22 research outputs found

    Bisimilarity congruences for open terms and term graphs via tile logic

    Get PDF
    The definition of sos formats ensuring that bisimilarity on closed terms is a congruence has received much attention in the last two decades. For dealing with open terms, the congruence is usually lifted from closed terms by instantiating the free variables in all possible ways; the only alternatives considered in the literature are Larsen and Xinxin’s context systems and Rensink’s conditional transition systems. We propose an approach based on tile logic, where closed and open terms are managed uniformly, and study the ‘bisimilarity as congruence’ property for several tile formats, accomplishing different concepts of open system

    An interactive semantics of logic programming

    Full text link
    We apply to logic programming some recently emerging ideas from the field of reduction-based communicating systems, with the aim of giving evidence of the hidden interactions and the coordination mechanisms that rule the operational machinery of such a programming paradigm. The semantic framework we have chosen for presenting our results is tile logic, which has the advantage of allowing a uniform treatment of goals and observations and of applying abstract categorical tools for proving the results. As main contributions, we mention the finitary presentation of abstract unification, and a concurrent and coordinated abstract semantics consistent with the most common semantics of logic programming. Moreover, the compositionality of the tile semantics is guaranteed by standard results, as it reduces to check that the tile systems associated to logic programs enjoy the tile decomposition property. An extension of the approach for handling constraint systems is also discussed.Comment: 42 pages, 24 figure, 3 tables, to appear in the CUP journal of Theory and Practice of Logic Programmin

    04241 Abstracts Collection -- Graph Transformations and Process Algebras for Modeling Distributed and Mobile Systems

    Get PDF
    Recently there has been a lot of research, combining concepts of process algebra with those of the theory of graph grammars and graph transformation systems. Both can be viewed as general frameworks in which one can specify and reason about concurrent and distributed systems. There are many areas where both theories overlap and this reaches much further than just using graphs to give a graphic representation to processes. Processes in a communication network can be seen in two different ways: as terms in an algebraic theory, emphasizing their behaviour and their interaction with the environment, and as nodes (or edges) in a graph, emphasizing their topology and their connectedness. Especially topology, mobility and dynamic reconfigurations at runtime can be modelled in a very intuitive way using graph transformation. On the other hand the definition and proof of behavioural equivalences is often easier in the process algebra setting. Also standard techniques of algebraic semantics for universal constructions, refinement and compositionality can take better advantage of the process algebra representation. An important example where the combined theory is more convenient than both alternatives is for defining the concurrent (noninterleaving), abstract semantics of distributed systems. Here graph transformations lack abstraction and process algebras lack expressiveness. Another important example is the work on bigraphical reactive systems with the aim of deriving a labelled transitions system from an unlabelled reactive system such that the resulting bisimilarity is a congruence. Here, graphs seem to be a convenient framework, in which this theory can be stated and developed. So, although it is the central aim of both frameworks to model and reason about concurrent systems, the semantics of processes can have a very different flavour in these theories. Research in this area aims at combining the advantages of both frameworks and translating concepts of one theory into the other. The Dagsuthl Seminar, which took place from 06.06. to 11.06.2004, was aimed at bringing together researchers of the two communities in order to share their ideas and develop new concepts. These proceedings4 of the do not only contain abstracts of the talks given at the seminar, but also summaries of topics of central interest. We would like to thank all participants of the seminar for coming and sharing their ideas and everybody who has contributed to the proceedings

    Connector algebras for C/E and P/T nets interactions

    Get PDF
    A quite fourishing research thread in the recent literature on component based system is concerned with the algebraic properties of different classes of connectors. In a recent paper, an algebra of stateless connectors was presented that consists of five kinds of basic connectors, namely symmetry, synchronization, mutual exclusion, hiding and inaction, plus their duals and it was shown how they can be freely composed in series and in parallel to model sophisticated "glues". In this paper we explore the expressiveness of stateful connectors obtained by adding one-place buffers or unbounded buffers to the stateless connectors. The main results are: i) we show how different classes of connectors exactly correspond to suitable classes of Petri nets equipped with compositional interfaces, called nets with boundaries; ii) we show that the difference between strong and weak semantics in stateful connectors is reflected in the semantics of nets with boundaries by moving from the classic step semantics (strong case) to a novel banking semantics (weak case), where a step can be executed by taking some "debit" tokens to be given back during the same step; iii) we show that the corresponding bisimilarities are congruences (w.r.t. composition of connectors in series and in parallel); iv) we show that suitable monoidality laws, like those arising when representing stateful connectors in the tile model, can nicely capture concurrency aspects; and v) as a side result, we provide a basic algebra, with a finite set of symbols, out of which we can compose all P/T nets, fulfilling a long standing quest

    Abstract Semantics by Observable Contexts

    Get PDF
    The operational behavior of interactive systems is usually given in terms of transition systems labeled with actions, which, when visible, represent both observations and interactions with the external world. The abstract semantics is given in terms of behavioral equivalences, which depend on the action labels and on the amount of branching structure considered. Behavioural equivalences are often congruences with respect to the operations of the language, and this property expresses the compositionality of the abstract semantics. A simpler approach, inspired by classical formalisms like pi-calculus, Petri nets, term and graph rewriting, and pioneered by the Chemical Abstract Machine [13], defines operational semantics by means of structural axioms and reaction rules. Process calculi representing complex systems, in particular those able to generate and communicate names, are often defined in this way, since structural axioms give a clear idea of the intended structure of the states while reaction rules, which are often non-conditional, give a direct account of the possible steps. Transitions caused by reaction rules, however, are not labeled, since they represent evolutions of the system without interactions with the external world. Thus reduction semantics in itself is neither abstract nor compositional. One standard solution, pioneered in [89], is that of defining a saturated transition system as follows: a process p can do a move with label C[-] and become q, iff C[p]--> q. Saturated semantics, i.e., the abstract semantics defined over the saturated transition system, are always congruences, but they are usually untractable since they have to tackle all possible contexts of which there are usually an infinite number. Moreover, in several paradigmatic cases, saturated semantics are too coarse. For example, in Milner's Calculus of Communicating Systems (CCS), saturated bisimilarity cannot distinguish "always divergent processes" and for this reason Milner and Sangiorgi introduced barbs. These are observations on the states representing the ability to interact over some channels. Sewell introduced a different approach that consists in deriving a transition system where labels are not all contexts but just the minimal ones allowing a system to reach a rule. In such a way, one obtains two advantages: firstly one avoids considering all contexts, and secondly, labels precisely represent interactions, i.e., the portion of environment that is really needed to react. This idea was then refined by Leifer and Milner in the theory of reactive systems, where the categorical notion of idem relative pushout precisely captures this idea of minimal context. In this thesis, we show that in some cases this approach works well (e.g., CCS) but often, the resulting abstract semantics are too strict. In our opinion, they are not really observational since the observer can know exactly how much structure a process needs to reach a specific rule, and thus the observation depends on the rules. One result of the thesis is that of providing evidence of this through several interesting formalisms modeled as reactive systems: Logic Programming, a fragment of open pi-calculus, and an interactive version of Petri nets. Moreover, we introduce two alternative definitions of bisimilarity that efficiently characterize saturated bisimilarity, namely semi-saturated bisimilarity and symbolic bisimilarity. These allow us to reason about saturated semantics without considering all contexts, but saturated semantics are in several cases too coarse. In order to have a framework that is suitable for many formalisms, we add to the above approach observations. Indeed, in our opinion, labels cannot represent both interactions and observations, because these two concepts are in general different, like for example, in the asynchronous calculi where receiving is not observable. Thus, we believe that some notion of observation, either on transitions or on states (e.g. barbs), is necessary. A further result of the thesis is that of providing a generalization of the above theory starting not just from purely reaction rules, but from transition systems labeled with observations. Here we can easily reuse saturated transition systems by defining them as follows: a process p can do a move with context C[-] and observation o and become q iff C[p] --o--> q. Again, saturated semantics, i.e. abstract semantics defined over the above transition systems, are congruences. Analogously to the case of reactive systems, we can define semi-saturated bisimilarity and symbolic bisimilarity as efficient characterizations of saturated semantics. The definition of symbolic bisimilarity which arises from this generalization is similar to the abstract semantics of several works. Here we consider open and asynchronous pi-calculus, by showing that their abstract semantics are instances of our general concepts of saturated and symbolic semantics. We also apply our approach to open Petri nets (that are an interactive version of P/T Petri nets) obtaining a new symbolic semantics for them, that efficiently characterizes their abstract semantics. We round up the thesis with a coalgebraic characterization for saturated, semi-saturated and symbolic bisimilarity. Universal Coalgebra provides a categorical framework where abstract semantics of interactive systems are described as morphisms to their minimal representatives. More precisely, if the category of coalgebras has final object 1, then the unique morphisms from a certain coalgebra to 1 equates all the bisimilar states. In other words, the final object can be seen as a universe of abstract behaviors and the unique morphism as a function assigning to each system its abstract behavior. This characterization of abstract semantics is not only theoretically interesting, but also pragmat- ically useful, since it suggests an algorithm which can check the equivalence: one computes the image of some coalgebras through the unique morphism (that for the finite lts corresponds to the list partitioning algorithm by Kanellakis and Smolka), and these coalgebras are behaviorally equivalent if their images are the same. Ordinary labeled transition systems can be represented as coalgebras, and the resulting abstract semantics exactly coincides with canonical bisimilarity. Then, providing a coalgebraic characterization of saturated bisimilarity is almost straightforward. The case of semi-saturated and symbolic bisimilarities are more complicated because their definitions are asymmetric. In order to properly characterizes semi-saturated and symbolic cases, we first introduce a new notion of redundancy on transitions and then normalized coalgebras: a special kind of coalgebras without redundant transitions. We prove that the category of normalized coalgebras is isomorphic to the category of saturated coalgebras (the coalgebras containing all the redundant transitions), where the large saturated transition system can be directly modelled. In doing this, we use the notions of normalization that throws away all the redundant transitions, and of saturation that adds all the redundant transitions. Both are natural transformations between the endofunctors (defining the two categories of coalgebras) and one is the inverse of the other. As a corollary of the isomorphism theorem, saturated bisimilarity can be characterized as bisimilarity in the category of normalized coalgebras, i.e., abstracting away from redundant transitions. This is interesting because, on the one hand, it provides us with a canonical representatives for ~S without redundant transitions (and then much smaller with respect to the saturated ones), on the other hand, it suggests a minimization algorithm for "efficiently" computing ~S

    Transition systems, link graphs and Petri nets

    Get PDF

    Tiles, Rewriting Rules and CCS

    Get PDF
    Abstract In [12] we introduced the tile model, a framework encompassing a wide class of computational systems, whose behaviour can be described by certain rewriting rules. We gathered our inspiration both from the world of term rewriting and of concurrency theory, and our formalism recollects many properties of these sources. For example, it provides a compositional way to describe both the states and the sequences of transitions performed by a given system, stressing their distributed nature. Moreover, a suitable notion of typed proof allows to take into account also those formalisms relying on the notions of synchronization and side-effects to determine the actual behaviour of a system. In this work we narrow our scope, presenting a restricted version of our tile model and focussing our attention on its expressive power. To this aim, we recall the basic definitions of the process algebras paradigm [3,24], centering the paper on the recasting of this framework in our formalism

    Innocent strategies as presheaves and interactive equivalences for CCS

    Get PDF
    Seeking a general framework for reasoning about and comparing programming languages, we derive a new view of Milner's CCS. We construct a category E of plays, and a subcategory V of views. We argue that presheaves on V adequately represent innocent strategies, in the sense of game semantics. We then equip innocent strategies with a simple notion of interaction. This results in an interpretation of CCS. Based on this, we propose a notion of interactive equivalence for innocent strategies, which is close in spirit to Beffara's interpretation of testing equivalences in concurrency theory. In this framework we prove that the analogues of fair and must testing equivalences coincide, while they differ in the standard setting.Comment: In Proceedings ICE 2011, arXiv:1108.014

    Structured Operational Semantics for Graph Rewriting

    Get PDF
    Process calculi and graph transformation systems provide models of reactive systems with labelled transition semantics (LTS). While the semantics for process calculi is compositional, this is not the case for graph transformation systems, in general. Hence, the goal of this article is to obtain a compositional semantics for graph transformation system in analogy to the structural operational semantics (SOS) for Milner's Calculus of Communicating Systems (CCS). The paper introduces an SOS style axiomatization of the standard labelled transition semantics for graph transformation systems that is based on the idea of minimal reaction contexts as labels, due to Leifer and Milner. In comparison to previous work on inductive definitions of similarly derived LTSs, the main feature of the proposed axiomatization is a composition rule that captures the communication of sub-systems so that it can feature as a counterpart to the communication rule of CCS

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The total of 60 regular papers presented in these volumes was carefully reviewed and selected from 155 submissions. The papers are organized in topical sections as follows: Part I: Program verification; SAT and SMT; Timed and Dynamical Systems; Verifying Concurrent Systems; Probabilistic Systems; Model Checking and Reachability; and Timed and Probabilistic Systems. Part II: Bisimulation; Verification and Efficiency; Logic and Proof; Tools and Case Studies; Games and Automata; and SV-COMP 2020
    corecore