available data (error) record, of léngth M,
to estimate the unknown density. Using the kernel density
estimator [9] we obtain:

. 1M
fe(e) = 57 D K(e— () (12)
i=1 :

Thus the estimated (joint) log-likelihood function can be
written as: ‘ ‘

E(aa C I l‘) |a;&k_1!(=§k_1
M 1 M
=) log (E > K(e(d) - e(j)))
i=1 j=1
M M ’
= log Y K(e(i) — €(4)) — log | M | (13)
i=1 j=1

The gradient & of the log-likelihood can be formulated
as:

2 falno)

v“‘é(a Ir,¢) |&=&k—1-C=fk—1 =

i=1 8a

- ¥

a=&k_1,{=Ck—1

o Tits K (i) — €(3)

i=1 z:{:1 K(e(i) — e(k))

Similarly gradient for {:

VCE(C [r,e)

IC=fk—1,5=&k—1

= a%c‘(c Ir,a)

(14)

¢=Cp—1,0=Ex1

M oS &K (e(i) — (7))

- ¥

Thereby substituting the estimated gradients in eq. (10)
and (11) respectively, and iterating till &x and fk converge
we get the ML estimated channel h by deconvolution. The
algorithm is initialized by the LS estimate and u as ex-
plained in [1] and [2] respectively. During simulations we
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did not converge to a local maxima, however this is not al-
ways gauranteed (as with most iterative techniques). How-
ever, initializing the channel and whitening filter’s taps with
the LS estimate reduces the chances of converging to local
* maxima.

Two possible update methods could be used here to max-
imize the likelihood. In the first method, we update & then
update C and then estimate the updated likelihood for the
next update. The procedure is repeated till both & and ( con-
verge. Second update method is to first have & converged
and then have é converged given the converged & on esti-
mated likelihood, and then iterate till no significant change
is observed in & and f . In this paper we use the first method
of update.

5. SIMULATION RESULTS

For simulation study, we assume a communication chan-
nel model, like global system for mobile (GSM), consider-
ing CCI with Gaussian noise as a multi-modal, iid, Gaus-
sian mixture interference as discussed in [1]. The perfor-
mance of channel estimator is calculated by normalized-
mean square error (NMSE), as shown in eq.(16).

E{(h - h)*}

NMSE = =g

(16)

where h is the actual channel and A is the estimated channel
(after deconvolution). For all simulation results, the input
symbols of length 100 and ensemble of 1000-runs is con-
sidered.

A typical communication system effected by co-channel
interference is shown in Fig. 2. The co-channels are each of
order N — 1 and are represented as h; and interfering signal
as a; for i = 2,...,I, where I — 1 represents number of
interferers. The received signal can be represented as

I N-1
r(k) = ‘Z ha(n)as(k —n) + 33 hi(n)ai(k — n) + n(k)
;—(i =2 n=0
= Z hi(n)ai(k — n) + w(k)

n=0

where the middle (double summation) term on the RHS in
eq. (17) represents the CCI and n(k) is a zero mean, iid,
Gaussian noise process and k =
number of symbols.

The above presented algorithm is verified for real sta-
tionary channel for N = 5. The input signal is anti-podal
random input sequence. The channels are assumed to be

hy =[-0.227 0.460 0.688 0.460 -0.227] and

hs = [1.0 0.8 0.6 0.4 0.2] where h; suffers from am-
plitude and phase distortion [10], and h; is the co-channel
considered for the simulation.

an
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Fig. 2. A typical CCI effected communication system

Fig. 3 depicts the performance plot for the channel esti-
mator presented in this paper. The legends ‘LS’, ‘LS yhite’
and ‘NPMLgnite’ represent LS without LPE filter, LS with
LPE filter and NPML with LPE filter respectively. To ob-
serve the proformance of the algorithm, the signal to noise
ratio (SNR) is kept fixed at 30dBs while signal to interfer-
ence ratio (SIR) is varied from —13dBs to 9dBs. We can
observe that by using the LPE filter with NPML based tech-
nique we can gain upto 3.5 dBs at NMSE of 1071

6. CONCLUSION

It was shown that after noise whitening better channel esti-
mates can be obtained. It was reconfirmed that the LS esti-
mate with LPE filter produces better channel estimates for
interference limited channels than LS estimate without LPE
filter. Due to practicle constriants, the Gaussian assump-
tion on the whitened noise is not gauranteed, hence a kernel -
density estimate based ML channel estimator was proposed.
From Fig. 3 we observe that better channel estimates can be
obtained by jointly estimating the whitening filter and the
channel estimates by using kernel density estimator. Thus
by combining kernel density estimator with whitening fil-
ter forms a robust channel estimator for interference limited
communication channels.
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Fig. 3. MSE plot for co-channel effected communica-
. tion system where hy = [-0.227 0.460 0.688 0.460 -0.227],
SNR=30dBs for 100-symbols over an ensemble of 1000-
runs ‘
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