14 research outputs found

    Controllable Shadow Generation Using Pixel Height Maps

    Full text link
    Shadows are essential for realistic image compositing. Physics-based shadow rendering methods require 3D geometries, which are not always available. Deep learning-based shadow synthesis methods learn a mapping from the light information to an object's shadow without explicitly modeling the shadow geometry. Still, they lack control and are prone to visual artifacts. We introduce pixel heigh, a novel geometry representation that encodes the correlations between objects, ground, and camera pose. The pixel height can be calculated from 3D geometries, manually annotated on 2D images, and can also be predicted from a single-view RGB image by a supervised approach. It can be used to calculate hard shadows in a 2D image based on the projective geometry, providing precise control of the shadows' direction and shape. Furthermore, we propose a data-driven soft shadow generator to apply softness to a hard shadow based on a softness input parameter. Qualitative and quantitative evaluations demonstrate that the proposed pixel height significantly improves the quality of the shadow generation while allowing for controllability.Comment: 15 pages, 11 figure

    Efficient shadow map filtering

    Get PDF
    Schatten liefern dem menschlichen Auge wichtige Informationen, um die räumlichen Beziehungen in der Umgebung in der wir leben wahrzunehmen. Sie sind somit ein unverzichtbarer Bestandteil der realistischen Bildsynthese. Leider ist die Sichtbarkeitsberechnung ein rechenintensiver Prozess. Bildbasierte Methoden, wie zum Beispiel Shadow Maps, verhalten sich positiv gegenüber einer wachsenden Szenenkomplexität, produzieren aber Artefakte sowohl in der räumlichen, als auch in der temporalen Domäne, da sie nicht wie herkömmliche Bilder gefiltert werden können. Diese Dissertation präsentiert neue Echtzeit-Schattenverfahren die das effiziente Filtern von Shadow Maps ermöglichen, um die Bildqualität und das Kohärenzverhalten zu verbessern. Hierzu formulieren wir den Schattentest als eine Summe von Produkten, bei der die beiden Parameter der Schattenfunktion separiert werden. Shadow Maps werden dann in sogenannte Basis-Bilder transformiert, die im Gegensatz zu Shadow Maps linear gefiltert werden können. Die gefilterten Basis-Bilder sind äquivalent zu einem vorgefilterten Schattentest und werden verwendet, um geglättete Schattenkanten und realistische weiche Schatten zu berechnen.Shadows provide the human visual system with important cues to sense spatial relationships in the environment we live in. As such they are an indispensable part of realistic computerenerated imagery. Unfortunately, visibility determination is computationally expensive. Image-based simplifications to the problem such as Shadow Maps perform well with increased scene complexity but produce artifacts both in the spatial and temporal domain because they lack efficient filtering support. This dissertation presents novel real-time shadow algorithms to enable efficient filtering of Shadow Maps in order to increase the image quality and overall coherence characteristics. This is achieved by expressing the shadow test as a sum of products where the parameters of the shadow test are separated from each other. Ordinary Shadow Maps are then subject to a transformation into new so called basis-images which can, as opposed to Shadow Maps, be linearly filtered. The convolved basis images are equivalent to a pre-filtered shadow test and used to reconstruct anti-aliased as well as physically plausible all-frequency shadows

    Master of Science in Computing

    Get PDF
    thesisThis document introduces the Soft Shadow Mip-Maps technique, which consists of three methods for overcoming the fundamental limitations of filtering-oriented soft shadows. Filtering-oriented soft shadowing techniques filter shadow maps with varying filter sizes determined by desired penumbra widths. Different varieties of this approach have been commonly applied in interactive and real-time applications. Nonetheless, they share some fundamental limitations. First, soft shadow filter size is not always guaranteed to be the correct size for producing the right penumbra width based on the light source size. Second, filtering with large kernels for soft shadows requires a large number of samples, thereby increasing the cost of filtering. Stochastic approximations for filtering introduce noise and prefiltering leads to inaccuracies. Finally, calculating shadows based on a single blocker estimation can produce significantly inaccurate penumbra widths when the shadow penumbras of different blockers overlap. We discuss three methods to overcome these limitations. First, we introduce a method for computing the soft shadow filter size for a receiver with a blocker distance. Then, we present a filtering scheme based on shadow mip-maps. Mipmap-based filtering uses shadow mip-maps to efficiently generate soft shadows using a constant size filter kernel for each layer, and linear interpolation between layers. Finally, we introduce an improved blocker estimation approach. With the improved blocker estimaiton, we explore the shadow contribution of every blocker by calculating the light occluded by potential blockers. Hence, the calculated penumbra areas correspond to the blockers correctly. Finally, we discuss how to select filter kernels for filtering. These approaches successively solve issues regarding shadow penumbra width calculation apparent in prior techniques. Our result shows that we can produce correct penumbra widths, as evident in our comparisons to ray-traced soft shadows. Nonetheless, the Soft Shadow Mip-Maps technique suffers from light bleeding issues. This is because our method only calculates shadows using the geometry that is available in the shadow depth map. Therefore, the occluded geometry is not taken into consideration, which leads to light bleeding. Another limitation of our method is that using lower resolution shadow mip-map layers limits the resolution of the shadow placement. As a result, when a blocker moves slowly, its shadow follows it with discrete steps, the size of which is determined by the corresponding mip-map layer resolution

    Packet-based Hierarchal Soft Shadow Mapping

    Get PDF
    International audienceRecent soft shadow mapping techniques based on back-projection can render high quality soft shadows in real time. However, real time high quality rendering of large penumbrae is still challenging, especially when multi-layer shadow maps are used to reduce single light sample silhouette artifact. In this paper, we present an efficient algorithm to attack this problem. We first present a GPU-friendly packet-based approach rendering a packet of neighboring pixels together to amortize the cost of computing visibility factors. Then, we propose a hierarchical technique to quickly locate the contour edges, further reducing the computation cost. At last, we suggest a multi-view shadow map approach to reduce the single light sample artifact. We also demonstrate its higher image quality and higher efficiency compared to the existing depth peeling approaches

    Occlusion Textures for Plausible Soft Shadows

    Get PDF
    International audienceThis paper presents a new approach to compute plausible soft shadows for complex dynamic scenes and rectangular light sources. We estimate the occlusion at each point of the scene using prefiltered occlusion textures, which dynamically approximate the scene geometry. The algorithm is fast and its performance independent of the light's size. Being image-based, it is mostly independent of the scene complexity and type. No a priori information is needed, and there is no caster/receiver separation. This makes the method appealing and easy to use

    Hierarchical Techniques in Lighting Computation

    Get PDF
    Tato diplomová práce se věnuje studiu a popisu hierarchických technik pro výpočet globálního osvětlení. Vysvětluje proč je dobré se zabývat hierarchickými technikami pro výpočet osvětlení a ukazuje postup, jak zakomponovat tyto hierarchické techniky do výpočtu radiozity v reálném čase a následné rozšíření pro výpočet dynamického osvětlení z plošných světelných zdrojů. Tyto dvě techniky jsou podrobně popsány v první části této práce. V druhé části je uveden návrh a implementace aplikace, která bude provádět výpočet dynamického osvětlení z plošných světelných zdrojů.This master thesis deals with description of hierarchical techniques in global lighting computation. Here is explaining the importance of hierarchical techniques in lighting computation and shows method, how to use these hierarchical techniques in realtime radiosity and its extension to dynamic area lighting. These two techniques are described in detail in the first part of this project. In the other part is desing and implementation of application for dynamic area lighting computation.

    Visually pleasing real-time global illumination rendering for fully-dynamic scenes

    Get PDF
    Global illumination (GI) rendering plays a crucial role in the photo-realistic rendering of virtual scenes. With the rapid development of graphics hardware, GI has become increasingly attractive even for real-time applications nowadays. However, the computation of physically-correct global illumination is time-consuming and cannot achieve real-time, or even interactive performance. Although the realtime GI is possible using a solution based on precomputation, such a solution cannot deal with fully-dynamic scenes. This dissertation focuses on solving these problems by introducing visually pleasing real-time global illumination rendering for fully-dynamic scenes. To this end, we develop a set of novel algorithms and techniques for rendering global illumination effects using the graphics hardware. All these algorithms not only result in real-time or interactive performance, but also generate comparable quality to the previous works in off-line rendering. First, we present a novel implicit visibility technique to circumvent expensive visibility queries in hierarchical radiosity by evaluating the visibility implicitly. Thereafter, we focus on rendering visually plausible soft shadows, which is the most important GI effect caused by the visibility determination. Based on the pre-filtering shadowmapping theory, wesuccessively propose two real-time soft shadow mapping methods: "convolution soft shadow mapping" (CSSM) and "variance soft shadow mapping" (VSSM). Furthermore, we successfully apply our CSSM method in computing the shadow effects for indirect lighting. Finally, to explore the GI rendering in participating media, we investigate a novel technique to interactively render volume caustics in the single-scattering participating media.Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung virtueller Szenen von entscheidender Bedeutung. Dank der rapiden Entwicklung der Grafik-Hardware wird die globale Beleuchtung heutzutage sogar für Echtzeitanwendungen immer attraktiver. Trotz allem ist die Berechnung physikalisch korrekter globaler Beleuchtung zeitintensiv und interaktive Laufzeiten können mit "standard Hardware" noch nicht erzielt werden. Obwohl das Rendering auf der Grundlage von Vorberechnungen in Echtzeit möglich ist, kann ein solcher Ansatz nicht auf voll-dynamische Szenen angewendet werden. Diese Dissertation zielt darauf ab, das Problem der globalen Beleuchtungsberechnung durch Einführung von neuen Techniken für voll-dynamische Szenen in Echtzeit zu lösen. Dazu stellen wir eine Reihe neuer Algorithmen vor, die die Effekte der globaler Beleuchtung auf der Grafik-Hardware berechnen. All diese Algorithmen erzielen nicht nur Echtzeit bzw. interaktive Laufzeiten sondern liefern auch eine Qualität, die mit bisherigen offline Methoden vergleichbar ist. Zunächst präsentieren wir eine neue Technik zur Berechnung impliziter Sichtbarkeit, die aufwändige Sichbarkeitstests in hierarchischen Radiosity-Datenstrukturen vermeidet. Anschliessend stellen wir eine Methode vor, die weiche Schatten, ein wichtiger Effekt für die globale Beleuchtung, in Echtzeit berechnet. Auf der Grundlage der Theorie über vorgefilterten Schattenwurf, zeigen wir nacheinander zwei Echtzeitmethoden zur Berechnung weicher Schattenwürfe: "Convolution Soft Shadow Mapping" (CSSM) und "Variance Soft Shadow Mapping" (VSSM). Darüber hinaus wenden wir unsere CSSM-Methode auch erfolgreich auf den Schatteneffekt in der indirekten Beleuchtung an. Abschliessend präsentieren wir eine neue Methode zum interaktiven Rendern von Volumen-Kaustiken in einfach streuenden, halbtransparenten Medien

    Lobes de cosinus et visibilité pour la simulation d'éclairage

    Get PDF
    La simulation des réflexions lumineuses multiples à l'intérieur d'un environnement nécessite de résoudre une intégrale de premier ordre, récursive infinie, pour laquelle il n'existe pas de solution analytique dans le cas général. Certaines méthodes permettent de donner une solution théorique exacte, mais avec des temps de calcul trop important pour espérer produire plusieurs images par seconde dans un avenir proche. De nombreuses méthodes permettent de réaliser ces calculs de manière plus rapide, mais elles reposent sur des approximations dont les effets sont souvent visibles sur les images produites. Notre objectif est de proposer des solutions permettant de réduire les erreurs de calculs en exploitant deux approches complémentaires : (i) une homogénéisation des termes de l'équation de manière à la résoudre seulement à l'aide de quelques opérateurs simples ; (ii) la prise en compte précise des informations de visibilité pour réduire le biais des méthodes reposant sur une estimation de densité. A terme, notre objectif est de diminuer le coût des requêtes de visibilité de nos deux contributions. Pour cela nous envisageons notamment d'introduire des calculs hiérarchiques de visibilité de façon à amortir le coût global des requêtes.Simulating light transfer within a virtual environment requires to solve a first order, infinite recursive integral, that unfortunately doesn't have any solution in general cases. Though theoretically exact solutions exist, their computing time is not adapted to real-time rendering in a near future. Many methods have been proposed for accelerating these computations, but they rely on approximations that often produce visible artifacts on the resulting images. Our goal is to propose some new solutions that can reduce biases with two complementary approaches : (i) a new homogeneous representation of each term of the equation can be used to resolve it using only simple operators ; (ii) considering precise visibility information in order to reduce bias of methods that rely on density estimation. On the long range, we aim at reducing visibility requests costs of each contribution. For that purpose, we particularly plan to introduce hierarchical visibility computations so as to amortize queries cost.POITIERS-SCD-Bib. électronique (861949901) / SudocSudocFranceF
    corecore