218 research outputs found

    System Concepts for Bi- and Multi-Static SAR Missions

    Get PDF
    The performance and capabilities of bi- and multistatic spaceborne synthetic aperture radar (SAR) are analyzed. Such systems can be optimized for a broad range of applications like frequent monitoring, wide swath imaging, single-pass cross-track interferometry, along-track interferometry, resolution enhancement or radar tomography. Further potentials arises from digital beamforming on receive, which allows to gather additional information about the direction of the scattered radar echoes. This directional information can be used to suppress interferences, to improve geometric and radiometric resolution, or to increase the unambiguous swath width. Furthermore, a coherent combination of multiple receiver signals will allow for a suppression of azimuth ambiguities. For this, a reconstruction algorithm is derived, which enables a recovery of the unambiguous Doppler spectrum also in case of non-optimum receiver aperture displacements leading to a non-uniform sampling of the SAR signal. This algorithm has also a great potential for systems relying on the displaced phase center (DPC) technique, like the high resolution wide swath (HRWS) SAR or the split antenna approach in the TerraSAR-X and Radarsat II satellites

    A Downward-looking Three-dimensional Imaging Method for Airborne FMCW SAR Based on Array Antennas

    Get PDF
    AbstractWith regard to problems in conventional synthetic aperture radar (SAR), such as imaging distortion, beam limitation and failure in acquiring three-dimensional (3-D) information, a downward-looking 3-D imaging method based on frequency modulated continuous wave (FMCW) and digital beamforming (DBF) technology for airborne SAR is presented in this study. Downward-looking 3-D SAR signal model is established first, followed by introduction of virtual antenna optimization factor and discussion of equivalent-phase-center compensation. Then, compensation method is provided according to reside video phase (RVP) and slope term for FMCW SAR. As multiple receiving antennas are applied to downward-looking 3-D imaging SAR, range cell migration correction (RCMC) turns to be more complex, and corrective measures are proposed. In addition, DBF technology is applied in realizing cross-track resolution. Finally, to validate the proposed method, magnitude of slice, peak sidelobe ratio (PSLR), integrated sidelobe ratio (ISLR) and two-dimensional (2-D) contour plot of impulse response function (IRF) of point target in three dimensions are demonstrated. Satisfactory performances are shown by simulation results

    Frequency-modulated continuous-wave synthetic-aperture radar: improvements in signal processing

    Get PDF
    With the advance of solid state devices, frequency-modulated continuous-wave (FMCW) designs have recently been used in synthetic-aperture radar (SAR) to decrease cost, size, weight and power consumption, making it deployable on smaller mobile plat-forms, including small (< 25 kg) unmanned aerial vehicle(s) (UAV). To foster its mobile uses, several SAR capabilities were studied: moving target indication (MTI) for increased situational awareness, bistatic operation, e.g. in UAV formation flights, for increased range, and signal processing algorithms for faster real-time performance. Most off-the-shelf SAR systems for small mobile platforms are commercial proprie-tary and/or military (ITAR, International Trades in Arms Regulations) restricted. As such, it necessitated the design and build of a prototype FMCW SAR system at the early stage to serve as a research tool. This enabled unrestricted hardware and software modifica-tions and experimentation. A model to analyze the triangularly modulated (TM) linear frequency modulated (LFM) waveform as one signal was established and used to develop a MTI algorithm which is effective for slow moving targets detection. Experimental field data collected by the prototyped FMCW SAR was then used to validate and demonstrate the effectiveness of the proposed MTI method. A bistatic FMCW SAR model was next introduced: Bistatic configuration is a poten-tial technique to overcome the power leakage problem in monostatic FMCW SAR. By mounting the transmitter and receiver on spatially separate mobile (UAV) platforms in formation deployment, the operation range of a bistatic FMCW SAR can be significantly improved. The proposed approximation algorithm established a signal model for bistatic FMCW SAR by using the Fresnel approximation. This model allows the existing signal processing algorithms to be used in bistatic FMCW SAR image generation without sig-nificant modification simplifying bistatic FMCW SAR signal processing. The proposed range migration algorithm is a versatile and efficient FMCW SAR sig-nal processing algorithm which requires less memory and computational load than the traditional RMA. This imaging algorithm can be employed for real-time image genera-tion by the FMCW SAR system on mobile platforms. Simulation results verified the pro-posed spectral model and experimental data demonstrated the effectiveness of the modi-fied RMA

    Overview of the International Radar Symposium Best Papers, 2019, Ulm, Germany

    Get PDF

    FMCW Signals for Radar Imaging and Channel Sounding

    Get PDF
    A linear / stepped frequency modulated continuous wave (FMCW) signal has for a long time been used in radar and channel sounding. A novel FMCW waveform known as “Gated FMCW” signal is proposed in this thesis for the suppression of strong undesired signals in microwave radar applications, such as: through-the-wall, ground penetrating, and medical imaging radar. In these applications the crosstalk signal between antennas and the reflections form the early interface (wall, ground surface, or skin respectively) are much stronger in magnitude compared to the backscattered signal from the target. Consequently, if not suppressed they overshadow the target’s return making detection a difficult task. Moreover, these strong unwanted reflections limit the radar’s dynamic range and might saturate or block the receiver causing the reflection from actual targets (especially targets with low radar cross section) to appear as noise. The effectiveness of the proposed waveform as a suppression technique was investigated in various radar scenarios, through numerical simulations and experiments. Comparisons of the radar images obtained for the radar system operating with the standard linear FMCW signal and with the proposed Gated FMCW waveform are also made. In addition to the radar work the application of FMCW signals to radio propagation measurements and channel characterisation in the 60 GHz and 2-6 GHz frequency bands in indoor and outdoor environments is described. The data are used to predict the bit error rate performance of the in-house built measurement based channel simulator and the results are compared with the theoretical multipath channel simulator available in Matlab

    Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

    Get PDF
    The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO) imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS) and phase locked loop (PLL). A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA) and digital signal processor (DSP) pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation

    Through-The-Wall Detection Using Ultra Wide Band Frequency Modulated Interrupted Continuous Wave Signals

    Get PDF
    Through-The-Wall-Detection (TTWD) techniques can improve the situational awareness of police and soldiers, and support first responders in search and rescue operations. A variety of systems for TTWD based on different waveforms have been developed and presented in the literature, e.g. radar systems based on pulses, noise or pseudo-noise waveforms, and frequency modulated continuous wave (FMCW) or stepped frequency continuous wave (SFCW) waveforms. Ultra wide band signals are normally used as they provide suitable resolution to discriminate different targets. A common problem for active radar systems for TTWD is the strong backscattered signal from the air-wall interface. This undesired signal can overshadow the reflections from actual targets, especially those with low radar cross section like human beings, and limit the dynamic range at the receiver, which could be saturated and blocked. Although several techniques have been developed to address this problem, frequency modulated interrupted continuous wave (FMICW) waveforms represent an interesting further approach to wall removal, which can be used as an alternative technique or combined with the existing ones. FMICW waveforms have been used in the past for ionospheric and ocean sensing radar systems, but their application to the wall removal problem in TTWD scenarios is novel. The validation of the effectiveness of the proposed FMICW waveforms as wall removal technique is therefore the primary objective of this thesis, focusing on comparing simulated and experimental results using normal FMCW waveforms and using the proposed FMICW waveforms. Initially, numerical simulations of realistic scenarios for TTWD have been run and FMICW waveforms have been successfully tested for different materials and internal structure of the wall separating the radar system and the targets. Then a radar system capable of generating FMICW waveforms has been designed and built to perform a measurement campaign in environments of the School of Engineering and Computing Sciences, Durham University. These tests aimed at the localization of stationary targets and at the detection of people behind walls. FMICW waveforms prove to be effective in removing/mitigating the undesired return caused by antenna cross-talk and wall reflections, thus enhancing the detection of targets

    Image Reconstruction for Multistatic Stepped Frequency-Modulated Continuous Wave (FMCW) Ultrasound Imaging Systems With Reconfigurable Arrays

    Get PDF
    The standard architecture of a medical ultrasound transducer is a linear phased array of piezoelectric elements in a compact, hand-held form. Acoustic energy not directly reflected back towards the transducer elements during a transmit-receive cycle amounts to lost information for image reconstruction. To mitigate this loss, a large, flexible transducer array which conforms to contours of the subject's body would result in a greater effective aperture and an increase in received image data. However, in this reconfigurable array design, element distributions are irregular and an organized arrangement can no longer be assumed. Phased array architecture also has limited scalability potential for large 2D arrays. This research work investigates a multistatic, stepped-FMCW modality as an alternative to array phasing in order to accommodate the flexible and reconfigurable nature of an array. A space-time reconstruction algorithm was developed for the imaging system. We include ultrasound imaging experiments and describe a simulation method for quickly predicting imaging performance for any given target and array configuration. Lastly, we demonstrate two reconstruction techniques for improving image resolution. The first takes advantage of the statistical significance of pixel contributions prior to the final summation, and the second corrects data errors originating from the stepped-FMCW quadrature receiver

    On the Capabilities of the Italian Airborne FMCW AXIS InSAR System

    Get PDF
    Airborne Synthetic Aperture Radar (SAR) systems are gaining increasing interest within the remote sensing community due to their operational flexibility and observation capabilities. Among these systems, those exploiting the Frequency-Modulated Continuous-Wave (FMCW) technology are compact, lightweight, and comparatively low cost. For these reasons, they are becoming very attractive, since they can be easily mounted onboard ever-smaller and highly flexible aerial platforms, like helicopters or unmanned aerial vehicles (UAVs). In this work, we present the imaging and topographic capabilities of a novel Italian airborne SAR system developed in the frame of cooperation between a public research institute (IREA-CNR) and a private company (Elettra Microwave S.r.l.). The system, which is named AXIS (standing for Airborne X-band Interferometric SAR), is based on FMCW technology and is equipped with a single-pass interferometric layout. In the work we first provide a description of the AXIS system. Then, we describe the acquisition campaign carried out in April 2018, just after the system completion. Finally, we perform an analysis of the radar data acquired during the campaign, by presenting a quantitative assessment of the quality of the SLC (Single Look Complex) SAR images and the interferometric products achievable through the system. The overall analysis aims at providing first reference values for future research and operational activities that will be conducted with this sensor
    • 

    corecore