
Università degli Studi di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis

Abstract Semantics by Observable Contexts

Filippo Bonchi

Supervisor

Ugo Montanari

May 12, 2008

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Electronic Thesis and Dissertation Archive - Università di Pisa

https://core.ac.uk/display/14695530?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The operational behavior of interactive systems is usually given in terms of transition systems
labeled with actions, which, when visible, represent both observations and interactions with the
external world. The abstract semantics is given in terms of behavioral equivalences, which depend
on the action labels and on the amount of branching structure considered. Behavioural equivalences
are often congruences with respect to the operations of the language, and this property expresses
the compositionality of the abstract semantics.

A simpler approach, inspired by classical formalisms like λ-calculus, Petri nets, term and graph
rewriting, and pioneered by the Chemical Abstract Machine [13], defines operational semantics
by means of structural axioms and reaction rules. Process calculi representing complex systems,
in particular those able to generate and communicate names, are often defined in this way, since
structural axioms give a clear idea of the intended structure of the states while reaction rules,
which are often non-conditional, give a direct account of the possible steps. Transitions caused
by reaction rules, however, are not labeled, since they represent evolutions of the system without
interactions with the external world. Thus reduction semantics in itself is neither abstract nor
compositional.

One standard solution, pioneered in [89], is that of defining a saturated transition system as
follows:

a process p can do a move with label C[−] and become p′ iff C[p] Ã p′.

Saturated semantics, i.e., the abstract semantics defined over the saturated transition system, are
always congruences, but they are usually untractable since they have to tackle all possible contexts
of which there are usually an infinite number. Moreover, in several paradigmatic cases, saturated
semantics are too coarse. For example, in Milner’s Calculus of Communicating Systems (CCS,
[80]), saturated bisimilarity cannot distinguish “always divergent processes” and for this reason
Milner and Sangiorgi introduced barbs [87]. These are observations on the states representing the
ability to interact over some channels.

In [106], Sewell introduced a different approach that consists in deriving a transition system
where labels are not all contexts but just the minimal ones allowing a system to reach a rule. In
such a way, one obtains two advantages: firstly one avoids considering all contexts, and secondly,
labels precisely represent interactions, i.e., the portion of environment that is really needed to
react. This idea was then refined by Leifer and Milner in the theory of reactive systems [76], where
the categorical notion of idem relative pushout precisely captures this idea of minimal context.

In this thesis, we show that in some cases this approach works well (e.g., CCS) but often, the
resulting abstract semantics are too strict. In our opinion, they are not really observational since
the observer can know exactly how much structure a process needs to reach a specific rule, and
thus the observation depends on the rules. One result of the thesis (presented in [21]) is that
of providing evidence of this through several interesting formalisms modeled as reactive systems:
Logic Programming, a fragment of open π-calculus, and an interactive version of Petri nets.

Moreover, we introduce two alternative definitions of bisimilarity that efficiently characterize
saturated bisimilarity, namely semi-saturated bisimilarity and symbolic bisimilarity [21]. These
allow us to reason about saturated semantics without considering all contexts, but saturated se-
mantics are in several cases too coarse. In order to have a framework that is suitable for many

formalisms, we add to the above approach observations. Indeed, in our opinion, labels cannot
represent both interactions and observations, because these two concepts are in general different,
like for example, in the asynchronous calculi where receiving is not observable. Thus, we believe
that some notion of observation, either on transitions or on states (e.g. barbs [87, 96]), is necessary.

A further result of the thesis (presented in [25]) is that of providing a generalization of the
above theory starting not just from purely reaction rules, but from transition systems labeled with
observations. Here we can easily reuse saturated transition systems by defining them as follows:

a process p can do a move with context C[−] and observation o and become p′ iff C[p] o−→ p′.

Again, saturated semantics, i.e. abstract semantics defined over the above transition systems, are
congruences. Analogously to the case of reactive systems, we can define semi-saturated bisimilarity
and symbolic bisimilarity as efficient characterizations of saturated semantics. The definition of
symbolic bisimilarity which arises from this generalization is similar to the abstract semantics of
several works [5, 6, 7, 30, 49, 100, 113]. Here (and in [25]) we consider open [100] and asynchronous
[6, 64] π-calculus, by showing that their abstract semantics are instances of our general concepts
of saturated and symbolic semantics. We also apply our approach to open Petri nets [69, 8, 77]
(that are an interactive version of P/T Petri nets) obtaining a new symbolic semantics for them,
that efficiently characterizes their abstract semantics.

We round up the thesis with a coalgebraic characterization for saturated, semi-saturated and
symbolic bisimilarity (presented in [24]).

Universal Coalgebra [99] provides a categorical framework where abstract semantics of inter-
active systems are described as morphisms to their minimal representatives. More precisely, if the
category of coalgebras has final object 1, then the unique morphisms from a certain coalgebra to 1
equates all the bisimilar states. In other words, the final object can be seen as a universe of abstract
behaviors and the unique morphism as a function assigning to each system its abstract behavior.
This characterization of abstract semantics is not only theoretically interesting, but also pragmat-
ically useful, since it suggests an algorithm which can check the equivalence: one computes the
image of some coalgebras through the unique morphism (that for the finite lts corresponds to the
list partitioning algorithm by Kanellakis and Smolka [67]), and these coalgebras are behaviorally
equivalent if their images are the same.

Ordinary labeled transition systems can be represented as coalgebras, and the resulting abstract
semantics exactly coincides with canonical bisimilarity. Then, providing a coalgebraic characteri-
zation of saturated bisimilarity is almost straightforward. The case of semi-saturated and symbolic
bisimilarities are more complicated because their definitions are asymmetric. In order to properly
characterizes semi-saturated and symbolic cases, we first introduce a new notion of redundancy
on transitions and then normalized coalgebras: a special kind of coalgebras without redundant
transitions. We prove that the category of normalized coalgebras is isomorphic to the category
of saturated coalgebras (the coalgebras containing all the redundant transitions), where the large
saturated transition system can be directly modelled. In doing this, we use the notions of nor-
malization that throws away all the redundant transitions, and of saturation that adds all the
redundant transitions. Both are natural transformations between the endofunctors (defining the
two categories of coalgebras) and one is the inverse of the other. As a corollary of the isomorphism
theorem, saturated bisimilarity can be characterized as bisimilarity in the category of normalized
coalgebras, i.e., abstracting away from redundant transitions. This is interesting because, on the
one hand, it provides us with a canonical representatives for ∼S without redundant transitions
(and then much smaller with respect to the saturated ones), on the other hand, it suggests a
minimization algorithm for “efficiently” computing ∼S .

To my parents

Acknowledgments

Brief but intense. Ugo: your unbounded knowledge and your ability to make links between appar-
ently very distinct topics has fascinated, stimulated, and led me along this path. Fabio: master,
guru, brother, friend. . . What else? There are no words to express what you have been for me
all along these years. Barbara: you have taught me a large variety of things, both scientific and
methological. Pawel: besides the stimulating discussions, you have contributed to this thesis in
two ways. On the one hand, your studies have been a fundamental source of inspiration, on the
other hand your revision guided me in refining the whole work. Nobuko: your comments and
suggestions on the first version of the thesis have been priceless. Pierpaolo: mhm... I should thank
you for being my internal co-supervisor, but I prefer to thank you for making me fall in love with
theoretical computer science. Vincenzo and Tobias: we have had endless discussions. Also these
has made me grow up. Andrea, Giangluigi and Roberto: the doors of your offices have always been
open to my questions and doubts. Your answers have helped me a lot. Sara and Antonio: Working
together has made me understand the pragmatical value of my studies. Alberto: Your altruism
has always been there for my problems. It is important to know that in the department there is
a person like you. Paolo: mhm... Sorry, I am thinking about Giovanni Lindo Pro-Life. Marzia:
Thank you for sharing with me both nice and ugly things. Icecreamers: I scream! You scream! We
all scream for the scream! Last but not the least, my brother Francesco: As eldest brother, you
have given me very good advice about every-day life, studies at university and scientific research.
Without you, this thesis would never have been written.

I would also like to thank all the people that I have met around the world for the interesting
(not only scientific) discussion. In the department of computer science there are nice people that
have shared lunches, dinners and (not only coffee) breaks: Thank you!!! Far from science, there
are several people that have been very close to me during these years. They have given me the
force to go on.

iv

Contents

Introduction ix
I.1 A fragmented scenario . ix
I.2 The thesis . xiii
I.3 Structure of the thesis . xvi

I Abstract semantics from rewriting rules 1

1 Background on reactive systems 3
1.1 Leifer and Milner reactive systems . 4

1.1.1 Definition and examples . 4
1.1.2 Contexts as labels: saturated semantics . 9
1.1.3 Minimal contexts: IPO semantics . 12

1.2 Limitations of reactive systems . 15
1.2.1 Adequacy of IPO semantics . 15
1.2.2 Ground rules . 18
1.2.3 Existence of RPOs . 19

1.3 From reactive systems to borrowed contexts . 20
1.3.1 G-reactive systems . 20
1.3.2 Adhesive categories and cospans . 22
1.3.3 Borrowed contexts rewriting as G-reactive system 24

2 CCS bisimilarity via borrowed contexts 27
2.1 Two operational semantics for CCS . 28
2.2 Graphs and their extension with interfaces . 30
2.3 From processes to graphs with interfaces . 32
2.4 Double-pushout and borrowed contexts . 34
2.5 From process reactions to graph rewrites . 36
2.6 The synthesised transition system . 37

2.6.1 Examples of borrowing . 38
2.6.2 Reducing the borrowing . 39
2.6.3 Strong bisimilarity vs. bc bisimilarity . 41

2.7 Summing up . 48

3 Semi-saturated and symbolic semantics for reactive systems 51
3.1 Semi-saturated game . 53

3.1.1 Semi-saturated and symbolic bisimilarity 53
3.1.2 Semi-saturated trace equivalences . 55

3.2 Logic Programming . 58
3.2.1 Goals equivalences . 59
3.2.2 Logic programs as reactive systems . 60
3.2.3 Saturated and IPO abstract semantics . 64

vi CONTENTS

3.3 A fragment of open π-calculus . 65
3.3.1 Open and syntactical bisimilarity . 66
3.3.2 A reactive system for open π-calculus . 67
3.3.3 Saturated bisimilarity is open . 69

3.4 Intermezzo . 71

II The general case 73

4 Symbolic semantics for context interactive systems 75
4.1 Presenting the theory . 76

4.1.1 Basic definitions and running example . 76
4.1.2 Tile systems . 81
4.1.3 Symbolic semantics . 85

4.2 Amongst presheaves, reactive systems and tiles . 91
4.2.1 Context interactive systems as coalgebras over presheaves 91
4.2.2 Reactive systems as context interactive systems 92
4.2.3 Relation to tiles systems . 95

5 Three examples 97
5.1 Asynchronous π-calculus . 98

5.1.1 A context interactive system for asynchronous π 101
5.1.2 Tile system for asynchronous π . 102
5.1.3 Symbolic semantics for asynchronous π . 102

5.2 Open π-calculus . 104
5.2.1 A context interactive system for open π . 107
5.2.2 A Tile system for open π . 111
5.2.3 Symbolic semantics for open π . 111

5.3 Open Petri nets . 113
5.3.1 A context interactive system for open nets 115
5.3.2 A tile system for open nets . 116
5.3.3 A symbolic semantics for open nets . 116

III Coalgebraic presentation 121

6 Coalgebraic models for context interactive systems 123
6.1 Background on coalgebras . 125

6.1.1 Coalgebras, cohomomorphism and bisimulations 125
6.1.2 Final coalgebra . 128
6.1.3 Structured coalgebras . 130

6.2 Context interactive systems as coalgebras . 131
6.2.1 Context interactive systems as unstructured coalgebras 132
6.2.2 Saturated transition system as structured coalgebra 133

6.3 Saturated bisimilarity through saturated coalgebras 136
6.3.1 Tile systems for D̂-coalgebras . 136
6.3.2 Saturated coalgebras . 137

6.4 Saturated bisimilarity through normalized coalgebras 141
6.4.1 Normalized coalgebras . 141
6.4.2 Isomorphism theorem . 148
6.4.3 From symbolic semantics to ∼O through normalization. 150

Conclusions 155

Bibliography 159

List of Notations 165

Appendix 171
Initial pushouts . 172
Proof of Proposition 2.6 . 173
Proofs for open π-Calculus . 179
Factorization system for D̂-coalgebras . 180

viii CONTENTS

Introduction

The intrinsic non-determinism of interactive systems, makes analyzing their behavior complex. In
particular, the problem of defining a proper notion of equivalence between systems seen as black
boxes has caught the attention of many computer scientists that, in the early eighties, arrived at
a concept that was also of interest to philosophers and mathematicians: bisimilarity. This thesis
tackles this problem relying on two additional fundamental features of interaction, namely interface
and environment.

I.1 A fragmented scenario

Denotational semantics and full abstraction. In [105], Dana Scott and Christopher Strachey
introduced denotational semantics, as a way of formalizing the meaning of programming languages:
to each expression of the language is assigned a denotation, i.e., an object in a mathematical domain.
In their original proposal, each program denotes a continuous function on partially ordered sets,
which maps each input of the program into the corresponding output.

An important tenet of denotational semantics is that it should be compositional, i.e., the de-
notation of a program expression can be constructed by the denotation of its sub-expression. This
allows inductive reasoning on the structure of programs, and provides a general way to prove
properties of these.

Another fundamental issue of denotational semantics is full abstraction. Often the formal
meaning of a programming language is expressed through an operational semantics that describes
directly the execution of the expressions of the language. Usually this consists of a transition
relation amongst a set of states that can be either the expressions of the language, as is the
case of several important calculi, or the states of an abstract machine, as is the case of some
programming languages. A denotational semantics is fully abstract with respect to a certain
operational semantics whenever it holds that two expressions have the same denotation if and
only if they are observationally equivalent [1]. This means that they cannot be distinguished by
an external observer that looks at their executions in all possible environments. These can be
succinctly represented by all the syntactic contexts, i.e., the syntactical expressions c[−] such that
some other expression p can be plugged into the hole −, obtaining c[p]. Therefore, more concretely,
two programs p and q are observationally equivalent if and only if, for any context c[−], both c[p]
and c[q] are defined and they have the “same operational behavior”. For this reason, observational
equivalence is also sometimes referred to as contextual equivalence. At this point, it is important
to highlight that, due to the quantification for all possible contexts, proofs and reasonings on
contextual equivalence are often complex and involuted differently than that which happens with
compositional denotational semantics.

Semantics for concurrency. The above setting becomes more complex when considering con-
current programming, because concurrent programs have non-deterministic behaviors and thus,
they cannot be simply denoted as input-output functions. A lot of effort has been make in order
to give operational and denotational semantics to concurrent programming languages. This has
been done by considering simple computational models exhibiting fundamental aspects of con-
current computations. Some of them are graphic-based such as Petri nets and several kinds of

x INTRODUCTION

graph transformation systems, while others are syntax-based, such as process calculi. Amongst all
of these, process calculi have some distinctive features that makes them more interesting for the
purposes of this thesis.

Structural Operational Semantics. Since process calculi are syntax-based (i.e., the expres-
sions of these languages are elements of an algebra), their operational semantics is inductively
specified through SOS rules [95]: for each operator of the language there is a set of rules describing
the behavior of the composite system in terms of the behaviors of the components. The resulting
operational semantics is usually a labeled transition system (lts) where labels represents interac-
tions amongst the various components of the system. As a result, the whole system is seen as
a component that interacts with some external environment. Therefore process calculi describe
systems that are both concurrent and open, in the sense that they can interact with the envi-
ronment. It is useful to remark that this semantic feature mainly depends on the way in which
operational semantics is given. Indeed, graphical formalisms, such as Petri net and graph transfor-
mation system, usually model concurrent systems that are closed, i.e., without interactions with
the environment.

Bisimilarity. Since concurrent processes have complex, non-deterministic behaviors, it is hard to
say when two processes have the “same behavior”. For this reason, a wide spectrum of observational
equivalences, which vary in terms of the notion of observation and on the amount of branching
structure considered, have been defined for process calculi . Among these, bisimilarity (Robin
Milner [80]) is the most interesting. First of all, it is the finest observational equivalence one would
like to impose on processes (branching structure is considered completely). Secondly, it provides
a powerful proof method based on the co-induction proof principle (David Park [92]): in order to
prove that two states are bisimilar it is sufficient to show a bisimulation relating them. Thirdly, it
provides a mathematical domain for denotational semantics through coalgebras.

Coalgebras. The theory of Universal Coalgebras [99] provides a categorical framework for the
specification of dynamical systems with a hidden state space. Given a behavioral endo-functor
B, which roughly describes the type (signature) of systems, one can define the category of B-
coalgebras and B-cohomomorphisms. By choosing a certain endo-functor, we get the category
of all labeled transition systems and “zig-zag” morphisms (i.e., morphisms that both respect and
reflect transitions). This category has a final object 1, i.e., from every lts there is a unique
morphism to 1. Moreover, these unique morphisms identify all and only the bisimilar states of all
the lts. Therefore, for each equivalence class of bisimilar lts there exists a canonical representative
that is the image of the unique morphisms into 1 (the image of a morphism is always a subobject
of its target). Note that this representative is also the minimal one, in the sense that all bisimilar
states are identified here (trivially, the unique morphism from 1 to 1 is the identity).

Thus, coalgebras provide a denotational semantics: a labeled transition system is denoted by
its image into the final object. This intuition will be exploited better later.

Being a congruence. A fundamental property for bisimilarity is that it should be a congruence,
with respect to all the contexts of the language. A relation R is a congruence, if whenever pRq,
then c[p]Rc[q]. On the one hand, being a congruence is a necessary requirement for any meaningful
observational equivalence: if two processes are considered equivalent then they cannot be distin-
guished in any context. Moreover, being a congruence is the key to mastering complexity of both
reasoning and automated analysis and verification. Indeed it allows one to analyze separately each
component of a big system and replace equals for equals.

Largest bisimulation congruence. When bisimilarity fails to be a congruence, observational
equivalence is defined as the largest congruence contained into bisimilarity. In other words, two
processes p and q are equivalent if for all contexts c[−], c[p] ∼ c[q]. This equivalence is clearly

I.1. A FRAGMENTED SCENARIO xi

a congruence, but usually is not a bisimilarity. In order to obtain a congruence that is also a
bisimilarity one can consider the largest bisimulation that is closed under all contexts.

This idea was originally introduced by Ugo Montanari and Vladimiro Sassone in [89]. They
define dynamic bisimilarity in order to make weak bisimilarity of the Calculus of Communicating
Systems (CCS, [80]) a congruence with respect to non-deterministic choices: before any transition,
the observer inserts the processes into all possible contexts. Analogously, since early and late
bisimilarity of π-calculus [86] are not preserved under substitution (and thus under input prefixes),
in [100] Sangiorgi introduces open bisimilarity as the largest bisimulation on π-calculus agents
which is closed under substitutions. Besides these two important examples, there are others that
will be shown in this thesis. Indeed, we will mainly focus on this semantics that we will call
saturated bisimilarity.

It is important to note that the largest bisimulation congruence (i.e., saturated bisimilarity)
is finer than the largest congruence contained in bisimilarity, because the former is for sure a
congruence contained in bisimilarity, while the latter may not be a bisimilarity. Thinking about
the external observer, in the former case, it can plug processes into contexts at any step of their
execution, while in the latter the observer can contextualize the processes only at the beginning.
Clearly the former observer is more powerful than the latter, and thus the former observational
equivalence is finer than the latter. In our opinion, in order to model concurrent interactive systems
embedded in an unknown environment that continuously changes (such as internet), the largest
bisimulation congruence is more appropriate.

The main benefit of this approach is that of having an equivalence that is both a bisimilarity and
a congruence (and thus it carries all the nice properties that we have discussed above). However,
it is often hard to reason about saturated bisimilarity due to the quantification over all possible
contexts (analogously to the contextual equivalence discussed above). In the thesis we will provide
standard ways for reducing this complexity.

Towards a mathematical operational semantics. A different approach for guaranteeing
that bisimilarity is a congruence relies on formats for SOS rules. If the operational semantics of
a certain formalism is specified through inference rules that are “well-formed” then bisimilarity
is a congruence. Several formats for SOS rules have been proposed in [107, 16, 62, 98, 53]. The
interested reader is referred to [2].

In [110], Daniele Turi and Gordon Plotkin built a strong bridge between this approach and
denotational semantics by means of bialgebras. These are pairs of Σ-algebras and B-coalgebras
for Σ and B two endofuntors on the same category related by a distributive law λ. Roughly,
they have shown that giving the SOS rules (for some good formats) corresponds to defining λ; the
syntax of the formalism is the initial algebra for Σ and the semantics domain is the final coalgebra
for B. This uniquely induces a (bialgebraic) morphism (representing the denotational semantics)
that maps each element of the initial Σ-algebra (i.e., each term of the syntax) onto the final B-
coalgebra (representing the denotation of the terms). Since morphisms also respect the operations
of Σ, the denotational semantics is compositional and thus we can reason inductively. As a trivial
consequence, bisimilarity is a congruence and the denotational semantics is fully abstract with
respect to the operational one.

However, specifying the semantics in these fixed formats is not always possible. In [35] a solution
is proposed by considering the largest bisimulation congruence based on structured coalgebras.

Reactive semantics. The previously reported approaches apply to those formalisms whose op-
erational semantics is a labeled transition system. A number of interesting computational models
exists which have a reaction semantics, such as λ-calculus, Petri nets, term and graph rewriting.
In the first part of the thesis we will focus on these and we will often use the terms “rewriting”
and “reduction” in place of reaction.

Reactive semantics specify a set of structural axioms, defining a structural congruence, and a set
of compact reaction rules consisting of a left hand side and a right hand side. Structural congruence
(≡) gives a clear account of the structure of systems, while reaction rules naturally describe the

xii INTRODUCTION

evolution of systems. The operational semantics is an unlabeled reaction relation (denoted by Ã)
simply obtained by closing the reaction rules under some contexts (called reactive). This means
that whenever the left hand side of a rule 〈l, r〉 occurs within a state p (i.e., p ≡ c[l] with c[−]
reactive), then it is removed and replaced by r. This is described by the transition p ≡ c[l] Ã c[r].

Reactive semantics are very elegant and natural because, by employing a few compact rules,
they describe the behavior of a system in a monolithic way, i.e., looking at the system as a whole.
Notice that this approach is very far from SOS for two important reason. First, from the behavior
of components it is not possible to know the behavior of the composite. Second (as a consequence
of the first), interactions between systems and environments are not specified, and thus a system
is seen in isolation, i.e., closed. As a result, those observational equivalences defined for ltss do
not work here.

After the introduction of the Chemical Abstract Machine [13], it became more and more pop-
ular to specify the semantics of process calculi through reaction semantics. Amongst these, we
mention CCS [81], π-calculus [81] and ambient calculus [31]. Immediately, the problem of defin-
ing observational equivalence for reactive semantics arises. In particular, the problem of defining
equivalences for pure reactive semantics, i.e., just using the syntax and the rules of the formalisms,
has received a lot of attention.

How to define a proper observational equivalences starting from pure reactive semantics is still
an open question and providing an answer to this hard problem is not the purpose of this thesis.
Indeed, in our opinion, some kind of observation is necessary.

Barbed congruence. For similar reasons, Robin Milner and Davide Sangiorgi proposed in [87]
barbed congruence and they proved that it coincides exactly with standard bisimilarity in the
case of CCS. They defined some basic observations on the states called barbs, that express the
capability of a CCS process to interact over some channels. Then, barbed bisimilarity is defined in
the obvious way, and barbed congruence as the largest congruence contained in barbed bisimilarity.
This approach has been very influential and has been applied to several other process calculi, but
the notion of barbs is ad-hoc for each calculus and relies on calculus-specific intuition.

A different proposal comes from Kohei Honda and Nobuko Yoshida [65]. Instead of defining
a calculus-specific notion of barbs, they propose a general concept, namely insensitiveness, repre-
senting the inability to interact. Then they define abstract semantics as the largest bisimulation
congruence in the style of dynamic bisimilarity [89], open bisimilarity [100] which will be refereed
to more generally as saturated bisimilarity.

Contexts as labels. There are two important problems related to barbed congruence. First of
all, reasoning over all possible contexts is usually complex (as we have already discussed). Second,
for each calculus, the notion of barbs is provided by hand from the researcher inspired by their
own intuition of the calculus (only recently, in [96], a general notion of barbs has been proposed).

The theory of reactive systems by James Leifer and Robin Milner [76] proposes a unique solution
for solving the two problems. Their aim is that of deriving a labeled transition system from a pure
reactive semantics, in such a way that the bisimilarity over the derived lts is a congruence.

First of all they define the saturated transition system (satts, originally, in [75] it was called

“first approximation”) as p
c[−]→SAT q if and only if c[p] Ã q. Bisimilarity over this lts is called

saturated bisimilarity (∼S) and it is always a congruence (more precisely, it is the largest bisimu-
lation congruence). However the satts must still consider all possible contexts, and moreover ∼S

is usually too coarse.
Inspired by the pioneering work of Peter Sewell in [106], Leifer and Milner define a labeled

transition system containing not all possible contexts, but just the minimal to allow a reaction.
This notion of minimal context is captured categorically by idem pushouts (IPOs). They define

the IPO transition system (its) such as p
c[−]→I q if and only if c[p] Ã q and c[−] is an IPO, i.e.,

the minimal context allowing such a reaction. In such a way, reasonings and proofs on the its are
less complex, since only IPOs are considered, instead of all contexts. Moreover, minimal contexts

I.2. THE THESIS xiii

represent exactly the interactions between the system and the environment, and thus they seem
to fit with our intuition of labels.

The resulting bisimilarity is called IPO bisimilarity (∼IPO). The main theorem of the theory of
reactive system states that if the syntax of the considered formalism is in some sense well-formed,
i.e., the category representing the syntax has a special colimit called relative pushout (RPO), then
∼IPO is a congruence.

Bigraphs and borrowed contexts. In order to guarantee the existence of RPOs, and to allow
a constructive procedure for IPOs, Milner introduces in [82] bigraphs. Bigraphs are general struc-
tures, expressive enough to encode a lot of different formalisms, such as CCS [84], Condition/Event
(C/E) nets [83], λ-calculus [85] and π-calculus [66].

Inspired by the theory of reactive system, Barbara König and Hartmut Ehrig defined borrowed
context rewriting (bc) [43] as an interactive extension of canonical double pushout (dpo) rewriting
[41]. In such a way they provide observational equivalence also to graph transformation systems.

This result, which is very important for the graph rewriting community, was however unrelated
to the theory of reactive system. In [104], Pawel Sobocińsky and Vladimiro Sassone build a
bridge between these two worlds: borrowed context rewriting systems are “reactive systems over
a bicategory of cospans on adhesive structures”.

I.2 The thesis

(In)Adequacy of IPO semantics. In spite of a large scientific effort, there are few results
relating the IPO semantics obtained by reactive systems to observational equivalences previously
defined for some classical formalisms. This is due, in our opinion, both to minor technical problems
of the theory of reactive systems (that we will discuss during the first part of the thesis) and to an
important conceptual problem: IPO semantics are usually too strict.

We will show that in the case of CCS, ∼IPO is adequate, while in general terms, it is not. This
is due to the fact that IPOs are local to rules, i.e., they are the minimal contexts that allow a
system to reach the left hand side of a certain rule, instead of the minimal contexts that allow a

system to react (globally). This means that for a certain system p, two IPO transitions p
c[−]→I p1

and p
d[−]→I p2 could exist such that d[−] = e[c[−]] and p2 = e[p1]. The first transition is smaller

than the latter (globally), but both are IPOs, because they use different rules. Now consider a

system q that only performs q
c[−]→I q1. Clearly p and q are not IPO bisimilar, but when an external

observer is not allowed to look at the rules these are clearly indistinguishable. For this reason,
IPO semantics are not really observational (the observer has to look inside the system in order
to know the rule) and, in our opinion, they are adequate just in the special case of some process
calculi. We will show this in the first part of the thesis by providing several examples where IPO
semantics are too strict.

Saturated semantics plus observations. The theory of reactive systems carries another prob-
lem. The derived labels represents both the interactions between system and environment and the
observations made by an external observer. Often these two notions coincide, as is the case of
CCS or standard π-calculus. However, in general, these are well-distinguished. As an example, in
all the asynchronous formalisms the input interaction is not observable. Therefore, we consider a
general framework where only one label must represent two different things to be conceptually too
limited. For this reason we think that some notion of observation must be given.

In the first part of the thesis we propose as a good notion of observational equivalence for
reactive systems, to consider saturated semantics together with some observations. Note that this
is still the largest bisimulation congruence. We will show that Logic Programming can be tackled as
a reactive system where RPOs coincide with most general unifiers. Simply observing termination,
saturated semantics coincide with the logic equivalence, while IPO semantics are too strict. A
similar situation happens for a fragment of open π-calculus.

xiv INTRODUCTION

Semi-saturated and symbolic semantics. Saturated semantics have the usual problem of
considering all contexts. In order to solve this problems we introduce two “efficient” characteriza-
tions of saturated bisimilarity that employ the IPO transition system. By efficient, we mean that
we avoid considering all possible contexts.

Semi-saturated bisimilarity is defined by replacing the standard condition of bisimulation with

if p
c[−]→I p1 then c[q] Ã q1 and p1 R q1.

In other words, if we call Alice the player choosing the move and Bob the player choosing a
matching reply, if Alice chooses an IPO move then Bob must reply with a saturated move (note

that c[q] Ã q1 iff q
c[−]→SAT q1). Instead, symbolic bisimilarity is defined by considering the following

condition

if p
c[−]→I p1 then ∃d[−], e[−], such that c[−] = e[d[−]], q

d[−]→I q1 and p1 R e[q1].

In this case, Bob can answer with an IPO transition labeled with a context that is smaller than the
one proposed by Alice. Note that bisimulation games restart considering e[q1] instead of simply q1.
Under certain conditions, that are weaker than those imposed by Leifer and Milner, semi-saturated
and symbolic bisimilarity coincide with saturated bisimilarity, and thus they are congruences.

This framework supplies a general notion of equivalence (saturated semantics) to reactive
systems that, employing observations, naturally fits our intuition. Its efficient characterizations
through semi-saturated and symbolic semantics helps in proofs and reasonings, and since the hy-
pothesis are less demanding than those of Leifer and Milner, our theory applies both to bigraphs
and borrowed contexts.

A general framework. In the second part of the thesis, we export the intuition of semi-saturated
and symbolic bisimilarity from the theory of reactive systems to a more general setting. We define
general basic structures called contexts interactive systems that consist of a labeled transition
system over an algebra of contexts (more formally an algebra for a many-sorted unary signature).
In these systems, transitions are labeled with observations and each state is equipped with an
interface. Contexts represent any possible environment in which system can interact. It is worth
noting that we can consider as contexts, not just syntactic contexts, but any kind of environment.
For example, we may use as contexts a set of constraints or a set of fusions, depending on the
intuition underlying the formalisms.

A saturated transition system is defined analogously to a reactive system, i.e., p
c[−],o−−→SAT q iff

c[p] o−→ q. Saturated bisimilarity is defined as usual as the largest bisimulation congruence. Semi-
saturated and symbolic bisimilarity are instead defined using a symbolic transition system and a
tile system. The latter is a set of rules describing how contexts modify transitions. For example
the rule (more formally, the ρ-named tile)

.

ρ

d1[−] //

o1

®¶

.

o2

®¶.
d2[−]

// .

states that for every process p, if p
o1−→ p1, then d1[p] o2−→ d2[p1]. This set of rules induces a notion

of derivation on the transitions of satts. Indeed, suppose that the in the diagram below, the top

I.2. THE THESIS xv

square commutes and the second is a tile of our tile system,

. id //

=c[−]

²²

.

e[−]

²². d1[−] //

o1

®¶

ρ

.

o2

®¶.
d2[−]

// .

then for all process p, if p
c[−],o1−−−→SAT p1 then, for sure, p

e[−],o2−−−→SAT d2[p1] (this follows immediately
by the definition of satts). In these cases, we will say that the former transition derives through ρ
the latter, and that the latter is in some sense redundant, because it can be derived by the former
and by the tile. The symbolic transition system (that is a generalization of the IPO transition
system) is a subsystem of the saturated transition system containing some transitions that allow
all the saturated transitions to be derived (through the rules of the tile system).

The tile system models our knowledge about the formalism, and the symbolic transition system
uses this knowledge to recover the whole satts. The more powerful is the tile system, the smaller is
the symbolic transition system, and the more efficient is the characterization of ∼S . However, the
standard definition of bisimilarity over the symbolic transition system (as is the case of ∼IPO) does
not coincide with ∼S . In order to recover saturated bisimilarity we reuse the idea of semi-saturated
and symbolic bisimilarity.

At this point we have a general framework with a natural notion of observational equivalence
and some good tools to reason about it. In order to show the generality and the effectiveness of our
approach we use three important examples. In the first two, namely asynchronous [64] and open
[100] π-calculus, the canonical observational equivalence is an instance of our saturated semantics.
Moreover, for both the equivalences, an efficient characterization has been given in literature. We
will show that these are instances of our symbolic bisimilarity. The third example consists of open
Petri nets [69, 8]. Also in this case, the canonical abstract semantics is saturated bisimilarity, but
there are no symbolic characterization of this in literature. Thus, by applying our framework we
obtain an efficient characterization that is completely new. Moreover, we formally show that our
framework generalizes reactive systems by Leifer and Milner.

Normalized coalgebras. The definitions of semi-saturated and symbolic bisimilarity allow us
to reduce the complexity of reasoning on saturated bisimilarity. However, due to the asymmetry
of their definition, it seems hard to coalgebraically characterize them.

In the last part of the thesis we will focus on this problem. First we will provide a coalgebra
for the saturated transition systems. Trivially, the unique morphism from this to the final object
quotients all the saturated bisimilar states, and thus the final object can be considered a good
domain for denotational semantics. However, the minimal realizations of the states of satts still
have all contexts as labels (and thus they are too big). Inspired by the definition of symbolic
bisimilarity, we introduce normalized coalgebras as those coalgebras without redundant transitions.
Since the corresponding category has a final object and since the unique morphism (from a certain
lts) to this final object exactly characterizes ∼S , there exists a canonical (minimal) represen-
tative for each equivalence class of saturated bisimilar states without any redundant transitions.
These representatives are considerably smaller than those corresponding to satts, which have all
redundant transitions.

Besides giving a good domain for denotational semantics, coalgebras also supply a general algo-
rithm for checking bisimilarity based on minimization. Substantially each coalgebra is minimized
by collapsing the bisimilar state. Then, two coalgebras are bisimilar if their minimal realization
are the same. Therefore, our normalized coalgebras also supply a minimization algorithm that
forgets about redundant transitions. We are confident that this is the first step for the definition
of an efficient algorithm to check ∼S .

xvi INTRODUCTION

As a conclusive remark we want to say that our normalized coalgebras are, to our knowledge,
the first interesting case of structured coalgebras that are not bialgebras. This intuitively means
that in normalized coalgebras bisimilarity depends on the algebraic structure, while in bialgebras
one can completely abstract from this. Therefore, we are quite far from the bialgebraic approach
to SOS. This can be understood better noting that we only have contexts (unary operators), while
bialgebras are defined for any algebraic signature Σ.

I.3 Structure of the thesis

Due to the many examples, many parts of the thesis could be read independently from others.
For this reason we have depicted in Figure I.1 a graph of the dependencies of the thesis. The
straight arrows denote that the concepts introduced in the source are really needed to understand
the target. The dotted arrow, instead, denotes a loose dependency, i.e., reading the source after
the target might give a deeper insight.

Chapter 1: Background on reactive systems. This chapter is organized in three sections.
The first reports the theory of Reactive Systems by Leifer and Milner [76] and introduces an original
example, namely open input Petri nets, that will be reused through the rest of the thesis. The
second section outlines several problems of the theory and some solutions for these. Particularly
interesting is Example 3.4 that shows the inadequacy of IPO semantics for open input Petri nets.
This problem will be discussed also later in Chapter 3. Since in Chapter 2 we will use borrowed
contexts [43], the last section briefly reports the connection between the theory of reactive systems
and borrowed context rewriting as highlighted in [101]. The uninterested reader can safely skip
Section 1.3.

Chapter 2: CCS bisimilarity via borrowed contexts. In order to have a concrete intuition
on the theory of reactive systems we consider the CCS as a case study. Since the Lawvere-theory-
like category corresponding to the syntax of CCS does not have RPOs, then the theory cannot
be applied directly. For this reason, in [84], Milner proposes an encoding of CCS into bigraphs
(that have RPOs). Instead here, we encode CCS into graphs with interface that are amenable to
borrowed context rewriting [43]. In the style of [54], the encoding is sound and complete with
respect to the structural congruence, and only two dporewriting rules are enough to model the
reactive semantics. The derived lts is finite (up to isomorphism), but slightly more complex than
the canonical lts of CCS. However they are equivalent, i.e., the resulting bisimilarity is exactly
the same. On the one hand, this is important for stating the adequacy of IPO bisimilarity for CCS
. On the other hand, it shows a valid alternative to bigraphs. Particularly interesting is the ability
to use just two rules instead of an infinity of them, as happens in bigraphs.

Note that in Section 2.4, we re-introduce both dpo and bc rewriting, which have already
been introduced in Section 1.3.3. The latter introduction mainly focuses on their connection with
bicategories of cospans while the former well-explain their operational meaning. In a such way the
reader can safely skip the whole Section 1.3 and also understand well this chapter.

A short version of the chapter has been published in [20].

Chapter 3: Semi-saturated and symbolic semantics for reactive systems. This chapter
introduces semi-saturated and symbolic bisimilarity for reactive systems, and it proves that these
coincide with saturated bisimilarity (Theorems 3.1 and 3.2). Then we introduce a generalization
for trace semantics in the case of IPO, saturated and semi-saturated. This is used in Section 3.2
for Logic Programming. In this section we introduce a reactive system for Logic Programming
and we show that IPO bisimilarity coincides with S-semantics, a well-known semantics in Logic
Programming community that is usually considered too operational, while saturated semantics
coincide with the more canonical logic equivalence. Section 3.3 introduces a reactive system for
a fragment of open π-calculus. Also in this case, IPO semantics is too strict, while saturated
semantics coincides with the canonical open bisimilarity. In both cases we use basic observations:

I.3. STRUCTURE OF THE THESIS xvii

in Logic Programming we observe termination, while in open π, we observe the usual π-actions.
The example of open π-calculus, presents just a fragment without matching and restriction. A full
treatment of open π-calculus will be carried out later in Section 5.2 in the more general setting of
context interactive systems.

Section 3.4 is noteworthy since it summarizes all the first part of the thesis and highlights
connections between the various examples.

A short version of the chapter has been published in [21].

Chapter 4: Symbolic semantics for context interactive systems. In this chapter we
propose context interactive systems as an extension to the theory of reactive systems. In Section
4.1, we introduce the main definitions, the idea of tile systems and symbolic transition system
and the extended definitions of symbolic and semi-saturated bisimilarity. At the end, we prove
that symbolic and semi-saturated bisimilarity coincide with saturated bisimilarity (Theorem 4.1).
The whole section is supported by a running example consisting in a simple constraint calculus. In
Section 4.2, we show the connections between our context interactive systems and other well-known
structures in computer science, such as labeled transition systems over presheaves and tile systems.
In particular we formally show that context interactive systems generalize reactive systems.

Sections 3 and 6 of [25] correspond to this chapter.

Chapter 5: Three examples. The most interesting example is that of open Petri nets [69, 8]
(Section 5.3), because it clearly explains the relationship between tile and symbolic transition
system: the more the observer knows about two systems, and the less experiments it has to
perform in order to check their equivalence. We introduce a context interactive system for them
and we show that our saturated bisimilarity coincides with ∼N , the canonical abstract semantics.
Moreover, we define a tile system stating that the addition of tokens into input places preserves
transitions, while nothing can be said about the deletion of tokens from output places (in general
an output place can be in the pre-conditions of some transitions). As a results, the symbolic
transition system can consider only the minimal contexts adding tokens, while it must consider
all the contexts removing tokens (i.e., it is saturated). If we decide to restrict our attention to
open work-flow net [77], we know that we can also safely remove tokens from output places and
thus we can define a more powerful tile system stating that also the deletion of tokens preserves
transitions. As a results we can define a more compact symbolic transition system. At the end,
we introduce a new symbolic bisimilarity that efficiently characterizes ∼N .

Note that open Petri nets are an extension of open input Petri nets (Example 1.7) allowing
transitions with observations and output places.

In Section 5.1, we study asynchronous π-calculus and we introduce a context interactive system
for it. The canonical notion of bisimilarity ∼1 ([6]) is an instance of our saturated bisimilarity.
Then we introduce a tile system (stating that output processes in parallel preserves all transitions)
and a symbolic transition system that coincides with the lts of [6]. We will show that asynchronous
bisimilarity ∼a is an instance of our symbolic bisimilarity, while ∼4 is an instance of our semi-
saturated bisimilarity. Thus, the result of [6] that ∼1=∼a=∼4 is just an instance of our main
theorem (Theorem 4.1).

In Section 5.2, we study the open π-calculus and a context interactive system for it. Open
bisimilarity (∼O) is an instance of our saturated bisimilarity (this has already been pointed out in
[100]). We introduce a tile system (stating that all transitions are preserved by substitutions) and
a symbolic transition system that slightly coincides with the “efficient” transition system of [100]
(the only difference is that in our lts, substitutions are applied to the labels and to the arriving
state). We will show that the efficient bisimilarity ³ coincides with our symbolic bisimilarity, and
thus the result of [100] that ∼O=³ is an instance of our main theorem.

Sections 4 and 5 of [25] correspond to this chapter.

Chapter 6: Coalgebraic models for context interactive systems. This chapter reports in
Section 6.1 the needed background on coalgebras (the basic definitions, the minimization algorithm

xviii INTRODUCTION

Sec.1.1

²²

Sec.4.1

~~

yyrrrrrrrrrr

²² %%LLLLLLLLLL

··

Sec.1.2

yyssssssssss

²² %%KKKKKKKKKK

**UUUUUUUUUUUUUUUUUU Sec.5.1 Sec.5.2 Sec.5.3

Chap.2

,,

Sec.1.3oo Sec.3.1

yyssssssssss

%%KKKKKKKKKK Sec.4.2 // Chap.6

Sec.3.2

%%LLLLLLLLLL Sec.3.3

yyrrrrrrrrrr

Sec.3.4

BB

Figure I.1: Dependency graph of the thesis. The straight arrow denotes a strong dependency, while
the dotted arrows a loose dependency.

and structured coalgebras) and then introduces our theory. In Section 6.2, we show that we can
always construct a structured coalgebra by considering the saturated transition systems and that its
unique morphism to the final object characterizes ∼S . Section 6.3 introduces saturated coalgebras
for certain tile systems as those coalgebras satisfying the tile system. The most important section is
Section 6.4 that introduces normalized coalgebras as those coalgebras without redundant transitions.
This category is isomorphic to the category of saturated coalgebras and thus the unique morphism
(from the normalized coalgebra corresponding to the satts) characterizes ∼S . Section 6.4.3 is
particularly interesting, where we relate the symbolic transition system by exploiting some deep
insights into redundant transitions. Through the whole chapter we use open input Petri nets as
running examples.

The main intuitions and most of the technicalities of this chapter have been previously tackled
for the restricted case of reactive systems in [22, 23, 24]. For the thesis, we decided to present the
theory directly on the more general case of contexts interactive systems.

Part I

Abstract semantics from rewriting
rules

Chapter 1

Background on reactive systems

Many classical formalisms modeling different kinds of computation have been specified through
reactive semantics. These define a state space and an unlabeled transition relation that we will
call reaction relation (Ã). In some cases, the state space is given by a syntax and some structural
axioms. The transition relation is usually obtained by contextualizing a set of reaction rules,
i.e., pair 〈l, r〉 where l is called the left hand side and r the right hand side. Whenever l occurs
into a state p, i.e., p = c[l], then it is removed and replaced by r. This generates the transition
p = c[l] Ã c[r].

This is the case of the paradigmatic functional language, the λ-calculus: the α-equivalence is
the only structural axiom and the β-reduction rule

(λx.m)n Ã m[n/x]

models the application of a functional process λx.m to the actual argument n, and the reduction
relation is then obtained by freely instantiating and contextualizing the rule.

Also the operational semantics of P/T Petri nets is expressed in such way. All the states are
multisets of places and every transition t describes a rewriting rule

•t Ã t•

where •t and t• denote the pre and the post-conditions of t. The reaction relation is obtained by
closing these rules under all possible markings c, i.e., by adding the rule

m Ã n

m⊕ c Ã n⊕ c
.

Besides these two paradigmatic cases there are a lot of interesting computational models defined
in such way. In particular, most of modern process calculi, especially after the introduction of
Chemical Abstract Machine [13], have been specified through reactive semantics. For example,
the semantics of the Calculus of Communicating Systems (CCS, [80]), that was originally defined
through an interactive semantics, have been reformulated with the following reaction rules

a.p + m | ā.q + n Ã p | q.
Reactive semantics is very elegant and natural, since it describes, through a few compact rules,

the behavior of a system in a monolithic way, i.e., looking at the system as a whole. Its main
drawback is poor compositionality : when composing two systems, it is not always possible to know
the behavior of the composite system from the behavior of the components. This results in the
fact that behavioral equivalence defined over reactive semantics are not congruences with respect
to the operators of the language. In order to obtain a compositional abstract semantics it is often
necessary to verify the reactive behavior of a single system under any viable execution environment.
This is the road leading from contextual equivalences for the λ-calculus to barbed equivalences for

4 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

the π-calculus. In these approaches, though, proofs of equivalence are often tedious and involuted,
and they are left to the ingenuity of the researcher.

A different approach, which is very popular in process-calculi community, consists in specify-
ing an interactive semantics through a labeled transition system (lts). Here, the behavior of a
composite system is expressed in terms of the behavior of the components. Labels associated to
the transitions faithfully express how components might interact. As a results also the behavior of
the whole system consists in a lts, expressing how the system, seen as a component, may interact
with the external environment. Abstract semantics defined over interactive semantics are often
congruence.

This kind of semantics specification however, is not as easy and natural as the reactive one. In
the case of π-calculus [86], for example, the interactive semantics is much more complex than the
reactive one and, for Ambient Calculus [31], only after several years of research, has been given an
interactive semantics [78].

The main aim of the theory of reactive system [76] is that of deriving a labeled transition system
from a reactive semantics in a such way that abstract semantics defined over the derived lts are
congruences.

In Section 1.1, we introduce the theory of reactive system and the examples of open input Petri
nets that will be reused during the whole thesis. In Section 1.2, we show several problems related
to the theory. Amongst these, the problem of the inadequacy of the derived abstract semantics
(Section 1.2.1) is an important and original contribution of the thesis. In Section 1.3, we report an
extension to the theory, namely G-reactive system, and we show how this is related to borrowed
context rewriting. This explains the relationship amongst reactive systems and the case study of
CCS, presented in Chapter 2, but it could be safely skipped by the uninterested reader.

1.1 Leifer and Milner reactive systems

In this section, we report the theory of reactive systems by Leifer and Milner [76]. In Section 1.1.1,
we introduce the main definition and some examples that will be reused during the whole Part
I. In Section 1.1.2, we introduce the main idea of considering contexts as labels, and the concept
of saturated semantics that will be fundamental in the whole thesis. In Section 1.1.3, we focus
on the minimal contexts allowing a reaction (categorically described by the notion of IPOs) and
we present the main result of the theory: abstract semantics defined over the lts having IPOs as
labels are congruences whenever the syntax of the formalism is to some extent “well-formed”.

1.1.1 Definition and examples

Before introducing the main definitions, we fix some concepts that will be fundamental in the
remainder of the chapter.

A context is a syntactic term having an hole. Given a context C[−] and a term t, we can insert
t into C[−] obtaining the new term C[t]. We can also insert a context C[−] into a context D[−]
obtaining the context D[C[−]]. This operation of context insertion is usually associative and with
identity, and thus is quite natural to models contexts as arrows of a category where composition of
arrows is composition of contexts. In such a category, objects describe the types of the contexts.
As an example consider the following expression.

if [−1] + 2 > 5 then false else [−2]

Here, −1 and −2 are the holes of the context. The former is an hole for an integer value, while the
latter for a boolean value. The value of the whole expression is a boolean and thus this contexts
is an arrow of type int× bool → bool. Instead, the term 6 + 1 is an arrow with type 0 → int, and
true is arrow with type 0 → bool. Note that both have as domain 0. This is a special object with
the property that arrows with domain 0 are understood to be closed terms, that is they do not

1.1. LEIFER AND MILNER REACTIVE SYSTEMS 5

contain any hole. The pair of terms 〈6 + 1, true〉 can be seen as an arrow 0 → int× bool. We can
compose this arrow with the above context and obtain the term

if 6 + 1 + 2 > 5 then false else true

that has type 0 → bool. In the whole thesis, when talking about terms and contexts, we
will always see them as arrows of a category, because it is natural from a side, and convenient
for mathematically capturing notions such as the “smallest context” or the “minimal context”.
In particular, considering the arrows below, we will often say that C[−] contextualizes t, while i
instantiates it.

l
i // m t // n

C[−] // o

In the theory of reactive systems, categories are used to model the state space of formalisms.
More precisely, a category together with a special distinguished object 0. The arrows having 0
as domain will model the possible states of a system, while arrows having different domains will
model the possible environments in which a system can interact. With an abuse of notation, we
will refer to the former as terms (since they do not have holes) and the latter as contexts.

The last step before giving the main definition, is to introduce reaction rules. These are
simply pairs (consisting of a left-hand-side and a right-hand-side) of terms (arrows with domain
0). When the left-hand-side of a rule occurs into a term (representing the state of a system), it
is removed and replaced by the right hand side, thus obtaining a new term. This means that we
close the rules under all contexts, i.e., if l Ã r is a rule and p = C[l] for some context C[−], then
p = C[l] Ã C[r]. However, in many interesting formalisms, especially process calculi, there are
contexts that do not preserve reaction. As an example consider the prefix context b.− of CCS:
a|a Ã 0 but b.(a|a) 6Ã b.0. Thus, in order to be more general, we also introduce reactive contexts
as those contexts that preserve reactions, and we define the reaction relation by closing the rules
only under reactive contexts.

Hereafter, given a category C, we will denote with |C| the class of objects of C, with ||C|| its
class of morphisms, and with C[m,n] the class of morphisms with source m and target n. We will
say that D is a composition reflecting subcategory of C if ∀d1; d2 ∈ ||D||, then d1, d2 ∈ ||D||.
Definition 1.1 (Reactive system). A reactive system R consists of:

1. a category C,

2. a distinguished object 0 ∈ |C|,
3. a composition-reflecting subcategory D of reactive contexts,

4. a set of pairs R ⊆ ⋃
m∈|C|C[0,m]×C[0,m] of reaction rules.

Note that the rules have to be ground, i.e., the two arrows representing a rule have the dis-
tinguished object 0 as domain. This is a strong assumption that can be considered too much
simplistic. This problem will be more evident after Example 1.2 and will be faced in Section 1.2.2.

Moreover note that the two components of a rule 〈l : 0 → m, r : 0 → m〉 ∈ R must have the
same codomain m. This is necessary in order to define the reaction relation by closing rules under
reactive contexts.

Definition 1.2 (Reaction relation). Let R = 〈C, 0,D,R〉 be a reactive system. The reaction
relation Ã is defined as follows:

p Ã q iff there is 〈l, r〉 ∈ R and d ∈ D such that p = l; d and q = r; d,

as illustrated in diagram below.

6 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

m2

m1

d

OO

==

0

l

GGp

<<

r

WW q

bb

The definitions introduced above are really simple, but also very general. In the following we
will show several formalisms that can be naturally seen as reactive systems.

The notion of signature will often occur during the whole thesis: a signature Σ is a set of symbol
operators together with an arity function ar : Σ → ω that associates to any symbol its arity (i.e.,
a natural number). Another fundamental concept is the following.

Definition 1.3 (Free Lawvere theory [74]). Let Σ be a signature. The free Lawvere theory for Σ,
denoted as Th[Σ], is a category with object the natural numbers and morphisms c : m → n being
n-tuples of m-holed terms. Composition is substitution of terms, and identities idn : n → n are
〈−1,−2, . . . ,−n〉. The category is cartesian, with 0 the terminal object and n as the product of 1
with itself n-times. The theory is free, in the sense that there are no other axioms besides those
imposed by the cartesian structure.

Example 1.1. Consider the signature Σ = C ∪ {0, |}, where C is a set of constants, 0 is a
constants and | is a binary operator, i.e., ar(|) = 2.

This signature defines the category Th[Σ]. Hereafter we will shows some arrows as example.
The term 0 is an arrow 0 → 1, since it is a tuple with no holes. For the same reason all the
constants c ∈ C are arrows 0 → 1. The binary context −1 | −2 is an arrow 2 → 1, and moreover
the product of 0 with a constant c is 〈0, c〉 : 0 → 2. We can compose the latter with the former,
namely 〈0, c〉;−1 | −2 obtaining 0 | c : 0 → 1. The identity of 1 is −1 : 1 → 1. The unary
context −1 | c : 1 → 1 is obtained by the composition of 〈−1, c〉 (i.e., the product of −1 and c) and
−1 | −2 : 2 → 1.

Thus arrows of Th[Σ] can be thought as terms (those with domain 0) and contexts (the others).
However there are also non-linear contexts, i.e., an hole can appear any number of times. For
example, there exists also the arrow 0 : 1 → 1, that can be seen as a contexts that ignores its
hole (indeed the hole does not appear in the context). Another example of non linear context is
−1 | −1 : 1 → 1, where the hole −1 appears twice.

Definition 1.4 (Free term category). Let Σ be a signature. An arrow t : m → n of Th[Σ] is linear
if each of the m holes appears exactly once in t. The free term category of Σ, denoted as CΣ, is the
subcategory of Th[Σ] having the same objects (natural numbers), but only linear arrows. Note that
this defines a category since identities are linear and linearity is preserved by arrows composition.

In some examples, where we need non linear term, e.g., in Logic Programming (Section 3.2),
we will use the entire Lawvere category. Often, e.g. the example below, it is sufficient to restrict
our attention to term category.

Example 1.2 (Term rewriting). A term rewriting system is given by a set of rules R of the
form l → r, where l and r are arrows of CΣ. The operational semantics is simply obtained by
contextualizing and instantiating l and r. In other words, p Ã q if and only if there exists l → r ∈ R
such that there exists a context C[−] and an instantiation i, such that p = C[l[i]] and q = C[r[i]].

In order to see a term rewriting system as a reactive system, we have to restrict our attention
to ground term rewriting systems, i.e., those where the rules are ground (namely, these cannot
be further instantiated). Every ground term rewriting systems, define a reactive system where CΣ

is the base category, the distinguished object is the natural number 0, all the contexts are reactive
(i.e., D = CΣ) and the set of rules is the set of rules of the rewriting system.

The above example highlights one of the biggest limitations of reactive systems, namely the
ground rules. Indeed, in a lot of formalisms and in almost all process calculi, reaction rules are

1.1. LEIFER AND MILNER REACTIVE SYSTEMS 7

not ground but contains variables and thus, in order to perform a reaction, one need not only to
contextualize, but also to instantiate a rule. This problem will be discussed in Section 1.2.2. In
the following example we consider a fragment of CCS, whose reaction semantics can be expressed
just by ground rules.

Example 1.3 (Simple Process Calculus [106, 108]). Consider the following fragment of CCS for
a set of channels names N

p ::= 0
∣∣ a

∣∣ ā
∣∣ p1 | p2 a ∈ N

The signature Σ consists of a set of input and output constant parametrised over N , the null
process 0, and the binary operator of parallel composition |. Note that Σ is essentially the signature
tackled in Example 1.1.

The intuitive operational semantics is that a process sending on a channel named a ∈ N and a
process receiving on the same channel, can react and disappears. In symbols ā | a Ã 0.

We can build the reactive system of simple process calculus as SPC = 〈CΣ, 0,CΣ, R〉 where
CΣ is the term category over Σ, the object 0 is the natural number, all contexts are reactive and
the set of rules R is {〈ā | a,0〉 s.t. a ∈ N}.

The reactive system described in the above example does not have the expected behavior.
Consider the terms (ā | b) | a and ā | (a | b). Both of them do not react, because they do not
contain the sub-term ā | a, while our intuition suggests that the components a and ā can however
interact. This is because, in the previous example, when describing the reactive semantics, we have
implicitly assumed that the parallel composition was associative and commutative.

In order to naturally express the reactive semantics of process calculi is often fundamental to
consider processes not syntactically, but quotiented by a structural congruence (denoted as ≡)
which equates processes that are syntactically different but trivially semantically equivalent as for
example b | a and a | b or ā | (a | b) and (ā | a) | b. This means that in the reaction semantics,
there is usually a rule of the form:

p ≡ p′ p′ Ã q′ q′ ≡ q

p Ã q
.

This concept is due to the work of Berry and Boudol on Chemical Abstract Machine [13], and
it is became more and more influential, so that nowadays almost all process calculi are equipped
with a structural congruence relation.

In order to properly model process calculi as reactive systems, we have to consider processes
not syntactically, but quotiented by ≡.

Definition 1.5 (Quotiented Lawvere theory and quotiented term category). Let Σ be a signature
and E be a congruence relation over the arrows of Th[Σ]. The Lawvere theory quotiented by
E, is the category Th[Σ/E] having the same objects of Th[Σ], but with arrows [p] : m → n as
equivalence classes of arrows p : m → n of Th[Σ]. It is easy to verify that the composition operator
is well defined and Th[Σ/E] is still a category. In the same way, we can define the term category
quotiented by E, denoted as CE

Σ.

Whenever the structural allows for α-conversion, as it is the case of λ-calculus, this kind of
quotient becomes much more problematic, since we cannot α-convert contexts. However the above
definition is enough for several cases, such as our Simple Process Calculus.

Example 1.4 (Simple Process Calculus revisited). Now, we can define a reactive system for the
Simple Process Calculus introduced in Example 1.3, by considering as base category C≡

Σ, where ≡
is the smallest congruence relation which ensures associativity, commutativity and identity (ACI)
of parallel composition.

In a such reactive system, the reactive behavior of processes is as expected, indeed now both
(ā | b) | a and ā | (a | b) can react and become b.

8 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

Figure 1.1: The P/T Petri net N .

The following example introduces a reactive system for Petri nets. This is the base for the
development of open input Petri nets that will be tackled during the whole thesis.

Example 1.5 (Petri nets). Let us introduce some preliminary notation.
Given a set X, we write X⊕ for the free commutative monoid over X. A multiset m ∈ X⊕ is

a finite function from X to ω (the set of natural numbers) that associates a multiplicity to every
element of X. Given two multisets m1 and m2, m1 ⊕ m2 is defined as ∀x ∈ X, m1 ⊕ m2(x) =
m1(x)+m2(x). We write m1 ⊆ m2 if ∀x ∈ X, m1(x) ≤ m2(x). If m1 ⊆ m2, the multiset m2ªm1

is defined as ∀x ∈ X m2 ª m1(x) = m2(x) − m1(x). Given a set Y ⊆ X, and m ∈ X⊕, the
multiset m » Y is defined as m » Y (x) = m(x) if x ∈ Y , 0 otherwise. We write ∅ and ε to denote
respectively the empty set and the empty multiset. In order to make lighter the notation we will use
aab to denote the multiset {a, a, b}. Sometimes we will use anbm to denote the multisets containing
n copies of a and m copies of b.

A place transition (P/T) Petri net is a tuple N = 〈S, T, pre, post〉 where S is the set of places,
T is the set of transitions (with S ∩ T = ∅), pre, post : T → S⊕ are functions mapping each
transition to its pre- and post-set. A marking m over a net N is a multiset of tokens over the
places of N , i.e., m ∈ S⊕. A marked net is a P/T Petri net N together with a marking m.

Figure 1.1 shows a P/T Petri net where, as usual, circles represents places and rectangles
transitions. Arrows from places to transitions represent pre, while arrows from transitions to
places represent post.

The operational semantics of marked nets is expressed by the following rules, where we use •t
and t• to denote, respectively, pre(t) and post(t).

t ∈ T

N,• t Ã N, t•
N, m1 Ã N,m2

N,m1 ⊕ c Ã N,m2 ⊕ c

Thus every P/T Petri nets can be seen as a reactive systems on multisets, where the set of
reactive rules R is defined by the transitions of the net, and the reactive contexts are all possible
markings over the net.

More formally given a P/T Petri net N = (S, T, pre, post), we can define a reactive system
N = 〈PL(S), 0,PL(S), T〉, where the category PL(S) is defined for every set of places S, as
follows:

- 0 is the only object,

- arrows 0 → 0 are multisets on S,

- identity arrow is the empty multiset,

- composition of arrows is the union of multisets.

1.1. LEIFER AND MILNER REACTIVE SYSTEMS 9

(in) a
a−→ 0 (out) ā

ā−→ 0 (rea) a | ā τ−→ 0

(par) p
µ−→ p′

p | q µ−→ p′ | q (str) p ≡ p′ p′
µ−→ q′ q′ ≡ q

p
µ−→ q

Table 1.1: Interactive semantics of Simple Process Calculus.

Note that PL(S) is trivially a category since ⊕ is trivially associative and with identity.
The distinguished object is 0 and all the contexts are reactive.
The set of rules T is defined by the set of transitions T : for any t ∈ T , 〈•t, t•〉 : 0 → 0 ∈ R.

1.1.2 Contexts as labels: saturated semantics

In the previous section, we have introduced reactive systems and we have shown some examples,
namely, ground term rewriting, a Simple Process Calculus (SPC) and P/T Petri nets. The op-
erational behavior of these formalisms is simply obtained by closing some compact reaction rules
under a set of reactive contexts.

This kind of semantics specification is very natural and intuitive, but it is not compositional.
As an example, consider the processes a and b of SPC (Example 1.3). These have to be considered
equivalent, since they have the same operational behavior: they do not perform any transition.
However, when they are inserted into the context ā | −, the former can perform a reaction, while
the latter cannot. This means that the equivalence resulting from the reaction semantics is not a
congruence.

A different approach, yielding to compositional abstract semantics, consists in specifying an
interactive semantics through a labeled transition system: a set S of states and a transition relation
T ⊆ S × L × S for a set of labels L. Intuitively, a transition s

l−→ t (i.e., 〈s, l, t〉 ∈ T) means that
the state s can participate to an interaction (represented by l) and, by doing so, it evolves to t. As
an example, look at Table 1.1. It expresses the interactive semantics of SPC: the transition a

a−→ 0
intuitively means that the process a can interact by performing an input on the channel named a.
With such a semantics specification, we can immediately distinguish between the processes a and
b.

It is worth noting that the meaning of “interaction” is quite vague and thus it is not clear
what the labels should be. In [106], Sewell proposes to consider interactions as the “smallest
contexts allowing a system to perform a certain reaction”. Leifer and Milner in [76] introduces
relative pushout, a categorical way of making precise this intuition. The main result of their theory
states that several abstract semantics over the transition systems labeled with minimal contexts
are compositional. This will be shown later in Section 1.1.3.

Another way of obtaining compositional abstract semantics from a reactive semantics consists
in observing the behavior of a system in any possible environment: we can define transition system
where labels are all the contexts (and not just the minimal) that allow a reaction:

p
C[−]→SAT q iff C[p] Ã q.

Considering reactive systems, this means that p; C[−] matches l; d for some rule 〈l, r〉 ∈ R and
some reactive context d. This situation is formally depicted by the diagram in Figure 1.2.

Definition 1.6 (Redex square). Let R = 〈C, 0,D, R〉 be a reactive system. A redex square for R
is a diagram as the one of Figure 1.2, where d ∈ D and 〈l, r〉 ∈ R.

Definition 1.7 (saturated transition system). Let R = 〈C, 0,D,R〉 be a reactive system. The
saturated transition system of R (satts for short) is defined as follows:

• states: arrows p ∈ C[0, I], for arbitrary I;

• transitions: p
C[−]→SAT q iff C[p] Ã q.

10 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

I4

I2

C[−]
??ÄÄÄÄÄÄÄ
= I3

d

__???????

0

p

``@@@@@@@ l

>>~~~~~~~

Figure 1.2: A redex square for d ∈ D and 〈l, r〉 ∈ R. This defines the transition p
C[−]→SAT r; d.

In this thesis we will call saturated semantics all those abstract semantics defined over satts.
In particular, we will focus on saturated bisimilarity (∼S).

Consider an external observer that, at any step of the execution of a system, can put it into
some context and see if a reaction occurs. Two states are saturated bisimilar if they cannot be
distinguished by such an external observer. The following is a well-known result, that is analogous
to [89] and [65].

Proposition 1.1. Saturated bisimilarity is the coarsest bisimulation on Ã that is also a congru-
ence.

Proof. Suppose ab absurdum that ∼S is not a congruence. Then there exist p, q such that p ∼S q
and C[−] such that C[p] 6∼S C[q]. Thus either C[p] or C[q] has to perform a transition that

the other cannot match. Let C[p]
D[−]→SAT p′ be such transition. Thus D[C[p]] Ã p′ and thus

p
D[C[−]]→SAT p′. Since p ∼S q, then also q

D[C[−]]→SAT q′ and p′ ∼S q′ and thus C[q]
D[−]→SAT q′. This is in

contrast with the hypothesis that C[q] cannot answer to C[p]
D[−]→SAT p′.

Now we prove that ∼S is the largest bisimulation congruence. Let R be a bisimulation con-
gruence on Ã. Then, p R q implies that for all C[−], C[p]R C[q]. Then C[p] Ã p′ implies that
C[q] Ã q′ and p′Rq′. Hence R is a saturated bisimulation, i.e., R ⊆∼S .

Saturated abstract semantics are trivially congruences, but they have been usually considered
too coarse. One of the main result of the thesis is to show that in many interesting formalism they
are exactly what we are looking for.

In the remainder of this section, we will show what is the satts in the setting of P/T Petri
nets and we will introduce an interactive extensions of them, called open Petri nets, that will be
reused several times during the whole thesis.

Example 1.6 (satts for Petri nets). Consider the P/T Petri net N in Figure 1.1 and its associated
reactive system (Example 1.5). In the satts, states are markings over N and labels are markings
that can be added to states to perform some reactions. For example, the transition bb

y→SAT bc
denotes that the state bb can reach the state bc, by adding a token in the place y. This is formally
depicted by the following redex square, where the rule (corresponding to a transition) is 〈by, c〉.

0

=0

y
@@¡¡¡¡¡¡

0

b
^^>>>>>>

0
bb

^^>>>>>> by

@@¡¡¡¡¡¡

The above example suggests an interactive semantics for P/T Petri nets: at any step, tokens
can be added by the environment in some places in order to perform some reaction. During the
thesis, we will meet several times an interactive extension of Petri nets that is called open Petri

1.1. LEIFER AND MILNER REACTIVE SYSTEMS 11

Figure 1.3: The open input Petri net N .

nets [69, 8]. These are substantially P/T Petri nets where only some places, that are called open
places, are accessible from the environment. Open places could be input or output. Intuitively the
environment can insert tokens into the input places and remove tokens from the output places.

In the following we introduce a reactive system for open Petri net having only input places,
that we call open input Petri net. This example will be very important later in Section 1.2.1 to
show an important idea of this thesis. A full treatment of open Petri nets will be done later in
Section 5.3. It is worth noting that there have been several other encodings of (open) Petri nets
into reactive systems. In [83], Milner encodes an open variant of C/E net into bigraphs [82], while
in [102], Sassone and Sobocinski encodes P/T nets (without cycles) into borrowed contexts [43].

Example 1.7 (Open input Petri nets). An open input Petri net (shortly, input net) N is a tuple
〈S, T, pre, post, IP 〉 such that 〈S, T, pre, post〉 is a P/T Petri net and IP ⊆ S is the set of input
places. Thus an open input Petri nets, is substantially a P/T Petri net, together with the interface
IP . The reactive behavior is the same of P/T Petri nets.

Consider the input net N in Figure 1.3. This is substantially the P/T Petri net of Figure 1.1
equipped with the interface consisting of input places x and y (note that they have an incoming
arrows denoting that tokens can be inserted from the environment).

In this example, starting from the reactive system for P/T Petri net introduced in Example 1.5,
we show how every input net defines a reactive system. In Example 1.5, all the places are visible
from the environment, while here we want only a subset of them. Thus we could restrict contexts
(i.e. arrows from 0 → 0) only to markings over open places. This solution is inadequate since,
rules have to be contextualized also with markings over closed places. As an example, consider the
reaction bby Ã bc of the input net N in Figure 1.3. This reaction can be performed only if the
rule (transition) 〈by, c〉 can be contextualized with the closed place b. Summarizing, we would like
to contextualize the states only with markings over input places, while rules with marking over all
places.

In order to do that, we add to the base category PL(N) (Example 1.5) an object 1 so that there
are no arrow 1 → 0. Arrows 1 → 1 are markings over only the input places, while, all the other
arrows are markings over all places. Arrows 0 → 1 represent states, since they can be contextualized
only with markings over input places (arrows 1 → 1). Arrows 0 → 0 represent rules, since these
can be contextualized over all the places (i.e., arrows 0 → 0 and 0 → 1).

More formally, given an open input Petri net N = 〈S, T, pre, post, IP 〉, we define the reactive
system N = 〈OPL(N), 0,OPL(N), T〉 where T is the same of that of P/T Petri nets (Example
1.5) and OPL(N) is defined as follows

- 0 and 1 are the only objects,

- arrows 0 → 0 and 0 → 1 are multisets on S, while arrows 1 → 1 are multisets on IP ,

- identity arrows are the empty multisets,

12 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

1

=1

y
@@¡¡¡¡¡¡

0

b
^^>>>>>>

0
bb

^^>>>>>> by

@@¡¡¡¡¡¡

1

1

xy
@@¡¡¡¡¡¡ y // 1

x

OO

0

bx
^^>>>>>>

boo

0
bb

^^>>>>>> by

@@¡¡¡¡¡¡

(i) (ii)

Figure 1.4: (i) bb
y→SAT bc; (ii) bb

xy→SAT bcx.

- composition of arrows is the union of multisets.

As an example, look at diagram (i) in Figure 1.4. It describes the transition bb
y→SAT bc. The

rule is the pair of arrows 〈by, c〉 : 0 → 0, that is contextualized with b (that is a token in a closed
place), while the arrow bb : 0 → 1 can be contextualized only with tokens in input places. Note that
the state bb can use only the rule 〈by, c〉. Indeed all the other rules contain a, c, e in the left hand
side and those cannot be added to bb : 0 → 1.

1.1.3 Minimal contexts: IPO semantics

Saturated transition system is often infinite-branching since all contexts that allow reactions may
occur as labels. However, most of the transitions are redundant, i.e., not meaningful in the bisimu-
lation game. As an example consider the multiset bb of the input net N described in Example 1.7.

It can perform the transition bb
y→SAT bc, but also the transitions bb

xny→SAT bcxn for all n ∈ ω.
Thus the satts of bb is infinite branching, but only the former transition is interesting, all the
other are to some extent redundant, because xn does not contribute to the reaction. The same
happens in the Simple Process Calculus (Example 1.3). Consider the term a. The observer can

put it into the context ā | − and observe a reaction. This corresponds to the transition a
ā|−→SAT 0.

However we also have a
p|ā|−→SAT p | 0 for any process p.

In order to avoid considering redundant transitions Leifer and Milner introduced idem pushouts
(IPOs) to denote “the minimal contexts that allow a system to reach a rule”.

Definition 1.8 (RPO). Let the diagrams below be in some category C. Let (i) be a commuting
diagram. Any tuple 〈m5, e, f, g〉 which makes (ii) commute is called a candidate for (i). A relative
pushout (RPO) is the smallest such candidate. More formally, it satisfies the universal property
that given any other candidate 〈m6, e

′, f ′, g′〉, there exists a unique mediating morphism h : m5 →
m6 such that (iii) and (iv) commute.

I4

I2

c

??ÄÄÄÄÄÄ
I3

d

__@@@@@@

I1

a

__@@@@@@ b

??ÄÄÄÄÄÄ

I4

I2

c

??ÄÄÄÄÄÄ
e

// I5

g

OO

I3f

oo

d

__@@@@@@

I1

a

__@@@@@@ b

??ÄÄÄÄÄÄ

I6

I2

e′
??ÄÄÄÄÄÄ

e
// I5

h

OO

I3f

oo

f′
__@@@@@@

I4

I6

g′
??ÄÄÄÄÄÄ
I5

g

OO

h

oo

(i) (ii) (iii) (iv)

Definition 1.9 (IPO). A commuting square such as diagram (i) above is called idem pushout
(IPO) if 〈m4, c, d, idm4〉 is its RPO.

Consider diagrams (i) and (ii) in Figure 1.4. The former is an IPO, since it has as candidate
only 〈1, y, b, id1〉. The latter instead is not an IPO, since it has 〈1, y, b, x〉 as RPO. The arrows

1.1. LEIFER AND MILNER REACTIVE SYSTEMS 13

b
y // c x // d

cx

ε
77ooooooo

a
xy //

y

@@£££££££££
e

y &&MMM
MMM

M
ε // f

fy

Figure 1.5: The its of a, b and cx of the open input Petri net in Figure 1.3.

x : 1 → 1 is a piece of context that is common both to xy and bx, and thus it is not really necessary
for the reaction. This formally explains why the transition bb

y→SAT bc is not redundant, while

bb
xny→SAT bcxn are redundant.
Leifer and Milner eliminate redundancy by deriving an ltscontaining only the transitions with

minimal contexts as labels.

Definition 1.10 (IPO labeled transition system). Let R = 〈C, 0,D, R〉 be a reactive system. The
IPO labeled transition system of R (its for short) is defined as follows:

• states: arrows p ∈ C[0, I], for arbitrary I;

• transitions: p
C[−]→I r; d iff d ∈ D, 〈l, r〉 ∈ R and the diagram below is an IPO.

I4

I2

C[−] ??~~~~
I3

d
__@@@@

0
p

``AAAAA l

>>}}}}}

In other words, if inserting p into the context C[−] matches l; d, and C[−] is the “smallest”
such context (according to the IPO condition), then p transforms to r; d with label C[−], where r
is the right hand side of l. In this lts labels represents the interactions, i.e., the exact amount of
context that is needed to a system to react.

Example 1.8 (its in open input Petri nets). Here we provide a construction for RPOs in the
category OPL(N) (Example 1.7).

Consider the diagrams of Definition 1.8. Let diagram (i) be a commuting diagram in OPL(N),
then a, b, c, d are all multisets such that a⊕ c = b⊕ d. Let g = c ∩ d and e = cª g and f = dª g.
Now we have that diagram (ii) commutes. Indeed by definition, e ⊕ g = c and f ⊕ g = d and
a⊕e = a⊕ cªg = b⊕dªg = b⊕f . This proves that 〈e, f, g〉 is a candidate. To prove that it is an
RPOs, just note that for any other candidate 〈e′, f ′, g′〉, g′ ⊆ g, since g is the biggest submultiset
of both c and d.

This way of constructing RPOs allows us to easily build the IPO labeled transition system.
Figure 1.5 shows the its of multisets a, b and cx of the input net N in Figure 1.3. Consider the
multisets e and cx. The former can interact both with the rule 〈e, f〉 generating the transition
e

ε→I f and with the rule 〈ey, fy〉 generating the transition e
y→I fy. The latter can interact only

with the rule 〈cx, d〉 generating the transition cx
ε→I d.

Abstract semantics defined over its are called IPO semantics. Leifer and Milner focuses on
these semantics and their main result state that IPO bisimilarity, IPO trace equivalence and IPO
failure equivalence are congruences, whenever the reactive system has redex RPOs (defined below).

Definition 1.11 (Having redex-RPOs). A reactive system R = 〈C, 0,D, R〉 has redex RPOs, if
every redex square has an RPO, i.e., every square such that of Figure 1.2 has an RPO.

14 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

In this thesis we will mainly focus on (strong) bisimilarity. However, we will also consider a
generalization of trace equivalence for tackling Logic Programming (Section 3.2).

In the remainder of the section, we will prove that IPO bisimilarity (denoted by ∼IPO) is a
congruence. The following two lemmas are needed.

Lemma 1.1. Considering the diagram below, in arbitrary category the following hold:

1. if 〈m4, c, d, u〉 is an RPO for diagram (i), then diagram (iii) is an IPO;

2. if diagram (i) has RPO, 〈m4, c, d, u〉 is a candidate for it (as illustrated in diagram (ii)) and
diagram (iii) is an IPO, then 〈m4, c, d, u〉 is an RPO for diagram (i).

I5

I2

c′
??ÄÄÄÄÄÄ

I3

d′
__@@@@@@

I1

a

__@@@@@@ b

??ÄÄÄÄÄÄ

I5

I2

c′
??ÄÄÄÄÄÄ

c
// I4

u

OO

I3
d

oo

d′
__@@@@@@

I1

a

__@@@@@@ b

??ÄÄÄÄÄÄ

I5

I2

c
??ÄÄÄÄÄÄ

I3

d
__@@@@@@

I1

a

__@@@@@@ b

??ÄÄÄÄÄÄ

(i) (ii) (iii)

Lemma 1.2 (Composition and decomposition property). If diagram (i) below has RPO, then:

I6

I2

e;f
??ÄÄÄÄÄÄ

I3

d;g
__@@@@@@

I1

a

__@@@@@@ b

??ÄÄÄÄÄÄ

I6

I4

f
??ÄÄÄÄÄÄ

I5

g
__@@@@@@

I2

c

__@@@@@@
e

??ÄÄÄÄÄÄ
I3

d
__@@@@@@

I1

a

__@@@@@@ b

??ÄÄÄÄÄÄ

I6

I4

f
??ÄÄÄÄÄÄ

I3

d;g
__@@@@@@

I1

a;e

__@@@@@@ b

??ÄÄÄÄÄÄ

(i) (ii) (iii)

1. (composition) if both squares in diagram (ii) are IPOs, then diagram (iii) is also an IPO,

2. (decomposition) if diagram (iii) is an IPO, and the lower square of diagram (ii) is an IPO,
then so is the upper square.

Theorem 1.1 (from [76]). In a reactive system having redex-RPOs, IPO bisimilarity is a congru-
ence.

I6

I4

f
??ÄÄÄÄÄÄ

I2

C[−]

__@@@@@@
I3

d

^^>>>>>>>>>>>>>>>>

0
p

__?????? l

??ÄÄÄÄÄÄ

I6

I4

f
??ÄÄÄÄÄÄ

I5

d2
__@@@@@@

I2

C[−]

__@@@@@@
g

??ÄÄÄÄÄÄ
I3

d1
__@@@@@@

0
p

``@@@@@@@ l

>>~~~~~~~

I6

I4

f
??ÄÄÄÄÄÄ

I5

d2
__@@@@@@

I2

C[−]

__@@@@@@
g

??ÄÄÄÄÄÄ
I3

e
__@@@@@@

0
p

``@@@@@@@ l′

>>~~~~~~~

(i) (ii) (iii)

Proof. In order to prove that ∼IPO is a congruence we have just to prove that

R = {(C[p], C[q]) | p ∼IPO q, C[−] ∈ C}

1.2. LIMITATIONS OF REACTIVE SYSTEMS 15

(tr) t ∈ T
N,• t⊕ c

τ−→ N, t• ⊕ c
(in) i ∈ IP

N, m
i−→ N,m⊕ i

Table 1.2: Interactive semantics of open input Petri nets.

is an IPO bisimulation. Suppose that C[p]
f→I p′. Then there exists a rule 〈l, r〉 ∈ R and a d ∈ D

such that diagram (i) above is an IPO and p′ = r; d. Since C has redex RPOs, then we can
construct an RPO as illustrated in diagram (ii). By Lemma 1.1.1, we have that the lower square
is an IPO, and by decomposition property of IPO (Lemma 1.2.2) we can say that also the upper
square is an IPO. Moreover since d1; d2 = d ∈ D, and since D is composition-reflecting, then both
d1 and d2 ∈ D.

Since the lower square is an IPO, then p
g→I r; d1 and since p ∼IPO q, then also q

g→I r′; e for
some 〈l′, r′〉 ∈ R, e ∈ D and r; d1 ∼IPO r′; e. This means that the lower square of diagram (iii) is
an IPO.

At this point we can compose the latter square with the top square of diagram (ii). The
resulting composition (depicted in diagram (iii)) is an IPO, by the IPO composition property

(Lemma 1.2.1). Then C[q]
f→I r′; e; d2 and, since r; d1 ∼IPO r′; e, then p′ = r; d1; d2 R r′; e; d2

Here we want to notice that the proof mainly relies on the composition and decomposition
properties of IPO. In Section 4.2.3, we will show that this is just an instance of the tile decomposition
property [58], and that this theorem can be seen as an instance of a more general theorem on tile.

Corollary 1.1. In a reactive system having redex-RPOs, ∼IPO⊆∼S.

Proof. It follows immediately from Proposition 1.1 and Theorem 1.1.

1.2 Limitations of reactive systems

The main aim of this thesis is that to develop a theoretical framework providing a uniform way
of reasoning about abstract semantics of interactive system. We have done this, starting from the
theory of reactive systems [76] that is our main source of inspiration. In order to reach our aim,
in this section, we highlight the main problems of this theory. The most important concerns the
adequacy of IPO abstract semantics (Section 1.2.1). In Section 1.2.2, we will show the problem of
having ground rules and some solutions to this, while in Section 1.2.3 we will consider the problem
of the existence of RPOs that is the main reason for the introduction of G-reactive systems in
Section 1.3.

1.2.1 Adequacy of IPO semantics

After several years and several attempts of modeling fully-fledged formalisms, there exist few
results stating the correspondence between IPO semantics derived from the reactive systems and
the original abstract semantics of the encoded formalism.

In our opinion, is still open the question if IPO semantics are really adequate as observational
equivalence. The following example shows that the IPO bisimilarity derived for open Petri nets is
stricter than the canonical bisimilarity for open Petri nets.

Example 1.9 (∼IPO is too strict in open input Petri nets). The interactive semantics for open
Petri nets has been given in [9]. Table 1.2 shows this interactive semantics, restricted to the case of
open input Petri nets (i.e., open Petri nets without output places). The rules (tr) corresponds to
the usual reaction Ã, while the rule (in) corresponds to receiving a token in an open place. Figure
1.6 shows part of the infinite labeled transition system for the markings a, b, c and e of the input
net N depicted in Figure 1.3. Abstract semantics is defined in [9] as the canonical bisimilarity on
this lts.

Now consider the its of the multisets e and cx shown in Figure 1.5. The former can interact
both with the rule 〈e, f〉 generating the transition e

ε→I f and with the rule 〈ey, fy〉 generating

16 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

a
x //

y

²²

ax
x //

y

²²

. . . b
x //

y

²²

bx
x //

y

²²

. . .

ay

τ

%%KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK
x //

y

²²

axy

τ

$$IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

τ

§§°°
°°
°°
°°
°°
°°
°°
°°
°°
°°

x //

y

²²

. . . by

τ

££

x //

y

²²

bxy

τ

££

x //

y

²²

. . .

.

e
x //

y

²²

τ
""EE

EE ex
x //

y

²²

. . . c
x //

y

²²

cx
x //

y

²²

τ

##GGGG . . .

f
x //

y

²²

. . . d
x //

y

²²

. . .

ey x //

y

²²

τ
""DD

D exy x //
y

²²

. . . cy x //

y

²²

cxy x //

y

²²

τ
""FFF

F
. . .

fy
x //

y

²²

. . . dy
x //

y

²²

. . .

.

.

Figure 1.6: The labeled transition systems for the markings a, b, c and e of the input net N of
Figure 1.3

the transition e
y→I fy. The latter can interact only with the rule 〈cx, d〉 generating the transition

cx
ε→I d. Thus e 6∼IPO cx, but we have that e ∼S cx. Indeed when e proposes the satts move

e
y→SAT fy, cx can answer with cx

y→SAT dy and fy ∼S dy since both cannot move.
Moreover a 6∼IPO b but a ∼S b. Indeed when a proposes a

xy→SAT e, b can answer with
b

xy→SAT cx and, as proved above, e ∼S cx.
Note that the multiset a and b are bisimilar also w.r.t. the canonical lts depicted in Figure

1.6.
Here we do not prove that saturated bisimilarity coincides with the canonical one, but we want

just to highlight that ∼IPO is too strict. Indeed a 6∼IPO b, but an external observer, that can just
insert tokens into the open places and observe reactions, cannot distinguish them.

The above example is in our opinion fundamental. It points out that IPO semantics are not
really observational since the observer can distinguishes processes in virtues of the used rules. The
multiset e in the previous example performs both e

ε→I f and e
y→I fy. The former transition is

smaller than the latter, but they are generated by two different rules (i.e., transition of the net)
and then both are IPOs. This will be further investigated by showing two examples, namely Logic
Programming (Section 3.2) and open bisimilarity (Section 3.3) where IPO semantics results to be
too strict.

From the other side, saturated semantics are usually considered too coarse.
Sewell made this explicit in the pioneer work [106]. There, in order to argument that saturated

bisimilarity is too coarse, he showed the Simple Process Calculus (SPC, introduced in Example 1.3)
as example: a | ā and b | b̄ are saturated bisimilar in SPC. This is proved simply by noting that for
any possible context C[−], both C[a | ā] and C[b | b̄] can only react and become C[0]. He closed
his argumentation saying that a | ā and b | b̄ are not considered equivalent by any meaningful
equivalence.

At a first look, this seems true. But consider barbed congruence [87] for SPC. What are barbs
here? The right answer is “there are no barbs”. This can be formally proved by using the theory

1.2. LIMITATIONS OF REACTIVE SYSTEMS 17

recently introduced in [96]. Intuitively, an action has a barb when its “complementary action” has
a continuation. For example in the asynchronous π-calculus, only output has barbs since input has
continuation, while input does not have barbs, since output does not have continuation. While in
the synchronous π (or CCS), both input and output have barbs because both have continuations.
In this fragment, without continuations we have no barbs at all. Now, since there are no barbs,
a | ā and b | b̄ are clearly barbed congruent.

Besides the case of the toy example of SPC, there are also other interesting cases where saturated
bisimilarity coincides with previously defined abstract semantics. In the thesis, we will shows that
in Logic Programming and a fragment of open π-calculus, saturated semantics are exactly what
we are looking for.

However, when considering the full CCS, IPO semantics coincides with the well known bisimi-
larity (as we will show in Chapter 2), while saturated bisimilarity is too coarse. Consider the two
processes defined below.

Ω = τ.Ω Θ = Ω + a.Ω

In [87], Milner and Sangiorgi shows that saturated bisimilarity cannot distinguish these processes.
First, define inhibitor contexts as those context C[−] such that for all process p, if C[p] Ã p′ then
p′ ≡ D[p] for some context D[−] (i.e., all reactions are performed by the context in isolation).
Second, define divergent processes as those processes p such that p Ã p1 Ã p2 Ã . . . Third, an
always divergent process p is a divergent process such that

1. for all context C[−], either C[p] is always divergent or C[−] is an inhibitor,

2. for all context C[−], if C[p] Ã p′ and if C[−] is not inhibitor then p′ is always divergent.

Finally, note that Ω and Θ are always divergent and prove the following lemma.

Lemma 1.3. All always divergent processes are saturated bisimilar.

Proof. Let R =

{〈p, q〉 s.t. p, q always divergent}∪
{〈C[p], C[q]〉 s.t. p, q always divergent and C[−] is an inhibitor}∪ ∼S

be a symmetric relation. We prove that R is a saturated bisimulation. Consider the first part of
the relation and take p and q two always divergent processes. If C[p] Ã p′ then there are two cases:
either C[−] is an inhibitor or C[−] is not.

In the first case, there exists a context D[−] such that p′ ≡ D[p] and C[q] Ã D[q]. At this
point either D[−] is an inhibitor or not. If D[−] is an inhibitor then D[p]RD[q], because p and q
are always divergent. Otherwise, both D[p] and D[q] are always divergent and thus D[p]RD[q]

In the second case, p′ is always divergent and since C[−] is not an inhibitor, C[q] is a divergent
process and moreover C[q] Ã q′ with q′ an always divergent process, and thus p′Rq′

Now consider the second part of the relation. Suppose that p and q are two always divergent
process and C[−] an inhibitor. If D[C[p]] Ã p′ then, since C[−] is an inhibitor there exists E[−]
such that p′ ≡ E[p] and also D[C[q]] Ã E[q]. Trivially E[p]RE[q].

This kind of problem becomes even more serious when considering the weak equivalence. Sup-
pose to have a congruence ≈SAT such that

∼S⊆≈SAT and 0 ≈SAT Ω.

The first condition imposes that ≈SAT must be weaker than ∼S , while the second condition states
that this equivalence must abstract from the internal invisible moves.

It can be easily shown that, in the case of CCS, this equivalence is the trivial equivalence that
equates everything. To convince the reader we show that a.0 ≈SAT 0. In fact, Θ = Ω + a.Ω ≈SAT

0 + a.0, since 0 ≈SAT Ω and ≈SAT is a congruence. Thus 0 ≈SAT Ω ≈SAT Θ ≈SAT a.0.

18 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

At this point the reader may be a little bit confused. Let us think about the experiments that
are performed by the observer. In the saturated bisimilarity, the observer plugs the process inside
some context and observes if a reaction occurs. This is the only thing observable. In the weak
case, the observer cannot observe anymore the reactions. In this way it cannot observe anything
and thus all processes are equivalent. How can we solve this problem? By allowing some additional
observations.

This is what we will do for our encoding of Logic Programming (where we observe if a state is
the empty-goal) and open π-calculus (where we observe all the communications). And this will be
the main argument of Part II.

1.2.2 Ground rules

Example 1.2 shows that in general, a term rewriting system cannot be seen as a reactive system,
while ground systems (i.e., those with ground rewriting rules) can be naturally modeled. Having
ground rules is one of the biggest limitation of reactive systems, since most of the interesting
formalisms, especially process calculi, have non-ground rules.

Bigraphs [82] are a general theoretical model based on reactive systems where is possible to en-
code several process calculi. Here the problem of having non ground rules is avoided by considering
as rules all the possible ground instantiations of several parametric rules. This approach brings
to an infinite number of reaction rules and thus to an infinite branching its, making complex the
analysis of these systems. We direct the reader to [84] for the encoding of CCS into bigraphs.

In [70], Klin, Sassone an Sobociński propose a solution for this problem, by developing a
rewriting theory not only for ground terms, but also for open terms. A similar problem was
already faced in [7].

Instead of considering redex squares, they consider hexagons as the following one.

I6

I5

C[−] ??~~~
I4

D[−]__@@@

I2

P [−]
OO

I3

L[−]
OO

I1
I[−]

__@@@
J[−]

??~~~

In a such hexagon, all the arrows are contexts. In particular D[−] is a reactive context and L[−] is
the left hand side of a non ground rule 〈L[−], R[−]〉. The context I[−] and J [−] are instantiations
of P [−] and L[−]. If a such hexagon commutes we have the transition

P [−]
C[−]

I[−]
// J [−];R[−];D[−].

Then, they define LUX (Locally Universal heXagon) that are the minimal hexagon such that
a reaction occurs (analogous to IPOs), and derive a labeled transition system having LUXes as
labels. As in the theory of reactive systems, they prove that bisimilarity in the derived labeled
transition system is a congruence. Unfortunately, the hypothesis of the theorem are really strict,
and so the whole theory results inapplicable to real formalisms.

We are confident that applying saturated semantics to this setting could help in relaxing the
strict constraints of this theory.

Another solution to the problem of non ground rules can be found within the theory of reactive
system. In fact, we can consider categories slightly different from those usually considered where
the arrows are just contexts. We could have arrows that can both contextualize and instantiate the
rules. In this thesis, we will presents three important formalisms encoded into reactive systems.
Two of them, namely Logic Programming (Section 3.2) and CCS (Chapter 2) uses this idea, in

1.2. LIMITATIONS OF REACTIVE SYSTEMS 19

1

1

a|−1

::vvvvvvvvvv
−1

// 1

a|−1

OO

1−1

oo

a|−1

ddHHHHHHHHHH

0

a

ddHHHHHHHHHH
a

::vvvvvvvvvv

1

1

a|−1

::vvvvvvvvvv
〈−1,a〉

// 2

−1|−2

OO

1〈a,−1〉
oo

a|−1

ddHHHHHHHHHH

0

a

ddHHHHHHHHHH
a

::vvvvvvvvvv

(i) (ii)

Figure 1.7: C≡
Σ does not have RPOs.

order to have a few rules. The same idea underlies second order term category that have been
introduced in [38], in order to model λ-calculus.

1.2.3 Existence of RPOs

Theorem 1.1 states that IPO bisimilarity is a congruence under the hypothesis of existence of
RPOs. This hypothesis is quite restrictive, indeed it does not hold in most of the quotiented terms
categories. For example, the category C≡

Σ (Example 1.4) does not have RPOs, even if there is just
some constants and an associative and commutative binary operator.

Example 1.10 (C≡
Σ does not have RPOs). Consider the category C≡

Σ introduced in Example 1.4.
Consider the exterior square of diagrams (i) and (ii) in Figure 1.7 (note that they are equal). Both
diagrams commutes and thus both 〈1,−1,−1, a | −1〉 and 〈2, 〈a,−1〉, 〈−1, a〉,−1 | −2〉 are candidate
for the same square. However neither of them is smaller than the other, because there does not
exists neither h nor g making the following diagrams commute.

2

1

〈a,−1〉
::vvvvvvvvvv

−1

// 1

h

OO

1−1

oo

〈a,−1〉
ddHHHHHHHHHH

1

1

−1

::vvvvvvvvvv
〈−1,a〉

// 2

g

OO

1〈a,−1〉
oo

−1

ddHHHHHHHHHH

This problem is very important, since in order to give a reactive semantics to process calculi,
it is usually necessary to consider processes quotiented up to structural congruence ≡. A lot of
research have been done to solve this problem, mainly in two different but related directions.

Milner introduced supported pre-categories as the formal basis for his bigraphical reactive sys-
tems [82]. The whole theory of reactive systems can be safely lifted to supported pre-categories,
and the bigraphical structure guarantees not only the existence of RPOs, but also a construction
for them. Bigraphs are general structures, so expressive to encode a lot of different formalisms,
such as CCS [84], C/E nets [83], λ-calculus [85] and π-calculus [66]. In [60], the authors propose
an extension that allows also to encode also fusion calculus [61]. In spite of a great scientific effort,
there are few results relating the IPO semantics obtained by bigraphical reactive systems to the
well-known abstract semantics for the encoded formalisms. This is due, in our opinion, mainly to
the two problems mentioned before, namely, having an infinite number of ground reaction rules
and the (in)adequacy of IPO semantics.

Instead of supported precategories, Sassone and Sobocinski proposed bicategories, as a solution
to this problem. Instead of considering RPOs, they work with a different (bi)colimit that they
call GRPOs. The whole theory of reactive system can be easily lifted to bicategories [103] (recall
that the validity of Theorem 1.1 depends mainly on composition and decomposition property of
(G)RPOs).

20 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

Moreover they prove that the cospan bicategory over an adhesive category [73] has GRPOs. In
[104], they also provide a construction for GIPOs, that generalizes the borrowed contexts construc-
tion of König and Herig [43] for dpo graph rewriting.

In this thesis, we will use this second approach in order to derive an LTS semantics for
CCS (Chapter 2) and thus in Section 1.3 we will further details this approach. As we will see,
differently from bigraphs, this approach also allows us to consider a few rules, instead of an infinite
number of them.

Another solution, substantially different from the two outlined above, consists in considering
not IPO semantics, but saturated semantics. Indeed, as stated by Proposition 1.1, saturated
bisimilarity is always a congruence without any further hypothesis. Moreover in Section 3.1, we
will show that under less restrictive assumptions, namely the existence of IPOs, the its can be
employed to efficiently characterize saturated bisimilarity.

1.3 From reactive systems to borrowed contexts

The theory of reactive systems allows us to derive a labeled transition system (called its) from
reaction rules, where labels represents interactions among systems and the environment, i.e., the
minimal contexts (IPOs) that allow a system to reach the left hand side of a rewriting rule. Abstract
semantics defined over its are congruences under the hypothesis that the reactive system has
redex-RPOs. This holds in those Lawvere-theory like categories that are free, i.e., without axioms.
However, when considering non trivial axioms, as for example those needed for the structural
congruences of process calculi, RPOs do not exist, as discussed in Section 1.2.3.

Bigraphs [84] have been introduced in order to solve this problem and to allow the encoding of
most of process calculi into reactive systems.

A different solution are G-reactive systems [103]. The structures underlying these systems are
not anymore categories but G-categories. Analogously to reactive systems, G-reactive systems
derive an lts (called gipots) where the resulting abstract semantics are congruences. This exten-
sions allows us not only to tackle Lawvere-theory like categories with more complex axioms, but
also to subsume double-pushout (dpo) graph rewriting [44, 41]. Indeed, a dpo rewriting rule can
be seen as a pair of arrows in the cospan bicategories of graph, and the dpo derivations (reactions)
are obtained by closing these arrows under all possible contexts. This was firstly observed by
Gadducci and Heckel in [55].

Independently from G-reactive system, but inspired by the theory of reactive system, Ehrig
and König have introduced borrowed context graph rewriting [43], as an interactive extensions of
the dpo graph rewriting.

In [104], it is shown that for every rewriting system, one can define a G-reactive system such
that dpo derivations corresponds to reactions and borrowed contexts derivations corresponds to
labeled transitions of the derived lts.

These results are fundamental for the treatment of CCS that we will show in Chapter 2. The
uninterested reader can safely skip this section.

Since the categorical concepts involved in these results are quite complex, we will give just a
brief overview that will be useful to understand the link between borrowed contexts rewriting and
reactive systems. For a deeper treatment, we refer the reader to [108].

1.3.1 G-reactive systems

The main motivation of the theory is to relax the constraint of having RPOs. In fact, this property
is quite unusual, as shown in Example 1.10: the term category of a signature with a binary operator
that is associative and commutative does not have RPOs.

1.3. FROM REACTIVE SYSTEMS TO BORROWED CONTEXTS 21

1

1

a|−1

::vvvvvvvvvv
1

a|−1

ddHHHHHHHHHH

0

a

ddHHHHHHHHHH
a

::vvvvvvvvvv

1

1

a|−1

::vvvvvvvvvv
−1

// 1

a|−1

OO

1−1

oo

a|−1

ddHHHHHHHHHH

0

a

ddHHHHHHHHHH
a

::vvvvvvvvvv

1

1

a|−1

::vvvvvvvvvv
〈−1,a〉

// 2

−1|−2

OO

1〈a,−1〉
oo

a|−1

ddHHHHHHHHHH

0

a

ddHHHHHHHHHH
a

::vvvvvvvvvv

(i) (ii) (iii)

Taking the arrows quotiented by structural axioms, we lose information about how diagrams
commute. For example the commuting square in diagram (i) above, can commutes in two different
ways: the a in the bottom left part can correspond both to the one in the bottom right (ii) or
to the one in the top right (iii). The point is therefore which occurrences of a corresponds to
each other. The fundamental contribution of G-reactive system is to equip the base category with
an explicit structure to track such correspondences. This is done by considering as structures
underlying reactive systems, not simply a category but just a 2-category, that is a category with
2-cells that are “arrows between arrows”.

Example 1.11. Consider the base category C≡
Σ (Example 1.4) of the reactive system for the Simple

Process Calculus. We can define 2-cells as families of permutations between terms. Consider the
commuting square of diagram (i) above. There exists two possible 2-cells, corresponding to the two
permutations, shown in the diagram below where we have added indexes to a in order to distinguish
among occurrences. In the leftmost diagram, the 2-cell α sends a1 in a3 and a2 in a4, while in the
second β sends a1 in a4 and a2 in a3.

1

1

a2|−1

::vvvvvvvvvv α +3 1

a4|−1

ddHHHHHHHHHH

0

a1

ddHHHHHHHHHH
a3

::vvvvvvvvvv

1

1

a2|−1

::vvvvvvvvvv β +3 1

a4|−1

ddHHHHHHHHHH

0

a1

ddHHHHHHHHHH
a3

::vvvvvvvvvv

(iv) (v)

Now we briefly report the main definitions of the theory and we refer the reader to [108] for a
complete introduction.

Definition 1.12 (2-category). A 2-category C is a category where every homset (that is the
collection of arrows between any pair of objects X and Y) is the class of objects of some category
C[X, Y] and, correspondingly, whose composition functions C[X, Y] × C[Y, Z] → C[X, Z] are
functors satisfying additional axioms that are listed in Section 2.2.2 of [108].

Given two arrows with the same source and target f, g : X → Y , there could exist a 2-cell
α : f ⇒ g. The role of 2-cells in this approach is to represent structural equivalences: if there
is a 2-cell α : f ⇒ g, then f and g are two terms structurally equivalent, and this equivalence
is described by α. Thus we consider 2-categories whose 2-cells are isomorphisms, that is such
that every homset is not a general category, but a category of isomorphisms (commonly known as
groupoid). These are known as groupoidal enriched categories, or G-categories [68].

Definition 1.13 (G-category). A G-category is a 2-category whose 2-cells are all isomorphisms.

A G-reactive system is substantially a reactive system based on a G-category instead of a
category.

Definition 1.14 (G-reactive system). A G-reactive system R consists of:

1. a G-category C,

22 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

2. a distinguished object 0 ∈ |C|,
3. a subcategory D that is close under 2-cells and reflect composition,

4. a set of pairs R ⊆ ⋃
m∈|C|C[0, m]×C[0, m]of reaction rules.

I2

+3 I1

d

OO

+3

0

l

II
p

==

r

UU
q

aa I4

I2

C[−]
??ÄÄÄÄÄÄÄ

+3 I3

d

__???????

0

p

``@@@@@@@ l

>>~~~~~~~

The reaction relation Ã is defined analogously to the theory of reactive systems. Instead of
requiring that p = l; d and q = r; d, we require that there exists a 2-cell between p and l; d and a
2-cell between r; d and q, as shown in the leftmost diagram above. In the same way, redex square
are defined. Instead of requiring that p; C[−] = l; d, we require that there is a 2-cell from p; C[−]
to l; d.

As in the theory of reactive system, here, a notion of minimal context that allows a reaction
is needed. This notion is categorically defined by GRPO and GIPO that are essentially RPO and
IPO defined on a G-category. Here we do not report the complex definition but we want to give
an intuition. Substantially they are RPO sensitive to how the terms commute, i.e., sensitive to
the 2-cell.

Example 1.12. Consider the commuting square in diagram (i) above. In the setting of G-
categories it has two different 2-cells, represented in diagram (iv) and (v). Note that the candidate
represented in diagram (ii) divides (iv) but not (v), while, the candidate represented in (iii) divides
(v) but not (iv).

Analogously to reactive system, the authors define gipots i.e., the labeled transition system
whose transitions corresponds to GIPOs. As in the case of canonical reactive system, abstract
semantics defined over gipots are congruence. In particular bisimilarity, trace and failure equiva-
lence are congruences whenever the reactive system has redex GRPOs.

1.3.2 Adhesive categories and cospans

After introducing G-reactive systems, Sassone and Sobociński provide a theorem that guarantees
the existence of GRPOs in a certain class of structures. More precisely, given an adhesive category
C, the cospans bicategory over C has GRPOs. In order to explain this we will first introduce
adhesive categories and then cospans.

The notion of adhesive category has been introduced by Lack and Sobociński in [73]. Adhesive
categories are categories where pushouts along monomorphisms are “well-behaved”, where the
paradigm of well behavior is, as usual, the category Set. Various kind of graphical structures used in
computer science forms adhesive categories. These include ordinary directed graphs, typed graphs
and hypergraphs amongst the others. Moreover adhesive categories subsume many properties
of High Level Replacement categories [39]. This ensures that several results of parallelism and
concurrency theory of dpo graph rewriting [44, 41] (introduced in the next section) are valid also
for adhesive categories.

We recall here the definition of adhesive categories [73].

Definition 1.15 (Adhesive category). A category C is called adhesive if

• C has pushouts along monomorphisms;

• C has pullbacks;

1.3. FROM REACTIVE SYSTEMS TO BORROWED CONTEXTS 23

• pushouts along monomorphism are Van Kampen squares.

A Van Kampen square is a pushout like (i), such that for each commutative cube like (ii) having
(i) as bottom face and the back faces of which are pullbacks, the front faces are pullbacks if and
only if the top face is a pushout.

C
m
~~}}}

} f

ÃÃA
AA

A

A

g ÃÃA
AA

A B

n~~}}}
}

D

C′
m′

uukkkkkkkkk f ′

##FF
F

c

²²

A′

g′
##FF

F

a

²²

B′
n′

uukkkkkkkkk

b

²²

D′

d

²²

C

m
kkkk

uukkkk
f

##HHH
H

A

g ##HHH
H B

nuukkkkkkkkk

D

(i) (ii)

Before introducing Cospans we have to say that this construction results a bicategory [12] and
not a 2-categories as required by the theory of G-reactive system. A bicategory can be described,
roughly, as a 2-category where associative and identity laws of composition hold up to isomorphism.
However, all the results about G-reactive system can be lifted to bicategories.

We assume that C is a category having a chosen pushout, i.e., pushouts exist and one is chosen
amongst all the isomorphic.

The bicategory of cospans of C, denoted by Cospans(C), has the same objects as C, but arrows
from I1 to I2 are cospans:

I1
f→ C

g← I2.

We will denote a such cospan as Cg
f : I1 → I2. We think to I1 and I2 as the input and output

interface of Cg
f . A cospan can be seen as a generalized context, where C is the internal object, I2

is the external view of C and I1 is the view of C afforded to the holes in it.

Given the cospans Cg
f : I1 → I2 and Dj

i : I2 → I3, their composition Cg
f ; Dj

i : I1 → I3 is
the cospan C +I2 Dj;β

f ;α : I1 → I3 where C +I2 D,α, β is the chosen pushout of g : I2 → C and
i : I2 → D. The following diagram depicts this construction.

C +I2 D

I1
f

// C

α
;;wwwwwwwww
I2g

oo
i

//

PO

D

β
ccGGGGGGGGG

I3j
oo

For every object I, the identity cospan is idI : I → I: I
idI // I I

idIoo .
A 2-cell h : Cg

f ⇒ Dj
i : I1 → I2 is arrow h : C → D in C satisfying f ; h = i and g; h = j.

h

®¶

I1

Cg
f

""

Dj
i

<< I2

I1
f //

id

²²

C

h

²²

I2

id

²²

goo

I1 i
// D I2j

oo

A 2-cell is said isomorphic if the arrow h above is an isomorphism in C. A cospan Cg
f is input

linear when f is mono in C. When working over an adhesive category, the composition of two
input linear cospans yields an input linear cospan.

24 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

Definition 1.16 (Input linear cospans). Let C be a category having a chosen pushout. The input
linear cospans bicategories over C (denoted by ILC(C)) is the bicategory consisting of input linear
cospans and isomorphic 2-cells.

Now we can put together adhesive category and ILC(C) in order to obtain a construction for
GIPOs.

Theorem 1.2 (Characterization of GIPOs. From [108]). Let C be an adhesive category, then
ILC(C) has GRPOs. Moreover diagram (i) below is a GIPO in ILC(C) if and only if the diagram
(ii) in C is such that:

• region (1) is both a pullback and a pushout,

• regions (2) and (3) are pushouts,

• region (4) is a pullback.

I4

I2

C

??ÄÄÄÄÄÄÄ
α +3 I3

D

__???????

I1

A

__??????? B

??ÄÄÄÄÄÄÄ

I4

oD

""FF
FF

FF
FF

F
oC

||xx
xx

xx
xx

x

C
FFF

FF

""FFF
FF

(4) D

xxx
xx

||xxx
xx

I2 (2)

??

iC

??~~~~~~~

oA ÂÂ@
@@

@@
@@

X (3) I3

oBÄÄ~~
~~

~~
~

__

iD

__@@@@@@@

A
<<

xxxxx

<<xxxxx

(1) B
bb

FFFFF

bbFFFFF

A ∩B
cc

ccFFFFFFFFF ;;

;;xxxxxxxxx

I1

iA

YY333333333333333

iB

EE®®®®®®®®®®®®®®®

OO

(i) (ii)

1.3.3 Borrowed contexts rewriting as G-reactive system

Double-pushout (dpo) graph rewriting [41, 44] is a widely studied formalism that performs rewriting
of graphs in a pure categorical setting. Several interesting theorems for concurrency and parallelism
holds in dpo graph rewriting.

There have been some attempts [42, 39] to identifies a class of structures more general than
graphs that would be suitable for performing dpo rewriting preserving the whole theory of concur-
rency and parallelism. Adhesive categories [73] (Definition 1.15) are actually considered the correct
generalization. Thus, instead of considering dpo graph rewriting, we will work with dpo adhesive
rewriting, even if we are not interested in the concurrency theory.

dpo adhesive rewriting systems can be seen as a G-reactive system on a cospans bigateory
constructed over an adhesive category, and thus, by Theorem 1.2, it is suitable for constructing
the GIPOs labeled transition system (gipots). This construction subsumes the borrowed contexts
rewriting [43] that will be used later on Chapter 2 to derive a labeled transition system for CCS.

A deeper explanation of dpo and borrowed context rewriting will be done later on Section 2.4.
Here, we briefly define them, just highlighting the link with G-reactive systems over cospans.

Definition 1.17 (dpo adhesive rewriting system). A dpo adhesive rewriting system is a pair
〈C, P 〉, where C is an adhesive category and P is a set of rewriting rules. A production or rewrite
rule is a span in C

L
l← I

r→ R.

1.3. FROM REACTIVE SYSTEMS TO BORROWED CONTEXTS 25

Whenever C has an initial object 01, a dpo rewriting rule can be seen as a pair of arrows in
the category Cospan(C) depicted in the following diagram, where the dotted arrows 0 → L and
0 → R are the unique morphisms starting from the initial object.

I

l

¨¨±±
±±
±

r

ºº0
00

00

L R

0

WW FF

Thus given a dpo rewriting system we can easily define a corresponding G-reactive system
in the bicategories of cospans. However, we decide to work just with input linear cospan (ILC)
(Definition 1.16), because Theorem 1.2 guarantees the existence of GRPOs for ILC(C) whenever
C is adhesive.

Definition 1.18 (dpo adhesive rewriting system as G-reactive system). Let 〈C, P 〉 be a dpo
adhesive rewriting system such that C has initial object 0. The corresponding G-reactive system is
〈ILC(C), 0, ILC(C), P〉 where the set of rules

P = {〈 0 // L I
loo , 0 // R I

roo 〉 | L l← I
r→ R ∈ P}.

dpo rewriting is defined on cospans having as input interface the initial object 0, i.e., on
structures of the form 0 // G Jjoo 2. In the following we denote such structure just as
J → G.

Definition 1.19 (dpo derivation). Let L
l← I

r−→ R be a production. A direct derivation from
J → G to J → H is a diagram such that below, where (1) and (2) are pushouts and the bottom
triangles commute. In this case we write J → G Ã J → H.

L

²²
(1)

I
r //loo

²²
(2)

R

²²
G C //oo H

J

__@@@@@@@
k

OO >>~~~~~~~~

Usually dpo graph rewriting is defined only for graphs G without any interface J . This special
case can be retrieved by this more general definition, by considering the output interface J as the
initial object 0.

Note that the above definition exactly corresponds to the definition of reaction relation given
for G-reactive system (Section 1.3.1). Indeed a graph J → G can perform a reaction, if it is
isomorphic to the left hand side 0 → L ← I composed with a context arrow I → C ← J . If this
holds, J → G can react and becomes J → H, whenever J → H is isomorphic to the composition of
the right hand side 0 → R ← I with I → C ← J . The following diagram graphically explains this
setting. Here the composition of 0 → L ← I and I → C ← J results in the cospan 0 → G′ ← J
where G′ is the chosen pushout of C and L along I. Analogously for H ′. The double arrows ⇒
representing 2-cells are isomorphisms between G and G′ and H and H ′.

1The definition of adhesive categories (Definition 1.15) does not require the existence of an initial object. However,
at our knowledge, all the graphical structures interesting in computer science have initial object.

2Note that we have to additionally require that the initial arrows are monic.

26 CHAPTER 1. BACKGROUND ON REACTIVE SYSTEMS

J

k
²²

²² ³³

C

½½5
55

55

¥¥

G +3 G′PO I PO

OO

l¥¥

r

½½5
55

55
H ′ +3 H

L

OO

R

OO

0

ZZ

PP NN

DD

The above observation is originally due to Gadducci and Heckel [55].
Inspired by the theory of Reactive System, Ehrig and König have introduced in [43] borrowed

context rewriting as an interactive extension of dpo rewriting.

Definition 1.20 (Rewriting with borrowed contexts). Given a production L
l← I

r−→ R, we say
that J → G reduces to K → H with transition label J ½ F ← K if there are graphs G+, C and
additional morphisms such that the diagram below commutes and the squares are either pushouts
(PO) or pullbacks (PB). In this case we write J → G

J½F←K−−−−−→ K → H.

0

((ÂÂ

ºº

D

PO

²²

²²

// // L

PO

²²

²²

I

PO

oo //
²²

²²

R²²

²²
G

PO

// // G+

PB

Coo // H

J

OO

// // F

OO

K

OO

oo

>>

In [108], Sobocinski shows that this construction exactly corresponds to the gipots in the
corresponding G-reactive systems. Indeed, since the category C of the rewriting system is adhesive,
ILC(C) have GRPOs.

First of all, note that 0 // G Joo , 0 // H Koo and J // F Koo are
all arrows of ILC(C), the first two representing states, while the last representing a label, i.e., a
context.

The four leftmost squares of the diagram above represent a redex square in the corresponding
G-reactive system, where 0 // G Joo is the state, J // F Koo contextualizes the
state, 0 // L Ioo is the left hand side of the rule and I // C Koo contextualizes
the rule. The arriving states 0 // H Koo is obtained by composing the right hand side
0 // R Ioo together with I // C Koo .

Moreover by Theorem 1.2, a redex square constructed in such a way is a GIPO.

Chapter 2

CCS bisimilarity via borrowed
contexts

The operational behavior of computational devices can be described through either a reactive
semantics or an interactive semantics.

The former consists of a reaction system (rs): a set, representing the space of possible states;
and a relationship among these states, representing the possible evolutions of the device. This
is usually specified by a few reaction rules (also called rewriting or reduction rules) consisting of
a left hand side and a right hand side: whenever the left hand side of a rule occurs in a state,
it is removed and replaced by the right hand side. This easy mechanism models the operational
behavior of a system, and it is the basis of several important computational models, as for example,
λ-calculus, term rewriting and Petri nets (the last two are shown in Section 1.1).

Interactive semantics consists of a labeled transition system (lts) whose labels represents both
the interactions between the system and the environment and the observations that an external
observer can make on the system.

While reactive semantics are very natural and easy to be given and to be understood, their
main drawback is that they are not compositional, i.e., when considering abstract semantics, two
systems exhibiting the same reactive behavior might have different behaviors when inserted in the
same context.

In the previous chapter we introduced the theory of reactive systems [76]: a general framework
for deriving an lts from reaction rules. Labels are the minimal contexts (categorically described
as IPOs) that allow a system to reach the left hand side of a reaction rule. The main theorem
(Theorem 1.1) guarantees that if the underlying category has RPOs, then the abstract semantics
that are defined over the derived lts are compositional.

This chapter tests this approach on the paradigmatic Milner’s Calculus of Communicating
Systems (CCS) [80]. For this calculus both the reactive and the interactive semantics are well known
(presented, respectively, in [81] and [80]) and the canonical abstract semantics is the bisimilarity
given on the lts describing the interactive semantics.

As is usually the case for process calculi, especially after the introduction of Chemical Abstract
Machine [13], the reactive semantics of CCS is given over syntactic terms that are quotiented by
structural congruence (≡). The corresponding Lawvere (term) category does not have RPOs, as
detailed in Section 1.2.3, and thus it is not suitable for the synthesis mechanism of reactive systems.

For this reason we choose to encode CCS processes into graphs with interfaces, such that the
denotation is fully abstract with respect to the structural congruence: two structurally equivalent
processes are encoded into the same (up to isomorphism) graph with interface. This kind of
encoding has already been explored in [54, 56] for graphically modeling the reactive semantics of
nominal calculi: graphs represents abstract processes (i.e., quotiented by ≡) and process reaction
is simulated via double-pushout (dpo) rewriting. As detailed in Section 1.3, dpo rewriting over
graph with interface is an instance of the reaction relation of (G-)reactive systems defined over

28 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

cospans of graphs. Since the category of graphs we are considering is adhesive, we can derive a
lts via borrowed contexts (bc) [43].

Summing up, we encode processes into graphs with interface. dpo rewriting rules describes
the reactive semantics, and borrowed contexts rewriting derive the lts. The main result of this
chapter (Theorem 2.1) states that bisimilarity induced by the derived lts coincides with the
canonical one. This is one of the few results in the theory of reactive systems that proves the
correspondence between some previously defined abstract semantics and the one derived from the
approach. This is in contrast with the main aim of the first part of the thesis, that is, showing that
IPO semantics are usually too strict. From our point of view, the case of CCS is peculiar since, as
we will detail later in Chapter 3, in CCSall the interactions are observable.

Besides the correspondence results, this work is the first one to explore the use of borrowed
contexts and graphical encodings to synthetize the interactive semantics of process calculi. Indeed,
process calculi are usually encoded into bigraphs [82] and the interactive semantics is derived
through the RPO construction over bigraphs. The biggest advantage of our approach with respect
to bigraphs is the possibility to define a few non ground reaction rules instead of an infinite number
of ground rules. The impossibility of having non ground rules is a quite common problem in reactive
systems, as we have discussed in Section 1.2.2.

As outlined in Section 1.3, dpo and bc rewriting over an adhesive category C (Definition 1.15)
are instances of a reaction relation and gipots of G-reactive systems over input linear cospans
of C (ILC(C), Definition 1.16). In the whole chapter, we will work abstracting away G-reactive
systems and cospans bicategories, and thus we will always work over the category C without
considering ILC(C). This makes the presentation easier, by using a pure categorical setting
instead of bicategories, and also understandable to those readers who skipped Section 1.3.

2.1 Two operational semantics for CCS

This section introduces the well-known CCS [80] and two alternative operational semantics. Orig-
inally, the semantics of CCS was given as an lts and later, after the introduction of π-calculus
[86] and Chemical Abstract Machine [13], the reaction semantics was introduced in [81]. In this
section we will first introduce the reactive semantics and then the interactive one.

Definition 2.1 (CCS syntax). Let N be a set of names (ranged over by a, b, c, . . .); τ 6∈ N an
internal action; ∆ = {a, a | a ∈ N}] {τ} a set of prefixes (ranged over by α); and finally, X a
set of agent variables (ranged over by x, y, w . . .). An open process p is a term generated by the
(mutually recursive) syntax

p ::= p
∣∣ (νa)p

∣∣ p1 | p2

∣∣ recx.p m ::= 0
∣∣ α.p

∣∣ m1 + m2

∣∣ α.x

A process is a term such that each occurrence of an agent variable x is in the scope of a recx-
operator. We let p, q, r, . . . range over the set P of processes, and m,n, o . . . range over the set S
of summations.

Considering νb.p, the occurrences of b in p are bound. An occurrence of a name in a process is
free, if it is not bound. The set of free names of p (denoted by fn(p)) is the set of names that have
a free occurrence in the process p. The process p is α-equivalent to q (written p ≡α q), if they are
equivalent up to α-renaming of bound occurrences of names.

The operational semantics is defined by the rules in Table 2.1 that are defined over abstract
processes i.e., syntactic terms defined by the above grammar that are quotiented by the structural
congruence ≡.

Definition 2.2 (Structural congruence). The structural congruence for processes is the relation
≡ ⊆ P × P, closed under process construction and α-conversion, inductively generated by the set
of axioms below.

p | q = q | p p | (q | r) = (p | q) | r p | 0 = p

2.1. TWO OPERATIONAL SEMANTICS FOR CCS 29

(synch) a.p + m | ā.q + n Ã p | q (tau) τ.p + m Ã p

(res) p Ã q
(νa)p Ã (νa)q (par) p Ã q

p | r Ã q | r
Table 2.1: Reactive semantics of CCS.

(pre) α.p
α−→ p (syn) p

a−→ q, r
a−→ S

p | r τ−→ q | S (res) p
α−→ q

(νa)p α−→ (νa)q
if a /∈ fn(α.0)

(par) p
α−→ q

p | r α−→ q | r (sum) p
α−→ q

p + r
α−→ q

(rec) p [recx.p/x] α−→ q

recx.p
α−→ q

Table 2.2: Interactive semantics of CCS.

m + n = n + m m + (n + o) = (m + n) + o m + 0 = m

(νa)(νb)p = (νb)(νa)p (νa)(p | q) = p | (νa)q for a 6∈ fn(p) (νa)0 = 0

(νa)(m + α.p) = m + α.(νa)p for a 6∈ fn(m + α.0) recx.p = p[recx.p/x]

Definition 2.3 (Reaction semantics). The reaction relation for processes is the relation RCCS ⊆
P × P, closed under the structural congruence ≡, inductively generated by the set of axioms and
inference rules in Table 2.1 (where P Ã Q means that 〈P, Q〉 ∈ RCCS).

The rule (synch) describes the synchronization amongst two parallel processes: the leftmost
receiving on the channel named a, and the rightmost sending on the same channel. The rule (tau)
describes the internal reaction of a system. The rules (par) and (res) just say that the restriction
and the parallel composition preserves reactions. In terms of Leifer and Milner reactive systems
(Section 1.1), the first two rules are reaction rules, while the other two just describe that the
contexts νa.− and − | p are reactive. Note that all the other contexts are not reactive. Indeed
the prefix contexts and the summation contexts −+ M do not preserve reactions. As an example,
consider the reaction τ.0 Ã 0. Clearly it does not hold that τ.0 + m Ã 0 + m.

The above semantics specification is very natural. However it describes the behavior of a process
in isolation, without taking into account its possible interactions with other processes. The main
problem is that it is not compositional, i.e., when considering abstract semantics, two processes
with the same reactive behavior can have different behavior when inserted into some contexts. For
example the processes a.0 and b.0 have the same reactive behavior (they do not react at all), but
when inserted into the context − | ā, the former can perform a reaction, while the latter cannot.

The canonical solution for this problem is that of defining a labeled transition systems (lts)
whose labels represent both the interactions and the observations that an external observer can
do on a process.

Definition 2.4 (Labelled transition system). The transition relation for processes is the relation
LCCS ⊆ P × ∆ × P inductively generated by the set of axioms and inference rules in Table 2.2
(where p

α−→ q means that 〈p, α, q〉 ∈ LCCS), where, as usual we avoided presenting the symmetric
counterparts of (com), (par) and (sum).

This kind of semantics specification is more expressive than the reactive one. Indeed it describes
how a systems can interact with the environment. For example the transition a.0 a−→ 0 means that
a.0 can perform an input on the channel a and whenever in the environment there is some contexts
performing an output transition, those can communicate as described by the rule (syn). Note that
the transitions labeled with τ exactly correspond to the reactions Ã.

Proposition 2.1 (Correspondence between reactive and interactive semantics).

p Ã q if and only if p τ−→ q.

30 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

The classical abstract semantics, bisimilarity, is given over the above defined lts.

Definition 2.5 (Bisimilarity). Let R ⊆ P × P be a relation over CCS processes. We say that R
is a bisimulation if and only if, whenever pRq:

• if p
α−→ p′, then q

α−→ q′ and p′Rq′,

• if q
α−→ q′, then p

α−→ p′ and p′Rq′.

The largest bisimulation is called bisimilarity (denoted by ∼CCS). We say that p and q are
bisimilar if and only if p ∼CCS q.

The lts semantics specifies how a system, seen as a single component, may interact with the
environment, and it allows the definition of an observational equivalence by means of bisimilarity.
On the other hand, the reactive semantics specifies how a system, seen as a whole, evolves. The
latter is usually more natural, but it does not take in account the interactions, and consequently,
does not provide any “good” notion of behavioral equivalence. In this chapter, exploiting a graph-
ical encoding of processes, we derive an lts from a graph rewriting semantics. More precisely, in
the next sections we introduce a graphical encoding of CCS processes which preserves the reaction
semantics. The encoding is then used to distill an lts with pairs of graph morphisms as labels:
the main result of the chapter states that the resulting bisimilarity coincides with the standard
strong bisimilarity.

Before concluding this section, we want to remark two important facts concerning the structural
congruence ≡.

First of all, there is a subtle difference in the definition of the structural equivalence ≡ w.r.t.
the canonical definition, namely, the axiom schema concerning the distributivity of the restriction
operators with respect to the prefix operators, even if they have been already considered in the
literature, see e.g. [45]. These equalities do not change the reaction semantics, and they indeed
hold in all the observational equivalences we are aware of. In particular, two congruent processes
are also strongly bisimilar. Most importantly, they allow a simplified presentation of the graphical
encoding: we refer the reader to [56] for a more articulate analysis.

Secondly, note that the structural congruence is fundamental in order to give a reactive seman-
tics with a few compact rules. This is the main reason why we need the graphical encoding of
processes that we will present in the later sections. Indeed, Lawvere-theory like categories (Defi-
nition 1.3) of signatures that are quotiented with equational axioms do not have RPOs, while the
category of graphs with interfaces, that are cospans over an adhesive category (Section 1.3), has
GRPOs. Moreover given two syntactically different but structurally equivalent processes, these are
encoded in the same (up to isomorphism) graph.

Example 2.1 (Running example). We introduce now a very simple example, the process defined
as recx.(νa)(a.x | (a.0 + b.0)), which seems to us well-suited for illustrating both the labeled and
the reaction semantics of the calculus, as well as the graphical encoding of processes presented in
the next sections. The sub-process on the left is ready to send via (a) channel (named) a, and
the sub-process on the right to receive on the same channel. Thus, after an unfolding step for the
recursion operator, a possible commitment of the process consists of a synchronization on a, and
the resulting process is structurally congruent to the original one. Note that, due to restriction,
only the synchronization is available for the two processes on channel a. The sub-process on the
right, though, is also able to perform a single receive action on channel b, resulting in the terminal
state 0 for the labeled semantics.

2.2 Graphs and their extension with interfaces

We recall a few definitions concerning (typed hyper-)graphs, and their extension with interfaces,
referring to [32] for a more detailed introduction.

2.2. GRAPHS AND THEIR EXTENSION WITH INTERFACES 31

Definition 2.6 (Graphs). A (hyper-)graph is a four-tuple 〈N, E, s, t〉 where N is the set of nodes,
E is the set of edges and s, t : E → N∗ are the source and target functions. An (hyper-)graph
morphism is a pair of functions 〈fN , fE〉 preserving the source and target functions.

Given a graph G, we will use GN and GE to denote its sets of nodes and edges respectively.
The corresponding category is denoted by Graph. However, we often consider typed graphs [37],

i.e., graphs labeled over a structure that is itself a graph.

Definition 2.7 (Typed graphs). Let T be a graph. A typed graph G over T is a graph |G|,
together with a graph morphism tG : |G| → T . A morphism between T -typed graphs f : G1 → G2

is a graph morphism f : |G1| → |G2| consistent with the typing, i.e., such that tG1 = f ; tG2 .

The category of graphs typed over T is denoted T -Graph: it coincides with the slice category
Graph ↓ T . In the following, a chosen type graph T is assumed.

In order to inductively define the encoding for processes, we need to provide operations over
typed graphs. The first step is to equip them with suitable “handles” for interacting with an
environment.

Definition 2.8 (Graphs with interfaces). Let J,K be typed graphs. A graph with input interface
J and output interface K is a triple G = 〈j,G, k〉, for G a typed graph and j : J → G, k : K → G
the input and output morphisms.

Let G and H be graphs with the same interfaces. An interface graph morphism f : G ⇒ H is
a typed graph morphism f : G → H between the underlying graphs that preserves the input and
output morphisms.

We let J
j−→ G

k← K denote a graph with interfaces J and K.1 If the interfaces J , K are
discrete, i.e., they contain only nodes, we simply represent them by sets. Moreover if K is the
empty set, we often denote a graph with interfaces simply as a graph morphism J → G. In order
to define our encoding of processes, we introduce two binary operators on graphs with discrete
interfaces.

Definition 2.9 (Two composition operators). Let G = I
j−→ G

k← K and G′ = K
j′−→ G′ k′← J

be graphs with discrete interfaces. Then, their sequential composition is the graph with discrete

interfaces G ◦ G′ = I
j′′−→ G′′ k′′← J , for G′′ the disjoint union G] G′, modulo the equivalence on

nodes induced by k(x) = j′(x) for all x ∈ NK , and j′′, k′′ the uniquely induced arrows.

Let G = J
j−→ G

k← K and H = J ′
j′−→ H

k′← K ′ be graphs with discrete, compatible interfaces.2

Then, their parallel composition is the graph with discrete interfaces G ⊗ H = (J ∪ J ′)
j′′−→ V

k′′←
(K∪K ′), for V the disjoint union G]H, modulo the equivalence on nodes induced by j(x) = j′(x)
for all x ∈ NJ ∩ NJ ′ and k(y) = k′(y) for all y ∈ NK ∩ NK′ , and j′′, k′′ the uniquely induced
arrows.

Intuitively, the sequential composition G ◦ G′ is obtained by taking the disjoint union of the
graphs underlying G and G′, and gluing the outputs of G with the corresponding inputs of G′.
Similarly, the parallel composition G ⊗ H is obtained by taking the disjoint union of the graphs
underlying G and H, and gluing the inputs (outputs) of G with the corresponding inputs (outputs)
of H. The two operations are defined on “concrete” graphs, even if the result is independent of the
choice of the representatives of the inner graphs, up to isomorphism.

A graph expression is a term over the syntax containing all graphs with discrete interfaces as
constants, and parallel and sequential composition as binary operators. An expression is well-
formed if all the occurrences of those operators are defined for the interfaces of their arguments,
according to Definition 2.9; its interfaces are computed inductively from the interfaces of the graphs
occurring in it, and its value is the graph obtained by evaluating all the operators in it.

1With an abuse of notation, we sometimes refer to the image of the input and output morphisms as inputs and
outputs, respectively. More importantly, in the following we often refer implicitly to a graph with interfaces as the
representative of its isomorphism class, still using the same symbols to denote it and its components.

2That is, any node in NJ ∩NJ′ has the same type in J and J ′ (similarly for NK ∩NK′).

32 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

go τ

~~
• //

OO

c // ¦

``

~~
op

aa

// ◦

Figure 2.1: The type graph TCCS (for op ∈ {rcv, snd}).

At this point, we want to highlight that graphs with interfaces are substantially cospans (Section
1.3.2) defined over the category Graph ↓ T that is well-known to be adhesive (Definition 1.15),
and thus it is suitable, when considering its input linear cospans, for the construction of GIPOs
as illustrated by Theorem 1.2. Note that the definition of interface graph morphism exactly
corresponds to the definition of 2-cell for cospan given in Section 1.3.2, while the composition
G ◦ G′ corresponds to the cospan composition, i.e., to the pushout of the two graphs along the
common interface, as illustrated below.

G]K G′

I
j

// G

α
;;vvvvvvvvv
K

k
oo

j′
//

PO

G′

β
ddHHHHHHHHH

J
k′

oo

2.3 From processes to graphs with interfaces

This section presents our graphical encoding for CCS processes. After introducing a suitable type
graph, shown in Figure 2.1, the composition operators previously defined are exploited. This
corresponds to a variant of the usual construction of the tree for a term of a free algebra: names
are interpreted as variables, so that they are mapped to leaves of the graph and can be safely
shared.

Intuitively, a graph having as root a node of type • (¦) corresponds to a process (to a summation,
respectively), while each node of type ◦ basically represents a name. Note that the edge op stands
for a concise representation of two operators, namely snd and rcv, simulating the two prefixes.
There is no operator for simulating either parallel composition or non-deterministic choice. Instead,
the operator c is a syntactical device for “coercing” the occurrence of a summation inside a process
context (a standard device from algebraic specifications). Finally, the operator go is another
syntactical device for detecting the “entry” point of the computation, thus avoiding to perform
any reaction below the outermost prefix operators: it is later needed for modeling the rs semantics.

The second step is the characterization of a class of graphs, such that all processes can be
encoded into an expression containing only those graphs as constants, and parallel and sequential
composition as binary operators. Let ϕ, σ 6∈ N : our choice of graphs as constants is depicted in
Figure 2.2, for all a ∈ N .

Finally, let us use idΓ and 0Γ as a shorthand for
⊗

a∈Γ ida and
⊗

a∈Γ 0a, respectively, for a
finite set of names Γ ⊆ N (since the ordering is immaterial). The encoding of processes into graphs
with interfaces, mapping each finite process into a graph expression, is presented below.

Definition 2.10 (Encoding for finite processes). Let p be a finite process, and let Γ be a set of
names, such that fn(p) ⊆ Γ. The (mutually recursive) encodings [[p]]ϕΓ and [[m]]σΓ, mapping a process
p into a graph with interfaces, are defined by structural induction according to the rules below.

2.3. FROM PROCESSES TO GRAPHS WITH INTERFACES 33

• ϕoo

σ // ¦ // op

>>

// ◦ aoo

σ // ¦ // τ // • ϕoo

ϕ // • ϕoo

a // ◦ aoo

ϕ // • // c // ¦ σoo

ϕ // •

a // ◦

σ // ¦

◦ aoo

go

ϕ // •

>>

Figure 2.2: Graphs opa (for op ∈ {rcv, snd}) and τ ; idϕ, ida, and c; 0ϕ, 0a, and 0σ; νa and go
(from left to right and top to bottom).

ϕ // • // c // ¦ // rcv //

%%
• // c // ¦ // snd //

$$
•

a // ◦ ◦

Figure 2.3: Encoding for both [[(νb)a.b.0]]φ{a} and [[a.(νb)b.0]]φ{a}.

[[m]]ϕΓ =

�
0ϕ ⊗ 0Γ if fn(m) = ∅
(c⊗ idΓ) ◦ [[m]]σΓ otherwise

[[(νa)p]]ϕΓ =

�
[[p]]ϕΓ if a 6∈ fn(p)

(idϕ ⊗ νb ⊗ idΓ) ◦ [[p{b/a}]]ϕ{b}]Γ for b 6∈ Γ otherwise

[[p | q]]ϕΓ = [[p]]ϕΓ ⊗ [[q]]ϕΓ
[[m + n]]σΓ = [[m]]σΓ ⊗ [[n]]σΓ
[[0]]σΓ = 0σ ⊗ 0Γ

[[τ.p]]σΓ = (τ ⊗ idΓ) ◦ [[p]]ϕΓ
[[a.p]]σΓ = (rcva ⊗ idΓ) ◦ [[p]]ϕΓ
[[a.p]]σΓ = (snda ⊗ idΓ) ◦ [[p]]ϕΓ

Note the conditional rule for the mapping of [[m]]ϕΓ. This is required by the use of 0 as the
neutral element for both the parallel and the non-deterministic operator: in fact, the syntactical
requirement fn(m) = ∅ coincides with the semantical constraint m ≡ 0.

The mapping is well-defined, since the resulting graph expression is well-formed; moreover, the
encoding [[p]]ϕΓ is a graph with interfaces ({ϕ} ∪ Γ,∅). Our encoding is sound and complete (even
if not surjective), as stated by the proposition below (adapted from [54]).

Proposition 2.2. Let P , Q be finite processes, and let Γ be a set of names, such that fn(p)∪fn(q) ⊆
Γ. Then, p ≡ q if and only if [[p]]ϕΓ = [[q]]ϕΓ.

Note in particular how the lack of restriction operators is dealt with simply by manipulating
the interfaces, even if the price to pay is the presence of “floating” axioms for prefixes, as shown
by Figure 2.3.

Tackling recursive processes. In order to show how recursive processes can be encoded as
suitable infinite graphs, the first step is to consider a (co)limit construction on graphs.

Definition 2.11 (Colimits of ω-chain). Let ω = G = G0 → G1 → G2 . . . be a chain of injective
graph morphisms. Then, the colimit ω is a graph with interfaces H and a family fi : Gi → H of
injective graph morphisms, making the diagram commute.

Clearly, a colimit always exists, and it is uniquely defined, up-to isomorphism. In the following,
we postulate a choice for colimits. Hence, in order to encode recursive processes as infinite graphs,
a colimit construction is performed.

Definition 2.12 (Recursive encoding). Let p[x] be an open process, such that the single process
variable x may occur free in P . Let ωp[x] = {[[pi]]

ϕ
Γ | i ∈ ω} be the chain such that P0 = P [0/x] and

pi+1 = p[pi/x], with (a choice of) the induced injective graph morphisms. Then, [[recx.p]]ϕΓ denotes
the colimit ωp[x].

34 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

In other terms, each open process p[x] defines a continuous functor on the graphs with interfaces
({ϕ} ∪ Γ,∅), for each set of names Γ such that fn(P) ⊆ Γ, and the colimit is thus calculated
evaluating the chain in the standard way.

Of course, two recursive processes may be mapped to isomorphic graphs with interfaces, even
if they are not structurally congruent, nor can be unfolded to the same expression. Nevertheless,
the extended encoding is clearly still sound.

2.4 Double-pushout and borrowed contexts

This section introduces the double-pushout (dpo) [44, 41] approach to the rewriting of graphs
with interfaces and its extension with borrowed contexts (bcs) [43]. In particular, the rewriting is
defined only on those graphs having as input interface the empty graph 0 (in the following concisely
represented as J → G).

We recall to the reader that dpo and bc have already been roughly defined in Section 1.3.3.
There we just give the main definition and show the connections with the theory of G-reactive
systems. In this section we do not consider this theory, but just the two approaches in itself. This
allows us to make the whole chapter readable also to those reader who skipped Section 1.3.

Definition 2.13 (Graph production). A T -typed graph production is a span L
l¾ I

r−→ R with l
mono in T -Graph. A typed graph transformation system (gts) G is a tuple 〈T, P, π〉 where T is
the type graph, P is a set of production names and π assigns a production name to each T -typed
production.

Definition 2.14 (dpo derivation of graphs with interfaces).

Let J → G and J → H be two graphs with interfaces. Given a production p : L
l¾ I

r−→ R, a
match of p in G is a morphism m : L → G. A direct derivation from J → G to J → H via p and
m is a diagram as depicted in the right, where (1) and (2) are pushouts and the bottom triangles
commute. In this case we write J → G Ã J → H.

L
m

²² (1)

I
r //ooloo

²² (2)

R

²²
G C //oooo H

J

``@@@@@ k

OO >>}}}}}

Operationally, applying a production p to a graph with interfaces J → G consists of three
steps. First, the match m : L → G is chosen, providing an occurrence of L in G. Then, all the
items of G matched by L− l(I) are removed, leading to the context graph C. If C is well-defined,
and the resulting square is indeed a pushout, the items of R− r(I) are finally added to C, further
coalescing those nodes and edges identified by r, obtaining the derived graph H

The morphism k : J → C which makes the left triangle commute is unique, whenever it exists.
If such a morphism does not exist, then the rewriting step is not feasible. Moreover note that the
standard dpo derivations, that is defined on graphs without interfaces, can be seen as a special
instance of these, obtained considering as interface J the empty graph.

Example 2.2. In order to make clearer the dpo approach to graph rewriting we report here a brief
example. In the next section, the dpo rewriting will be applied to the encoding of CCSsimulating
its reactive semantics.

The following graph is the type graph used for this example. We have only one type of node,
namely •, and two operators: messages that are attached to one node and labeled with m and
channels between two nodes that are labeled with ch.

m

•

BB

// chcc

2.4. DOUBLE-PUSHOUT AND BORROWED CONTEXTS 35

Now consider the following derivation, where we have put indexes to the nodes, in order to better
describes the morphisms between the graphs. For example, the morphism l : I → R maps •1 and
•2 into, respectively •1 and •2. The morphism C → G maps •a, •b and •c into, respectively, •a, •b

and •c, while the unique channel of C is mapped into the channel of G between •a and •c.

The upper lines describes the production L
l¾ I

r−→ R, that allow a message to move between
two nodes, whenever a channel is present.

The graph with interface J → G consists of three nodes connected with two channels, and one
message on the node •a. The interface J consist of a node pointing on •a.

There are two possible matches of L into G. The first one m1 : L → G maps •1 and •2 into,
respectively, •a and •b, while the second, m2 : L → G maps •1 and •2 into •a and •c. The following
derivation uses m1. The context graph C is obtained by removing from G all that is in L but not
in I, namely the channel between •a and •b and the message. Then the graph R is attached to C
through I, by obtaining the graph H. This is done by attaching the message to the node •b and the
channel between •a and •b.

m

•1

BB

// ch // •2 •1 •2

m

•1 // ch // •2

BB

L I R

m

•a

--

BB

// ch // •b

ch // •c

•a

--

•b

ch // •c

m

•a

--

// ch // •b

BB

ch // •c

G C H

•a

J

Note that if we take as matching morphism m2, we get a different derivation terminating in a
graph where the messages is attached to •c.

In dpo derivations, the left-hand side L of a production must occur completely in G. However,
in a borrowed context (bc) derivation [43] the graph L might occur partially in G, since the latter
may interact with the environment through J in order to exactly match L. Those bcs are the
“smallest” extra contexts needed to obtain the image of L in G, as described in Section 1.3.3. The
mechanism was introduced in [43] in order to derive an lts from direct derivations, using bcs as
labels. The following definition is lifted from [108], extending the original one by including also
morphisms that are not necessarily mono. Note that the labels derived in this way correspond to
the labels derived via relative pushouts in a suitable category.

Definition 2.15 (Rewriting with borrowed contexts). Given a production p : L
l¾ I

r−→ R, a
graph with interfaces J → G and a mono d : D ½ L, we say that J → G reduces to K → H with
transition label J ½ F ¾ K via p and d if there are graphs G+, C and additional morphisms such
that the diagram below commutes and the squares are either pushouts (PO) or pullbacks (PB). In
this case we write J → G

J½F←K−−−−−→ K → H, which is also called rewriting step with borrowed

36 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

context.
D

PO

²²

²²

// // L

PO

²²

²²

I

PO

oooo //
²²

²²

R²²

²²
G

PO

// // G+

PB

Coooo // H

J

OO

// // F

OO

K

OO

oooo

>>

Consider the diagram above. The upper left-hand square merges the left-hand side L and the
graph G to be rewritten according to a partial match G ¾ D ½ L. The resulting graph G+

contains a total match of L and can be rewritten as in the standard dpo approach, producing the
two remaining squares in the upper row. The pushout in the lower row gives us the borrowed (or
minimal) context F which is missing in order to obtain a total match of L, along with a morphism
J ½ F indicating how F should be pasted to G. Finally, we need an interface for the resulting
graph H, which can be obtained by “intersecting” the borrowed context F and the graph C via a
pullback.

Note that two pushout complements that are needed in Definition 2.15, namely C and F , may
not exist. In this case, the rewriting step is not feasible.

Example 2.3. Consider the rewriting system defined in the previous example and the graph J → G
depicted below. In G, there are not messages at all, and thus the canonical dpo derivation cannot be
performed because there are no occurrences of L into G. However it can perform a bc derivation,
by taking a message as contexts. This is the label J → F ← K, that substantially attaches a
messages to the node •a. The graph G+ is the composition of G and F through the interface
J . The graph G+ completely contains the graph L, and thus a dpo derivation can be performed,
terminating in the graph with interface K → H.

•1 // ch // •2

m

•1

BB

// ch // •2 •1 •2

m

•1 // ch // •2

BB

D L I R

•a

--

// ch // •b

ch // •c

m

•a

--

BB

// ch // •b

ch // •c

•a

--

•b

ch // •c

m

•a

--

// ch // •b

BB

ch // •c

G G+ C H

•a

m

•a

AA

•a

J F K

2.5 From process reactions to graph rewrites

Following [54], this section introduces the rewriting system RCCS , showing how it simulates the
reaction semantics for processes: it is quite simple, since it contains just two rules, depicted in
Figure 2.4. The first rule models a synchronisation, whereas the second models a τ -transition.
Note that, in order to disable reaction inside prefixes, we enrich our encoding, attaching an edge

2.6. THE SYNTHESISED TRANSITION SYSTEM 37

go

•1 //

//

>>

c // ¦s1 // rcv

""

// •2

◦

c // ¦s2 // snd //

@@

•3

•1 ¦s1 •2

◦

¦s2 •3

go

•123

>>

¦s1

◦

¦s2

Ls Is Rs

go

•1 //

>>

c // ¦s1 // τ // •2 •1 ¦s1 •2

go

•12

>>

¦s1

Lτ Iτ Rτ

Figure 2.4: The productions synch: Ls ¾ Is → Rs and τ : Lτ ¾ Iτ → Rτ .

go on the root node of each process. So, let [[p]]gΓ = [[p]]ϕΓ ⊗ go. Moreover for any graph G with
interfaces ({ϕ}∪Γ,∅), let reach(G) be the graph reachable from the image of the interface {ϕ}∪Γ.

It seems noteworthy that two rules suffice for recasting the reaction semantics of the calculus.
First of all, the structural rules are taken care of by the fact that graph morphisms allow for
embedding a graph into a larger one, thus simulating the closure of reaction by context. Second,
no distinct instance of the rules is needed, since graph isomorphism takes care of the closure with
respect to structural congruence, as well as of the renaming of the free name.

Proposition 2.3 (Reactions vs. rewrites). Let p be a processes, and let Γ be a set of actions
such that fn(p) ⊆ Γ. If p Ã q, then RCCS entails a direct derivation [[p]]gΓ Ã G via an injective
match, such that reach(G) = [[q]]gΓ. Vice versa, if RCCS entails a direct derivation [[P]]gΓ Ã G via
an injective match, then there exists a process q such that p Ã q and reach(G) = [[p]]gΓ.

The correspondence holds since the go operator forces the match to be applied only on top, thus
forbidding the occurrence of a reaction inside the outermost prefixes. The condition on reachability
is needed since, during the reaction, some process components may be discarded, in correspondence
of the solving of non-deterministic choices. The restriction to injective matches is necessary in order
to ensure that the two edges labeled by c can never be merged together. Intuitively, allowing their
coalescing would correspond to the synchronization of two summations, i.e., as allowing a reaction
a.p + a.q Ã p | q.
Example 2.4 (Rule application). Let p1 be the process (νa)(a.((νc)c.0 | (c.0+ b.0)) | (a.0+ b.0)):
it corresponds to the second element of the chain associated to the open term p[x] = (νa)(a.x |
(a.0+b.0)), according to Definition 2.12. The graph with interfaces [[p1]]

g
{b} is concisely represented

in Figure 2.5: those nodes in the image of the input morphism are denoted so by a label (either φ
or the free name of the process, b). The application of a rewriting step, resulting in the graph at
the bottom, simulates the following reaction, where communication on channel a takes place

(νa)(a.((νc)(c.0 | (c.0 + b.0))) | (a.0 + b.0)) Ã (νc)(c.0 | (c.0 + b.0)).

Restricting to the reachable graph (i.e., removing isolated nodes and the leftmost edge labeled by
snd) results in the graph [[(νc)(c.0 | (c.0 + b.0))]]g{b}.

2.6 The synthesised transition system

This section contains the main results of our paper. Its aim is to apply the bc synthesis mechanism
to RCCS , and then to analyse the resulting lts. Proving along the way a few general results on the
technique, we show that the lts is finitely branching (when quotiented up to isomorphism) and

38 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

go

ϕ• //

ÁÁ

>>

c // ¦ // rcv

""

// • //

ÀÀ

c // ¦ // rcv //

""
•

snd // 00• ◦ snd // 00 ◦

c // ¦ //

>>

snd // 88• c // ¦ //

>>

snd // 11• ◦b

go

ϕ• //

ÁÁ

>>

c // ¦ // rcv //

""
•

◦ snd // 00 ◦

¦ // snd // 88• c // ¦ //

>>

snd // 11• ◦b

Figure 2.5: A rewriting step, simulating a reduction. The gray part denotes the redex.

equivalent to a succinct −→CO whose transitions have a direct interpretation as process transitions.
The main theorem of the section states that −→CO induces on (the encoding of) processes the
standard strong bisimilarity.

2.6.1 Examples of borrowing

This section analyses how the synthesis mechanism can be applied to our running example recx.(νa)
(a.x | (a.0 + b.0)). Since the encoded graph is infinite, we consider J ½ G = [[p0]]

g
{b} where

p0 = (νa)(a.0 | (a.0 + b.0)) is the first element of the chain associated to the open term p[x] =
(νa)(a.x | (a.0 + b.0)).

Figures 2.10, 2.11 and 2.12 show three borrowed contexts derivations for the graph J ½ G.
Here, we discuss the possible transitions with source J ½ G that are induced by the synchronization
rule Ls ¾ Is → Rs. Since for each pair of monos D ½ Ls and D ½ G a labeled transition might
exist, it is important to precisely characterize all those possible transitions.

First of all, take as D the entire left-hand side Ls and note that there is only one possible map
into G. The construction of the bc transition is shown in Figure 2.10: G+ is exactly the same as
G, and C and H are as expected, i.e., as shown in the reaction step of Example 2.4. In this case,
the graph does not need any context for the reaction, since the entire left-hand side Ls occurs in
G, and thus, the label of this transition is the identity context, i.e., idϕ ⊗ idb. Intuitively, this
corresponds to the canonical transition labeled τ .

Now take as D the subgraph SND in Figure 2.6, and the map into the subgraph of G represent-
ing the send action on channel b. This choice generates the transition illustrated in Figure 2.11:
G+ is the graph G in parallel with a process receiving on channel b; as usual, C contains all the
components of the graph G that are not contained in D and H contains the continuation of the
processes in parallel. Now, the process encoded in G interacts with the environment: the resulting
transition is labeled with a process performing a receive action on channel b.

Let us now consider the mapping of SND into the subgraph of G representing the send action on
the restricted channel a (in Figure 2.11 in graph G, the node corresponding to a is the node above
the node labeled b). We have as G+ the whole G in parallel with a receive prefix on a. However,
the pushout complement for J ½ G ½ G+ does not exist, because the name a is restricted, i.e.,
it does not appear in the interface J . Thus, this embedding cannot generate any transition: this
corresponds, intuitively, to the impossibility for a process of performing an action on some channel
a under the restriction (νa).

2.6. THE SYNTHESISED TRANSITION SYSTEM 39

go

•

//

>>

◦

c // ¦ // snd //
@@

•

go

• //
>>
c // ¦ // rcv

""
// •

◦

SND RCV

Figure 2.6: Two subgraphs of Ls.

Note that transitions without counterpart in the lts operational semantics of CCS can be de-
rived. Consider as D only the root node. There is only a trivial mapping to G, which generates the
transition shown in Figure 2.12: G+ is the graph G in parallel with two processes that synchronize
on a fresh channel c. The resulting graph H is the starting graph G together with c, and the
resulting label is the synchronization of two processes on the channel c. This kind of transitions
are often called not engaged transitions in the literature of bigraphs [84] (and independent in [43]),
since they can be performed by any process. They are a standard component of the theory of
reactive systems and can be discarded since they do not change the bisimulation relation.

2.6.2 Reducing the borrowing

As shown in Section 2.6.1, in order to know all the possible transitions originating from a graph
with interfaces J → G, all the subgraphs D’s of Ls and Lτ and all the monos into G should
be analysed. To shorten this long and tedious procedure, we show two pruning techniques for
restricting the space of possible D’s.

First, note that those items of a left-hand side L that are not in D have to be glued to G
through J . Thus, consider a node n of D corresponding to a node n′ in L such that n′ is the
source or the target of some edge e that does not occur in D. Since the edge e is in L but not in
D, it must be added to G through J , and thus n must be also in J . A node such as n is called a
boundary node.

Let us now consider SND —as shown in Figure 2.6— as a subgraph of Ls. Its root is a boundary
node since it has an ingoing edge that occurs in Ls but not in SND . Also the name (represented
by a node ◦) in SND is a boundary node, since in Ls there is an ingoing edge that does not occur
in SND . Hence this node must be mapped to a node occurring in the interface J of G. This is
exactly the reason why there is a transition embedding SND into the process sending on b (shown
in Figure 2.11) and no transition mapping SND to the process sending on a.

The notion of boundary nodes is formally captured by the categorical notion of initial pushout
(formally defined in Appendix A). Since our category has initial pushouts, the previous discussion
is formalized by the proposition below.

Proposition 2.4. Let p : L
l¾ I

r−→ R be a production and d : D ½ L a mono such that square
(1) in Figure 2.7 is the initial pushout of d. If a graph J → G can perform a bc rewriting step
via p and d then there exist a mono D ½ G and a morphism JD → J such that square (2) in
Figure 2.7 commutes.

Proof. This trivially follows from Lemma 1 and Lemma 2 in Appendix A.

The above proposition holds in any rewriting system. However, we can find for RCCS a neces-
sary and sufficient condition to perform a bc rewriting step.

Corollary 2.1. A graph J → G can perform a bc rewriting step in RCCS if and only if there
exist

• a mono D ½ L (where L is the left hand side of some production in RCCS),

40 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

JD

²²

½½

(1)

// FD

²²
D // //
²²

(2)

²²
PO

L

PO

²²

²²

I

PO

²²

²²

oooo // R²²

²²
G

PO

// // G+

PB

Coooo // H

J

OO

// // F

OO

Koo

OO >>

Figure 2.7: The bc construction together with square (1) (the initial pushout of D ½ L) and
square (2) (a commuting square).

• a mono D ½ G,

• a morphism JD → J (where JD is the initial pushout of D ½ L) such that square (2) in
Figure 2.7 commutes.

Proof. By Definition 2.15, a graph J → G can perform a bc rewriting step if and only if there exist
a mono D ½ G and a mono D ½ L such that the diagram of Definition 2.15 can be constructed.

Since pushouts and pullbacks always exist, for any choice of D ½ L and D ½ G problems
might arise only with pushout complements. Now note that for both the rules ofRCCS the pushout
complement I ½ L ½ G+ always exists because all the nodes of L are in I. Thus, we have a
transition if and only if there exists the pushout complement J → G ½ G+. Since our category
has initial pushouts, we can always construct a square such as (1) in Figure 2.7. By Lemma 1 (in
Appendix A), the square JD, FD, G+, G is an initial pushout of G ½ G+. Now, by Lemma 2 (also
in Appendix A), we have that the pushout complement of J → G ½ G+ exists if and only if there
exists a JD → J such that square (2) of Figure 2.7 commutes.

This corollary allows us to heavily prune the space of all possible D’s. As far as our case
study is concerned, we can exclude all those D’s having among boundary nodes a summation node
(depicted by ¦) since these never appear in the interface J of a graph resulting from the encoding
of some process. For the same reason, we can exclude all those D’s having among their boundary
nodes a continuation process node (any of those two nodes depicted by • that are not the root)
observing that the only process node in the interface J is the root node.

A further pruning —partially based on proof techniques presented in [43]— is performed by
excluding all those D’s which generate a bc transition that is not relevant for the bisimilarity. In
general terms, we may always exclude all the D’s that contain only nodes, since those D’s can be
embedded in every graph (with the same interface) generating the same transitions. Concerning
our case study, those transitions generated by a D having the root node without the edge labeled
go are also not relevant. In fact, a graph can perform a bc transition using such a D if and only if
it can perform a transition using the same D with a go edge outgoing from the root. Note indeed
that the resulting states of these two transitions only differ for the number of go edges attached
to the root: the state resulting after the first transition has two go’s, the state resulting after the
second transition only one. These states are bisimilar, since the number of go’s does not change
the behavior, as stated by Lemma 11 in Appendix C.

The previous remarks are summed up by the following lemma.

Lemma 2.1. Bisimilarity on the lts synthesized by bcs coincides with bisimilarity on the lts
obtained by considering as partial matches D the graphs Ls, SND and RCV (shown in Figure 2.6)
as subgraphs of Ls, and the graph Lτ as subgraph of Lτ .

Proof. Trivial consequence of Proposition 2.6 presented in the next section.

2.6. THE SYNTHESISED TRANSITION SYSTEM 41

JD
//

²²
IPO

FD

²²
D // // L

D²²

²²
PB

D∩I²²

²²

oooo

L Ioooo

FD

²²
PO

JD²²

²²

// //oooo

=

D²²

²²
PO

D∩I²²

²²

//oooo

PO

R²²

²²
F J // //oooo ((66G V //oooo H

(i) (ii) (iii)

Figure 2.8: Diagrams used in the propositions of Section 2.6.

2.6.3 Strong bisimilarity vs. bc bisimilarity

Exploiting the remarks of the previous section, we first introduce a concise lts containing only
those bc transitions that are needed to establish the borrowed bisimilarity. Then, we use this
concise lts to prove our main theorem on the correspondence between the borrowed and the
CCS bisimilarity.

Proposition 2.5. Let p : L ¾ I → R be a production of RCCS; d : D ½ L a mono such that
in Figure 2.8, diagram (i) is the initial pushout of d and diagram (ii) is a pullback; and J ½ G

a graph with interfaces. Then there exists a K such that J ½ G
J½F←K−−−−−→ K → H via p and d if

and only if there exists a mono D ½ G, a graph V and a morphism JD → J such that the central
square of diagram (iii) in Figure 2.8 commutes and F and H are constructed as illustrated there.3

Proof. By Corollary 2.1, once a production p : L ¾ I −→ R and a mono d : D ½ L are chosen, a
graph J → G can perform a bc rewriting step if and only if there exists a mono D ½ G making
the central square of the diagram (iii) in Figure 2.8 commute. Now we have to show that both F
and H can be constructed as described by the diagram (iii) in Figure 2.8 if and only if they can
be built by the bc construction.

We first prove this for F . Consider Figure 2.7, where square (1) is the initial pushout of
d : D ½ L.

Note that the square JD, FD, G+ and G is a pushout, by the composition property of pushouts.
Now let F be the pushout of JD → FD and JD → J , then by the decomposition property of
pushouts, also J , G, G+ and F is a pushout. This proves that if F can be built by this new
construction, then it can be built also with the standard bc construction.

Now we have to show the other implication. Since the morphism J ½ G is mono, then there
exists only one pushout complement of J ½ G ½ G+, that is exactly the pushout of JD ½ FD

and JD ½ J . Note that if J → G is not mono, our construction is still correct, but it is not
complete, i.e., some bc transitions might exist that cannot be obtained via the new construction.

Next we show that if H is built by our construction then H could be built also with the standard
bc construction. The morphism D ∩ I → R is divided by I. Thus we get the following diagram
where the two squares are pushouts.

D ∩ I²²

²²

// // I //
²²

²²

R²²

²²
V // // C // H

Now we can construct G+ as the pushout of D ½ L and D ½ G. There exists a unique morphism
C ½ G+ such that diagram below commutes.

3Note that—as detailed later—the morphism J ½ V always exists.

42 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

D ∩ I // //

%%KKKK²²

²²

I²²

²²

##
##GGG

GG
// R²²

²²
D // //
²²

²²

L²²

²²
V // //%%

%%JJJJJ C ##
##FFF

F
// H

G // // G+

Note that the left and the front faces are pushouts, and so is the diagonal (the composition of the
two faces). Then the back face is a pushout by construction, and thus, by pushout decomposition,
also the right face is a pushout. So we have that also H is obtained by the standard double-pushout
construction.

Now suppose that H can be constructed by the bc construction. Consider the cube above.
The front and the right faces are pushouts, and the extreme right square is also a pushout. Now
construct the top and the bottom face of the cube as pullbacks respectively of I ½ L ¾ D and
C ½ G+ ¾ G. Now we have that there exists a unique D ∩ I ½ V such that the diagram
commutes. In order to prove that this transition can be derived by our construction we need to
prove that the back and the right face of the cube are pushouts.

Now we prove that also the back face of the cube is a pullback. In fact, the front face is a
pullback, because it is a pushout along mono, and by pullback composition, the square D ∩ I, I,
G+, G is a pullback. Since the bottom face is a pullback by construction, we have, by pullback
decomposition, that also the back face is a pullback. Now rotate the whole cube, in a such way
that the right face becomes the bottom face. The bottom face is now a pushout along mono, and
hence a Van Kampen square (see Definition 1.15). The lateral faces of the rotated cube are all
pullbacks (some of them by construction and some others because they are pushouts along monos)
and then by the Van Kampen property, also the top face (in the depicted diagram it is the right
face) is a pushout. By composition and decomposition of pushouts, it trivially follows that also
the back face (of the depicted cube) is a pushout.

Note that the construction of H is independent of the interface J , and thus this proof can be
used also for those graphs where J → G is not mono.

The proposition above is a key step in the definition of a concise lts. In fact, it tells us how
to construct the label F and the resulting state H, just starting from a set of minimal rules of
the form FD ¾ JD ½ D ¾ D ∩ I → R. Given a mono D ½ G, the resulting state H can be
computed in a dpo step, i.e., all the items of G matched by D and not in D ∩ I are removed and
replaced by R. This transition is possible only if there exists a mono morphism JD ½ J such that
the central diagram commutes. In this case, the resulting label F is computed as the pushout of
the minimal label JD ½ FD and JD ½ J .

We thus now define a concise transition system, starting from the set of rules, of the form
FD ¾ JD ½ D ¾ D ∩ I → R, that are depicted in Figure 2.9. The main difference with respect
to the standard transition system is that the interface J of a graph is never enlarged by a transition,
but always remains the same.

Definition 2.16 (Concise transition system). Let the graph D be either SND, RCV , Ls or Lτ ;
and let JD, FD, D∩ I and R be the graphs defined according to Figure 2.9. Then, J ½ G

J½F¾J−−→CO

J → H if and only if a diagram as the one illustrated in Figure 2.8 (iii) can be constructed, where
the morphism J → H is uniquely induced by H ← V ½ G ¾ J .

Note that the pushout complement of D ∩ I ½ D ½ G always exists because for each D as in
Figure 2.9 all the nodes of D ∩ I are in D, and thus we have a transition for each D ½ G and for
each JD ½ J such that the central diagram commutes. Moreover the morphism J ½ V always
exists (since J is discrete and V contains all nodes of G) and it is unique (since V ½ G is mono).

More precisely, consider either SND or RCV as D: the existence of a morphism JD ½ J means
that the name used in the synchronisation must occur in the interface. Whenever D is either Ls

or Lτ , JD is the empty graph ∅ and thus a morphism always exists. In these two latter cases the

2.6. THE SYNTHESISED TRANSITION SYSTEM 43

label of the transition is always the span of identities on J and the resulting state is exactly the
state obtained from a dpo direct derivation.

In order to grasp the difference between → and −→CO, consider the states K → H resulting
from the bc transition shown in Figure 2.11. The interface K is the original interface J plus a
summation node (¦) pointing to an isolated summation node, and a new process node (•) pointing

to the root. Intuitively, this transition can be described as (νa)(a.0 | (a.0+b.0))
−|b̄.P+M−−−−−→ P , where

Q and Q are meta-variables denoting respectively a process and a summation. The concise lts

forgets about P and M , and the transition represented in −→CO is (νa)(a.0 | (a.0+b.0))
−|b̄.0−−→CO 0.

This operation is performed without changing the resulting bisimilarity, as stated below.

Proposition 2.6. Let ∼ be the bc bisimilarity, and let ∼C be the bisimilarity defined on −→CO.
Then ∼C and ∼ coincide for all those graphs with discrete interfaces belonging to the image of our
encoding.

Proof. See appendix.

The previous proposition allows a simpler proof of the correspondence between strong bisimi-
larity for CCS and the one resulting from the bc construction.

Theorem 2.1. Let p, q be processes, and let Γ be a set of names, such that fn(p) ∪ fn(q) ⊆ Γ.
Then [[p]]gΓ ∼ [[q]]gΓ if and only if p ∼CCS q.

Proof. Here we give just a brief sketch of the proof. First of all, note that the set of inference rules
below define the same lts as that in Definition 2.4, for A ⊆ N a finite set of names, p, r and s
processes, and m and n summations.

P ≡ (νA)((τ.q + m) | r)
p

τ−→ (νA)(q | r)
P ≡ (νA)((ā.q + m) | (a.r + n) | s)

p
τ−→ (νA)(q | r | s)

p ≡ (νA)((a.q + m) | r) a /∈ A

p
a−→ (νA)(q | r)

p ≡ (νA)((ā.q + m) | r) a /∈ A

p
ā−→ (νA)(q | r)

The correspondence between the concise lts −→CO and the standard lts of CCS is then quite
evident, since each of those inference rules above exactly corresponds to a rule R ← D∩ I ½ D ¾
JD ½ FD in Figure 2.9.

For instance, the third rule above corresponds to the third row D = RCV in Figure 2.9. Indeed,
p ≡ (νA)((a.q + m) | r) if and only if RCV can be embedded in G where J ½ G is [[p]]gΓ. The
condition a /∈ A is satisfied if and only if a occurs in the interface J , i.e., if and only if there exists
a mono JRCV ½ J such that everything commutes. If such a condition is satisfied a transition in
−→CO is performed with label J ½ F ¾ J where J ½ F is (part of) the pushout of JRCV ½ J
and JRCV ½ FRCV . Since the latter morphism is fixed, J ½ F depends only on JRCV ½ J , i.e.,
it depends only on the name of J corresponding to the unique name of JRCV , that here we have
called a. Then, for each graph with interface J such that RCV occurs inside, and such that the
unique name of RCV occurs in J with name a, a transition is performed with a label depending
only on a. Roughly, this label can be thought of as a context corresponding to [[− | ā.0]]gΓ with
J = {ϕ} ∪ Γ. The resulting state (νA)(q | r) does not exactly correspond to the state resulting
from −→CO, since the latter contains those graphs that represent discarded choices. However, these
summations are not connected anymore to the reachable graph and to the go-edge, and thus they
do not influence the behavior of the resulting graph.

The second rule corresponds to the second row D = Ls. In fact, p ≡ (νA)((ā.q+m) | (a.r+n) |
s) if and only if Ls can be embedded into G where J ½ G is [[p]]gΓ. There are no other conditions
on this rule and this is exactly expressed by the fact that JLs is the empty graph ∅. The τ -label
exactly corresponds to the label of −→CO given by the span of identities on J .

44 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

FD ¾ JD ½ D ¾ D ∩ I→ R

go

•1 //

>>

c // ¦s1 // τ // •2 •1 ¦s1 •2

go

•12

>>

¦s1

∅ ¾ ∅ ½ Lτ ¾ Iτ → Rτ

go

•1 //

//

>>

c // ¦s1 // rcv

""

// •2

◦

c // ¦s2 // snd //

@@

•3

•1 ¦s1 •2

◦

¦s2 •3

go

•123

>>

¦s1

◦

¦s2

∅ ¾ ∅ ½ Ls ¾ Is → Rs

•1 // c // ¦ // snd //
$$III
•

◦

•1

◦

go ◦

•1 //
>>
c // ¦s1 // rcv //

::uuuu •2

◦

•1 ¦s1 •2

go

•12

>>

¦s1

◦

¦
FRCV ¾ JRCV ½ RCV ¾ RCV ∩ Is → Rs

•1 // c // ¦ // rcv //
$$III
•

◦

•1

◦

go ◦

•1 //
>>
c // ¦s2 // snd //

::ttt
•3

◦

•1 ¦s2 •3

go

•13

>>

¦s2

◦

¦
FSND ¾ JSND ½ SND ¾ SND ∩ Is → Rs

Figure 2.9: The derivation rules for the concise lts (∅ denotes the empty graph).

2.6. THE SYNTHESISED TRANSITION SYSTEM 45

g
o

•
// //>> c

// ¦
// r

c
v

""
// •

◦

c
// ¦

// s
n

d
//

@@

•

g
o

•
// //>> c

// ¦
// r

c
v

""
// •

◦

c
// ¦

// s
n

d
//

@@

•

•
¦

•

◦

¦
•

g
o

•
>> ¦ ◦

¦

D
L

s
I s

R
s

g
o

ϕ
•

// ÁÁ>> c
// ¦

// r
c
v

""// •

s
n

d
//

00
•

◦

c
// ¦

//>> s
n

d
//

??
•

◦b

g
o

ϕ
•

// ÁÁ>> c
// ¦

// r
c
v

""// •

s
n

d
//

00
•

◦

c
// ¦

//>> s
n

d
//

??
•

◦b

ϕ
•

¦
•

•
◦

¦
// s

n
d

//
??

•
◦b

g
o

¦
p
•

EE

◦

¦
// s

n
d

//
>>

•
◦b

G
G

+
C

H

ϕ
• ◦b

ϕ
• ◦b

ϕ
• ◦b

J
F

K

F
ig

ur
e

2.
10

:
T

he
in

te
rn

al
sy

nc
hr

on
iz

at
io

n
ge

ne
ra

te
s

a
sp

an
of

id
en

ti
ti

es
as

la
be

l.

46 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS
g
o

•

//>>

◦1

c
// ¦

// s
n

d
//

AA
•

g
o

•
// //>> c

// ¦
// r

c
v

""
// •

◦

c
// ¦

// s
n

d
//

@@

•

•
¦

•

◦

¦
•

g
o

•
>> ¦ ◦

¦

D
L

s
I s

R
s

g
o

ϕ
•

// ÁÁ>> c
// ¦

// r
c
v

""// •

s
n

d
//

00
•

◦

c
// ¦

//>> s
n

d
//

11
•

◦1 b

g
o

ϕ
•

// ÁÁ>> ÂÂc
// ¦

// r
c
v

""// •

s
n

d
//

00
•

◦

c
// ¦

//>> s
n

d
//

11
•

◦b

c
// ¦

// r
c
v

//
NN

•

ϕ
•

// c
// ¦

// r
c
v

""// •

s
n

d
//

00
•

◦

¦

>>

•
◦b

¦
•

g
o

ϕ
•

//>> c
// ¦

// r
c
v

""// •

s
n

d
//

00
•

◦

¦

>>

◦b

¦
G

G
+

C
H

ϕ
• ◦b

ϕ
•

""EEEE
◦b

c
// ¦

// r
c
v

NN
// •

ϕ
•

◦b

¦
•

J
F

K

F
ig

ur
e

2.
11

:
T

hi
s

bo
rr

ow
ed

co
nt

ex
t

tr
an

si
ti

on
re

pr
es

en
ts

a
sy

nc
hr

on
iz

at
io

n
w

it
h

th
e

en
vi

ro
nm

en
t

an
d

it
s

la
be

l
is

a
re

ce
iv

e
ac

ti
on

on
b.

2.6. THE SYNTHESISED TRANSITION SYSTEM 47

g
o

•
>>

g
o

•
// //>> c

// ¦
// r

c
v

""
// •

◦

c
// ¦

// s
n

d
//

@@

•

•
¦

•

◦

¦
•

g
o

•
>> ¦ ◦

¦

D
L

s
I s

R
s

g
o

ϕ
•

// ÁÁ>> c
// ¦

// r
c
v

""// •

s
n

d
//

00
•

◦

c
// ¦

//>> s
n

d
//

11
•

◦b

g
o

ϕ
•

// ÁÁ -- ÁÁ>> c
// ¦

// r
c
v

""// •

s
n

d
//

00
•

◦

c
// ¦

//>> s
n

d
//

11
•

◦b

c
// ¦

// r
c
v

""

// •

c
// ¦

// s
n

d
//

00
•

◦

ϕ
•

// ÀÀc
// ¦

// r
c
v

""// •

s
n

d
//

00
•

◦

c
// ¦

//>> s
n

d
//

11
•

◦b

¦
•

¦
•

◦

g
o

ϕ
•

// ÁÁ>> c
// ¦

// r
c
v

""// •

s
n

d
//

00
•

◦

c
// ¦

//>> s
n

d
//

11
•

◦b

¦ ¦
◦

G
G

+
C

H

ϕ
• ◦b

ϕ
•

// ÂÂc
// ¦

// r
c
v

""

// •

b
◦

c
// ¦

// s
n

d
//

??
•

◦

ϕ
•

¦
•

b
◦

¦
•

◦
J

F
K

F
ig

ur
e

2.
12

:
A

tr
an

si
ti

on
w

hi
ch

is
no

t
en

ga
ge

d:
it

s
la

be
l
co

nt
ai

ns
th

e
en

ti
re

le
ft

-h
an

d
si

de
L

s
(e

xc
ep

t
fo

r
th

e
g
o

ed
ge

).

48 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

2.7 Summing up

This chapter have presented a case study in the synthesis of ltss for process calculi. A sound
and complete graphical encoding for processes is exploited in order to apply the bc mechanism
for automatically deriving an lts: states are graphs with interfaces, labels are cospans of graph
morphisms, and two (encodings of) processes are strongly bisimilar in the distilled lts if and only
if they are also strongly bisimilar according to the standard lts.

This result is an important point in order to evaluate the adequacy of IPO abstract semantics
that we questioned in Section 1.2.1. Indeed, we can safely say that for CCS (G)IPO bisimilarity
exactly coincides with the canonical bisimilarity, while saturated bisimilarity results to be too
coarse. This is in contrast with the main aim of the first part of the thesis, that is showing that
IPO semantics are usually too strict. This has been already shown in the case of open input Petri
nets (Example 1.9) and will be also shown for Logic Programming (Section 3.2) and for open
π-calculus (Section 3.3). Moreover Section 4.2.2 and Section 6.4.3 will further explain this. At the
beginning of the next section we will explain why in the case of CCS the IPO semantics are the
good one.

Moreover we consider this work to be relevant for the reasons outlined below.

Non-ground rules. It is noteworthy that the encoding into graphs with interfaces allows the
use of two rewriting rules only: intuitively, these rules are non-ground since they can be both
contextualized and instantiated. This feature results in synthetising a finitely branching (also for
possibly recursive processes) lts: this seems one of the key advantages of our technique when
compared to the bigraphical approach, where reaction rules must be ground, hence infinite in
number and inducing an infinitely branching lts already for finite processes. As far as we are
aware, in all the encodings of calculi in the theory of reactive systems, there are infinitely many
rules (finitely represented by some parametric rules). The only exceptions we know are the present
encoding of CCS and the encoding of Logic Programming presented in Section 3.2.

Pruning technique. The techniques that we have introduced in order to cut to a manageable
size the borrowed lts are interesting for the whole framework: they exploit abstract categorical
definitions, such as initial pushouts, yet resulting in a simplified lts with the same bisimulation
relation (see Proposition 2.4). We think that in bigraphical reactive systems such techniques are
harder to develop, because they are defined over pre-categories, instead of well-formed categories.

Infinite processes. Our work focuses on a fully-fledged case study, including also possibly re-
cursive processes: most examples in the literature restrain themselves to the finite fragment of a
calculus, as it happens for the encoding of CCS processes into bigraphs presented by Milner in [84].

Extending the approach to nominal calculi. We consider promising the combined use of a
graphical encoding (into graphs with interfaces) and of the bc techniques, and we plan to test its
expressiveness by capturing also nominal calculi. We feel confident that our approach could be
safely extended to those calculi whose distinct feature is name fusion [93], while it might fail for
calculi where a more flexible notion of name scoping is needed, as suggested by preliminary results
on the π-calculus in [57].

Further limitations of the reactive systems. Besides the points shown before, this chapter
is important because it highlights another problem of the theory of reactive system: even if we are
able to safely prune the space of possible transitions, it is however hard to reason and to make
proofs over the distilled lts. This is the reason why we have introduced the concise transition
system (Definition 2.16). This labeled transition system is more intuitive than the distilled lts
and can be constructed starting from a few derivation rules. In our opinion, this is a structural
problem concerning the whole framework of reactive systems and it could be solved by providing

2.7. SUMMING UP 49

a mechanism suitable to synthetizes rules specifying the lts instead of deriving directly the lts.
Some preliminary step in this direction has be done for borrowed contexts rewriting in [10].

Another problem emerging form the above encoding is the following: in the derived lts we have
as labels open contexts, i.e., contexts containing variables that could be instantiated. For example,
the borrowed context derivation depicted in Figure 2.11 represents the transition (νa)(a.0 | (a.0+

b.0))
−|b̄.p+m−−−−→ p. Indeed, in the interface K, there is a new process node (•) corresponding to the

variable p and a summation node (¦) corresponding to the variable m. In the case of CCS, we can
safely forget them, as it is done by the concise lts, but in other interesting process calculi, this is
less clear.

In the following chapters, we will not try to solve this problem that seems to be quite hard.
Moreover as illustrated in Section 1.2.1, IPO abstract semantics are often too strict and thus we
give priority to investigate this aspect. In the next chapter, we will show that saturated semantics
(Section 1.1.2) are in some cases more adequate than IPO semantics, and moreover they are always
congruences without requiring the existence of RPOs. Moreover in the Part II of the thesis, we
will use saturated semantics in a more general framework, avoiding the problems outlined above.

50 CHAPTER 2. CCS BISIMILARITY VIA BORROWED CONTEXTS

Chapter 3

Semi-saturated and symbolic
semantics for reactive systems

In Chapter 1, we recalled the theory of reactive systems by Leifer and Milner [76]: a general
framework that transforms a semantics specification given by means of reaction rules into a labeled
transition system (lts). A reaction rule consists of a left-hand-side and a right-hand-side. When
the left-hand-side occurs into a state p, it is removed and replaced by the right-hand-side obtaining
a new state q. In this case, we say that p reacts and becomes q (in symbols p Ã q). From Ã, we
can derive an lts called saturated transition system (denoted by →SAT) as follows:

p
c[−]→SAT q if and only if c[p] Ã q (Definition 1.7).

Abstract semantics defined over this lts are always congruences and are called saturated semantics,
since they use all the possible contexts.

However, since contexts are often infinite in number, the satts is usually infinitely branching.
In order to reduce the size of the satts, Leifer and Milner focuses on the minimal contexts that
allow a certain state to reach the left hand side of a rule. These minimal contexts are categorically
captured by the notion of IPO (Definition 1.9). The IPO labeled transition systems (denoted by
→I) is defined as follows:

p
c[−]→I q if and only if c[−] is the minimal context (IPO) such that c[p] Ã q (Definition 1.10).

Abstract semantics defined over this lts are called IPO abstract semantics. The main theorem of
the theory of reactive system (Theorem 1.1) states that IPO bisimilarity (∼IPO) (as well as other
interesting abstract semantics) is a congruence whenever the category representing the syntax of
the modeled formalism is “well-formed”, namely it has redex-RPOs (Definition 1.11).

In Chapter 2, we have applied the above theory to the paradigmatic case of CCS, and we have
shown that the derived lts almost coincides with the canonical one, and that IPO bisimilarity is
equal to the well-known strong bisimilarity of CCS.

Besides this case, in literature there are few results concerning the correspondence between IPO
abstract semantics and some previously defined abstract semantics.

In this chapter, we further investigate the adequateness of IPO abstract semantics. Indeed, in
our opinion, these are too strict, since the observer can know exactly how much context systems need
to react. Recall the example of input nets where we have shown that IPO bisimilarity is stricter
than the canonical bisimilarity (Example 1.9). Consider an input net as a black box which has as
interface a set of input places. In that example, a �IPO b, but a and b cannot be distinguished
by an external observer that can only insert tokens into open places and observe when a reaction
occurs.

In the original idea of Leifer and Milner, IPOs i.e., the minimal contexts that allow a system to
react, represent exactly the interactions between the system and the environment. But in many

52 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

formalisms not all the interactions are observable, as is clearly the case of asynchronous formalisms,
where the input interaction is not observable: in open input Petri nets, the observer can insert
tokens into input places, but he cannot know if they have been consumed. In the same way, in
asynchronous π-calculus [6], the observer can send output messages on a certain channel, but he
cannot know if they have been received. In CCS instead, all interactions are observable, and this is
the real reason underlying the result presented in Chapter 2, that is, the derived IPO bisimilarity
coincides with the canonical strong bisimilarity of CCS.

On the other hand, saturated semantics are sometimes too coarse. In the case of CCS, the
processes Ω = τ.Ω and Θ = Ω + a.Ω are saturated bisimilar, but they are not bisimilar in the
standard sense (as detailed in Section 1.2.1). Moreover, when considering the weak case, we obtain
the trivial equivalence that equates everything. This can be well-understood thinking about the
experiment done by an external observer. In saturated semantics, in the strong case, an external
observer can insert the system into any possible environment and observe if some reaction occurs.
This is the only observation allowed. In the weak case, the observer cannot observe reactions and
thus he cannot observe anything and all systems are, from his point of view, equivalent.

These considerations lead us to consider saturated bisimilarity enriched with some observations.

This idea was originally proposed by Montanari and Sassone in [89] under the name of dynamic
bisimilarity. In order to obtain a compositional bisimilarity for the weak semantics of CCS, the
authors define this abstract semantics by requiring that at any step of the bisimulation game,
a system can be plugged into some context. In this setting, observations are placed over the
transitions and are the usual observable actions of CCS (input and output).

The proposal of Honda and Yoshida in [65], is more similar to the problem of Leifer and
Milner. The authors studied the problem of deriving bisimulation congruence from pure reduction
systems. They define an abstract semantics that is equal to saturated bisimilarity, but they identify
as minimal observation (that is needed to obtain a meaningful equivalence) insensitiveness, i.e.,
the inability to interact.

The need to have a notion of minimal observation is also expressed in [87], where Milner and
Sangiorgi proposed barbs for CCS. However, it is not really clear what are barbs in a general
setting. As an example consider the Simple Process Calculus proposed in Example 1.3. What are
barbs in this setting? In [96], the authors propose a general notion of barbs that is based on the
algebraic concept of bi-orthogonality.

Here we propose to use saturated semantics plus observations that could be both on states (as
is the case of barbs) and on transitions (as is the case of dynamic bisimilarity). Observations could
be built in into the formalism, or derived by some general theoretical framework (such as [96]).
We prove that this captures the case of two interesting formalisms, namely Logic Programming
(Section 3.2) and a fragment of open π-calculus (Section 3.3).

In the former case, we consider a variation of trace equivalence, where we consider the set of
all the execution traces ending in the empty formula ¤. In this case, IPO semantics is too fine (it
coincides with an equivalence known in the Logic Programming community as S-semantics [46]),
while saturated semantics coincides with logic equivalence. Here the observer can see if a formula
is empty or not. In open π-calculus, instead, we take as basic observations all the actions of π-
calculus (input, output and τ) and we consider as contexts all the possible fusions of names. Also
in this case, IPO semantics is too strict, while saturated semantics coincides with the well-known
open bisimilarity [100].

This proposal seems to us more adequate than IPO semantics, since it subsumes a wider range
of formalisms and integrates several previously introduced proposals. However, we still have a big
problem with satts: it has as labels all the possible contexts that allow some reaction, and thus
it is usually infinitely branching. In Section 3.1, we will show how to capture saturated semantics
by reusing just the IPO labeled transition system that is considerably smaller than satts.

3.1. SEMI-SATURATED GAME 53

3.1 Semi-saturated game

In this section, we introduce the semi-saturated game: a general technique that allows us to
efficiently characterizes saturated semantics. By efficiently, we mean that we avoid considering
the whole saturated transition system (satts) that is usually too big, since it is labeled with all
possible contexts that allow some reaction. Instead of the satts, we use the IPO labeled transition
system (its), whose labels are just the minimal contexts that allow some reaction. However, we
do not consider the usual abstract semantics over the its but a slightly refined version of them: if
we call Alice the player choosing the move and Bob the player choosing a matching reply, when
Alice chooses an IPO move, Bob can reply with a move from satts.

We prove that semi-saturated semantics coincide with saturated semantics whenever the reac-
tive system has redex IPOs.

Definition 3.1 (Redex IPOs). A reactive system has redex IPOs, if every redex square has at
least one IPO as candidate.

Clearly this constraint is weaker than having redex RPOs (Definition 1.11), and hence our
results can be applied to a larger class of reactive systems than Theorem 1.1 by Leifer and Milner.
Having RPOs means to have a minimum candidate (i.e., a candidate smaller than all the others),
while having IPOs allows us to have several minimal candidates (also not comparable among them).
The following example explains the difference between redex IPOs and redex RPOs.

Example 3.1 (IPOs in Simple Process Calculus). Recall the category C≡
Σ (Example 1.4) introduced

as underlying category of the reactive system for Simple Process Calculus. This is the term category
of a signature having some constants and a binary operator that is associative, commutative and
with identity.

We have shown in Example 1.10 that this category does not have RPOs: consider the exterior
squares in diagrams (i) and (ii) below (note that they are equal). This square has no RPOs since it
has as candidates the arrows inside which are not comparable (in the sense that neither is smaller
than the other). But note that both are IPOs, since they have as candidates only isomorphic
diagrams.

1

1

a|−1

::vvvvvvvvvv
−1

// 1

a|−1

OO

1−1

oo

a|−1

ddHHHHHHHHHH

0

a

ddHHHHHHHHHH
a

::vvvvvvvvvv

1

1

a|−1

::vvvvvvvvvv
〈−1,a〉

// 2

−1|−2

OO

1〈a,−1〉
oo

a|−1

ddHHHHHHHHHH

0

a

ddHHHHHHHHHH
a

::vvvvvvvvvv

In this section we show saturated games for both bisimilarity (Section 3.1.1) and a generalization
of trace equivalence (Section 3.1.2) that will be useful later on Section 3.2 in order to give abstract
semantics to Logic Programming.

3.1.1 Semi-saturated and symbolic bisimilarity

Here we propose two alternative and (in some cases) finitary characterization of saturated bisimi-
larity: semi-saturated bisimilarity and symbolic bisimilarity. In the former, considering the bisim-
ulation game, one player proposes an IPO transition and the other answers with a contextual
transition.

Definition 3.2 (Semi-saturated bisimulation). A symmetric relation R is a semi-saturated bisim-
ulation if and only if whenever p R q, then

• p
C[−]→I p′ implies q

C[−]→SAT q′ and p′R q′.

54 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

We call the union of all semi-saturated bisimulations semi-saturated bisimilarity (denoted by ∼SS).

Theorem 3.1 states that under very weak conditions this kind of bisimilarity coincides with
saturated bisimilarity (and thus it is a congruence). In this way we can prove that two processes
are saturated bisimilar just starting with IPO moves that are sometimes finite in number1. Once
an IPO move is chosen, the context C[−] is fixed, and thus only the Ã moves from C[q] must be
considered. Leifer and Milner have shown that ∼IPO is a congruence if the reactive system has
redex RPOs, i.e., if for each redex-square there exists an RPO. For ∼SS it is sufficient to require
that the reactive system has redex IPOs.

Theorem 3.1. Let R = 〈C, 0,D, R〉 be a reactive system having redex-IPOs. Then semi-saturated
bisimilarity coincides with saturated bisimilarity (i.e., p ∼SS q ⇐⇒ p ∼S q).

Proof. We prove that ∼SS ⊆∼S , showing that the contextual closure S of semi saturated bisimi-
larity

S = {〈c[p], c[q]〉 | p ∼SS q, c ∈ C}
is a saturated bisimulation.

I6

I4

f
??ÄÄÄÄÄÄ

I5

d′′
__@@@@@@

I2

c

__@@@@@@
g

??ÄÄÄÄÄÄ
I3

d′
__@@@@@@

d

ll

0
p

``@@@@@@@ l

>>~~~~~~~

I6

I4

f
??ÄÄÄÄÄÄ

I5

d′′
__@@@@@@

I2

c

__@@@@@@
g

??ÄÄÄÄÄÄ
I3

e
__@@@@@@

0
q

``@@@@@@@ l′

>>~~~~~~~

(i) (ii)

Suppose that c[p]
f→SAT p′. Then for some 〈l, r〉 ∈ R and d ∈ D we have that the exterior

square of diagram (i) commutes and p′ = d[r]. Since R has redex IPOs we are able to construct
an IPO as the inner square of diagram (i) and then p

g→I d′[r]. Since p ∼SS q we have that
q

g→SAT e[r′] for some e ∈ D and 〈l′, r′〉 ∈ R with d′[r] ∼SS e[r′]. Now we can put the upper
square of diagram (i) on the redex square generating this transition and we obtain diagram (ii) that

trivially commutes. Hence c[q]
f→SAT d′′[e[r′]], and (p′, d′′[e[r′]]) ∈ S because p′ = d[r] = d′′[d′[r]]

and d′[r] ∼SS e′[r′].
To prove that ∼S ⊆∼SS it is sufficient to observe that if p

a→I p′ then p
a→SAT p′.

Even if quite simple, the above theorem is, in our opinion, very interesting. Indeed, it allows us
to recover saturated bisimilarity without considering all the transitions of satts, i.e., all possible
contexts that allow some reaction. The following definition offers an alternative characterization
of semi-saturated bisimulations: when Alice propose an IPO move labeled with c, Bob can reply
with another IPO move labeled with a contexts d smaller than c.

Definition 3.3 (Symbolic bisimulation). A symmetric relation R is a symbolic bisimulation if
and only if whenever pR q,

• if p
C[−]→I p′ then ∃d ∈ C, e ∈ D such that d; e = c, q

d→I q′ and p′R q′; e.

We call the union of all symbolic bisimulations symbolic bisimilarity (denoted by ∼SY M).
1In several encodings of process calculi into bigraphs [82], the its of a process p is infinitely branching also when

the canonical lts of p is finite states. This happens because bigraphs employ infinitely many rules as reaction rules
(as detailed in Section 1.2.2). Borrowed contexts rewriting [43] allows us to use only few reaction rules, yielding a
finitely branching its as shown in Chapter 2 for the case of CCS. Moreover in our encoding of Logic Programming
and open π-calculus in Section 3.2 and 3.3, the its is still finitely branching. The same happens with our encoding
of open input Petri nets (Example 1.7).

3.1. SEMI-SATURATED GAME 55

Theorem 3.2. Let R = 〈C, 0,D, R〉 be reactive system having redex-IPOs. A symmetric relation
R is a semi-saturated bisimulation if and only if it is a symbolic bisimulation.

I4

I2

c

??ÄÄÄÄÄÄÄ
I3

f
__???????

0

q

``@@@@@@@@ l

>>~~~~~~~~

I4

I2

c

??ÄÄÄÄÄÄÄ
d // I5

e

OO

I3goo

f
__???????

0

q

``@@@@@@@@ l

>>~~~~~~~~

(i) (ii)

Proof. Suppose that R is a semi-saturated bisimulation. Let p, q be processes such that pR q.
Then, p

c→I p′ implies that q
c→SAT q′and p′R q′. Then by definition of →SAT there exists a redex

square like diagram (i) where q′ = r; f . Since the reactive system has redex IPOs, then there exists
an IPO candidate like that in (ii), and then q

d→I r; g. Now note that p′R q′ = (r; g); e.
The inverse implication is trivial.

It is worth noting that the Definition 3.3 does not require that the arriving states p′ and q′ are
bisimilar. Indeed, it requires that p′ is bisimilar to q′; e, that is the process q′ inserted into the
context e that is missing to d to equate c. This recall us several abstract semantics of different
process calculi such as symbolic open bisimilarity [100], asynchronous bisimilarity [6], efficient
bisimilarity [112] of explicit fusion and large bisimilarity [7].

Example 3.2 (Semi-saturated and symbolic bisimulation in open input Petri nets). Recall the
input net N depicted in Figure 1.3. In Example 1.9 we have informally proved that a ∼S b and
e ∼S cx. Here we formally prove it by showing that

R = {(a, b), (b, a), (c, c), (e, cx), (cx, e), (d, f), (f, d), (dy, fy), (fy, dy)}

is a symbolic bisimulation. Consider the its of marking a, b and cx depicted below.

b
y // c x // d

cx

ε
77ooooooo

a
xy //

y

@@£££££££££
e

y &&MMM
MMM

M
ε // f

fy

We can prove that R is a symbolic bisimulation just using →I . As an example consider the
pair (a, b). When a

y→I c then b
y→I c and cRc. In this case the arrow d of Definition 3.3 is y and

e is the identity. When a
xy→I c then b

y→I c and cRcx. In this case the arrow d of Theorem 3.2 is
y and e is x.

We can reason analogously for the pair (e, cs), while the pairs (c, c), (d, f) and (dy, fy) trivially
respect Definition 3.3.

Alternatively, we can show that R is a semi-saturated bisimulation. Consider (a, b). When
a

y→I c then b
y→SAT c and cRc. When a

xy→I e then b
xy→SAT cx and eRcx.

3.1.2 Semi-saturated trace equivalences

In this section we introduce φ-trace equivalence, an abstract semantics that is parametric w.r.t. a
predicate φ and that generalizes canonical trace equivalence. In the theory of reactive system, this
semantics does not have yet been considered. We are introducing it, because it will be relevant in
Section 3.2 as abstract semantics of logic programs.

56 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

As in the case of bisimilarity, we define saturated and IPO φ-trace equivalence. The former is
always a congruence, while the latter only when there exist redex and context RPOs. Moreover we
will introduce a semi-saturated version of it and we prove that this coincides with the saturated
one, whenever the system has redex and context IPOs.

Definition 3.4 (φ-trace equivalence). Let X be a set of states, L a set of labels and →⊆ X×L×X
a transition relation. Let −;− : L × L → L be an associative operator on labels and let φ be a
property on X. We say that p, q ∈ X are φ-trace equivalent (p 'φ q) if the following conditions
hold:

• φ(p) if and only if φ(q),

• if p
l³ p′ ∧ φ(p′) then q

l³ q′ ∧ φ(q′),

• if q
l³ q′ ∧ φ(q′) then p

l³ p′ ∧ φ(p′),

where p
l³ p′ iff p

l1→ p2 . . . pn
ln→ p′ and l = l1; l2; . . . ; ln with n ≥ 1.

Note that the above definition generalizes the notion of trace equivalence: when φ holds in
every state of X and ; is string concatenation, then we have the classical trace semantics for →.

In the rest of this section we will study this equivalence in the setting of reactive systems, and
we will fix the ; operator to be context composition. As we did for bisimilarity, we can define this
equivalence on the its (IPO φ-trace equivalence denoted by 'φ

I) or on the satts (saturated φ-trace
equivalence denoted by 'φ

SAT).
In order to obtain a congruence we have to require the following conditions:

1. φ is defined on all arrows, and the arrows satisfying φ form a composition-reflecting subcat-
egory;

2. all contexts are reactive.

The first requirement is not very strong, and we will show that in our encoding of Logic Program-
ming, it holds. The second constraint is rather restrictive, but there are many formalisms for which
it holds, as for example term rewriting (Example 1.2), dpo graph rewriting (Section 1.3.3), Logic
Programming (Section 3.2) and open input Petri nets (Example 1.7).

Proposition 3.1. In a reactive system where all contexts are reactive 'φ
SAT is a congruence.

Proof. We show that {(C[p], C[q]) s.t. p 'φ
SAT q} ⊆'φ

SAT .

Suppose that C[p]
l³C p′ ∧ φ(p′), then C[p] = p1

l1→SAT p2 . . . pn
ln→SAT pn+1 = p′ and l =

l1; l2; ...; ln. Then p
C[−];l1→SAT p2 and thus p

C[−];l
³C p′. Since p 'φ

SAT q, then q
C[−];l
³C q′ and φ(q′).

Because C[−] is reactive, C[q]
l³C q′.

IPO bisimilarity is a congruence under the constraint of having all redex RPOs, while here
IPO φ-trace equivalence is a congruence under the assumption that RPOs exist not only for redex
squares but also for squares where the four arrows are contexts (for bisimilarity, RPOs are only
required for squares where one of the lower arrows is a redex). We say that a reactive system has
redex and context RPOs if it satisfies this constraint. We have to require this condition since we
are working with the transitive closure of →I . A similar condition is needed in [27] where the
authors require to have all RPOs, in order to show that weak bisimulation is a congruence.

Proposition 3.2. In a reactive system with redex and context RPOs, where all contexts are reactive
and φ defines a composition-reflecting subcategory, 'φ

I is a congruence.

3.1. SEMI-SATURATED GAME 57

I6

I4

li

??ÄÄÄÄÄÄÄ
I5

d′′i
__???????

I2

d′′i−1

__???????
gi

??ÄÄÄÄÄÄÄ
I3

d′i
__???????

0
pi

``@@@@@@@@ li

>>~~~~~~~~

I4

I2

l

??ÄÄÄÄÄÄÄ
I3

d′′n
__???????

I2

C[−]

__??????? g

??ÄÄÄÄÄÄÄ

Iz

I4

α

??ÄÄÄÄÄÄÄ
Iu

d′′n
__@@@@@@@

I2

i1

??ÄÄÄÄÄÄÄ
I3

d′′′1

__@@@@@@@ f2
m

??~~~~~~~

I2

C[−]

__??????? f1

??ÄÄÄÄÄÄÄ

(i) (ii) (iii)

Proof. In order to prove this theorem we will use the composition and decomposition properties
of RPOs proved in [76]. Let us consider the diagrams above. We show that {(C[p], C[q]) | p 'φ

I

q} ⊆'φ
I .

Suppose that C[p]
l³I p′ ∧φ(p′), then C[p] = p1

l1→I p2 . . . pn
ln→I pn+1 = p′ and l = l1; l2; . . . ; ln.

By decomposition property, for all i = 1 . . . n we have diagram (i) where the lower and the upper
square are RPOs, pi+1 = ri; d′i, pi = pi; d′′i−1, p1 = p and d′′0 = C[−]. Therefore p = p1

g1→I

p2 . . . pn
gn→I pn+1. Since pn+1 = pn+1; d′′n and φ(pn+1), it holds that φ(d′′n) and φ(pn+1). Let

g = g1; g2 . . . gn, with p 'φ
I q, q

g
³I q′ and φ(q′). Unfortunately this does not mean that q

g1→I

q2 . . . qn
gn→I qn+1, because g can be decomposed in many ways. So we have that there exist

f1, f2, . . . , fm such that f1; f2; . . . ; fm = g and q
f1→I q2 . . . qm

fm→I qm+1 = q′. By composition
property, the diagram (ii) is an RPO, because it is the composition of n squares as the upper
square of diagram (i) that are all RPOs. Let f i

m = fi; fi+1; . . . ; fm, then g = f1; f2
m and we

obtain diagram (iii) where i1; α = l. Indeed we can have both squares as RPOs. In fact, since by
hypothesis RPOs exists in context squares, we can compute the RPO of C[−] and f1. Therefore
C[q] i1→I q2; d′′′1 and, iterating this procedure, we get C[q] i1→I q2; d′′′1 . . . qm

im→I qm+1; d′′n. Since

l = i1; i2; . . . ; im, then C[q]
l³ qm+1; d′′n and φ(qm+1; d′′n) because φ(qm+1) and φ(d′′n).

As for bisimulation we can define a semi-saturated version of φ-trace equivalence.

Definition 3.5. Let R be a reactive system, and φ a property on the arrows of C. We say that p
and q are semi-saturated φ-trace equivalent (p 'φ

SS q) if the following holds:

• φ(p) if and only if φ(q),

• if p
l³I p′ ∧ φ(p′) then q

l³SAT q′ and φ(q′),

• if q
l³I q′ ∧ φ(q′) then p

l³SAT p′ and φ(p′),

where ³I and ³SAT are the transitive closures of →I and →SAT .

As semi-saturated bisimilarity corresponds to saturated bisimilarity, semi-saturated φ-trace
equivalence is saturated φ-trace equivalence, under the weak constraint of the existence of redex
IPOs.

Theorem 3.3. In a reactive system with redex IPOs, where all contexts are reactive, and such
that φ defines a composition-reflecting subcategory, then 'φ

SS ='φ
SAT .

58 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

I4

I2

d′′i−1;hi

??ÄÄÄÄÄÄÄ
gi // I5

d′′i

OO

I3d′ioo

di

__???????

0
pi

``@@@@@@@@ li

>>~~~~~~~~

I6

I4

h

??ÄÄÄÄÄÄÄ
I5

f2
m;d′′n

__???????

I2

id

__???????
f1

??ÄÄÄÄÄÄÄ
I3

e1

__???????

0

q1

``@@@@@@@@ x1

>>~~~~~~~~

I6

I4

id

??ÄÄÄÄÄÄÄ
I5

fi+1
m ;d′′n

__???????

I2

d′′i−1

__???????
fi

??ÄÄÄÄÄÄÄ
I3

ei

__???????

0

qi

``@@@@@@@@ xi

>>~~~~~~~~

(i) (ii) (iii)

Proof. If p 'φ
SAT q then, trivially, p 'φ

SS q.
For the other inclusion, let us consider the diagrams above. We suppose that p 'φ

SS q and

we prove that p
h³SAT p′ ∧ φ(p′) implies q

h³SAT q′ ∧ φ(q′). If p
h³SAT p′ then there exist

h1, . . . , hn such that h1; . . . ; hn = h and p = p1
h1→SAT p2 . . . pn

hn→SAT pn+1 = p′, and then
∃〈li, ri〉 ∈ R, di ∈ D such that pi; hi = li; di and pi+1 = ri; di. Note that for all i diagram
(i) commutes and the lower square is an IPO, where p1 = p, d′′0 = id and pi = pi; d′′i−1. Then
p = p1

g1→I p2 . . . pn
gn→I pn+1. Since pn+1 = pn+1; d′′n and φ(pn+1) then φ(pn+1) and φ(d′′n). Let

g = g1; . . . ; gn, then q
g

³SAT q′∧φ(q′) and there exist f1, f2, . . . , fm such that g = f1; f2; . . . ; fm and

q = q1
f1→SAT q2 . . . qm

fm→SAT qm+1 = q′. By f i
m we denote fi; fi+1; . . . ; fm. Note that h = g; d′′n

,i.e., h = f1; f2
m; d′′n, and then q

h→SAT q2; f2
m; d′′n

id→SAT q3; f3
m; d′′n . . . qm; fm

m ; d′′n
id→SAT qm+1; d′′n

(as illustrated in diagram (iii)). Indeed φ(qm+1; d′′n) because φ(qm+1) and φ(d′′n).

3.2 Logic Programming

This section illustrates how a logic program can be seen as a reactive system, where Horn clauses
are reaction rules and substitutions are environments in which formulas and rules can interact. In
Chapter 2, we encoded CCS into graphs with interfaces, because the Lawvere category correspond-
ing to CCS does not have redex-RPO. In this section, we will encode logic programs directly on
the Lawvere category, since redex-RPOs exist and correspond to the most general unifiers between
the head of a clause and a formula.

Logic Programming, together with open Petri nets (Example 1.9) and open π-calculus (Section
3.3), points out that IPO abstract semantics are sometimes too strict, while saturated are, to some
extent, more adequate. In this section, it turns out that saturated trace equivalence coincides
with the ordinary logic semantics of Logic Programming, while IPO trace equivalence yields a finer
semantics, know in the Logic Programming community as S-semantics [46].

This section is also interesting for the problem pointed in Section 1.2.2. There we have shown
that a big limitation of reactive system is considering only ground rules. Here, we safely tackle
non-ground rules, by considering as contexts arrows that can both instantiate and contextualize.
This approach was used also in the case of CCS, and it results in a finite branching lts.

A logic signature Γ is a pair (Σ, Π), where Σ is a set of function symbols and Π is a set of
predicate symbols with an associated arity. As usual, given a set X of variables, we denote by
TΣ(X) the free Σ-algebra over X. A term over X is an element of TΣ(X). Given a term t, Var(t)
is the smallest set of names X such that t ∈ TΣ(X). An atomic formula over X has the form
P (t1, . . . , tn) where P is a predicate with arity n, and t1, . . . , tn are terms over X. A formula is
a finite conjunction of atomic formulas: a1 ∧ · · · ∧ an where ∧ is associative and it has the empty
formula ¤ as unit. Note that in the standard definition ∧ is also commutative, but to simplify
our construction, as it is the case in Prolog, we do not consider it to be commutative (however the
resulting behavior is the same).

3.2. LOGIC PROGRAMMING 59

h :− b ∈ P σ = mgu(a, ρ(h))
P ° a ⇒σ σ(ρ(b))

where ρ renames to globally fresh names

P ° g ⇒σ f

P ° g1 ∧ g ∧ g2 ⇒σ σ(g1) ∧ f ∧ σ(g2)

Table 3.1: Operational rules for SLD-resolution.

If X and Y are sets of variables, a substitution from X to Y is a function σ : X → TΣ(Y). A
substitution σ is ground if σ : X → TΣ(∅), i.e., if terms in the codomain do not have variables.
If t is a term over X and σ a substitution from X to Y , then the term over Y , obtained by
simultaneously substituting in t all the occurrences of the variables in X with their image under σ,
is called the application of σ to t and written t; σ (or σ(t)). If σ is a substitution from X to Y , and
σ′ from Y to Z, then σ; σ′ from X to Z is defined by applying σ′ to each image of the variables
in X under σ. Given σ : X → TΣ(Y) and X ′ ⊆ X the restriction of σ to X ′, written σ »X ′, is the
substitution σ′ : X ′ → TΣ(Y) acting as σ on X ′.

A substitution σ is more general than σ′ if there exists a substitution θ such that σ′ = σ; θ.
Two substitutions ψ and φ unify if there exists a substitution σ such that ψ;σ = φ;σ, in this
case σ is a unifier of ψ and φ. It is well-known that if ψ and φ unify, then there exists a unifier
that is more general than all the others, called the most general unifier (mgu for short). It is also
well-known that an mgu is the coequalizer in the category of substitutions [59], and in [28] it is
shown that the mgu of substitutions with disjoint sets of variables corresponds to a pushout (this
will be detailed later).

A logic program is a finite collection of Horn clauses, i.e., expressions of the form h :− b where
h is an atomic formula called the head of a clause, and b is a formula called the body. Rules in
Table 3.1 define the operational semantics of Logic Programming. A goal g = a1 ∧ · · · ∧ an reacts
with a clause c = h :− b if ai, an atomic formula of the goal g, unifies with ρ(h) (where ρ substitutes
the variables of h with fresh variables not appearing in g). Let σ be the mgu of ai and ρ(h), then
g reacts and becomes g′ = σ(a1)∧ · · · ∧ σ(ai−1)∧ σ(b)∧ σ(ai+1)∧ · · · ∧ σ(an). A refutation of g is
a derivation g ⇒σ1 g2 ⇒σ2 · · · ⇒σn gn ending with the empty formula (i.e. gn = ¤). In this case
σ = σ1; . . . ; σn »Var(g) is a computed answer substitution of g.

3.2.1 Goals equivalences

Given a logic program when are two goals equivalent? First note that we already have an lts,
but bisimulation is quite uninteresting in this case because we would like to consider as equivalent
two goals with different branching behavior. Here the interesting point is if, and when, two goals
can be refuted. The first naive equivalence that comes to mind is: g1 can be refuted iff g2 can be
refuted. This equivalence is however not a congruence with respect to substitutions.

Logic equivalence (denoted by 'L) equates g1 and g2 if and only if, for any ground substitution
σ, σ(g1) is refuted iff σ(g2) is refuted. In [46], S-equivalence (denoted by 'S) is proposed: g1 and
g2 have the same set of computed answer substitutions. Another interesting equivalence is correct
answer equivalence (denoted by 'C) that equates two goals iff they have the same set of correct
answer substitutions (defined as follows). Let σ−→ be the transition system defined by changing the
premise of the first rule of Table 3.1: we do not require anymore that σ is the mgu, but only that
it unifies a and ρ(h) i.e, σ(a) = σ(ρ(h)). If g

σ1−→ g2
σ2−→ . . .

σn−→ ¤ we say that σ = σ1; . . . ;σn »Var(g)
is a correct answer substitution of g. In other words σ is a correct answer substitution of g iff σ(g)
is a logical consequence of the program.

In [28], it is shown that, if we work with an infinite set of function symbols, g1 'L g2 iff
g1 'C g2.

60 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

The following example shows that S-equivalence is somehow too detailed and that logic equiv-
alence is more abstract.

Example 3.3. Consider the following program, where y is a variable and a is a constant:

P (y) :−¤ P (a) :−¤ Q(y) :−¤

Now consider the goals P (x) and Q(x). They are refuted by any ground substitution, which means
that they are logic equivalent (and also correct answer equivalent). However, they are not S-
equivalent: in fact the set of computed answer substitutions for P (x) is {ε, [a/x]}, while the com-
puted answer substitutions for Q(x) are {ε}.

In Section 3.2.3, we will show that IPO trace equivalence coincides with S-equivalence and thus
it is too strict since it distinguishes the goals P (x) and Q(x) defined above. While saturated trace
equivalent exactly coincides with correct answer equivalence (and thus logic equivalence) and thus
it cannot distinguish between P (x) and Q(x).

3.2.2 Logic programs as reactive systems

Here we show how logic programs can be seen as reactive systems (Definition 1.1). This will be used
to prove later, that saturated semantics correspond to logic equivalence, while standard semantics
to the finer S-equivalence.

Consider two basic sorts t for terms and p for formulas (predicates are atomic formulas). We
use ε to denote the empty string and tn to denote the string composed of n occurrences of t. Given
a logic signature Γ = (Σ,Π), we define Γ′ as the signature Γ enriched with the symbols ∧ that
takes two formulas and returns one formula and ¤ a constant formula. Let E be the set of axioms
describing that ∧ is associative (not commutative) and has identity ¤. Let Xp and Xt be sets of
predicate and term variables. We use TΓ′/E(Xp, Xt) to denote the Γ′-algebra freely generated by
(Xp, Xt) quotiented by E. A term of this algebra in sort p is a logic formula having term and
predicate variables from Xt and Xp.

Definition 3.6. The category Th[Γ′/E] is the Lawvere theory [74] (Definition 1.3) associated to
the specification Γ′, E. The category Th[Γ′/E]op is the dual category of Th[Γ′/E]

The latter category has been used in [28] as base category for a tile system for Logic Pro-
gramming. Usually Lawvere theories (Definition 1.3) are applied to a one sorted signature and the
resulting category has natural numbers as objects, while here it is applied to a two sorted signature
and it has strings of sorts (i.e., elements of {t, p}∗) as objects. For example, an object pntm can
be thought of as representing n ordered canonical predicate variables (i.e., variables indexed from
1 to n) p1, . . . , pn and m ordered canonical term variables x1, . . . , xm. To avoid confusion, it must
be clear that the canonical variables are just placeholders, i.e., their scope is only local. Note that
in Definition 1.3 we talked about holes, while here we are talking about variables; moreover here
we are considering arrows in the opposite direction. The arrows from s1 to s2 are s1-tuples of
elements of TΓ′/E with s2 canonical variables and the composition of arrows is term substitution.

The subcategory of the arrows of the form tn → tm is isomorphic to the category of finite
substitutions on Σ (with canonical sets of variables) and the arrows t → ε are closed terms over Σ,
while arrows p → ε are closed formulas over Γ′. Arrows p → tn are formulas over n canonical term
variables, while arrows p → ptnp are formulas over n canonical term variables and two canonical
predicate variables. Consider for example 〈P (x1, x2) ∧ p1, f(x1), Q(f(x2)), p5〉 where x1, x2 are
terms variables and p1, p5 are predicate variables. This tuple corresponds to an arrow from ptp2

to t2p5. Note also that the above tuple can represent also an arrow from ptp2 to tptp4.
Furthermore the above tuple can be seen as an arrow having as codomain objects tnpm for n ≥ 2

and m ≥ 5, i.e., the codomain does not define the exact index of (term or predicate) variables,
but the maximum index that the variables can have. In the following for a goal g and a natural

3.2. LOGIC PROGRAMMING 61

number n larger than the maximal index of variables appearing in g, we will write gn to denote
the arrow p → tn.

In the classical interpretation by Leifer and Milner, the arrows having domain objects different
from 0 (the distinguished object) are seen as contexts which can be pre-composed with terms.
In our reactive system these arrows are substitutions which instantiate the variables of formulas.
Horn clauses, not only must be instantiated by substitutions, but they must be also contextualized
with the ∧ operator.

In the remainder of this section we will use

- the formula f1 = P (s(x1), x2) ∧ P (x1, t(x3)) and

- the clause c1 = P (y1, t(y2)) :−Q(y1)

as running example. The head of the c1 must be instantiated (e.g., substituting y1 with x1 and y2

with x3) and contextualized (plugging it into P (s(x1), x2) ∧ [−]) in order to match f1.
Similar problems arise with process calculi where the rules usually are not ground, and have to

be instantiated and contextualized. For example, the left hand side of the CCS rule a.P | a.Q Ã
P | Q matches νa.(a.0 | a.0) instantiating P, Q to 0 and plugging the left-hand side into the
context νa.[−]. Usually this problem is avoided by creating infinitely many rules corresponding to
all possible instantiations of the rule, and then considering only contextualization, as it is done for
bigraphs [82]. This approach causes the problem of having infinitely many rules and consequently
infinitely many transitions. This problem was already outlined in Section 1.2.2 where several
different solutions are discussed. For Logic Programming we use an approach that is analogous to
the one adopted for CCS in Chapter 2, i.e., we consider arrows that can both contextualize and
instantiate. Here we simulate contextualization by substitutions by supplying appropriate variables
in the rules. The redex of a rule is not simply an arrow of the form h : p → tn that can only be
instantiated, but it is an arrow p1 ∧ h ∧ p2 : p → ptnp that can be instantiated and contextualized
(by instantiating the variables p1 and p2). In this way, we also get a finite branching its.

Thus, in our reactive system, the head of the clause c1 above becomes p1 ∧ P (y1, t(y2)) ∧ p2

and, in this way, it can match the goal by instantiating p1 to P (s(x1), x2), p2 to ¤ and y1 to x1

and y2 to x3.
Summarizing, we can say that we allow only substitutions and simulate contextualizations by

substitutions by supplying appropriate variables in the rules (see below). In order to integrate this
idea with the theory of reactive systems we have “reversed” the arrows, i.e., a formula over n term
variables becomes p → tn (instead of the maybe more intuitive tn → p).

Definition 3.7. Given a logic program P on a signature Γ, we define a reactive system R(P) as
follows:

1. Th[Γ′/E]op is the underlying category

2. p is the distinguished object

3. all contexts are reactive

4. for each clause h :− b, let n be the largest index of variables contained in h and b; then we
add the rule

(p1 ∧ h ∧ p2 , p1 ∧ b ∧ p2)

where left and right-hand sides are arrows p → ptnp and p1, p2 are predicate variables.

Note that h and b do not necessarily have the same number of variables, while our theory
requires that left-hand and right-hand side of a rule have the same interface (i.e., they must be
arrows with the same target). In this case we extend the smaller interface.

Recall the definition of redex square (Definition 1.6). A generic redex square for the above
defined reactive system is depicted in diagram (i) of Figure 3.1. Arrow c is a substitution that
instantiates the variables of g, while arrow d instantiates the variables of h and contextualizes h,

62 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

to

tm

c

>>|||||||
e // to

′

i

OO

ptnp
foo

d

bbEEEEEEE

p

g

``BBBBBBB p1∧h∧p2

<<yyyyyyy

to

t3

φ1

??ÄÄÄÄÄÄ
pt2p

ψ1

aaCCCCCCC

p
f1

__??????? p1∧h1∧p2

=={{{{{{{

to

t3

φ2

??ÄÄÄÄÄÄ
pt2p

ψ2

aaCCCCCCC

p
f1

__??????? p1∧h1∧p2

=={{{{{{{

(i) (ii) (iii)

Figure 3.1: (i) A generic redex squares and a candidate for it. (ii,iii) Two redex squares for
f1 = P (s(x1), x2) ∧ P (x1, t(x3)) and h1 the head of the clause c1 = P (y1, t(y2)) :−Q(y1). The
substitution φ1 is [x1/x1, t(x2)/x2, x3/x3], ψ1 is [¤/p1, P (x1, t(x3)), s(x1)/y1, x2/y2], φ2 is
[x1/x1, x2/x2, x3/x3] and ψ2 is [P (s(x1), x2)/p1, ¤/p2, x1/y1, x2/y2].

instantiating the predicate variables p1 and p2. Thus for any reaction step an atom of the goal is
unified with the head of a clause and p1 is instantiated with the formula on the left of the chosen
atom, and p2 is instantiated with the formula on the right.

Lemma 3.1. The exterior square of diagram (i) in Figure 3.1 commutes if and only if there exist
formulas g1, g2 and an atomic formula a such that g = g1 ∧ a ∧ g2, p1; d = g1; c, p2; d = g2; c and
h; d = a; c.

In general, in R(P), given a rule and a goal, there exist several ways of unifying them: one for
each atom of the goal that can match the head h. Consider for example, c1 and f1 described above.
The head of c1 unifies both with the left predicate of f1 and with the right one, as illustrated by
diagrams (ii) and (iii) in Figure 3.1. This means that, given a rule and a goal—seen as arrows—
there usually exists no a minimal way of matching them (i.e., no pushout exists). The following
lemma assures that each commuting square fixes a “way” of matching, i.e., chooses the atom of
the goal that unifies h.

Lemma 3.2. Let the exterior square in diagram (i) of Figure 3.1 be commuting. Let g1, a, g2

be formulas as described in Lemma 3.1. Then for each candidate 〈e, f, i〉, the following hold:
p1; f = g1; e, p2; f = g2; e and h; f = a; e.

As a next step we are going to show that in our reactive system a redex RPO is the mgu of a
and h, together with the instantiation of p1 and p2 to appropriate formulas. We start by recalling
a theorem from [28].

Theorem 3.4 (From [28]). Given two substitutions of terms a and b with disjoint sets of variables,
their mgu is the pushout of the arrows am and bn, for m,n larger than the maximal index of
variables of a and b.

Remember that if two substitutions can unify, then there exists an mgu. This, together with
Theorem 3.4, assures that for each commuting square of substitutions there exists a pushout.
Moreover this result holds not only for substitutions but also for atomic goals since two atomic
goals unify iff they consist of the same predicate and the terms within the predicate unify. In
the remainder of this section we use g to denote a formula having the same predicate symbols
as g, but without function symbols and where all variables are different. For example f1 =
P (u1, u2)∧P (u3, u4). Note that the arrow d of a generic redex square (see diagram (i) in Figure 3.1)
can always be decomposed into α; ψ′ where α instantiates p1 and p2 to g1 and g2 and ψ′ is a
substitution. It is exactly this arrow α that chooses which atom of the goal matches h.

The following lemma generalizes the theorem above to non-atomic formulas of the form g1∧a∧g2

and g1 ∧ b ∧ g2.

Lemma 3.3. Let a and h be atomic formulas. Then 〈φ, ψ〉 is the pushout of a and h (depicted in
diagram (i) below) if and only if 〈φ′, ψ′〉 is the pushout of g1∧a∧ g2 and g1∧h∧ g2 (diagram (ii)),
where φ′ is equal to φ on Var(a) and the identity on the others variables, and ψ′ is equal to ψ on
Var(h) and such that g1; φ = g1; ψ and g2;φ = g2;ψ.

3.2. LOGIC PROGRAMMING 63

to

tm

φ
>>||||||

tn

ψ
``AAAAAA

p
a

``BBBBBBB h

>>}}}}}}}

to
′

tm
′

φ′
>>}}}}}}

tn
′

ψ′
``AAAAAA

p
g1∧a∧g2

aaCCCCCCC (p1 ∧ h ∧ p2); α = g1 ∧ h ∧ g2

>>|||||||

(i) (ii)

The meaning of this lemma is more intuitive if one considers formulas. Suppose that a and h
unify, and let 〈φ, ψ〉 be their mgu. Then also g1 ∧ a ∧ g2 and g1 ∧ h ∧ g2 unify and the mgu is the
mgu of a and h (since all the variables of g1 and g2 are different and can be instantiated to g1;φ
and g2; ψ).

The following lemma is central since it shows the relationship between RPOs and pushouts: if
we fix a way of matching (the arrow α), then we have only one minimal unifier (i.e, pushout) while
if we do not fix it, we have several minimal unifiers (i.e., RPOs) one for each way of matching (i.e.,
for each α).

Lemma 3.4. Let a and h be atomic formulas, and α as described above i.e., such that (p1 ∧ h ∧
p2); α = g1 ∧ h∧ g2. Suppose that the exterior square of diagram (ii) below commutes. Then 〈x, y〉
is the pushout of g1 ∧ a ∧ g2 and g1 ∧ h ∧ g2, and z the mediating morphism (diagram (i)) iff
〈x, α; y, z〉 is the RPO of the exterior square of diagram (ii).

to
′

tm
′

φ′
>>}}}}}}

x // tq

z

OO

tn
′
tntn

′′

ψ′
ccHHHHHHHH

yoo

p
g1∧a∧g2

aaCCCCCCC (p1 ∧ h ∧ p2); α

=

g1 ∧ h ∧ g2

::uuuuuuuu

to
′

tm
′

φ′
>>}}}}}}

x // tq

z

OO

ptnp

α;ψ′
aaCCCCCCC

α;yoo

p
g1∧a∧g2

aaCCCCCCC p1∧h∧p2

<<yyyyyyy

to

tp

i

OO

tm x //

e~~~

>>~~~

φ′

FF±±±±±±±±±±±±±
tq

w

OO z

TT

tn
′
tntn

′′
yoo

fHHH

ddHHHH

ψ′

ZZ6666666666666

(i) (ii) (iii)

Proof. Let us consider the diagrams above. We suppose that 〈x, y〉 is the pushout and we prove
that 〈x, α; y, z〉 is the RPO. Let 〈e, f, i〉 be a candidate for the exterior square of diagram (ii).
Thus by Lemma 3.2 e(g1) = f(p1), e(g2) = f(p2) and e(a) = f(h), and then 〈e, f〉 do commutes
g1∧a∧g2 and g1∧h∧g2. Since 〈x, y〉 is the pushout there exists a unique w such that x; w = e and
y;w = f . Now we have to prove that w; i = z, but this is trivial since z is the unique morphism
such that x; z = φ′ and y; z = ψ′.

Now we prove the other implication. Suppose that 〈x, α; y, z〉 is the RPO of the diagram. Since
x(a) = α; y(h), there exists a most general unifier, i.e., a pushout of a and h. Then, by Lemma 3.3
there exists 〈e, f〉 as pushout of g1∧a∧g2 and g1∧h∧g2. Let i be the unique mediating morphism
such that e; i = φ′ and f ; i = ψ′. Then 〈e, f, i〉 will be a candidate for the exterior square of
diagram (ii) and there exists w such that x;w = e and y; w = f . Then 〈x, y〉 is a pushout since it
divides a pushout.

Then, given a commuting square, this fixes a way of matching (i.e., one α) and so there exists a
minimal unifier, that is the mgu between the head of a clause h and chosen atom a of the formula
g.

Theorem 3.5. R(P) has redex and context RPOs.

Proof. Given a redex square as the one in Figure 3.1(i), by Lemma 3.1 it identifies one atom of
the goal that matches h, and the formulas at the left and at the right of the atom (a, g1 and g2).
Since a and h unify, their mgu, i.e., their pushout, exists. We call it 〈φ, ψ〉. By Lemma 3.3, 〈φ′, ψ′〉
is the pushout between g1 ∧ a∧ g2 and g1 ∧ a∧ g2 will exists. Now we can compose α with ψ′ and
we get, by Lemma 3.4, the RPO of the diagram.

64 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

Now we show that RPOs exist also for context squares. First of all note that in context squares
all the arrows have the form tm → tn. These are simple terms substitutions and thus, if they
commute (unify), then there exists a mgu (i.e. a pushout) of them, and it is for sure an RPO.

3.2.3 Saturated and IPO abstract semantics

In this section, we show that S-equivalence corresponds to IPO φ-trace equivalence, while correct
answer equivalence corresponds to saturated φ-trace equivalence (both of them are defined in
Section 3.1.2).

Recall the definition of context transition system (Definition 1.7) and IPO transition system
(Definition 1.10). In the former, a state f can perform a transition labeled with a context c going in
the states g (in symbols f

c→SAT g) if and only if c(f) Ã g. This corresponds to −→ (as defined in
Section 3.2.1) where a formula f can perform a transition labeled with the substitution σ whenever
σ unifies f with a redex. In the latter transition system, f can perform a transition labeled c (in
symbols f

c→I g) only if c is the minimal context that allows c(f) Ã g. This minimal context is
the smallest substitution that unifies the formula with the head of a clause (i.e., the most general
unifier) and thus →I corresponds to ⇒ (i.e., SLD transitions).

Theorem 3.6. Let P be a logic program and R(P) the corresponding reactive system. Let f, g
be two formulas and m,n larger than the maximal index of variables appearing in f and g. Fur-
thermore let σ be a substitution, and let θ : tm → tn be equal to σ on V ar(f) and id otherwise.
Then:

• P ° f
σ−→ g iff in R(P) it holds that fm θ→SAT gn,

• P ° f ⇒σ g iff in R(P) it holds that fm θ→I gn.

Proof. First, note that P ° g ⇒σ g′ iff there exists (h :− b) ∈ P and formulas a, g1, g2 such that
g = g1 ∧ a ∧ g2, σ = mgu(a, ρ(h)) and g′ = σ(g1) ∧ σ(ρ(b)) ∧ σ(g2).

Let c be equal to σ » V ar(a) and d = σ » V ar(h). By Theorem 3.4 〈c, d〉 is the pushout of h
and a, and by Lemma 3.3 and Lemma 3.4, 〈g, p1 ∧ h ∧ p2, c

′, d′〉 is an IPO, where c′ »Var(a) = c
and c′ = id on the others variables and d′ »Var(h) = d and it maps p1, p2 to g1; c′, g2; c′. Now, by

construction, in R(P) there is a rule p1 ∧ h ∧ p2 → p1 ∧ b ∧ p2, and then g
c′→I (p1 ∧ b ∧ p2); d′ =

c′(g1) ∧ d(b) ∧ c′(g2) = σ(g1) ∧ σ(b) ∧ σ(g2).
The other direction is analogous.
For the other point, note that P ° g

σ−→ g′ iff there exists (h : −b) ∈ P and formulas a, g1, g2

such that g = g1 ∧ a ∧ g2 and σ(a) = σ(ρ(h)) and g′ = σ(g1) ∧ σ(ρ(b)) ∧ σ(g2).
Now we can proceed as before without thinking to mgu or IPO redex square but only to unifiers

and redex square.

Corollary 3.1. In R(P) the its is finite-branching.

Note that S-equivalence and correct answer equivalence are φ-trace equivalence (Definition 3.4)
where the predicate φ holds only for the empty goal. Formally we define the predicate ¤() over
all the arrows of the category Th[Γ′/E]op: ¤(a) holds iff a is an arrow obtained by decomposing
¤n : p → tn, where ¤n is ¤ : p → ε with the interface extended with n extra term variables.
Essentially ¤() holds for all term substitutions and for empty formulas. The predicate ¤() defines a
composition reflecting subcategory and, since all contexts are reactive, we can apply our theoretical
results (Proposition 3.1, Proposition 3.2 and Theorem 3.3) to '¤

I , '¤
SAT and '¤

SS : these three
equivalences are congruences (w.r.t. substitutions) and '¤

SAT ='¤
SS .

Now we show that the first corresponds to 'S , while the second (and then also the third)
correspond to 'C (that, in the case of infinitely many function symbols, is 'L).

Theorem 3.7. Let P be a logic program and R(P) be the corresponding reactive system. Then
'S ='¤

I and 'C ='¤
SAT .

3.3. A FRAGMENT OF OPEN π-CALCULUS 65

Proof. Suppose that p 'S q and p
θ³I ¤. Then ∃ θ1, . . . , θn such that θ1; θ2; . . . ; θn = θ and

p
θ1→I p2 . . .

θn→I ¤. By Theorem 3.6 we have that p ⇒σ1 p2 . . . pn ⇒σn p′ with θi = σi »Var(pi).
Note that σi »Var(pi); σi+1 »Var(pi+1) is equal to (σi; σi+1)»Var(pi), and θ = (σ1; . . . σn)»Var(p1).
Since θ is a computed answer substitution of p and p 'S q, θ is a computed answer substitution
of q and q ⇒φ1 q2 ⇒φ2 q3 · · · ⇒φm

¤ such that φ1; φ2; . . . ; φm » Var(q) = θ. By Theorem 3.6

q
ψ1→I q2

ψ2→I q3 . . .
ψm→I ¤ where ψi = φi » Var(qi). As before ψ1;ψ2; . . . ; ψm = φ1 » Var(q1); φ2 »

Var(q2); . . . ;φm » Var(qm) = φ1;φ2; . . . ; φm » Var(q) = θ. Hence q
θ³I ¤. The other direction is

analogous.
To prove the second equivalence we use Theorem 3.6 and we can proceed as before.

3.3 A fragment of open π-calculus

Late and early bisimilarity of π-calculus [86] are congruences with respect to parallel composition,
but they are not preserved by the input prefixes. Consider the processes p = āb | c(x) and
q = āb.c(x) + c(y).āb. These are (late and early) bisimilar, but whenever we put them into the
prefix d(a).−, they are not anymore. Indeed if this prefix receive c, then a = c, and thus p can
perform a τ action (synchronizing the two parallel components), while q cannot. Sangiorgi in [100]
introduces open bisimilarity (∼O) that is a congruence with respect to all the operators and is
strictly finer then the two mentioned above. In early and late bisimilarity name instantiation only
appears in the input clause, while in ∼O it is part of the recursive definition of bisimilarity. At any
step of the bisimulation game, free names can be identified, analogously to saturated bisimilarity
where at any step we can insert process into contexts. Name identifications, namely fusions, can
be though exactly as the contexts of saturated bisimilarity. In [100], the author present also an
“efficient characterization” of ∼O that avoid any quantification over all possible fusions, through a
symbolic lts that considers fusions “only when needed” or, in other words IPOs, i.e., the minimal
fusions that allow transitions.

In [50], Ferrari, Montanari and Tuosto introduce a reactive system for a fragment of π-calculus.
The synthesized its is exactly the symbolic one defined by Sangiorgi, but the standard bisimilarity
is strictly finer than ∼O.

In this section, after introducing the symbolic semantics of open π-calculus [100] and the reactive
system defined in [50], we show that ∼S exactly coincides with ∼O. In Section 5.2 we will introduce
the whole open π-calculus, and we will tackle it in a more general framework.

We consider a subset of the π-calculus without matching and restriction operators. Given an
numerable infinite set of names N , the set of π− processes is defined by the grammar

p, q = 0
∣∣ α.p

∣∣ p | q
∣∣ p + q

∣∣ !p α = āb
∣∣ a(b)

∣∣ τ.

As usual, name a is free in āb and a(b), while b is free just in the former case and bound in
the latter. Moreover a is called the subject and b the object of the action. Considering a(b).p,
the occurrences of b in p are bound, free names are defined as usual and fn(p) indicates the set of
free names of process p. Differently than in the full π-calculus, only the input prefix binds names.
Processes are considered equivalent up-to α-renaming of bound names.

The operational rules for the symbolic semantics of π− are those reported in Table 3.2 together
with the symmetric rules for (par), (sum) and (com). The rules specify an lts whose labels
(denoted as µ) are either actions or fusions. The only non-standard rule is (com) which states
that an output āb and an input a′(c) can synchronize provided that a and a′ are fused. Notice
that, if a and a′ are the same, a = a′ is the identity fusion, denoted as the usual silent action τ .

The symbolic lts introduced by Sangiorgi in [100] widely differs from the one described above.

Indeed in [100], the matching operator forces us to consider transition of the form p
M,α−→ q for

a sequence of fusions M (and not a single fusion) and an action α. For example [a = b][c =

d]āb
[a=b][c=d],āb−−−−−−−→ 0. Moreover the restriction operator force us to consider the extruded names as

66 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

(pre) α.p
α−→ p (sum) p

µ−→ p′

p + q
µ−→ p′

(par) p
µ−→ p′

p|q µ−→ p′|q if bn(µ) ∩ fn(q) = ∅ (com) p
āb−→ p′ q

a′(c)−−→ q′

p|q a=a′−−→ p′|q′{b/c}
(rep) p|p!

µ−→ q

p!
µ−→ q

Table 3.2: Symbolic semantics of π−

distinct from the other free names, and thus to keep track of distinctions. However, the transition
system of π− resulting from specification rules in Table 3.2 coincides with the one obtained by
applying the rules of [100] to π−. We will introduce the full open π-calculus in Section 5.2, but it
will be tackled in a setting that is more general than reactive systems.

3.3.1 Open and syntactical bisimilarity

The definition of open bisimulation given in [100] coincides with the following for π−.

Definition 3.8 (Open bisimulation). A symmetric relation R ⊆ P×P is an open bisimulation if
whenever pRq,

• if p
α−→ p′ then there is q′ such that q

α−→ q′ and p′Rq′;

• if p
a=b−→ p′ then there is q′ such that (q a=b−→ q′ ∨ q

τ−→ q′) ∧ σa=b(p′)Rσa=b(q′),

where σa=b is a substitution that maps a to b (or viceversa) and leaves the other names unchanged.
Two processes p and q are open bisimilar, written p ∼O q, when there is an open bisimulation
relating them.

In order to compare ∼O with the one arising from the Leifer and Milner approach, it is conve-
nient to introduce an additional bisimilarity for π−.

Definition 3.9 (Syntactic bisimilarity). The syntactic bisimilarity relation ∼SY N for π− is ob-
tained by simplifying the last condition of Definition 3.8 with

if p
a=b−→ p′ then there is q′ such that q

a=b−→ q′ and σa=b(p′)Rσa=b(q′).

It is immediate to see that ∼SY N is finer than or equal to ∼O. Indeed its conditions for matching
transition labels are more demanding than those for ∼O.

Proposition 3.3. ∼SY N ⊆ ∼O.

The following example shows that the inclusion is strict.

Example 3.4 (∼SY N⊂∼O). Consider the following processes:

p = (āb | c(x)) + (ēf | e(y))

q = āb.c(x) + c(x).āb + (ēf | e(y))

It holds that p ∼O q since the move p
a=c−→ 0 is matched by the unique synchronization of q. However

p 6∼SY N q, since the transition p
a=c−→ 0 cannot be matched by q.

The above example shows that ∼SY N is too strict. Indeed p and q have the same behavior
under all the possible fusions of names, but they are distinguished by ∼SY N because the observer
in ∼SY N can known the exact amount of contexts that is needed to perform a transition. Thus the
observer known that p can perform a transition, by synchronizing the leftmost components, when

3.3. A FRAGMENT OF OPEN π-CALCULUS 67

inserted into a = b, and it can perform a transition, by synchronizing the rightmost components,
in any possible contexts. From the other side, q can perform a transition by synchronizing the
rightmost components, in any possible contexts. Thus both processes have the same behavior in
all possible contexts (that is reacting and became 0), but p �IPO q.

This example is analogous to Example 3.3 for Logic Programming and Example 1.9 for open
input Petri nets. In all these cases, knowing the exact amount of contexts needed to react allows
the observer to observer too much, and thus to distinguish systems that have the same behavior in
all possible contexts. In Section 3.3.3, we will show that IPO bisimilarity coincides with syntactic
bisimilarity, while saturated bisimilarity is open bisimilarity.

3.3.2 A reactive system for open π-calculus

In this section we report the reactive system for π− introduced in [50]. It is worth to say now, that
this construction slightly differs conceptually by the original idea of Leifer and Milner. Indeed,
the reactive system that we will present is defined starting from an lts whose labels are actions,
instead of a pure reduction semantics. Everything can be safely presented as a reactive system, by
considering actions as contexts, and a labeled rules such as α.p

α−→ p (for an action α) is considered
as (α.p); α Ã p where (α.p); α is the process obtained by inserting α.p into the context-action α.

First of all, we fix the set of names N as the totally ordered set {a1, a2, . . .}. Roughly, in the
base category that we are going to define, for any n ∈ ω there is an objects n representing the
set of names {a1 . . . an}. Given a processes p and a natural number n (larger or equal than the
largest index of the free names of p), there is an arrow pn : ? → n (? is the distinguished object).
Thus processes are considered typed by a natural number that describes the set of names where
the process exists. Arrows m → n are both actions (in this case source and target just define the
types), or surjective substitutions (fusions) from the set of names {a1 . . . am} to {a1 . . . an}.

The reaction semantics is specified with rules of the form P ; µ Ã q (corresponding to the
transition P

µ−→ q), where µ is an action or a fusion, q is a π-calculus process and P is a normalized
process, i.e., a process where all the occurrences of free names are replaced by different names
{a1, . . . , an} ordered in some standard way.

Definition 3.10 (Normalized processes). The process p̂ is the process p where all the occurrences
of free names are distinct and ordered in some standard way. The substitution σp : fn(p̂) → fn(p)
instantiates all the different free names of p̂ to the free names of p, i.e., p = σp(p̂). The processes
that are fix-points of ˆ are the normalized processes and are ranged over by P .

Consider the process p of Example 3.4. Since we have fixed N = {a1, a2, . . . }, we consider the
process p = (ā1a2 | a3(x)) + (ā5a6 | a5(y)) (the names a, b, c . . . corresponds to a1, a2, a3 . . .). It is
not a normalized process because p̂ = (ā1a2 | a3(x))+(ā4a5 | a6(y)). In p̂ every occurrence of a free
name is different and these are ordered in a canonical way (here we choose the lexicographic ordering
from left to right). The non injective substitution σp : {a1, a2, a3, a4, a5, a6} → {a1, a2, a3, a5, a6}
maps both a4 and a6 into a5 and a5 into a6.

The following lemma guarantees that if a process can be obtained by another applying a sub-
stitution on free names, then the two processes have the same normalized process.

Lemma 3.5. p = σ(q) =⇒ p̂ = q̂ ∧ σp = σq; σ

Before defining PAC, the category we work with, we specify its (basic) arrows where the
underlying objects are elements of the set ω? = ω ∪ {?} consisting of the natural numbers plus a
distinguished element ?.

Definition 3.11 (Basic arrows). We define the following basic arrows.
A normalized agent arrow Pm : ? → m is a pair consisting of a normalized process P and a natural
number m ∈ ω such that, for any an ∈ fn(P), n ≤ m.
A fusion arrow from m to n is a surjective substitution from {a1, . . . , am} to {a1, . . . , an} written
as σ : m → n.

68 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

Action arrows are π− actions parameterized on ω, more precisely for i, j ≤ m

τm : m → m ām
i aj : m → m am

i : m → m + 1

that respectively correspond to silent, output and input transitions with the object name in the latter
case being am+1.

Definition 3.12 (Process-action-context category). The process-action-context category PAC is
the category having as objects elements of ω? and as morphisms:

1. the identity arrows id? : ? → ? and idm : m → m, the latter being the identity substitution
on {a1, . . . , am};

2. the normalized agent arrows, the fusion arrows and the action arrows as generators; and

3. the arrows freely generated by 2 under the composition operation ; subject to the usual
associativity and identity axioms and, in addition, to the following axioms:

σ; τm = τn; σ σ; am
σ(i) = an

i ;σ+1 σ; ām
σ(i)aσ(j) = ān

i aj ; σ

with σ : n → m and σ+1 : n + 1 → m + 1 is the function that behaves as σ for any
a ∈ {a1, . . . , an} and maps an+1 into am+1.

As already mentioned, in the above definitions we have introduced typed versions (the type is a
natural number m) of normalized agents and actions (substitutions are already typed), such that
their names are in {a1, . . . , am}. We continue defining typed versions of ordinary processes and of
fusions.

Given a π− agent p and a natural number m such that m ≥ max{k | ak ∈ fn(p)}, we denote
as pm : ? → m the arrow p̂n; σ where n = |fn(p̂)|+ m− |fn(p)| and σ : n → m is defined as:

• σ(ai) = σp(ai), if ai ∈ fn(p̂),

• σ bijective and index monotone when restricted to ai 6∈ fn(p̂) (where σ is index monotone if
σ(ai) = ah, σ(aj) = ak and i ≤ j implies h ≤ k).

In words the substitution σ maps the free names of the normalized process p̂ into the free
name of p, and the resulting m − |fn(p)| in a monotonic way preserving the indexing. Consider
the process p of Example 3.4. The name with maximum index contained in p is a6, thus we can
take m = 10. Now |fn(p̂)| = 6 and |fn(p)| = 5, since the name a4 does not appear in p. Thus
n = 11 and σ : 11 → 10 behaves as σp for the first 6 names and maps the remaining five in their
predecessors. Basically, pm represents the agent p with m names, in terms of a normalized process
and its canonical substitution.

Given a fusion ai = aj and m ∈ ω such that i < j ≤ m, the substitution [ai = aj]m : m → m−1
is defined as follows:

[ai = aj]m(ak) =

ak, k < j
ai, k = j
ak−1, j < k ≤ m

In words, [ai = aj]m maps the initial m names to the initial m − 1 by replacing aj with ai and
mapping the names greater than aj to their predecessors.

Definition 3.13. The reactive system PAC is defined as follows:

1. PAC is the underlying category,

2. ? is the distinguished object,

3. all contexts are reactive,

3.3. A FRAGMENT OF OPEN π-CALCULUS 69

m

m

ām
σ(i)aσ(j)

=={{{{{{{{
n

σ

``BBBBBBBB

n

σ

aaCCCCCCCC ān
i aj

>>||||||||

?

pm

XX11111111111111
Pn

OO

m− 1

m

τm;[aσ(i)=aσ(j)]m
<<xxxxxxxxx

n− 1

σ

ddIIIIIIIII

n

σ

ccGGGGGGGGG τn;[ai=aj]n

99tttttttttt

?

pm

ZZ555555555555555
Pn

OO

m

m

τm

>>}}}}}}}}
n− 1

φ
ccFFFFFFFF

n

σ

``AAAAAAAA τn;[ai=aj]n

;;xxxxxxxx

?

pm

XX11111111111111
Pn

OO

(i) (ii) (iii)

Figure 3.2: IPO redex squares.

4. the reaction rules are those generated by the following inference rules where m ≥ |fn(P)|:

P
āiaj−→ q

Pm; ām
i aj Ã qm

P
ai(am+1)−−−−→ q

Pm; ai
m Ã qm+1

P
τ−→ q

Pm; τm Ã qm

P
ai=aj−−→ q i 6= j

Pm; τm; [ai = aj]m Ã qm; [ai = aj]m

Consider the first rule. It states that, if a normalized process P makes an output transition to
q, then, in PAC, the corresponding arrow (in m names) composed with the output action arrow
reduces to the arrow representing q. The same can be said for τ , input and fusion transitions, aside
that the second introduces the new name am+1 while the third eliminates a name. In Figure 3.2
are shown all kind of possible IPO redex squares for an arrow pm. By Lemma 3.5, it is easy to show
that an agent arrow pm can match one of the rules specified above only if Pn, i.e., the first part
of the left hand side, is equal to p̂ . If the rule is of the form Pn; ān

i aj Ã qn, as shown in diagram
(i), then the process pm can perform the output action ām

σ(i)aσ(j) and go in the state qn; σ. The
same happens for input and τ actions, while more interesting is the case of fusion arrows. Suppose
to have a rule like Pn; τn; [ai = aj]n Ã qn; [ai = aj]n then there are two possible IPO transitions
depending on the σ of pm. Suppose that ∃φ such that σ = [ai = aj]n; φ (diagram (iii)), i.e., the
fusion action performed by the normalized process is contained in σ, then pm will perform just a
τm and it will go in qn; σ. While if a such φ does not exist, i.e. the fusion is not implied by σ,
then pm will perform τm; [aσ(i) = aσ(j)]m going in qn; [ai = aj]n; σ (diagram (ii)).

For π− processes, the lts obtained by using IPOs as labels is essentially the same of Table 3.2.

Lemma 3.6 (From [50]). Let p be a process of our subset of π and m ≥ max{k | ak ∈ fn(p)}.
Furthermore let → and →I be the symbolic and the IPO transition systems. Then

p
ahak−−→ p′ ⇔ pm

ah
mak→I p′m,

p
ai(am+1)−−−−→ p′ ⇔ pm

ai
m

→I p′m+1, p
τ−→ p′ ⇔ pm

τm

→I p′m,

p
ai=aj−−→ p′ ⇔ pm

τm;[ai=aj]m→I p′m; [ai = aj]m.

3.3.3 Saturated bisimilarity is open

Until now we have shown the reactive systems PAC introduced in [50]. There, it is also proved
that PAC has redex-RPOs and thus ∼IPO is a congruence.

Theorem 3.8 (From [50]). PAC has redex RPOs.

70 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

By Lemma 3.6 we can easily show that ∼IPO coincides with ∼SY N (see [50]). Indeed, in ∼IPO, if
Alice proposes a fusion moves, then Bob must answer with the same fusion. In open bisimilarity,
instead, Bob can answer with a less restrictive fusion. But this is exactly what happens with
saturated bisimilarity. In fact look at the characterization of semi-saturated bisimulation given by

Theorem 3.2. If pm
τm;[ai=aj]m→I p′m; [ai = aj]m, then qm can answer with qm

τm;[ai=aj]m→I q′m; [ai =
aj]m where p′m; [ai = aj]m R q′m; [ai = aj]m (in this case arrow d of Theorem 3.2 is τm; [ai = aj]m
and e = id), or qm

τm

→I q′m where p′m; [ai = aj]m R q′m; [ai = aj]m (d = τm, e = [ai = aj]m).

Theorem 3.9 (From [50]). ∼IPO = ∼SY N .

Theorem 3.10. ∼O =∼S.

m

m

τm

>>}}}}}}}}
I3

d

``AAAAAAAA

?

qm

``AAAAAAAA l

>>}}}}}}}}

m− 1

m

τm;[ai=aj]m
<<yyyyyyyyy

I3

d;[ai=aj]m
bbFFFFFFFFF

?

qm

ccFFFFFFFFF l

;;xxxxxxxxx

(i) (ii)

Proof. We show that R = {(pm, qm)|p ∼O q} is a semi saturated bisimulation. Suppose that
pm

c→I p′, then c could be an action (input, output, or τ) or a fusion τm; [ai = aj]m. In the former
case, by Lemma 3.6, p

c−→ p′ and since p ∼O q then q
c−→ q′ and p′ ∼O q′. Using Lemma 3.6 again

we get qm
c→I q′ and p′Rq′.

The latter case is more complicated. If pm
τm;[ai=aj]m→I p′m−1 then p′ = p′′m; [ai = aj]m and

by Lemma 3.6 p
ai=aj−−→ p′′. Now we have that p ∼O q but, unfortunately, by definition of open

bisimilarity, this does not imply that q
ai=aj−−→ but one of the following possibilities holds:

• q
ai=aj−−→ q′′ and σai=aj (p

′′) ∼O σai=aj (q
′′). In this case it follows from Lemma 3.6 that

qm
τm;[ai=aj]m→I q′′m; [ai = aj]m and hence p′m−1 = p′′m; [ai = aj]m R q′′m; [ai = aj]m.

• q
τ−→ q′′ and σai=aj (p

′′) ∼O σai=aj (q
′′). In this case it follows from Lemma 3.6 that qm

τm

→I q′′m,
and also q′′m = r; d where that d ∈ D, (l, r) ∈ R and diagram (i) above is an IPO. Then also

diagram (ii) commutes and so qm
τm;[ai=aj]m→SAT q′′m; [ai = aj]m and p′′m; [ai = aj]mRq′′m; [ai =

aj]m.

For the other direction, just note that when p
ai(aj)−−→ p′ in the symbolic lts then aj is a bound

name, and thus for sure p
ai(am+1)−−−−→ p′{m+1/j}, since also m + 1 is a bound name for p.

The above theorems show that also in the case of open π-calculus saturated semantics is more
adequate than IPO semantics, that is too strict.

However it is important to note that we started with a transition systems that was already
labeled with several observable actions, namely, inputs, outputs and τ ’s, and this is quite far from
the original idea of Leifer and Milner. Moreover note that the action τ here does not corresponds
to identity contexts as it was intended by Leifer and Milner, but it is an arrow different from the
identity. This is fundamental in order to have that saturated bisimilarity coincides with the open.
Indeed suppose to have instead of τ an identity contexts. In the characterization of saturated

bisimilarity given by Theorem 3.2, when pm
ām

i aj−−→ p′m then qm could answer with qm
idm−→ q′m, that is

when an output move (or an input) is proposed, a τ move can be used to answer. This is, to some
extent, analogous to what happens in asynchronous bisimilarity [6] that we will analyze later on
Section 5.1 using saturated bisimilarity.

3.4. INTERMEZZO 71

1 1
yoo

1

ε

@@¡¡¡¡¡¡
ypppppp

77pppppp

0

ε>>>

^^>>>

0

ε

^^>>>>>>

0
e

^^>>>>>>
e

@@¡¡¡¡¡¡ ey

77pppppppppppp

ε t
[a/x]oo

t

[a/x]
@@¢¢¢¢¢¢¢

εoooooo

77oooooo

pp
[¤/p1,¤/p2]

``@@@@@@

ptp

[¤/p1,a/x,¤/p2]DDD

aaDDD

p
P (y)

^^<<<<<<
p1∧P (a)∧p2~~~

??~~~
p1∧P (x)∧p2

66nnnnnnnnnnnnn

m− 1 m
[a1=a3]moo

m

τm;[a1=a3]m
;;vvvvvvv

τmkkkkkkk

55kkkkkkk

m
[a4=a6]m

ccHHHHH

m

id

``BBBBBBB

?
pm

ddIIIIIIII

Pn;τn;[a1=a3]nuuuuuu

::

Pn;τn;[a4=a6]n

55kkkkkkkkkkkkkk

(i) (ii) (iii)

Figure 3.3: IPO transitions in input nets (i), Logic Programming (ii) and open π-calculus (iii).

3.4 Intermezzo

In the first part of the thesis we have worked within the theory of reactive systems. We have shown
several case studies highlighting big limitations of this theory. In the following we summarizes these
problems.

(In)Adequacy of IPO semantics. After several years and several attempts of modeling fully-
fledged formalisms, there exist few results stating the correspondence between IPO semantics
derived from the reactive systems and the original abstract semantics of the encoded formalism.

We have shown several examples where IPO semantics are too strict, while considering saturated
semantics plus some basics observations is adequate. In all these examples, we have used the same
idea: since IPOs are local to a certain rule, there could be two IPO transitions p

c→I r; d and

p
c′→I r′; d′ for two different rules 〈l, r〉 and 〈l′, r′〉, such that the latter is smaller than the former,

i.e., there exists a reactive context e such that r′; d′; e = r; d and c′; e = c.

n yeoo

k

c

@@¢¢¢¢¢¢¢
c′pppppp

77pppppp

j

d===

^^===

x

d′
^^=======

0
p

^^======
l

@@¢¢¢¢¢¢¢ l′

77pppppppppppp

A process q, performing only q
c′→I q1 such that q1 ∼S r′; d′, is saturated bisimilar to p, since it

will also perform the saturated transition q
c′;e→SAT q1; e (and clearly q1; e ∼S r; d = r′; d′; e), but

it is not IPO bisimilar to p, since the latter performs two IPO transitions while q just one. This
is exactly what happens in the cases of open input Petri nets (Example 1.7), Logic Programming
(Section 3.2) and a fragment of open π-calculus (Section 3.3), as illustrated in Figure 3.3.

In our opinion, IPO semantics are not really observational since the observer can, to some
extent, look at inside the system by observing the minimal contexts that allow the system to reach
a certain rule. Moreover it is conceptually wrong to consider just one labels for both interaction
and observations. Indeed, in many interesting cases, these two concepts are really distinguished,
as we will show in the next part of the thesis.

Having RPOs. In few lucky cases, the categories underlying reactive systems have RPOs. This
is the lucky case of open input Petri Nets (Example 1.7), Logic Programming (Section 3.2) and a
fragment of open π-calculus (Section 3.3, notice that here, we consider a special category where
arrows are simply fusions of names instead of syntactic contexts). In most cases, especially for
process calculi, the Lawvere-theory like categories corresponding to syntaxes of formalisms (quo-
tiented up to structural congruences) do not have RPOs (Example 1.10). In these cases, one have
to encode the formalism in bigraphs [82] or in cospan over adhesive structures [101]. In Chapter

72 CHAPTER 3. SEMI-SATURATED AND SYMBOLIC SEMANTICS FOR REACTIVE SYSTEMS

2, we have fruitfully applied the latter approach to CCS, but it seems hard to extend it to those
calculi with non-trivial scoping (as discussed in Section 2.7).

Ground Rules. The reaction rules of reactive systems must be ground. This is a big limitations
that is overcome in bigraphs, simply by considering as rules all the possible instantiations of some
parametric non-ground rules. Besides being not much elegant, this brings to an infinitely branching
IPO transition system. Locally universal hexagons [70] are a solution for this problem, but they do
not seem really applicable to real-cases. Another solution consists in considering categories where
arrows can both instantiate and contextualize. This is the case of Logic Programming (Section
3.2) and our encoding of CCS into graphs with interfaces (Chapter 2).

Non Ground Rules. In those cases, where we have non ground rules, we still have some prob-
lems. In the case of CCS, we have only two non ground rules. As a results, the derived IPO
transition systems contains transitions having open (i.e., non ground) labels and open arriving

states, such as, for example, b.a
−|b.Q+M→I a | Q. Therefore in general, one should consider also

transitions of open processes.

Deriving Rules. Reasoning on the derived IPO transition system is quite hard. For example,
in the case of CCS, we needed to define concise transition system (Definition 2.16), and then
proving that the bisimilarity in the latter coincides with ∼IPO. The complexity of such proof is
not so far from proving that bisimilarity on an hand-designed lts coincides with some contextual
equivalence. For this reason, we think that it could be more useful having a framework able to
derive some kind of rules (in the spirit of SOS) specifying the labeled transition system. Some
preliminary step in this direction has be done for borrowed contexts rewriting in [10].

In the remainder, we will mainly focus on saturated bisimilarity. More precisely, we will use the
efficient characterization of ∼S offered by semi-saturated bisimilarity (Definition 3.2) and symbolic
bisimilarity (Definition 3.3). We will extend the definition of saturated, semi-saturated and sym-
bolic bisimilarity to general computational system equipped with of observations. Our approach
does not rely on a specific format of rules (neither rewriting rules, nor SOS) and thus it results
to be applicable to both the paradigms. In a such way, we also avoid all the problems previously
mentioned. However, by loosing rules, we also loose the possibility of automatically derive a labeled
transition system.

Part II

The general case

Chapter 4

Symbolic semantics for context
interactive systems

After the introduction of Chemical Abstract Machine [13] specifying the operational semantics
of interactive systems through reaction rules has become more and more popular. This has led
some researchers to ask several fundamental questions such as: how can one get an abstract and
compositional semantics? What are the minimal observations needed for this? What is interaction?
What are labels in the labeled transition system of canonical interactive semantics?

In [76], Leifer and Milner provide some very influential answers to these questions. From their
point of view, interactions are the “minimal contexts” allowing a system to react. A labeled transi-
tion system (lts) can be constructed by taking as labels these minimal contexts, and compositional
abstract semantics can be obtained considering canonical abstract semantics over this lts.

As we have largely discussed in the first part of the thesis, the abstract semantics resulting from
this approach are often too strict. In our opinion, this is due to the fact that only one label cannot
represent both interaction and observation. These two concepts coincide in some important cases,
but they must be tackled separately, because they are conceptually distinguished. For example, in
all those formalisms modeling asynchronous interactions, receiving is not observable.

In this chapter, we will develop a general framework for reasoning about the abstract semantics
of interactive system by keeping in mind the above idea. We start with context interactive systems,
that consists in contexts (representing the possible environments), states equipped with interfaces
(representing the possible configurations of the system) and a transition system, whose transitions
are labeled with observations.

Inspired by [89, 65], abstract semantics is obtained by considering the largest bisimulation that
respects all contexts. This is called saturated bisimilarity (∼S). An equivalent characterization
of saturated bisimilarity can be obtained by considering canonical bisimilarity over the saturated

transition system (satts) defined as: p
C[−],o−−−→SAT q if and only if C[p] o−→ q. In this transition sys-

tem the first label loosely represents the interaction (or better, a context involved in the transition)
and the second label the observation.

Saturated bisimilarity fits well with our intuition of observational equivalence: two states are
equivalent if they cannot be distinguished by an external observer, who at any step of their exe-
cution can insert them into all contexts and observe some transitions. Unfortunately, due to the
quantification over all possible contexts, reasonings and proofs on saturated bisimilarity are quite
tedious and involuted.

For this reason we introduce symbolic semantics that, by employing some general knowledge
on the modeled formalism, can “efficiently” (i.e., without considering all the contexts) characterize
saturated semantics. The symbolic transition system (scts) consists of a set of transitions of the

form p
C[−],o−−−→β q. Roughly, this transition means that for all contexts D[−] bigger than C[−] (i.e.,

such that D[−] = E[C[−]]), in the satts there is the transition p
D[−],o−−−→SAT E[q]. More precisely,

76 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

given a set of rules describing how contexts modify transitions (expressed in form of tiles [58]),
each symbolic transition derives a (possibly infinite) set of saturated transitions. Thus the formal
meaning of a symbolic transition consists in the set of all saturated transitions derivable from it.

If the scts can derive all and only the saturated transitions, then it, together with the tile
system, carries all the information that is needed to recover saturated bisimilarity. Due to the
presence of redundant transitions, the canonical bisimilarity over the scts does not coincide with
∼S . In order to recover saturated bisimilarity we have to consider a slight variation. Inspired
by the work done for reactive systems in Section 3.1, we introduce semi-saturated and symbolic
bisimilarity, that exactly captures saturated bisimilarity.

In Section 4.1, we introduce this theoretical framework while, in Section 4.2, we outline the
connection with some other frameworks. Notably, we will formally show how our theory generalizes
the theory of reactive systems.

4.1 Presenting the theory

In Section 4.1.1, we introduce context interactive systems, saturated bisimilarity and the Simple
Constraints Calculus as running example. In Section 4.1.2, we introduce the saturated transition
systems, redundant transitions and tile systems. Since our tiles slightly differ from the original
presentation in [58], we will relate the two approaches only later, in Section 4.2.3. In Section 4.1.3,
we introduce symbolic transition systems, symbolic bisimilarity and semi-saturated bisimilarity,
and we will prove the main theorem stating that the three bisimilarities coincide.

4.1.1 Basic definitions and running example

In this section we introduce the basic definitions of the main theory proposed by this thesis. Our
aim is that of having a very general framework for reasoning on abstract semantics of several
interesting formalisms modeling interactive systems. For this reason, we focus on the notions of
state, interface and context. Roughly, each state is equipped with an interface, that allows the
insertion of it into some contexts. Two states are then behaviorally equivalent if they have the
same interface, and they exhibit “the same behavior” when inserted in any possible environment
(context).

The first needed structure is the category of interfaces and contexts. In this category, interfaces
(ranged over by i, j, k) are objects and contexts (ranged over c, d, e) are arrows, where the source
corresponds to the inner interface and the target to the outer interface. Arrows composition
models contexts composition that is associative and with identity.

Every state s is equipped with an interface i. We can insert s into the context c : j → k only
if the interface of the state coincides with the inner interface of the context, i.e., only if i = j.
This insertion gives as result a new state with interface k. This defines a many-sorted algebra
where the sorts are the interfaces, the operators (all unary) are contexts and the elements of the
carrier-set are states. More generally, given a category C we can define the following many-sorted
specification.

specification Γ(C) =
sorts

i ∀i ∈ |C|
operations

c : i → j ∀c ∈ C[i, j]
equations

idi(x) = x
e(d(x)) = c(x) ∀d; e = c

Recall that |C| denotes the class of objects of C and, for all i, j ∈ |C|, C[i, j] denotes the class
of arrows from i to j (also called hom-class).

4.1. PRESENTING THE THEORY 77

A Γ(C)-algebra is thus a many-sorted algebra, where sorts are objects of C (from our perspec-
tive, interfaces) and the operations are the arrows of C (contexts). The first equational axiom
requires that whenever we insert a state into the identity contexts, it does not change. The second
just says that inserting a state into the context c = d; e is equivalent to inserting it before into d
and then into e.

Let us fix some notations. Given an algebraic specification Γ, we use X, Y and Z to range
over Γ-algebras. We write cX to mean the operation c ∈ Γ interpreted over X and we just write c
whenever X is clear from the contexts. With X we denote the carrier-set of X. If X is a many sorted
algebra (with sort in I), then X is a family of I sorted carrier-sets, i.e., X = {Xi | i ∈ I}. Given
an I sorted family of relation R = Ri ⊆ Xi ×Xi | i ∈ I, we write pRq to mean that there exists
an j ∈ I such that pRjq.

It is worth noting that the definition of Γ(C)-algebra coincides with that of functor from C
to Set. Indeed, for every functor F : C → Set there exists a Γ(C)-algebra F and viceversa. The
functor F maps every object i ∈ |C| in Fi (i.e., the carrier-set of sort i of the algebra F) and every
arrow c : i → j in the function cF : Fi → Fj (i.e., the operation c of F). Moreover by definition,
every functor preserves identity and composition of arrows, as required by the two axioms above.
It is also clear that Γ(C)-homomorphisms exactly corresponds to natural transformations amongst
functors of type C → Set. Thus, the category of Γ(C)-algebras (hereafter denoted by AlgΓ(C)) is
isomorphic to the category of covariant presheaves over C (denoted by SetC).

In order to better expose the coalgebraic perspective of this theory (Chapter 6), we decide here
to always consider Γ(C)-algebras instead of presheaves.

In order to have a widely general model, we want to have also observations on transitions. The
main aim of the theory of reactive systems (Chapter 1) is that of deriving a labeled transition
systems from pure reaction rules. In that theory, labels represent both the interactions and ob-
servations, and thus these two concepts are completely identified. However, there exist a lot of
interesting formalisms where these are well-distinguished, such as for example, the asynchronous
process calculi where, usually, the input interaction is not observable. For this reason, we decide
here to start directly with a transition systems labeled with observations.

Definition 4.1 (Context interactive system). A context interactive system I is a quadruple
〈C, A, O, tr〉 where:

1. C is a category of interfaces and contexts,

2. X is a Γ(C)-algebra,

3. O is a set of observations,

4. tr ⊆ X ×O ×X is a labeled transition relation.

The transition relation describes the dynamic behavior of the states of a system. If (p, o, p′) ∈ tr,
we write p

o−→ p′ and this means that the state p can evolve into p′ producing the observation o.
Note that the interface of the state p and the interface of p′ could be different, i.e., interfaces can
evolve dynamically.

Now we are ready to introduce abstract semantics for context interactive systems. We are
interested in an equivalence that is a congruence with respect to contexts (arrows of C), because
we want to consider equivalent only those states that have the same behavior in all possible contexts.
We reuse the idea of saturated semantics for reactive systems (that is the same of [89, 65]): two
states are equivalent if they cannot be distinguished by an external observer that, at any instant
of their execution, can insert them into some contexts and observe some transitions.

Definition 4.2 (Saturated bisimilarity). Let I = 〈C, X, O, tr〉 be a context interactive system. Let
R = {Ri ⊆ Xi ×Xi | i ∈ |C|} be a |C| sorted family of symmetric relations. We say that R is a
saturated bisimulation iff, ∀i, j ∈ |C|, ∀c ∈ C[i, j], whenever pRiq:

78 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

(prefix) c B α.p + m
α−→ c B p (par) c B p

α−→ d B p′

c B p | q α−→ d B p′ | q

(ask) d ¹ c
c B ask(d).p + m

τ−→ c B m
(tell) c⊗ d 6= T

c B tell(d).p + m
τ−→ c⊗ d B p

Table 4.1: Operational semantics of SCC.

• if cX(p) o−→ p′, then cX(q)
o−→ q′ and p′Rq′.

We write p ∼S
i q iff there is a saturated bisimulation R such that pRiq.

It is worth noting that from the above definition, two states are equivalent only if they have
the same interface. This is, in our opinion, very natural, since systems with different interfaces
can be immediately distinguished by an external observer.

As it is the case for reactive systems, saturated bisimilarity is the coarsest bisimulation con-
gruence.

Proposition 4.1. ∼S is the coarsest bisimulation congruence.

Proof. Suppose ab absurdum that ∼S is not a congruence. Thus there exists p, q ∈ Xi and a
context c ∈ C[i, j] such that p ∼S

i q and cX(p) 6∼S
j cX(q). This means that there exists d ∈ C[j, k]

such that dX(cX(p)) o−→ p′ and dX(cX(q)) cannot. Now, since c ∈ C[i, j] and d ∈ C[j, k], then
there exists the context c; d ∈ C[i, k]. Thus p and q are not saturated bisimilar, since there are
distinguished by the contexts c; d. This is in contrast with our hypothesis. This prove that ∼S is
a congruence.

In order to prove that it is the largest bisimulation congruence, we prove that any bisimulation
congruence R is a saturated bisimulation.

Suppose that p R q. Suppose that cX(p) o−→ p′. Since R is a congruence, then cX(p) R cX(q).
Since R is a bisimulation cX(q)

o−→ q′ and p′Rq′. Thus R is a saturated bisimulation.

The above definitions can subsume both semantics given through labeled transition systems
and reactive semantics with barbs. The latter can be done just by adding barbs over the interfaces.
The resulting saturated semantics will force equivalent states to have the same barbs.

In the remainder of this section, we introduce as running example a simple constraint calculus
and we provide a context interactive system for it.

Example 4.1 (Running example: Simple Constraint Calculus). As running example, here we
introduce a Simple Constraint Calculus (SCC) modeling concurrent processes that can interact by
putting constraints on a global store.

Constraints (ranged over by c, d, e) are considered as organized in a structure 〈C,¹, T,⊗〉 such
that 〈C,¹, T 〉 is a partial order over C, with T the top element, and ⊗ is an associative and
commutative binary operator over C. We also require that ⊗ is monotone on ¹, and that c1 ¹ c2

if and only if ∃x ∈ C such that c1 ⊗ x = c2. Moreover for all c1, c2 ∈ C, there exists min{x ∈ C |
c1 ⊗ x º c2}. We denote such an element as c2 ÷ c1.1

Intuitively, C represents a set of constraints and c1 ¹ c2 means that c2 is more constrained than
c1. Roughly, T represents inconsistency, i.e., the constraint that is never satisfied, while c1 ⊗ c2

the composition of the constraints c1 and c2.
Now we describes the constraint structure that we will always use to make concrete examples.

Let V ar be a set of variables (ranged over by x, y, z) and let ω be the set of natural numbers. An
assignment of variables is a function σ : V ar → ω. Let Σ = ωV ar be the set of all assignments. A
constraint c is a subset of Σ containing all and only the assignments satisfying it. For example the

1These structures are reminiscent of C-semiring (we refer to [14, 15, 97] for a deeper treatment). Indeed every
complete and invertible C-semiring defines a structure such as the one considered here. With respect to the standard
definition, we have switched the ordering relation, and thus our top element corresponds to the bottom of C-semiring.

4.1. PRESENTING THE THEORY 79

constraint x > 2 is the set of assignments σ : V ar → ω, such that σ(x) > 2. These constraints are
organized in the structure 〈P(Σ),⊇,∅,∩〉, where P(Σ) is the power-set of Σ, ⊇ is the set inclusion,
∅ is the empty set and ∩ denotes set intersection. Intuitively we have that c ¹ d if c ⊇ d, i.e.,
if all assignments satisfying d, also satisfies c. The constraint ∅ is the top element and it is not
satisfied by any assignment. The operator ∩ performs the intersection of two constraints (seen as
set of assignment) and it can be thought as the logic operator ∧.

Let Act be a set of actions (ranged over by a, b) and τ /∈ Act be a special action. The syntax
of SCC is defined by the following grammar:

s ::= c B p p ::= p1 | p2, m m ::= 0, α.p, ask(c).p, tell(c).p, m1 + m2 α ::= a, τ

A system cBp consists of a global store (containing the constraint c ∈ C) and a process p. Processes
are defined in the CCS style, but they have two prefixes more, namely ask(c) and tell(c). The former
substantially checks if in the global store, the constraint c is satisfied, while the latter adds c to the
global store.

The operational semantics of SCC is a transition system labeled over Act]{τ} (ranged over by
α) that is formally specified by the rules in Table 4.1. The rules (prefix) and (par) are canonical
rules from CCS. The rule (ask) forces the process to check if the constraint d is satisfied in the
global c. In such case, it performs a τ transition, otherwise it cannot move. The rule (tell) allows
a process to add the constraint d to the global store. Note that this transition can be performed only
if the new global store (i.e., d⊗ c) is consistent, i.e., different from T .

As an example, consider the systems x > 3Bask(x > 7).a and x > 3Bask(x > 10).b (we take the
constraint structure 〈P(Σ),⊇,∅,∩〉 described before). Both cannot perform any transition because
x > 7 � x > 3 and x > 10 � x > 3 (intuitively x > 3 is not more demanding that x > 7 and
x > 10). Now consider x > 3 B ask(x > 7).a | tell(x > 8) and x > 3 B ask(x > 10).a | tell(x > 8).
The former can perform a τ -transition going into x > 8 B ask(x > 7).a and this process can now
proceed. The latter can also perform a τ transition going into x > 8Bask(x > 10).b, but this is now
blocked. Now, consider x < 2Btell(x > 3).p. This system is deadlocked since the x < 2⊗x > 3 = T
(recall that x < 2 is the set of assignments σ such that σ(x) < 2, and x > 3 the set of σ such that
σ(x) > 3, ⊗ is ∩ and T is ∅).

Let us introduce a behavioral equivalence amongst SCC systems. First of all, we want to observe
all the actions of a system and also the constraints inside the global stores. Moreover thinking about
the external observer, it can modify the global store by adding constraints at any step of execution.

The abstract semantics is defined in terms of bisimulation as follows.
Let R = {Rc ⊆ Xc ×Xc | c ∈ C} be a C sorted family of symmetric relations. We say that R

is a SCC bisimulation iff, ∀c, x ∈ C, such that c⊗ x 6= T , whenever (c B p)Rc(c B q):

• if c⊗ x B p
α−→ d′ B p′, then c⊗ x B q

α−→ d′ B q′ and (d′ B p′)Rd′(d′ B q′).

We write that s ∼SCC
c t if and only if there is a SCC bisimulation R such that sRst.

Note the requirement c ⊗ x 6= T . Intuitively this means that we do not want to consider the
behavior of system in the inconsistent global store T . In order to have a more concrete feeling,
consider the system x > 0Bask(x > 3).p | ask(x < 2).q and x > 0Bask(x > 3).p+ask(x < 2).q. We
would like to consider this two systems as equivalent because in any consistent store of constraints
they behave in the same way. Their behavior is different only in the inconsistent global store
T . Indeed T B ask(x > 3).p | ask(x < 2).q can perform two τ transitions and become p | q, while
T B ask(x > 3).p + ask(x < 2).q cannot.

We want also to highlight that the above definition induces an abstract semantics amongst SCC
processes. Indeed suppose that 〈C,¹〉 has also a bottom element ⊥. Thus we could define that
p ∼SCC q if and only if ⊥ Bp ∼SCC

⊥ ⊥ Bq. It is easy to prove that the above equivalence is a
congruence also with respect to parallel composition.

80 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

Example 4.2 (Context interactive system for SCC). Here we define a context interactive system
SCC = 〈Con, C, Act] {τ}, trSCC〉 for the Simple Constraint Calculus. Inspired by the definition of
∼SCC we consider the interface of a system c B p as the global store c. Instead, contexts can be
though of as constraints x that can be added to the global store, i.e., −1 ⊗ x.

Since we know that c ¹ d if and only if there exists an x ∈ C such that c⊗ x = d, then we can
consider as contexts just the insertion in bigger constraints (such as d) instead of contexts −1⊗ x.
Thus we can take as category of contexts and interfaces, the category corresponding to the partial
order 〈C,¹〉 (recall that C is the set of constraints). In this category, objects are constraints, while
given two objects c, d such that c ¹ d, there exists a unique arrow from c to d (hereafter denoted
by idc). In this category, the final object is T . Since we want to consider the behavior of systems
inside only “consistent stores”,i.e., all the stores with the exception of T , we consider the partial
ordering 〈C−T ,¹′〉 where C−T is the set C without the top element T and ¹′ is ¹ restricted to
C−T .

The category of contexts and interfaces for SCC (denoted by Con) is the category corresponding
to the partial order 〈C−T ,¹′〉.

specification Γ(Con) =
sorts

c ∀c ∈ C−T

operations
idc : c → d ∀c ¹ d

equations
icc(x) = x
ied(i

d
c(x)) = iec(x)

Thus Γ(Con)-algebras have at most one operator for each pair of sorts c, d, that substantially
can be understood as an casting operator that change the sort.

Now we define the Γ(Con)-algebra C for SCC. For all c ∈ C−T the carrier-set of sort c, is the
set of all SCC systems d B p having the global store d equal to c. For all c, d ∈ C−T , the function
idcX : Xc → Xd maps a system c B p into the system d B p.

The set of observations is Act]{τ} and the transition relation trSCC is the one obtained by the
rules in Table 4.1.

By casting the definition of saturated bisimulation into SCC, we obtain the following.
Let R = {Rc ⊆ Xc ×Xc | c ∈ C−T } be a C−T sorted family of symmetric relations. We say

that R is a saturated bisimulation iff, ∀c, d ∈ |Con|, and ∀i ∈ Con[c, d], whenever sRct:

• if iX(s)
α−→ s′, then iX(t)

α−→ t′ and s′Rt′.

It is easy to see that the above definition of saturated bisimulation exactly coincides with that
of SCC bisimulation given in Example 4.1.

As an example of two saturated bisimilar systems consider x < 2 B tell(x > 3).p and x < 2 B 0.
The former process cannot perform any transition. Moreover for all d such that x < 2 ¹ d,
dB tell(x > 3).p cannot move. Now consider cBask(d).p+ τ.p and cB τ.p. The leftmost part of the
former process can perform a τ transition if d ¹ c and the rightmost part can always perform a τ .
Also the latter process can always perform a τ , and thus the two processes have the same behavior
in all contexts.

At this point, it should be clear to the reader that our theory allow us to consider any kind
of environment, not only the syntactic contexts. For example in SCC, we take as contexts only
the addition of constraints to the global store while in open π-calculus (Section 5) we will consider
only names substitutions (substitution is not an operator of the calculus). In general terms, we
could also consider continuous environment, where an embedded system could interact.

4.1. PRESENTING THE THEORY 81

4.1.2 Tile systems

In the previous section we have introduced context interactive systems as a general model of
systems interacting with environment (contexts) through an evolving interface. The proposed
abstract semantics, namely saturated bisimilarity, equates two states that have the same behavior
in all possible contexts. Although this definition naturally fits with our intuition, the quantification
overall possible contexts makes reasoning and proofs about saturated bisimilarity quite tedious and
involuted. In this and in the next section we suggests a way of avoiding to think about “all possible
contexts”.

The starting point of our idea, is the saturated transition system, where transitions are labeled
both with a context and an observation.

Definition 4.3 (Saturated transition system). Let I = 〈C, X, O, tr〉 be a context interactive system.
The saturated transition system of I (satts for short) is defined as follows:

• states: p ∈ X,

• transitions: p
c,o−→SAT p′ if and only if cX(p) o−→ p′.

Now, instead of considering saturated bisimilarity, we can consider canonical bisimilarity over
the satts.

Definition 4.4 (Indexed bisimilarity). Let I = 〈C, X, O, tr〉 be a context interactive system. Let
R = {Ri ⊆ Ai × Ai | i ∈ |C|} be a |C| sorted family of symmetric relations. We say that R is an
indexed bisimulation iff, ∀i ∈ |C|, whenever pRiq:

• if p
c,o−→SAT p′, then q

c,o−→SAT q′ and p′Rq′.

We write p ∼i q iff there is an indexed bisimulation R such that pRiq.

Proposition 4.2. ∼i=∼S
i .

Proof. The fact that every saturated bisimulation is an indexed bisimulation follows directly from
the definition of saturated transition system.

Note that, in the definition of ∼i we require that both the states must have the same interface.
This is necessary in order to recover the equivalence with saturated bisimilarity. Indeed suppose
that there exists two states with different interfaces such that they are deadlocked in all possible
contexts. Both of them does not perform any transitions on satts, but they must be considered
different because they have different interfaces.

Example 4.3 (Saturated transition system for SCC). Consider the context interactive system
SCC = 〈Con, C, Act] {τ}, trSCC〉 (Example 4.2) for SCC (Example 4.1).

Recall that arrows in Con are idc : c → d for each c ¹ d. Hereafter, when considering transitions

of satts of the form c B p
id
c ,o−→SAT e B q, we just write c B p

d,o−→SAT e B q.
As a concrete example of satts, consider the process x > 0 B ask(x > 3).p. It can perform the

transition x > 0 B ask(x > 3).p
x>3,τ−−→SAT x > 3 B p meaning that whenever the system is inserted

into the constraint x > 3, it can perform a transition labeled with τ . Moreover we also have the
transitions x > 0 B ask(x > 3).p

x>n,τ−−−→SAT x > n B p for all n > 3. Thus the satts for this system
is infinitely branching. In this and in the next section we will introduce a systematic way to prune
the satts.

The definition of satts does not really simplify checking saturated bisimilarity, since all con-
texts must be considered. However this definition gives us a different perspective on the problem.
Considering the transitions of satts, one can realize that many of them are redundant, i.e., not
meaningful in the bisimulation game. As an example, consider the reactive semantics of CCS
(presented in Section 2.1) and the corresponding satts. There we have that

82 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

a.p
−|ā,τ−−→SAT p but also that a.p

−|ā|q,τ−−−→SAT p | q for all process q.

Thus we have an infinite number of transitions, but we can consider only the leftmost, since the
others are not really useful for distinguish two processes. Indeed, we know that

“∀ process p and q, if p
τ−→ p′ then p | q τ−→ p′ | q ” (4.1)

and thus in satts, if a process p performs a transition with context c and observation τ , it can
for sure perform also a transition with context c | q. Therefore instead of considering the transition
for all possible contexts we would like to consider only some minimal transitions (such as the above

a.p
−|ā,τ−−→SAT p) that allow us to deduce all the others through some general knowledge about how

contexts modify the behavior (such as the sentences 4.1). In the remainder of this section we
introduce a format for expressing such knowledge.

The knowledge we have expressed in the sentence 4.1 is just a rule of the operational semantics
of CCS. We would like to consider a more general case, where such knowledge is not explicitly
declared in the semantics. For instance, we know by [86] that in π-calculus (without mismatch):

“∀ process p and substitution σ, if p
µ−→ q then σ(p)

σ(µ)−→ σ(q) ”. (4.2)

Also in the theory of reactive systems (Section 1.1) we employ a similar knowledge

“∀ process p and reactive context d, if p Ã p′ then p; d Ã p′; d ” (4.3)

while, in the case of SCC (Example 4.1), we can prove that:

“∀ process p and constraints c, d, such that c ¹ d,
if c B p

a−→ c B p′ then d B p
a−→ d B p′ ”.

Here we decide to consider rules of the following form:

ρ :
Pi

o1−→ P ′i′

e(Pi)
o2−→ e′(P ′i′)

where e : i → j and e′ : i′ → j′ are arrows in C (the category of interfaces and contexts). Its
intuitive meaning is that all processes with interface i performing a transition labeled with o1 and
going in a state P ′ with interface i′, whenever they are inserted into a context e, they can perform
a transition labeled with o2 going into e′(P ′). We will graphically depict a rule as the above, with
the following tile.

i

ρ

e //

o1

®¶

j

o2

®¶
i′

e′
// j′

In such diagram the horizontal arrows → are arrows of the category C, i.e. contexts, while the
vertical arrows ⇒ represent transitions. The intuitive meaning of a tile is better understood by
reading it from left to the right: if a state p with interface i can perform a transition labeled with
o1 and going into p′ with interface i′, then the state obtained by inserting p into e has interface j
and can perform a transition labeled with o2 and going into the state p′ inserted into the context
e′.

Forgetting interfaces, we will write ρ : e
o1

o2
// e′ to mean a rule like the above.

Now, suppose to have the following two rules.

4.1. PRESENTING THE THEORY 83

i

ρ1

c //

o1

®¶

j

o2

®¶
i′

c′
// j′

j

ρ2

d //

o2

®¶

k

o3

®¶
j′

d′
// k′

Since the c, c′, d, d′ are arrows of a category, and since both the compositions c; d and c′; d′ are
defined, there exists the composed rule, defined as follows.

i

ρ1;ρ2

c;d //

o1

®¶

k

o3

®¶
i′

c′;d′
// k′

Moreover for each i, i′ ∈ |C| and o ∈ O, we have the identity rule idi,o,i′ :

i

idi,o,i′

idi //

o

®¶

i

o

®¶
i′

idi′
// i′

The composition of rules is associative and it has as identity the identity rule.

Definition 4.5 (Tile system). Let I = 〈C, X, O, tr〉 be a context interactive system. A tile system
T is a set of inference rules in the format described above. We denote by T ∗ the closure of T under
composition and identity.

The intended meaning of these tiles is slightly different from the one of [58, 27, 29]. In those
works, tiles was used to specify the behavior of an interactive system. Here we do not use tiles
for specifying, but just for pruning the satts. Those transitions that can be deduced by other
transitions using these tiles, are redundant and we can avoid considering it. As an example,
suppose that the above rule ρ holds and that p

c1,o1−−→SAT p′. Then we immediately know also that
p

c1;e,o2−−−→SAT e′(p′). We can visualize it through the following diagram:

k
idk //

=c1

²²

k

c1;e

²²
i e //

o1

®¶

ρ

j

o2

®¶
i′

e′
// j′

Reading this diagram from the left to the right, it states that, if a process p with interface k
can perform a transition in the saturated transition system with context c1 and observation o1 and
going into the state p′ with interface i′, then for sure it can also perform a transition with context
c1; e and observation o2 and going into the state e′(p′).

Definition 4.6 (Derivation between transitions). Let I = 〈C, X, O, tr〉 be a context interactive
system and T a tile system. A transition p

c1,o1−−→ q1 derives through d and T the transition dX(p)
c2,o2−−→

q2 (written p
c1,o1−−→ q1 `d

T dX(p)
c2,o2−−→ q2) if and only if there exists e, e′ ∈ ||C|| such that c1; e = d; c2,

∃ρ : e
o1

o2
// e′ ∈ T ∗ and e′X(q1) = q2. Graphically:

84 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

. d //

=c1

²²

.

c2

²². e //

o1

®¶

ρ

.

o2

®¶.
e′

// .

In the above diagram we just put a dot in place of the interfaces. We will often use this notation,
when interfaces are not interesting. Note that we have defined `d

T for any possible arrow d. In this
section we will be interested just in `id

T (hereafter denoted by `T).
The above definition is useful to prune the satts. If a transition can be deduced by another

through the tile system T , then it is redundant and can be forgotten.

Definition 4.7 (Redundant transition). A transition p
c1,o1−−→ p1 is redundant if and only if there

exists another transition p
c2,o2−−→ p2 such that p

c2,o2−−→ p2 `T p
c1,o1−−→ p1. In this case we say that

p
c1,o1−−→ p1 is dominated by the former p

c2,o2−−→ p2.

Example 4.4 (Tile system for SCC). In Example 4.1 we have introduced a Simple Constraint
Calculus and in Example 4.2 a context interactive system for it. Here we show a tile system.

First of all consider transitions labeled with action different from τ . Note that whenever a
system c B p performs an action different from τ it arrives in a state with the same global store
(interface) c. Instead, for τ actions, the arriving states could have a different store, since the τ
could be produced by a tell() prefix.

It is easy to prove that, whenever c B p
a−→ c B p′ then for all d such that c ¹ d, also d B p

a−→
d B p′. This is described by the following tile that has to be considered parametric with respect to
c, d ∈ |Con|, idc ∈ ||Con|| and a ∈ Act.

c

acta,c,d

id
c //

a

®¶

d

a

®¶
c

id
c

// d

Concerning transition labeled with τ , it may be that interfaces evolve by restricting the global
constraint. For example, consider the state x > 0 B tell(x < 3). It can perform a transition labeled
with τ going into the state x > 0⊗x < 3 B0. The insertion into a stricter constraint could inhibit
the execution of such transition, because the arriving states could be inconsistent (i.e., equal to
T). For example, if we insert x > 0 B tell(x < 3) into the constraint x > 4, we obtain the process
x > 4 B tell(x < 3), that cannot perform any transition. However if the interface of the arriving
state is consistent with the added constraint, the transition can be performed. This is summarized
by the following sentence:

“∀ process p and constraints c, c′, x such that c⊗ x 6= T and c′ ⊗ x 6= T ,
if c B p

τ−→ c′ B p′ then c⊗ x B p
τ−→ c′ ⊗ x B p′”.

That is graphically represented by the following parametric tile.

c

tauc,c′,x

ic⊗x
c //

τ

®¶

c⊗ x

τ

®¶
c′

ic′⊗x

c′

// c′ ⊗ x

4.1. PRESENTING THE THEORY 85

The tile system TSCC for SCC is defined as follow.

TSCC = {acta,c,d | a ∈ Act, c, d ∈ C−T and c ¹ d}

]
{tauc,c′,x | c, c′, x ∈ C−T s.t. c⊗ x 6= T and c′ ⊗ x 6= T}

Now we want to prove that some of transitions of the satts shown in Example 4.3 are re-
dundant. The transition x > 0 B ask(x > 3).p

x>3,τ−−→SAT x > 3 B p is not redundant, while those
x > 0 B ask(x > n).p

x>3,τ−−→SAT x > n B p for n > 3 are redundant, since these can be derived by the
tile taux>3,x>3,x>n (note that x > 3⊗ x > n = x > n).

x > 0
ix>0
x>0 //

=ix>3
x>0

²²

x > 0

ix>n
x>0

²²
x > 3 ix>n

x>3
//

τ

®¶

taux>3,x>3,x>n

x > n

τ

®¶
x > 3

ix>n
x>3

// x > n

4.1.3 Symbolic semantics

In Section 4.1.1, we have introduced context interactive system as a general model of interactive
systems and saturated bisimilarity as canonical abstract semantics for such models. In Section
4.1.2, we have introduced the saturated transition system (satts) whose transitions are labeled by
a context c and an observation o. This transition system is too big (usually infinite branching), but
a lot of transitions are redundant (Definition 4.7), i.e., they can be deduced by other transitions
and some rules (in tile format) describing a general knowledge about the modeled system.

In this section, we introduce the symbolic transition system as an efficient variant of the satts,
and we define symbolic and semi-saturated bisimilarity as efficient characterizations of saturated
bisimilarity.

Symbolic semantics was originally introduced in [63] by Hennessy an Lin, as a means of defin-
ing value-passing process calculi using smaller, possibly finite labeled transition systems, equipped
with symbolic actions. A similar idea was used by Sangiorgi in [100] in order to give an efficient
characterization of open bisimilarity. As we will show later in Section 5.2 (and as we have already
partially shown in Section 3.3), open bisimilarity is just an instance of our saturated bisimilarity:
at any step of the bisimulation games, a process can be inserted into a substitution that fuses
the names. In order to efficiently characterize this equivalence, Sangiorgi introduce a symbolic
transition system (originally called “efficient”), where transitions are labeled both with a substi-
tution and an action. The substitution represents the minimal substitution that the process need
to perform the transition. A similar idea was used in [6] for the asynchronous π-calculus [64],
and in [112] for explicit fusion calculus [113]. The same happens in the theory of reactive systems
(Section 1.1), where the symbolic transition system is, in this case, the IPO labeled transition
system (Definition 1.10).

In all these cases, some kind of knowledge about the formalisms is used implicitly. For example,
in the case of open π-calculus, Sangiorgi uses the sentence 4.2 (in Section 4.1.2), while in the case of
reactive system, Leifer and Milner use sentence 4.3. In this thesis, we use some general knowledge
expressed in the form of tiles and a symbolic transition systems is substantially a transition system
that can derives through these tiles all and only the transitions of satts.

86 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

Definition 4.8 (Symbolic transition system). Let I = 〈C, X, O, tr〉 be a context interactive system
and let T be a tile system. Let β ⊆ X × ||C|| ×O ×X be a transition relation (we write p

c,o−→β p′

to mean (p, c, o, p′) ∈ β). We say that β is a symbolic transition system for I and T (denoted by
scts) if and only if the following two properties hold:

• (soundeness) if p
c2,o2−−→β p2 and p

c2,o2−−→ p2 `T p
c1,o1−−→ p1 then p

c1,o1−−→SAT p1,

• (completeness) if p
c1,o1−−→SAT p1 then p

c2,o2−−→β p2 and p
c2,o2−−→ p2 `T p

c1,o1−−→ p1.

A symbolic transition system could be considerably smaller than the saturated transition sys-
tem, but still contain all the information needed to recover ∼S . Intuitively, the meaning of a
symbolic transition consists in the set of all saturated transitions that can be derived from it
through the tile system.

In general terms, one could think of scts as of a transition system without redundant transitions
(Definition 4.7), but this is not exactly true. Indeed, according to the above definition, also
satts could be considered a symbolic transition system, since all the transition of satts can be
retrieved by it. Thus redundant transitions could be in the scts. This is also the case of open
and asynchronous π-calculus and several other interesting formalisms equipped with symbolic
semantics. Redundant transition are also present in the IPO transitions system of the examples
of reactive systems that we have shown in the first part of this thesis. In Section 4.2, we will also
show the exact relation amongst context interactive system and reactive systems, and we will also
show some redundant transitions.

It is important to note that the symbolic transition system and the tile system are strictly
related. Particularly important is understanding that the tile system express our knowledge about
how contexts modify transitions and that this knowledge must be sound w.r.t. the semantics of
the formalism. In general terms, there could be some formalisms where we cannot express any
sound knowledge in forms of tiles and thus the symbolic transition system should contain all the
saturated transitions. In the treatment of open Petri nets (Section 5.3), this is particularly evident,
since there are contexts that remove tokens from output places. Since output places can be in the
pre-set of some transitions, we cannot state that

in all open Petri nets, removing tokens preserves transitions.

Therefore in the tile system we do not have such tiles, and in the scts, we must consider all the
deletions of tokens. However, if we restrict our attention to open work-flow net [77] (that are
particular open Net demanding that output places cannot be in the pre-set of some transitions)
we can safely state that

in all open work-flow nets, removing tokens preserves transitions.

This allows us to build a more compact scts, and thus to more efficiently characterizes ∼O. All
this means that more we know about the modeled formalism (i.e., bigger is the tile system) and
more efficiently we can reason on its semantics (i.e., smaller is the symbolic transition system).

In the following we introduce a symbolic transition systems for our running example.

Example 4.5 (Symbolic transition system for SCC). Let γ ⊆ X × |C| ×O ×X be the transition
relation inductively defined by the rules in Table 4.2. Recall by Example 4.3 that we use c B p

e,o−→
dBp′ to mean the transition cBp

ie
c,o−→ dBp′. Thus, the rules (prefix) and (tell) are substantially

labeled with the identity context icc. This substantially means that the transitions can be performed
in c and in any constraint d bigger than c.

The rule (ask) states that the τ transition can be performed only when inserting the process into
the constraint −1 ⊗ (d÷ c). By definition (in Example 4.1), it is the smallest constraint that must
be added to c in order to reach d. As an example consider the system x > 0Bask(x > 3).p. We have
that x > 0 B ask(x > 3).p

x>0⊗x>3,τ−−−−−−→γ x > 0⊗ x > 3 B p, i.e., x > 0 B ask(x > 3).p
x>3,τ−−→γ x > 3 B p.

4.1. PRESENTING THE THEORY 87

(prefix) c B α.p + m
c,α−→γ c B p

(ask) c B ask(d).p + m
c⊗(d÷c),τ−−−−−→γ c⊗ (d÷ c) B p

(tell) c⊗ d 6= T

c B tell(d).p + m
c,τ−→γ c⊗ d B p

(par) c B p
e,α−→γ d B p′

c B p | q e,α−→γ d B p′ | q
Table 4.2: Symbolic transition system of SCC.

Moreover the transitions x > 0 B ask(x > 3).p
x>n,τ−−−→SAT x > n B p (for n > 3) are not in the

symbolic transition system, but these can be derived by the previous one through TSCC.

In order to prove that γ is a scts with respect to TSCC and SCC we have to prove that:

• (completeness) if c B p
e,o−→SAT d B p′ then c B p

c2,o2−−→γ d2 B p′ and c B p
c2,o2−−→γ d2 B p′ `TSCC

c B p
e,o−→ d B p′.

• (soundness) if c B p,
c2,o2−−→γ d2 B p′ and c B p

c2,o2−−→γ d2 B p′ `TSCC c B p
e,o−→ d B p′ then

c B p
e,o−→SAT d B p′.

Let us prove completeness. Suppose that c B p
e,τ−→SAT d B p′ (the case of actions different from

τ is easier). Then e B p
τ−→ d B p′ and this transition can be caused by a τ -prefix, a tell() prefix or

an ask() prefix. In the case of a τ -prefix, we also have c B p
c,τ−→γ c B p′. Now since c ¹ e, then

there exists an x such that c⊗ x = e and we can apply the tile tauc,c,x (Example 4.4).

c
ic
c //

=ic
c

²²

c

ic⊗x
c

²²
c ic⊗x

c
//

τ

®¶

tauc,c,x

c⊗ x

τ

®¶
c

ic⊗x
c

// c⊗ x

The above diagram shows that c B p
c,τ−→γ c B p′ `TSCC c B p

e,τ−→SAT d B p′.
We can reason analogously for the case of tell() prefix, while the case of ask() is slightly more

elaborated. Suppose that e B p
τ−→ d B p′ is caused by some ask(e′), thus d = e and e′ ¹ e. Since

c ¹ e, then ∃x such that c⊗x = e. By definition of γ, we have that cBp
c⊗(e′÷c),τ−−−−−−→γ c⊗ (e′÷c)Bp′.

By definition of e′÷c, e′÷c ¹ x. Now by the monotony of ⊗, it follows that c⊗(e′÷c) ¹ c⊗x = e.

c
ic
c //

=ic⊗e′÷c
c

²²

c

ic⊗x
c

²²
c⊗ (e′ ÷ c) ic⊗x

c⊗(e′÷c)
//

τ

®¶

tau

c⊗ x

τ

®¶
c

ic⊗x

c⊗(e′÷c)

// c⊗ x

88 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

Thus c B p
c⊗(e′÷c),τ−−−−−−→γ c⊗ (e′ ÷ c) B p′ `TSCC c B p

e,τ−→SAT d B p′.
In order to prove soundness, we just have to show that all the tiles are sound and that γ ⊆ satts.

Now we want to characterize saturated bisimilarity through the symbolic transition system.
Consider the canonical definition of bisimilarity over the scts.

Definition 4.9 (Syntactic bisimilarity). Let I = 〈C, X, O, tr〉 be a context interactive system and T
be a tile system. Let β be a symbolic transition system for them and let R = {Ri ⊆ Xi×Xi | i ∈ |C|}
be a |C| sorted family of symmetric relations. We say that R is a syntactical bisimulation iff,
∀i ∈ |C|, whenever pRiq:

• if p
c,o−→β p′, then q

c,o−→β q′ and p′Rq′.

We write p ∼SY N
i q iff there is an indexed bisimulation R such that pRiq.

It is worth noting that ∼SY N is usually different from ∼S . Indeed suppose that the symbolic
transition system β has some redundant transitions. Consider a process p that performs only the
transition p

c1,o1−−→β p1 and p
c2,o2−−→β p2 such that p

c1,o1−−→β p1 `T p
c2,o2−−→β p2. Thus there exists the

diagram below and moreover e′(p1) = p2.

. id //

=c1

²²

.

c2

²². e //

o1

®¶

ρ

.

o2

®¶.
e′

// .

Now take a process q that performs only q
c1,o1−−→β q1 such that p1 ∼S q1. Clearly p �SY N q,

because p can perform a transition more than q. However p ∼S q, because q
c2,o2−−→SAT e′(q1) and,

since q1 ∼S p1, then e′(q1) ∼S e′(p1) = p2.

Example 4.6 (∼SY N 6=∼S in SCC). In this example we show that ∼SY N (for the scts γ for
SCC introduced in Example 4.5) does not coincide with ∼S. Consider the systems:

• s = c B ask(d).p + τ.p,

• t = c B τ.p.

We have said in Example 4.2 that these are saturated bisimilar, because both can perform a τ
transition in any possible context. Now consider the symbolic transition system γ for them. By

using the ask() prefix, s
c⊗(d÷c),τ−−−−−→γ c ⊗ (d ÷ c) B p while, by using the τ prefix, s

c,τ−→γ c B p. The
other system can only perform t

c,τ−→γ c B p. Thus s �SY N t, and thus ∼SY N 6=∼S.
It is worth noting that the first process performs a redundant transition. Indeed, it is easy to

prove that:

s
c,τ−→γ c B p `TSCC s

c⊗(d÷c),τ−−−−−→γ c⊗ (d÷ c) B p.

Something similar happens in asynchronous and open π-calculus (this will be formally shown
later in Sections 5.1 and 5.2) and also in the theory of reactive systems (Section 3.4), where ∼IPO

(that exactly corresponds to ∼SY N) is usually stricter than ∼S .
In the case of explicit fusion calculus [113], the question if ∼SY N coincides with ∼S is still

open. In his thesis [111], Wishick points out this problem, but he does not provide an answer: it is
hard to build a proper counter-example because the non deterministic choice is missing in explicit
fusion calculus.

In order to properly characterize saturated bisimilarity through the scts, we have to take into
account redundant transitions.

Inspired by the symbolic version of open bisimilarity [100], and by our definition of symbolic
bisimilarity for reactive systems (Definition 3.3) we propose the following definition.

4.1. PRESENTING THE THEORY 89

Definition 4.10 (symbolic bisimilarity). Let I = 〈C, X, O, tr〉 be a context interactive system, T
be a tile system. Let β be a symbolic transition system for them. Let R = {Ri ⊆ Xi×Xi | i ∈ |C|}
be a |C| sorted family of symmetric relations.

R is a symbolic bisimulation iff ∀i ∈ |C|, whenever pRiq:

• if p
c′,o′−→β p′1, then q

c,o−→β q1 and q
c,o−→β q′1 `T q

c′,o′−→ q′1 and p′1Rq′1.

We write p ∼SY M
i q iff there exists a symbolic bisimulation R such that pRiq.

Example 4.7 (Symbolic bisimulation for SCC). Consider the systems s and t of Example 4.6.
Here we show a symbolic bisimulation relating them.

For all e ∈ |Con|, let Ide = {(eBp, eBp) | p is an SCC process}. Let Id = {Ide | e ∈ |Con|} be
a |Con| sorted family of relations. For all f 6= c, Rf is the empty relation, while Rc = {(s, t), (t, s)}.
Let R = {Re | e ∈ |Con|} be a |Con| sorted family of relations. Here we prove that

R ∪ Id

is a symbolic bisimulation.
The case of Id is trivial. For R, we have just to consider (s, t) and (t, s).

The transition s
c⊗(d÷c),τ−−−−−→γ c⊗ (d÷ c) B p is matched by t

c,τ−→γ c B p. Indeed, it is immediate to

see that t
c,τ−→γ cB p `TSCC t

c⊗(d÷c),τ−−−−−→γ c⊗ (d÷ c)B p and (c⊗ (d÷ c)B p) Idc⊗(d÷c)(c⊗ (d÷ c)B p).
The transition s

c,τ−→γ c B p is matched by t
c,τ−→γ c B p and (c B p) Idc (c B p).

Now consider (t, s). The transition t
c,τ−→γ cBp is matched by s

c,τ−→γ cBp and (cBp) Idc (cBp).

The above definition bases on the symbolic transition system and the tile system T . We
can give an alternative characterization forgetting the tile system, in the spirit of semi-saturated
bisimulation for the theory of reactive system (Definition 3.2).

Definition 4.11 (Semi-saturated bisimilarity). Let I = 〈C, X, O, tr〉 be a context interactive sys-
tem, T be a tile system. Let β be a symbolic transition system for them. Let R = {Ri ⊆ Xi ×Xi |
i ∈ |C|} be a |C| sorted family of symmetric relations.

R is a semi-saturated bisimulation iff ∀i ∈ |C|, whenever pRiq:

• if p
c′,o′−→β p′1, then c′X(q)

o′−→ q′1 and p′1Rq′1.

We write p ∼SS
i q iff there exists a semi-saturated bisimulation R such that pRiq.

Example 4.8 (Semi-saturated bisimulation for SCC). Consider the relation R ∪ Id shown in
Example 4.7. It is also a semi-saturated bisimulation.

The case of Id is trivial. For R, we have just to consider (s, t) and (t, s).

Consider the transition s
c⊗(d÷c),τ−−−−−→γ c⊗ (d÷ c)Bp. The state t into the context i

c⊗(d÷c)
c is equal

to c⊗(d÷c)Bτ.p. Now c⊗(d÷c)Bτ.p
τ−→ c⊗(d÷c)Bp and c⊗(d÷c)Bp Idc⊗(d÷c)c⊗(d÷c)Bp.

The transition s
c,τ−→γ c B p is matched by t

c,τ−→γ c B p and c B p Idcc B p.
Now consider (t, s). The transition t

c,τ−→γ c B p is matched by s
c,τ−→γ c B p and c B p Idcc B p.

Theorem 4.1. Let I be a context interactive system and let T be a deduction system. Let β be a
symbolic transition system for them. Then ∼SY M=∼SS=∼S.

Proof. In order to prove the first equivalence, we prove that a relation is a symbolic bisimulation

if and only if it is semi-saturated. Indeed, if p
c′,l′−→β p′1, then in the semi-saturated bisimulation

c′(q) l′−→ q′1 and p′1Rq′1, while, in the symbolic-bisimulation, q
c,l−→β q1 and q

c,l−→β q1 `I q
c′,l′−→ q′1 and

p′1Rq′1. The latter condition is equivalent to the former. Indeed, since β is a symbolic transition

systems, we have that q
c′,l′−→SAT q′1 and thus c′(q) l′−→ q′1.

90 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

Now we prove the second equivalence.
Let R = {Ri ⊆ Xi ×Xi | i ∈ |C|} be the |C| sorted family of relations, such that ∀j ∈ |C|,

Rj = {(c(pi), c(qi)) | c ∈ C[i, j], pi ∼SS
i qi}.

In order to prove that ∼SS⊆∼S we prove that R is a saturated bisimulation. Suppose that ajRjbj

thus there exists c ∈ C[i, j] such that c(pi) = aj , c(qi) = bj and pi ∼SS
i qi. Now suppose that

d(aj) = d(c(pi))
l′−→ p′k then, by definition of satts, pi

c;d,l′−−→SAT p′k. By completeness of β we have

that pi
c′′,l′′−−→β p′′z such that pi

c′′,l′′−−→β p′′z `I pi
c;d,l′−−→ p′k, i.e.:

i
idi //

=c′′

²²

i

c;d

²². e //

l′′

®¶

ρ1

.

l′

®¶
z

e′
// k

e′(p′′z) = p′k

Since pi ∼SS
i qi, then c′′(qi)

l′′−→ q′′z and p′′z ∼SS
z q′′z .

By definition of satts, there exists qi
c′′,l′′−−→SAT q′′z and by completeness of β, qi

c′′′,l′′′−−−→β q′′′u such

that qi
c′′′,l′′′−−−→β q′′′u `I qi

c′′,l′′−−→SAT q′′z , i.e.,

i
idi //

=c′′′

²²

i

c′′

²². f //

l′′′

®¶
ρ2

.

l′′

®¶
u

f ′
// z

f ′(q′′′u) = q′′z

We can compose the two diagram above and we obtain:

i
idi //

=c′′′

²²

i

c;d

²². f ;e //

l′′′

®¶
ρ2;ρ1

.

l′

®¶
u

f ′;e′
// z

Thus qi
c′′′,l′′′−−−→β q′′′u `I qi

c;d,l′−−→ e′(f ′(q′′′u)). By soundness of β, we have that qi
c;d,l′−−→SAT e′(f ′(q′′′u)),

i.e., d(bj) = d(c(qi))
l′−→ e′(f ′(q′′′u)) and moreover p′k = e′(p′′z)Rke′(q′′z) = e′(f ′(q′′′u)).

For proving that ∼S⊆∼SS , it is sufficient to note that if p
c,l−→β p1 then also p

c,l−→SAT p1.

We round up the section with a brief consideration about redundant transitions that will
be stressed in the third part of the thesis. In this section we have shown that the canonical
bisimilarity over the scts, denoted by ∼SY N , does not coincide with ∼S because of the existence
of redundant transitions in the symbolic system. Suppose to be able to build a symbolic transition

4.2. AMONGST PRESHEAVES, REACTIVE SYSTEMS AND TILES 91

system without redundant transitions. However it could be that ∼SY N 6=∼S . Recall the system s
introduced in Example 4.7 and consider now the system s′ = cBask(d).q+τ.p where c⊗(d÷c)Bq ∼S

c⊗ (d÷ c) B p. This system does not have redundant transitions according to Definition 4.7, since
c ⊗ (d ÷ c) B q and c ⊗ (d ÷ c) B p are syntactically (i.e., in the algebra C) different. Again, by
arguments similar to those of Example 4.7, s′ �SY N t but s′ ∼S t.

Therefore in order to characterize saturated bisimilarity through a transition systems without
redundant transitions, we have to consider a “more semantic” notion of redundancy. The transition
p

c2,o2−−→ p2 is redundant according to the actual definition, if p
c1,o1−−→ p1 such that the following diagram

k
idk //

=c1

²²

k

c2

²²
i e //

o1

®¶

ρ

j

o2

®¶
i′

e′
// j′

exists and e′X(p1) = p2. Instead of requiring e′X(p1) = p2, we must require that e′X(p1) ∼S p2, i.e.,
instead of require syntactical equivalence we must require semantical equivalence. With such a
new definition of redundancy, we could properly characterize saturated semantics forgetting about
all redundant transitions, but the definition itself depends on ∼S . This is the main motivation for
the coalgebraic treatment of context interactive systems that we will done in the third part of the
thesis.

4.2 Amongst presheaves, reactive systems and tiles

The theory introduced in the previous section is mainly inspired by our results on saturated
semantics for reactive systems. In this section we will formally explain how our theory extends
the theory of reactive systems by Leifer and Milner. Moreover we will present contexts interactive
systems in terms of presheaves, and at the end we will show the relation of our theory with tile
logic.

4.2.1 Context interactive systems as coalgebras over presheaves

As we have sketched in Section 4.1.1, every Γ(C)-algebra is a functor from C to Set. The category
AlgΓ(C) of Γ(C)-algebras is isomorphic to SetC the category of covariant presheaves over C.

In Section 4.1.1, we have chosen to work with Γ(C)-algebras instead of presheves for the coal-
gebraic characterization that we will give in Chapter 6. However all our theory can be developed
also for presheaves. We just have to replace the main definition of context interactive system with
the following one.

Definition 4.12 (Context interactive system). A context interactive system I is a quadruple
〈C,F, O, tr〉 where:

1. C be a category of interfaces and contexts,

2. F : C → Set is a functor,

3. O is a set of observations,

4. tr ⊆ ∫
F×O × ∫

F is a labeled transition relation, where
∫

F denotes
∑

i∈|C|F(i).

92 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

Reactive Systems Context Interactive Systems
Base Category C Category of Interfaces and Contexts C

Distinguished object 0 Γ(C)-algebra XR (presheaf C[0,−])

Reaction Relation Ã Labeled Relation τ−→

Reactive Context d : i → j Tile in Figure 4.1

Saturated Transition System Saturated Transition System
Saturated Bisimilarity ∼S Saturated Bisimilarity ∼S

IPO labeled transition System Symbolic Transition System
IPO bisimilarity ∼IPO Syntactical Bisimilarity ∼SY N

Semi-Saturated Bisimilarity ∼SS Semi-Saturated Bisimilarity ∼SS

Symbolic Bisimilarity ∼SY M Symbolic Bisimilarity ∼SY M

Table 4.3: Link between Reactive System and Context Interactive Systems

Now consider the endo-functor B : SetC → SetC, defined as B(X) = P(O× ∫
X) (considering

O as a constant presheaf and P and × defined point-wise). It is worth noting that coalgebraic
bisimilarity between B-coalgebras exactly coincides with our definition of saturated bisimilarity
(explicitly, both the definitions require that equivalent systems must have the same interface i ∈ |C|
and that ∀i, j ∈ |C|, ∀c ∈ C[i, j], if piRiqi then c(p)jRjc(q)j). However, not all context interactive
system can be seen as B-coalgebras. Indeed the latter are arrows from α : F → B(F) in SetC

(i.e., natural transformations) and clearly, not all the transition relations tr correspond to such
arrows. More precisely, only those transition relations that are preserved and reflected by F(c) for
all c ∈ ||C||. As future work we would like to better investigate this relationship.

Algebras and coalgebras over presheaves have been widely used to give semantics to process
calculi with name and value passing [51, 52, 79, 109]. In all these works objects represents sets of
names (or values) and arrows are intended as substitutions amongst names. From this perspective,
context interactive systems introduce a conceptual novelty by looking arrows as general contexts
instead of classical substitutions.

4.2.2 Reactive systems as context interactive systems

In Section 4.1, we have stated several times that context interactive systems are a generalization
of Leifer and Milner reactive systems. In this section we will formally describes this. Moreover
looking reactive system as contexts interactive system provides us a better insight. In particular,
we will show that in most of the IPO transition system (its) of the examples considered in the
first part of the thesis, there are redundant transitions (Definition 4.7).

The theory of reactive systems has the aim of deriving a labeled transition systems (lts) from
a semantics specification given by reaction rules. The labels of the derived transitions systems
are the minimal contexts that allow a systems to react, i.e., they represents interactions. The
bisimilarity on such an lts is a congruence, but it is too strict in several important cases (as shown
in the first part of the thesis). Thus we have proposed in Chapter 3, saturated semantics as a
solution for this problem. Unfortunately these are sometimes too large (as it is the case of CCS)
and thus we propose here to add a notion of observation to the theory. Thus, the starting point
of context interactive systems are not reaction rules, but a labeled transition relation. From this,
the main disadvantage of our approach comes out: there is not a constructive definition of the

4.2. AMONGST PRESHEAVES, REACTIVE SYSTEMS AND TILES 93

i

d

d //

τ

®¶

j

τ

®¶
i

d
// j

Figure 4.1: The tile corespondig to a reactive context d : i → j.

symbolic lts, while in reactive systems, IPO transition systems (that correspond to the symbolic
ltss) can be constructed in a canonical way.

Recall the definition of reactive system (Definition 1.1) and the definition of context interactive
system (Definition 4.1). We will show that every reactive system R = 〈C, 0,D, R〉 defines a
context interactive system IR = 〈C, XR, {τ}, trR〉. The base category of R exactly corresponds to
the category of interfaces and contexts of I. The distinguished object 0 of R defines the Γ(C)-
algebra XR as follows. For all i ∈ |C|, Xi (i.e., the carrier set of sort i) is equal to C[0, i], i.e., the
set of arrows from 0 to i (note that we must assume that C is locally small, otherwise C[0, i] could
be a proper class instead of a set). For an arrow c ∈ C[i, j], the operation cXR(x) (for x ∈ Xi)
is defined as the composition of arrows x; c in C. It is worth noting that from the perspective
of presheaves (briefly shown in the previous section) the algebra XR corresponds to the presheaf
obtained by the (covariant) Yoneda embedding y(0) = C[0,−].

As already outlined in Section 4.1, the concept of observation is missing in reactive system, and
thus we consider as set of observations for R the one element set {τ}.

From the other side, the set of rules is not present in context interactive systems, since their
staring point is a labeled transition system. However we map the reaction relation Ã (Definition
1.2) into the transition relation trR defined as p Ã q if and only (p, τ, q) ∈ trR.

Every reactive context d : i → j defines a tile as the one illustrated in Figure 4.1. This tile just
says that the τ transitions (corresponding to reactions) are preserved under the context d. Let TR
be the set of tiles d such as the one in Figure 4.1 for each reactive context d.

Now recall the definition of saturated transition system for reactive system (Definition 1.7) and
that for context interactive system (Definition 4.3). It is immediate to see that the two definitions
coincide. From this, it follows immediately that also the definition of saturated bisimilarities
coincide.

The IPO transition system of reactive system is an instance of symbolic transition system of
context interactive systems.

Theorem 4.2. Let R = 〈C, 0,D,R〉 be a reactive system and IR = 〈C, XR, {τ}, trR〉 be the
corresponding context interactive system. Let TR be the tile system described above. If R has
redex-IPOs then its is a symbolic transition system for IR and TR.

Proof. Let
,−→IPO be the transition relation defined as follows:

p
c,τ−→IPO q iff p

c→I q.

In order to prove that its is a scts with respect to TR and IR, we have to prove that:

• (soundness) if p
c,τ−→IPO q and p

c,τ−→IPO q `TR p
c2,τ−→ q2 then p

c2,τ−→SAT q2.

• (completeness) if p
c2,τ−→SAT q2 then p

c,τ−→IPO q and p
c,τ−→IPO q `TR p

c2,τ−→ q2.

Let us prove soundness.
Suppose that p

c,τ−→IPO q, then diagram (i) below commutes for 〈l, r〉 ∈ R, d ∈ D and q = r; d.
Now by definition of TR, p

c,τ−→IPO q `TR p
c2,τ−→ q2 only if ∃e ∈ D such that c2 = c; e and q2 = q; e.

Thus for sure also p; c; e = l; d; e and, since d, e ∈ D, then p
c2→SAT q2, i.e., p

c2,τ−→SAT q2.

94 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

I4

I2

c

??ÄÄÄÄÄÄÄ
= I3

d

__???????

0

p

``@@@@@@@ l

>>~~~~~~~

I4

I2

c2

??ÄÄÄÄÄÄÄ
c // I1

d2

OO

I3

d

__???????
d1oo

0

p

``@@@@@@@ l

>>~~~~~~~

(i) (ii)

Let us prove completeness.
Suppose that p

c2,τ−→SAT q2, then the exterior square of diagram (ii) above commutes for 〈l, r〉 ∈
R, d ∈ D and q2 = r; d. Since R has redex IPOs, then we can build an IPO such as the internal
arrows of diagram (ii) above. This means that p

c→I r; d1, i.e., p
c,τ−→IPO r; d1. Now, since d2

is a reactive contexts there exists a tile for it, and thus p
c,τ−→IPO r; d1 `TR p

c;d2,τ−−→ r; d1; d2, i.e.,
p

c2,τ−→ q2.

At this point, it is also trivial to prove that Leifer and Milner bisimilarity (∼IPO) corresponds
to what we have called syntactical bisimilarity ∼SY N , that is usually stricter than saturated. The
definitions of semi-saturated and symbolic bisimilarity clearly coincides. It is worth noting that
our Theorems 3.1 and 3.2 (given in Section 3.1) for reactive systems, can be seen as a special case
of Theorem 4.1 for context interactive systems.

Table 4.3 summarizes the correspondence between reactive system and context interactive sys-
tem.

Example 4.9 (Open input Petri nets as context interactive system). Recall Example 1.7 where
we introduced the reactive system N = 〈OPL, 0,OPL, T〉 for open input Petri nets. Consider the
reactive system corresponding to the open net depicted in Figure 1.3. In this example we illustrate
the corresponding context interactive system IN = 〈OPL, XN , {τ}, trN 〉.

The category of interfaces and contexts of IN is OPL the same of N . The corresponding
specification is the following one:

specification Γ(N) =
sorts

0, 1
operations

m : 0 → 0 ∀m multisets on {a, b, c, d, e, f, x, y}
m : 0 → 1 ∀m multisets on {a, b, c, d, e, f, x, y}
m : 1 → 1 ∀m multisets on {x, y}

equations
ε(x) = x
m(n(x)) = m′(x) ∀m,m′, n, s.t. m⊕ n = m′

This specification defines the category AlgΓ(N) of Γ(N)-algebras and Γ(N)-homomorphisms.
The base category OPL together with the distinguished object 0 induces the Γ(N)-algebra XN

(corresponding to OPL[0,−]), defined as follows:

• elements of sorts 0 are multisets on {a, b, c, d, e, f, x, y},
• elements of sorts 1 are multisets on {a, b, c, d, e, f, x, y},
• for all operations mXN and element x, m(x) is defined as m⊕ x.

The only observation in this model is τ and the transition relation trN is defined as (m, τ, n) ∈
trN if and only if m Ã n.

This context interactive system will be often used during Chapter 6. In order to make lighter
the notation we will always refer to this as to N = 〈OPL, N, {τ}, trN 〉.

4.2. AMONGST PRESHEAVES, REACTIVE SYSTEMS AND TILES 95

The tile system TN is defined by the two following parametric tiles, stating that all the contexts
are reactive.

0

m

m //

τ

®¶

0

τ

®¶
0 m

// 0

1

m

m //

τ

®¶

1

τ

®¶
1 m

// 1

0

m

m //

τ

®¶

1

τ

®¶
0 m

// 1

Redundancy in IPO transition system. We close this section by showing that in all the
examples seen in the first part of the where ∼IPO 6=∼S , we have redundant transitions (according
to Definition 4.7).

Recall Example 1.9, where we show that ∼IPO 6=∼S for open input Petri nets. In that example
we have that e

ε→I f and also e
y→I fy, while cx

ε→I d. Thus e �IPO cx, but e ∼S cx. In this case
we have that the second transition of e is redundant, as shown by the following diagram.

1
ε //

=ε

²²

1

y

²²
1 y //

τ

®¶
f

1

τ

®¶
1 y

// 1

Recall Example 3.3 about Logic Programming. Also in that case, the goal P (x) can perform

a redundant transition, namely P (x)
{a/x}→I ¤ that is dominated by P (x) id→I ¤ as shown by the

following diagram.

t
idt //

=id

²²

t

{a/x}
²²

t {a/x} //

τ

®¶
{a/x}

ε

τ

®¶
t {a/x}

// ε

Analogously for Example 3.4 about open π calculus, where the transition p
τ ;a=c→I 0 is dominated

by p
τ→I 0.

4.2.3 Relation to tiles systems

In Section 4.1.2, we have introduced tile systems. These are quite different from their original
presentation in [58]. In that work, observations are not simply a set, but arrows of a category
having the same objects of the category of contexts. Then, tiles can compose not only horizon-
tally (representing spatial composition, i.e., contextualization), but also vertically (representing

temporal composition). More formally, if c
o1

u1
// d and d

o2

u2
// e, then also c

o1;o2

u1;u2
// e.

Our choice of considering flat observations is due to the fact that we are interested in transi-
tions having both a context (horizontal arrows) and an observation as labels, and thus temporal
composition might make more complex the whole theory, without gaining any advantage. Besides,
horizontal and vertical composition, in [58], there is also parallel composition, but here we are not
interested in this.

96 CHAPTER 4. SYMBOLIC SEMANTICS FOR CONTEXT INTERACTIVE SYSTEMS

A tile system is defined just as a set of tiles T , and T ∗ is its closure with respect to horizontal and
vertical composition and horizontal and vertical identity. Intuitively, each tile in T represents a rule,
while tiles in T ∗ represent transitions. Tile bisimilarity is defined on horizontal arrows (contexts)
by looking tiles as transitions. More formally, a symmetric relation R is a tile bisimulation if and
only if whenever cRd, if c

o

u
// c1 ∈ T ∗ then d

o

u
// d1 ∈ T ∗ and c1Rd1.

A nice theorem states that if the tile system satisfies the decomposition property then tile
bisimilarity is a congruence. Roughly, the decomposition property require that if c

o

u
// d ∈ T ∗

and if c = c1; c2 then there exists c1
o

x
// d1 ∈ T ∗ c2

x

u
// d2 ∈ T ∗ such that d = d1; d2.

In [27], the authors show that Leifer and Milner reactive system can be easily seen as a tile
system, where observations are the same arrows of contexts. As generating tiles they take all the
possible IPO squares and, for any rewriting rule 〈l, r〉, a tile as the following.

0

id

²²

id // 0

l

²²
0 r

// l

From this perspective, since IPOs decomposes (Lemma 1.2), then ∼IPO is a congruence, because
the corresponding tile system enjoys the decomposition property.

In [29], the authors show a standard way of making bisimilarity a congruence in tile system. In
order to guarantees the decomposition property, is sufficient to add a tile as the following for each
context c : i → j.

i

id

²²

id // i

c

²²
i c

// j

Adding this tile corresponds to allow a process p to perform p
c−→ c(p). Therefore the resulting

transition system corresponds to our satts and the corresponding bisimilarity to ∼S .
The use that we have done of tiles in this thesis is quite different from the previous works.

Indeed here, tiles are not used for specifying the behavior of some systems, but just for stating
some general knowledge about how contexts modify transitions. This knowledge is used to prune
redundant transitions from the satts and to define symbolic semantics.

Chapter 5

Three examples

In Chapter 4, we have introduced the theory of context interactive systems, as an extension of
the theory of reactive systems by Leifer and Milner (Chapter 1). Roughly, a context interactive
system consists of states and contexts. Each state is equipped with an interface and each context
with both inner and outer interfaces. A state can be inserted into some context provided that the
inner interface of the context coincides with the interface of the state. Moreover states can perform
transitions labeled with observations and go into other states (possibly with different interfaces).
These very simple structures are also very general: a lot of computational models can be regarded
as context interactive systems.

Our theory provides a wide general notion of bisimilarity, namely saturated bisimilarity (∼S),
that is the largest bisimulation congruence. According to saturated bisimilarity two states are
bisimilar if they cannot be distinguished by an external observer that at any step of their execution,
can insert them into some contexts and observe what happens.

This idea was originally introduced by Montanari and Sassone in [89]. They define dynamic
bisimilarity in order to make weak bisimilarity of CCS [80] a congruence w.r.t. non-deterministic
choices: before any transition, the observer inserts the processes into all contexts. Analogously,
since late and early bisimilarity of π-calculus [86] are not preserved under substitution (and thus
under input prefixes), in [100] Sangiorgi introduces open bisimilarity (∼O) as the largest bisimula-
tion on π-calculus agents which is closed under substitutions.

Another example of saturated bisimilarity is ∼1 [6] for the asynchronous π-calculus [64]. Here
the basic bisimilarity, namely oτ -bisimilarity, is not a congruence under parallel outputs, and thus
at any step of definition of ∼1 the observer inserts the process in parallel with all possible outputs.
In the same way, ∼N has been defined in [9] amongst open Petri nets [69, 8, 77] that are an
interactive version of P/T Petri nets.

In this chapter we will show that the last three examples can be tackled as context interactive
systems. These are, in our opinion, interesting because:

1. they show that three apparently very far equivalences are all instances of the same general
concepts,

2. they show how our framework can naturally model quite complex formalisms,

3. as all examples, they provide a better understanding of the theory.

The definition of saturated bisimilarity, while in principle operational, often makes infinite state
the portion of lts reachable by any nontrivial agent, and in any case (e.g. for the open π-calculus)
it is very inefficient, since it introduces a large number of additional transitions.

For this reason, inspired by the theory of reactive systems, we have introduced symbolic se-
mantics for context interactive systems. Symbolic semantics employs some general knowledge
about the modeled formalism (expressed in form of a tile system) and a symbolic transition system

98 CHAPTER 5. THREE EXAMPLES

(scts) that is labeled with both the minimal context allowing the transitions and an observation.
Unfortunately, the canonical notion of bisimilarity over the scts (that we have called syntactical
bisimilarity) is stricter than ∼S . Therefore we have given two different definitions of bisimilar-
ity, namely symbolic bisimilarity (∼SY M) and semi-saturated bisimilarity (∼SS), which exactly
coincide with ∼S .

For analogous reasons, Sangiorgi introduces in [100] an “efficient transition system” for π-
calculus where labels consist of both the minimal substitutions allowing the transitions and canon-
ical π-actions. As in the case of context interactive systems, canonical bisimilarity over this tran-
sition system does not coincide with the saturated one (in this case ∼O). Then, he introduced
a new notion of bisimilarity (denoted by ³) and he proved that ∼O=³. In Section 5.2, we will
show a context interactive system for π-calculus, where saturated bisimilarity coincides with ∼O

and symbolic bisimilarity coincides with ³. In such a way, we re-derive through our theory that
∼O=³.

The case of asynchronous π-calculus is historically different. Honda and Tokoro originally

defined its lts by adding a transition p
a(b)−→ p | ab for all processes p. This corresponds to do not

observe input (since all processes can perform it) and it requires that two bisimilar processes are
bisimilar when put in parallel with all possible output processes. This is exactly the definition of
∼1 in [6] and it is an instance of our saturated bisimilarity, where observations are just outputs and
τ , and contexts are parallel outputs processes. In [6], Amadio, Castellani and Sangiorgi define an
lts where only those processes containing an unguarded occurrence of an input prefix can perform
an input transition. Canonical bisimilarity in this lts is too strict, and thus they define a new kind
of bisimilarity, denoted by ∼a, and they prove that it coincides with ∼1. In Section 5.1, we will
introduce a context interactive system for asynchronous π-calculus, where saturated bisimilarity
coincides with ∼1 and symbolic bisimilarity coincides with ∼a. In such a way, we re-derive that
∼a=∼1.

The case of open Petri nets is the most interesting. The canonical bisimilarity for open Petri
net (∼N) is an instance of our saturated bisimilarity, but in this case nobody has given a symbolic
semantics. Thus applying our approach results in an efficient characterization of ∼N that is
completely new. This case is interesting for one more reason. Not all the contexts preserve
transitions (as was the case in the other examples), and thus the symbolic transition system must
properly take care of these contexts. Moreover, if we restrict our attention to a subset of open
Petri nets (namely, open work-flow nets [77]), we see that all contexts preserve transitions. This
allows us to define a more efficient symbolic transition system for open work-flow nets, by slightly
modifying the one for open nets. Besides showing the flexibility of our approach, this example
also gives a clear intuition of the following important fact: the more we know about the system,
the more efficiently its abstract semantics can be reasoned about. In terms of context interactive
systems this means that a bigger tile system allows us to consider a smaller (and thus more efficient)
symbolic transition system.

5.1 Asynchronous π-calculus

Asynchronous π-calculus has been introduced in [64] for modeling asynchronous message passing
systems. Differently from the synchronous case, where messages are sent and received at the same
time, in the asynchronous communication, messages are sent and travel through some media until
they reach the destination. Therefore sending messages is non blocking (i.e., a process can send
messages even if the receiver is not ready to receive), while receiving is blocking (processes must
wait until the message is arrived). This asymmetry is reflected on the observations: since sending
is non blocking, receiving is unobservable.

In this section, we introduce asynchronous π-calculus and three (alternative) definitions of
bisimilarity (∼1, ∼a and ∼4) that, as proved in [6], coincide. We will show that the first is
an instance of saturated bisimilarity, the second of symbolic bisimilarity and the third of semi-
saturated bisimilarity. So, the result of [6], (i.e., ∼1=∼a=∼4) is just an instance of our Theorem
4.1.

5.1. ASYNCHRONOUS π-CALCULUS 99

(tau) τ.p
τ−→ p (in) a(b).p

a(c)−→ p{c/b} (out) ab
ab−→ 0

(com) p
ab−→ p′ q

a(b)−→ q′

p | q τ−→ p′ | q′ (par) p
µ−→ p′

p | q µ−→ p′ | q bn(µ) ∩ fn(q) = ∅ (sum) p
µ−→ p′

p + q
µ−→ p′

(opn) p
ab−→ p′

νb.p
a(b)−→ p′

b 6= a (res) p
µ−→ p′

νb.p
µ−→ νb.p′

b /∈ nm(µ) (cls) p
a(b)−→ p′ q

a(b)−→ q′

p | q τ−→ νx.p′ | q′ b /∈ fn(q)

(rep) m |!m µ−→ q

!m
µ−→ q

(mat) p
µ−→ p′

[a = a]p
µ−→ p′

Table 5.1: Operational semantics of asynchronous π-calculus .

Let N be a set of names (ranged over by a, b, c . . .) with τ /∈ N . The set of π-processes is
defined by the following grammar:

p ::= ab, p1 | p2, νa.p, !g, m m ::= 0, α.p, m1 + m2 α ::= a(b), τ

The main difference with the synchronous π (Section 5.2), is that here output prefixes are miss-
ing. The occurrence of an unguarded āb can be thought as message b that is available on some
communication media named a. This message is received whenever it disappears, i.e., it is con-
sumed by some process performing an input. Thus the action of sending happens when āb becomes
unguarded.

Considering a(b).p and νb.p, the occurrences of b in p are bound. An occurrence of a name in a
process is free, if it is not bound. The set of free names of p (denoted by fn(p)) is the set of names
that have a free occurrence in the process p. The process p is α-equivalent to q (written p ≡α q), if
they are equivalent up to α-renaming of bound occurrences of names. The operational semantics
of π-calculus is a transition system labeled on actions Act = {a(b), ab, a(b), τ | a, b ∈ N} (ranged
over by µ) where b is a bound name (written b ∈ bn(µ)) in a(b) and a(b). In all the other cases a
and b are free in µ (a, b ∈ fn(µ)). By nm(µ) we denote the set of both free and bound names of µ.

The labeled transition system (lts) is inductively defined by the rules in Table 5.1, where we
have omitted the symmetric version of the rules sum, par, com and cls and where we consider
processes up to α-equivalence, i.e., we have implicitly assumed the rule

p
µ−→ q p ≡α p′

p′
µ−→ q

.

The above lts was introduced in [6]. In [64], Honda and Tokoro originally presented it with
the additional rule

(nil) 0
a(b)−→ ab

that substantially means that any process p (since we consider p ≡ p | 0) can perform an input
actions a(b) going in the state p | ab. In this section we will rely on the transition system and the
abstract semantics of [6].

The main difference with the synchronous case is in the notion of observation. Since sending
messages is non-blocking, then an external observer can just send messages to a system without
knowing if they will be received or not. For this reason the receiving action is not observable and
the abstract semantics is defined disregarding input transitions.

In the following definitions, a name declared fresh is supposed to be different from all the others
appearing in the definition.

Definition 5.1 (oτ -bisimilarity). A symmetric relation R is an oτ -bisimulation iff, whenever pRq:

• if p
µ−→ p′ where µ is not an input action and bn(µ) is fresh, then q

µ−→ q′ and p′Rq′.

100 CHAPTER 5. THREE EXAMPLES

We say that p and q are oτ -bisimilar (written p ∼oτ q) if and only if there exists an oτ -bisimulation
relating them.

Note that a(x).cx ∼oτ a(x).dx, even if the two processes are really different when they are put
in parallel with a process ab. In order to obtain an abstract semantics preserved under parallel
composition, we proceed analogously to saturated bisimilarity, i.e., at any step of the bisimulation
we put the process in parallel with all possible outputs.

Definition 5.2 (1-bisimilarity). A symmetric relation R is an 1-bisimulation iff, ∀ab, whenever
pRq,

• if ab | p µ−→ p′ where µ is not an input action and bn(µ) is fresh, then ab | q µ−→ q′ and p′Rq′.

We say that p and q are 1-bisimilar (written p ∼1 q) if and only if there exists an 1-bisimulation
relating them.

The above definition is not very efficient since it considers (as it is the case of saturated bisim-
ilarity) a quantification over all possible contexts. Instead of considering all possible output con-
texts, we could also consider the input actions. This leads to the following notion of syntactic
bisimulation.

Definition 5.3 (Syntactic bisimilarity). A symmetric relation R is an syntactic bisimulation iff,
whenever pRq:

• if p
µ−→ p′ where bn(µ) is fresh, then q

µ−→ q′ and p′Rq′.

We say that p and q are syntactic bisimilar (written p ∼SY N q) if and only if there exists an
syntactic bisimulation relating them.

The above definition is too strict, since there we completely observe the input action that are
not observable. As an example, we have that

a(b).ab + τ ∼1 τ .

This can be understood, by observing that they can perform a τ transition in any possible context
and, when inserted into the context ab | −1, both can perform a τ transition going into ab. Clearly
the above processes are not in ∼SY N and thus ∼SY N 6=∼1.

In order to efficiently characterize ∼1, without considering all possible contexts, we have to
properly tackle the input transition.

Definition 5.4 (Asynchronous bisimilarity). A symmetric relation R is an asynchronous bisim-
ulation iff whenever pRq,

• if p
µ−→ p′ where µ is not an input action and bn(µ) is fresh, then q

µ−→ q′ and p′Rq′,

• if p
a(b)−→ p′, then either q

a(b)−→ q′ and p′Rq′, or q
τ−→ q′ and p′R(q′ | ab).

We say that p and q are asynchronous bisimilar (written p ∼a q) if and only if there is an
asynchronous bisimulation relating them.

Another efficient characterization is proposed in [6].

Definition 5.5 (4-bisimilarity). A symmetric relation R is a 4-bisimulation iff whenever pRq:

• if ab | p µ−→ p′ where µ is not an input action and bn(µ) is fresh, then ab | q µ−→ q′ and p′Rq′,

• if p
a(b)−→ p′ then q | ab

τ−→ q′ and p′Rq′.

We say that p and q are asynchronous bisimilar (written p ∼4 q) if and only if there is a 4-
bisimulation relating them.

In [6], it is proved that ∼1=∼a=∼4. This result is just an instance of our Theorem 4.1, because
∼1 is an instance of saturated bisimilarity and ∼a is an instance of symbolic bisimilarity and ∼4

is an instance of our semi-saturated bisimilarity. This will be formally shown in the next sections.

5.1. ASYNCHRONOUS π-CALCULUS 101

5.1.1 A context interactive system for asynchronous π

We assume the set of names N to be totally ordered1. With n we mean both the nth names
and the set of names smaller or equal than n. The context interactive system for asynchronous
π-calculus is A = 〈Out, A, OA, trA〉.

The category of interfaces and contexts is Out, formally defined as follows:

• |Out| = ω (the set of natural numbers);

• Out[n,m] with m ≥ n is the set of contexts generated by c ::= −, − | ab, where a ∈ n and
b ∈ m;

• ∀n ∈ ω, idn is − ∈ Out[n, n];

• arrows composition is the syntactic composition of contexts.

Let us define the Γ(Out)-algebra A. For every sort n, An is the set of asynchronous π-processes
p such that n ≥ max fn(p). Then ∀p ∈ An and ∀c ∈ Out[n,m], cA(p) is the process of sort m
obtained by syntactically inserting p into c. In this system, interfaces are sets of names. A process
with interface n uses only names in n (not all, just a part) and can be put in parallel with outputs
sending messages over n. Given a process p and a natural number n ≥ max fn(p), we denote with
pn the process p with interface n.

The set of observations is OA = {ab, a(), τ | a, b ∈ N}. Note that the input action is not an
observation, since in the asynchronous case it is not observable. Moreover note that in the bound
output, the sent name does not appear. This is because, any process with sort n will send as bound
output the name n + 1.

The following rules define the transition structure trA (denoted by −→A).

p
ab−→ p′

pn
ab−→A p′n

p
τ−→ p′

pn
τ−→A p′n

p
a(n+1)−−−→ p′

pn
a()−→A p′n+1

Thus in our context interactive system A, processes only perform τ and output transitions. The
contexts are all the possible outputs. Therefore is almost trivial to see that saturated bisimilarity
coincides with ∼1.

Proposition 5.1. Let p, q be asynchronous π-processes, and let n ≥ max fn(p ∪ q). Then p ∼1 q
iff pn ∼S

n qn.

Proof. Let R = {(p, q) | pn ∼S
n qn n ≥ max fn(p ∪ q)}. In order to prove that pn ∼S

n qn implies
p ∼1 q, we prove that R is an 1-bisimulation, i.e., an oτ -bisimulation closed under composition

with output processes. Suppose that p
a(x)−→ p′ (the cases of τ and output are easier). First of

all observe that pn ∼S
n qn implies that ∀m ≥ n pm ∼S

m qm. Now since x is fresh, we have that

x − 1 ≥ n, and thus px−1 ∼S
x−1 qx−1. By definition of trA, we have that px−1

a()−→A p′x and, since

px−1 ∼S
x−1 qx−1, it follows that qx−1

a()−→A q′x and p′x ∼S
x q′x and then, p′Rq′. Again by definition of

trA, we have that q
a(x)−→ q′. This prove that R is an oτ -bisimulation. Now we have to prove that it

is closed under composition with output processes, but this is immediate since ∼S is a congruence
w.r.t. composition with output processes.

Let R be the ω-sorted relation, such that ∀n ∈ ω, Rn = {(pn, qn) | p ∼1 q, n ≥ max fn(p∪q)}.
In order to prove that p ∼1 q implies pn ∼S

n qn, we prove that R is a saturated bisimulation. Let
c ∈ Out[n,m] and suppose that c(pn)m

µ−→A p′m′ . By definition of trA, c(p)
µ−→ p′. Now, since

p ∼1 q, by definition of 1-bisimulation, it follows that c(p) ∼1 c(q) because contexts c are just
parallel output processes. Now, since ∼1 is an oτ -bisimulation, and since µ could be just a τ ,

1This allows us to give a clearer presentation, but our framework can tackle also non ordered N . We can slightly
modify the category I of [109], in order to extends our signature with not ordered names.

102 CHAPTER 5. THREE EXAMPLES

an output or a bound output with a fresh bound name (m + 1 ≥ fn(c(p) ∪ c(q))), c(q)
µ−→ q′ and

p′ ∼1 q′, i.e., p′m′Rmq′m′ . From c(q)
µ−→ q′ follows that c(qn)

µ−→A q′m′ .

The above result states that ∼1 is an instance of the more general concept of saturated bisim-
ilarity. In the next sections, we will show that ∼a is an instance of symbolic bisimilarity.

5.1.2 Tile system for asynchronous π

Now we have to define a tile system TA that describes how contexts transforms transitions. Since
our contexts are just parallel outputs, all the contexts preserve transitions. This is expressed by
the following (parametric) tiles

n

tauc

c //

τ

®¶

m

τ

®¶
n

c
// m

n

out(a,b)c

c //

ab

®¶

m

ab

®¶
n

c
// m

n

bout(a)c

c //

a()

®¶

m

a()

®¶
n + 1

c+1
// m + 1

where c ∈ Out[n, m] is a generic context, and c+1 ∈ Out[n + 1, m + 1] is the same syntactic
context as c, but with different interfaces.

5.1.3 Symbolic semantics for asynchronous π

In the previous sections we have introduced A and TA, a contexts interactive systems and a tile
system for the asynchronous π-calculus. In this section we introduce a symbolic transition system
(scts) for them.

Our main intuition is that, in the case of asynchronous π-calculus, the canonical lts is sub-
stantially the scts. The transitions labeled with an input a(b) are substantially transitions saying
that if the process is inserted into − | ab, then it can perform a τ . The following rules de-
scribe the symbolic transition system α starting form the canonical lts, where − ∈ Out[n, n] and
− | am ∈ Out[n, x].

p
ab−→ p′

pn
−,ab−→α p′n

p
a(n+1)−−−→ p′

pn
−,a()−−→α p′n+1

p
τ−→ p′

pn
−,τ−→α p′n

p
a(m)−−→ p′ x = max{m,n}

pn
−|am,τ−−−→α p′x

Note that the only non standard rule is the fourth. If, in the standard transition system a
process can perform an input, in the scts the same process can perform a τ , provided that there
is an output process in parallel. Note that the interface of the arriving state depends on the name
received m: if it is smaller than n, then the arriving interface is still n, otherwise it is extended to
m.

Proposition 5.2. α is a symbolic transition system with respect to TA and A.

Proof. In order to prove that α is a symbolic transition system, we have to prove:

• (completeness) if pn
c,µ−→SAT q then pn

c′,µ′−→α q′ and pn
c′,µ′−→α q′ `TA pn

c,µ−→SAT q.

• (soundness) if pn
c′,µ′−→α q′ and pn

c′,µ′−→α q′ `TA pn
c,µ−→SAT q then pn

c,µ−→SAT q.

In order to prove the completeness we have to prove that ∀c ∈ Out[n,m] and ∀pn, if c(pn)
µ−→A

p′m′ then pn
c,µ−→TA(α) p′m′ . Suppose that µ = τ (the other cases are easier). By definition of trA,

follows that c(p) τ−→ q. Since c could be only the parallel composition of outputs, by the definition
of the operational semantics of asynchronous π, it follows that either p

τ−→ q′ (such that q = c(q′))

or c
ab−→ c′ (where c = − | ab | c′) and p

a(b)−→ q′ (such that q = c′ | q′).

5.1. ASYNCHRONOUS π-CALCULUS 103

In the former case, by definition of α, we have that pn
−,τ−→α p′′n and using the tile tauc of TA,

we have that pn
−,τ−→α q′n `TA pn

c,τ−→α c(q′n) = qm

In the latter case, by definition of α, we have that pn
−|ab,τ−−−→α q′x where x = max{b, n}. Now,

take c′ ∈ Out[x,m], by the tile tauc′ of TA, we have that pn
−|ab,τ−−−→α q′x `TA pn

−|ab|c′,τ−−−−→ c′(q′x) = qm

For soundness just observe that if p
c,µ−→α p′ then c(p)

µ−→ p′ and that all the rules of TA are
sound.

Instantiating the general definition of symbolic bisimulation to α and TA, we retrieve the
definition of asynchronous bisimulation. Indeed transitions of the form p

−,µ−→α p′ (in the original
lts, τ and output), can be matched only by transitions with the same label, since the context −
is not decomposable.

The transitions p
−|am,τ−−−→α p′ (corresponding to the input in the original lts) can be matched

either by q
−|am,τ−−−→α q′ by using the identity tile, or by q

−|,τ−→α q′ by using the tile tau−|am. In other

words, when p
−|am,τ−−−→α p′, then q can answer with q

−|,τ−→α q′, since q
−|,τ−→α q′ `TA q

−|am,τ−−−→ q′ | am
(as described by the following diagram).

n
− //

=−
²²

n

−|am

²²
n

−|am //

τ

®¶

tau−|am

m

τ

®¶
n

−|am
// ,m

Proposition 5.3. Let p, q be asynchronous π-processes, and let n ≥ max fn(p ∪ q). Then p ∼a q
iff pn ∼SY M

n qn.

Proof. Here we prove that if pn ∼SY M
n qn then p ∼a q (the other implication is analogous).

Let R = {p, q | pn ∼SY M
n qn} be a symmetric relation. We prove that R is an asynchronous

bisimulation.
Suppose that p

a(b)−→ p′. Then pn
−,a(b)−−−→α p′n+1. Now since pn ∼SY M qn, qn must answer with a

transition qn
c,o−→α q′′ such that qn

c,o−→α q′′ `TA qn
−,a(b)−−−→ q′n+1 and p′n+1 ∼SY M

n+1 q′n+1. By definition

of TA, the only such transition is qn
−,a(b)−−−→α q′n+1. Now, by definition of α, we have that q

a(b)−→ q′.
We can proceed analogously in the case of output and τ transitions.

For the input, suppose that p
a(b)−→ p′. Then pn

−|ab,τ−−−→α p′x where x = max {b, n}. Now since

pn ∼SY M qn, qn must answer with a transition qn
c,o−→α q′′ such that qn

c,o−→α q′′ `TA qn
−|ab,τ−−−→α q′x

and p′x ∼SY M
x q′x.

By definition of TA there are two possibilities:

• qn
−|ab,τ−−−→α q′x and p′x ∼SY M

x q′x. Thus q
a(b)−→ q′ and p′Rq′

• qn
−,τ−→α q′′n and by using the rule tau−|ab, qn

−,τ−→α q′′n `TA qn
−|ab,τ−−−→α q′′n | ab and p′x ∼SY M

x

(q′′ | ab)x. Thus q
τ−→ q′′ and p′Rq′′ | ab.

Therefore ∼1 is the saturated bisimulation for A, while ∼a is its the symbolic version. The
next proposition shows that ∼4 is an instance of semi-saturated bisimilarity.

104 CHAPTER 5. THREE EXAMPLES

Proposition 5.4. Let p, q be asynchronous π-processes, and let n ≥ max fn(p ∪ q). Then p ∼4 q
iff pn ∼SS

n qn.

Proof. Just note that when p
−,µ−→α p′ (corresponding to τ and output transitions), the −A(q) = q

and q must perform q
µ−→ q′ with p′Rq′.

While, when p
−|am,τ−−−→α p′ (corresponding to input transitions), then − | amA(q) = q | am and

q | am
τ−→ q′ with p′Rq′.

By Theorem 4.1, immediately it follows that they coincide.

Corollary 5.1 (By Theorem. 4.1). ∼1=∼a=∼4 as shown in [6].

Before concluding the section we want to show that in the scts α, there are redundant tran-
sitions (Definition 4.7). Consider indeed the process a(b).ab + τ with interface 1 (supposing

that a is the first name of N). Then the transition a(b).ab + τ
−|am,τ−−−→α am (corresponding to

a(b).ab + τ
a(m)−−→ am) is dominated by a(b).ab + τ

−,τ−→α 0 (corresponding to a(b).ab + τ
τ−→ 0) as

illustrated by the following diagram.

1
id //

=−
²²

1

−|am

²²
x

−|am //

τ

®¶

tau−|am

x

τ

®¶
x

−|am
// x

5.2 Open π-calculus

Since early and late bisimilarity for π-calculus are not preserved under substitution of names (and
thus input prefixing), Sangiorgi introduces in [100] open bisimilarity (∼O), where at any step of
the bisimulation game, the compared processes are evaluated into all possible substitutions. The
resulting equivalence is a congruence for all the operators of π-calculus, but the quantification over
all substitutions makes checking ∼O quite inefficient. For this reason, Sangiorgi introduces a sym-
bolic transition system whose labels are pairs 〈M, µ〉 where M represents the minimal substitution
allowing the transition, and µ an observation. However, the standard definition of bisimulation
over this symbolic transition system does not coincide with ∼O. Inspired by symbolic semantics
[63], Sangiorgi introduces a symbolic bisimilarity (³) that efficiently characterizes ∼O. In this
section we will introduce π-calculus and open bisimilarity. Then we will introduce a context inter-
active systems where ∼O is the saturated bisimilarity and ³ is the symbolic bisimilarity. Thus,
the result by Sangiorgi ∼O=³ is just an instance of our Theorem 4.1.

Let N be a set of names (ranged over by a, b, c . . .) with τ /∈ N . The set of π-processes is
defined by the following grammar:

p ::= 0, α.p, [a = b]p, p1 | p2, p1 + p2, νa.p, !p, α ::= a(b), ab, τ

Considering a(b).p and νb.p, the occurrences of b in p are bound. An occurrence of a name in a
process is free, if it is not bound. The set of free names of p (denoted by fn(p)) is the set of names
that have a free occurrence in the process p. The process p is α-equivalent to q (written p ≡α q), if
they are equivalent up to α-renaming of bound occurrences of names. The operational semantics
of π-calculus is a transition system labeled on actions Act = {a(b), ab, a(b), τ | a, b ∈ N} (ranged
over by µ) where b is a bound name (written b ∈ bn(µ)) in a(b) and a(b). In all the other cases a

5.2. OPEN π-CALCULUS 105

(pre) α.p
α−→ p (com) p

ab−→ p′ q
a(x)−→ q′

p | q τ−→ p′ | q′{b/x}
(par) p

µ−→ p′

p | q µ−→ p′ | q bn(µ) ∩ fn(q) = ∅

(sum) p
µ−→ p′

p + q
µ−→ p′

(opn) p
ab−→ p′

νb.p
a(b)−→ p′

b 6= a (res) p
µ−→ p′

νb.p
µ−→ νb.p′

b /∈ nm(µ)

(rep) p |!p µ−→ q

!p
µ−→ q

(mat) p
µ−→ p′

[a = a]p
µ−→ p′

(cls) p
a(x)−→ p′ q

a(x)−→ q′

p | q τ−→ νx.p′ | q′

Table 5.2: Late operational semantics of π-calculus .

and b are free in µ (a, b ∈ fn(µ)). By nm(µ) we denote the set of both free and bound names of µ.
The same notation will be used later for match sequences, distinctions and substitutions.

The (late) labeled transition system is inductively defined by the rules in Table 5.2, where we
have omitted the symmetric version of the rules sum, par, com and cls and where we consider
processes up to α-equivalence, i.e., we have implicitly assumed the rule

p
µ−→ q p ≡α p′

p′
µ−→ q

.

In [86], the authors introduce late and early bisimilarities. These are congruences w.r.t. parallel
composition, but they are not preserved by the input prefixes. Consider the processes p = ab | c(x)
and q = ab.c(x) + c(y).ab (here and in the following we abbreviate α.0 with α). These are (late
and early) bisimilar, but whenever we put them into the context d(a).−, they are not anymore.
Indeed if this prefix receives c, then a = c, and thus p can perform a τ action (synchronizing the
two parallel components), while q cannot.

Sangiorgi in [100] introduces open bisimilarity (∼O) that is a congruence with respect to all the
operators and is strictly finer then the two mentioned above. In early and late bisimilarity name
instantiation only appears in the input clause, while in ∼O it is part of the coinductive definition
of bisimilarity. At any step of the bisimulation game, names can be identified by a substitution
σ. Thus, [a = b]τ and 0 are not considered bisimilar anymore, because, σ([a = b]τ) perform a τ
transition if σ identifies a and b. Now consider νa.[a = b]τ . It will never perform a τ transition,
because a is restricted and then it cannot be identified with b. Thus in the bisimulation game, we
have to avoid those substitutions that identify a and b. In order to properly handle the restriction
operator, we have to introduce distinctions, i.e. relations that express permanent inequalities on
names.

Definition 5.6 (Distinction). A distinction D is a finite symmetric and irreflexive relation on
names. A substitution σ respects D iff aDb implies σ(a) 6= σ(b).

In the following we will use D to mean the set of all distinctions, nm(D) to mean the set of
names mentioned in D and σ(D) to mean the distinction {(σ(a), σ(b)) | (a, b) ∈ D}. Sometimes,
in the expressions defining distinctions we shall avoid giving all the symmetric pairs; for instance,
we might define D = {(a, b)} without recalling that also (b, a) ∈ D. In the following definitions, a
name declared fresh is supposed to be different from all the others appearing in the definition.

Definition 5.7. Let R = {RD | D ∈ D} be a D sorted family of symmetric relations. R is an
open bisimulation iff ∀D ∈ D and ∀σ respecting D, whenever pRDq:

• if σ(p) α−→ p′ with bn(α) fresh, then σ(q) α−→ q′ and p′Rσ(D)q
′,

• if σ(p)
a(b)−→ p′ with b fresh, then σ(q)

a(b)−→ and p′RD∗q
′

where D∗ = σ(D) ∪ {(b, i), ∀i ∈ fn(σ(p) ∪ σ(q))}.
The processes p and q are open D-bisimilar (written p ∼O

D q), if there is an open bisimulation
R, such that pRDq.

106 CHAPTER 5. THREE EXAMPLES

(pre) α.p
∅,α−→e p (cls) p

M,a(x)−−−→e p′ q
N,b(x)−−−→e q′

p | q MN [a=b],τ−−−−−−→e νx.p′ | q′
(sum) p

M,µ−→e p′

p + q
M,µ−→e p′

(par) p
M,µ−→e p′

p | q M,µ−→e p′ | q
bn(µ) ∩ fn(q) = ∅ (com) p

M,ab−−→e p′ q
N,c(d)−−−→e q′

p | q MN [a=c],τ−−−−−−→e p′ | q′{b/d}
(rep) p |!p M,µ−→e q

!p
M,µ−→e q

(mat) p
M,µ−→e p′

[a = b]p
M [a=b],µ−−−−−→e p′

(res) p
M,µ−→e p′

νb.p
M,µ−→e νb.p′

b /∈ nm(M ∪ µ) (opn) p
M,ab−−→e p′

νb.p
M,a(b)−−−→e p′

b /∈ nm(M) ∪ {a}

Table 5.3: Symbolic transition system for open π-calculus .

The intuitive meaning of the last clause, is that b is different from all the other free names
appearing in σ(p) and σ(q) since it has been generated by some restriction νb. Thus we have to
check that the arriving states p′ and q′ are bisimilar when considering b distinct form all the other
names.

The definition of ∼O involves at each step a quantification over all substitutions. In [100], the
author introduces a more efficient characterization of ∼O, by defining a symbolic transition system.
Labels on this lts are pairs (M,µ) where M is a match sequence and µ is an action. A match
sequence (ranged over by M , N) is a sequence of equalities of names of the form [a = b]. We will
write MN to denote the concatenation of M and N and M B N if M implies N , i.e., whenever M
holds, also N holds. Every matching sequence M defines an equivalence relation EM . We denote
by σM a special substitution that chooses a representative for each equivalence class of EM , and
maps every name in the representative of its class. Note that there may exists more than one σM ,
we just choose one of them.

The symbolic transition system is presented in Table 5.3. In the transition p
M,µ−→e p′, M

represents the minimal substitution σM that allows p to perform µ. As an example we have that

the process [a = b]ca.p
[a=b],ca−−−−→e p and [a = b]ca.p | d(x).q

[a=b][d=c],τ−−−−−−→e p | q{a/x}.
Note that the matching sequence in the symbolic transition system is not applied to the arriving

state. Thus in the definition of bisimilarity we have to require that the arriving states are bisimilar
when inserted into the (substitution corresponding to the) matching sequence.

Definition 5.8 (Syntactic bisimilarity). Let R = {RD | D ∈ D} be a D sorted family of symmetric
relations. R is a syntactic bisimulation iff ∀D ∈ D, whenever pRDq:

• if p
M,α−→e p′ with bn(α) fresh and M respects D, then q

M,α−→e q′ and σM (p′)RσM (D)σ
M (q′),

• if p
M,a(b)−−−→e p′ with b fresh and M respects D, then q

M,a(b)−−−→e q′ such that σM (p′)RD∗
M

σM (q′)

where D∗
M = σM (D) ∪ {(b, i), ∀i ∈ fn(σM (p) ∪ σM (q))}.

The processes p and q are syntactic D bisimilar (written p ∼SY N
D q), if there is a syntactic

bisimulation R, such that pRDq.

As we have already seen in the case of Simple Constraint Calculus (Example 4.6) and Asyn-
chronous π-calculus (Section 5.1), this kind of bisimilarity does not capture the original. As an
example consider the processes

p = [a = b]τ and q = p + [c = d][a = b]τ .

The process q can perform the transitions q
[a=b],τ−−−→e 0 and q

[a=b][c=d],τ−−−−−−→e 0, while p performs only
the former transition. However p ∼O q.

Definition 5.9. Let R = {RD | D ∈ D} be a D sorted family of symmetric relations. R is an
efficient open bisimulation iff ∀D ∈ D, whenever pRDq:

5.2. OPEN π-CALCULUS 107

• if p
M,α−→e p′ with bn(α) fresh and M respects D, then q

N,α′−−→e q′ such that M B N , σM (α) ≡α

σM (α′) and σM (p′)RσM (D)σ
M (q′),

• if p
M,a(b)−−−→e p′ with b fresh and M respects D, then q

N,c(b)−−−→e q′ such that M BN , σM (a(b)) ≡α

σM (c(b)) and σM (p′)RD∗M σM (q′)

where D∗
M = σM (D) ∪ {(b, i), ∀i ∈ fn(σM (p) ∪ σM (q))}.

The processes p and q are efficiently open D bisimilar (written p ³D q), if there is an efficient
open bisimulation R, such that pRDq.

Intuitively the above clauses ensure that in the ordinary transition system, the move σM (p)
σM (α)−−−→

σM (p′) is matched by σM (q)
σM (α′)−−−→ σM (q′). In [100], it is proved that ³ and ∼O coincide, but

the former is more efficient than the latter, since ³ forces only those fusions of names which are
strictly necessary to ensure the equivalence, while ∼O forces all the fusions.

In the next sections, we will introduce a context interactive system for open π calculus and
we will show that ∼O is an instance of our saturated bisimilarity, while ³ is an instance of our
symbolic, and then ∼O=³ is an instance of Theorem 4.1.

Before ending the section we want present some lemmas that are used by Sangiorgi for proving
∼O=³. The first one is well-known from [86] and substantially states that in the π-calculus without
mismatch, substitutions preserve transitions. This exactly represents the tile system TO that we
will introduce in Section 5.2.2.

Lemma 5.1 (From [86]). If p
µ−→ q, then σ(p)

σ(µ)−→ σ(q), provided if µ = a(b) then b /∈ fn(σ(P)) ∪
nm(σ).

The following two lemmas substantially state that the labeled transition system
,−→e is a sym-

bolic transition system (according to our Definition 4.3).

Lemma 5.2 (From [100]). If p
M,µ−→e p′, then σM (p)

σM (µ)−−−→ σM (p′).

Lemma 5.3 (From [100]). If σM (p)
µ−→ q then p

N,µ′−→e q′ and M BN , σM (q′) ≡α q and σM (µ′) ≡α

µ.

5.2.1 A context interactive system for open π

In this section we will present O = 〈Dis, O, OO, trO〉 for open π-calculus. As in the asynchronous
case, we assume the set of names N to be totally ordered2, and we write n to mean the set of
names smaller or equal to n.

Dis is the category of distinctions and fusions. In this setting, with fusion we mean a surjective
function σ : n → m where

σ(i) < σ(j) ⇒ ∃k ∈ σ−1(σ(i)) such that k < j.
1 1

2 2

3

±±±±±

1 @@ 1

2
~~
2

3
~~

The above condition guarantees that fusions are in one to one correspondence with the equiv-
alence relations on names (Lemma 5.4 below) and thus with matching sequences. For example
consider the two functions depicted above on the right. Both represents the matching [1 = 3], but
only the leftmost is a fusion according to our definition.

The category of contexts and interfaces is Dis, formally defined as follows:

• |Dis| = {(n,D) for n ∈ ω and D ∈ D such that nm(D) ⊆ n};
• Dis[(n,D), (n′, D′)] is the set of fusions σ : n → n′ such that:

2We can work with not ordered N by taking as signature the category D of [79].

108 CHAPTER 5. THREE EXAMPLES

1. respect distinction, i.e., iDj ⇒ σ(i) 6= σ(j),

2. preserve distinction, i.e., iDj ⇒ σ(i)D′σ(j);

• ∀(n,D) ∈ |Dis|, idn,D is the identity fusion;

• arrows composition is composition of substitutions.

Let us define the Γ(Dis)-algebra O. For every sort (n,D), On,D is the set of π-processes p such
that n ≥ max{fn(p)}. Then ∀p ∈ On,D and ∀σ ∈ Dis[(n,D), (n′, D′)], σO(p) is the process of
sort (n′, D′) obtained by replacing in p all the occurrences of a ∈ fn(p) with σ(a). In this system,
interfaces are pairs (n,D) where n is a set of names (as in the asynchronous case) and D is a
distinction. A process with interface (n, D), can be inserted only in those fusions that respect D.
Given a process p, a natural number n ≥ max fn(p) and D such that nm(D) ⊆ n, we denote with
pn,D the process p with interface (n,D).

The set of observations is OO = {a(), ab, a(), τ | a, b ∈ N}. Differently from the asynchronous
case, here input is observable. However note that the received name does not appear. This is
because any process with sort (n,D) will receive the name n + 1 (that could be later fused with
other names).

The following rules define the transition structure trO (denoted by −→O).

p
ab−→ p′

pn,D
ab−→O p′n,D

p
τ−→ p′

pn,D
τ−→O p′n,D

p
a(n+1)−−−→ p′

pn,D
a()−→O p′n+1,D

p
a(n+1)−−−→ p′

pn,D
a()−→O p′n+1,D̄

where D̄ = D∪{(n+1, i), ∀i < n+1}. The only non-standard transition is the bound output,
where in the arriving state the distinction D is forced.

Now, we would like to prove that saturated bisimilarity for O is the same of open bisimilarity.
The main difference between the two definitions, is that in O we consider only “well-ordered”
substitutions (that we have called fusions), while in the definition of ∼O all the substitutions are
considered. However, only the kernel of a substitution (i.e., the induced equivalence classes) is
discriminating for π-processes. The following lemma states that arrows of our category are in one
to one correspondence with equivalence relations.

Lemma 5.4. Let D be a distinction on n, and let R ⊆ n × n be an equivalence relation that
respects D. Let m ≤ n be the number of equivalence classes defined by R. Then there exists a
unique σR ∈ Dis[(n,D), (m,σR(D))] such that xRy ⇔ σR(x) = σR(y).

Proof. We order the equivalence classes defined by R. Let E0 be the equivalence class of 0, i.e.,
the set E0 = {x | xR0}. Then we define Ei+1 as the equivalence class of the minimum element
that does not belong to all the previous i equivalence classes, i.e., Ei+1 = {x | xR min {y /∈⋃

j=0...i Ej}}.
Now σR maps every element of Ei into i, i.e., ∀i ≤ n, ∀x ∈ Ei, σR(x) = i.
First of all note that xRy ⇔ σR(x) = σR(y). Indeed xRy if and only if ∃i such that x, y ∈ Ei

and σR(x) = σR(y) = i.
Now we have to prove that σR is an operator of Γ(Dis). First of all note that it respects D

because R respects D, and it preserves D since the target distinction is σ(D).
By definition, immediately follows that σR is a surjective function. It remains to prove that

if σR(i) < σR(j) then ∃k ∈ σ−1(σ(i)) such that k < j. Let σR(i) = x and σR(j) = y, and let
k = min Ex. Then k = min w /∈ ⋃

l=0...x−1 El. Since x < y, then j /∈ ⋃
l=0...x−1 El and thus k < j.

Finally we prove that σR is unique in ||Dis||. Suppose that there exists an operator of Γ(Dis)
σ ∈ Dis[(n,D), (m,σ(D))] such that xRy ⇔ σR(x) = σR(y).

We prove by induction that ∀i ≤ n, σ(i) = σR(i), i.e., that ∀x ∈ Ei, σ(x) = i.

5.2. OPEN π-CALCULUS 109

• Base case. Suppose ab absurdum that there exists an x ∈ E0 such that σ(x) 6= 0 (i.e.,
σ(x) > 0). Since xR0 then also σ(0) > 0. Now since σ is surjective, then there exists a k
such that σ(k) = 0, and thus σ(k) < σ(0). But this is in contrast with the second point of
the definition of Dis.

• Inductive hypothesis: ∀j ∈ 0 . . . i, ∀x ∈ Ej , σ(x) = j. We have to prove that ∀x ∈ Ei+1,
σ(x) = i + 1. Suppose ab absurdum that there exists an x ∈ Ei+1 such that σ(x) 6= i + 1.
Now we have two possibility

1. σ(x) < i + 1. By inductive hypothesis ∀y ∈ Eσ(x), σ(y) = σ(x). By the hypothesis on
σ, this means that xRy, i.e., that x ∈ Eσ(x). But this is absurd since x ∈ Ei+1 and
σ(x) < i + 1.

2. σ(x) > i+1. Since σ is surjective, then there exists at least one w such that σ(w) = i+1.
Let z = min {w | σ(w) = i + 1}. Note that by inductive hypothesis it follows that
z /∈ ⋃

l∈0...i El. Now let k = min Ei+1. Since kRx then σ(k) = σ(x) > i + 1. By
definition of Ei+1, k = min w /∈ ⋃

l∈0...i El and thus k < z. This violates the second
condition of the definition of Dis, since σ(k) > i + 1 = σ(z).

The following proposition states that open bisimilarity coincides with saturated bisimilarity for
O. Some lemmas are needed for proving this. All of them are in the appendix.

Proposition 5.5. Let p, q be π-processes, and let n ≥ max fn(p∪q) and nm(D) ⊆ n. Then p ∼O
D q

iff pn,D ∼S
n,D qn,D.

Proof. Let R be the family of relation such that for any sort (n,D)

Rn,D = {(pn,D, qn,D) s.t. p ∼O
D q, n ≥ max fn(p ∪ q), nm(D) ⊆ n}.

We have to prove that R is a saturated bisimulation. Let σ ∈ Dis[(n,D), (n′, D′)]. Note that
σ respects the distinction D and σ(D) ⊆ D′. In the following we will implicitly use that ∀D′ such
that D ⊆ D′ if p′ ∼O

D q′ then p′ ∼O
D′ q′ (Lemma 6.3 [100]). Suppose that pn,DRn,Dqn,D, then

p ∼O
D q. Suppose that σO(pn,D)

µ−→O p′, then we proceed by cases on µ:

• µ = τ or ab, then p′ has sort (n′, D′). By definition of trO, σ(p)
µ−→ p′. Since p ∼O

D q, then
σ(q)

µ−→ q′ and p′ ∼O
σ(D) q′. Now we have that σ(D) ⊆ D′ and thus p′ ∼O

D′ q′. Again by

definition of trO, we have that σO(qn,D)
µ−→O q′n′,D′ and thus, p′n′,D′Rn′,D′q

′
n′,D′ .

• µ = a(), then p′ has sort (n′ + 1, D′). By definition of trO, σ(p)
a(n′+1)−−−−→ p′. Moreover n′ + 1

is fresh since it is bigger then all the free names appearing in σ(p), σ(q) and σ(D). Thus

σ(q)
a(n′+1)−−−−→ q′ and p′ ∼O

σ(D) q′. Since σ(D) ⊆ D′, then p′ ∼O
D′ q. By definition of trO,

σO(qn,D)
a()−→O q′n′+1,D′ and p′n′+1,D′Rn′+1,D′q′n′+1,D′ .

• µ = a(), then p′ has sort (n′ + 1, D′). By definition of trO, σ(p)
a(n′+1)−−−−→ p′. Moreover n′ + 1

is fresh since it is bigger then all the free names appearing in σ(p), σ(q) and σ(D). Thus

σ(q)
a(n′+1)−−−−→ q′ and p′ ∼D∗ q′ where D∗ = σ(D) ∪ {(n′ + 1, i)∀i ∈ fn(σ(p) ∪ σ(q))}. Now note

that σ(D) ⊆ D′ and moreover {(n′ + 1, i) ∀i ∈ fn(σ(p) ∪ σ(q))} ⊆ {(n′ + 1, i)∀i < n′ + 1}.
Thus D∗ ⊆ D′, and thus p′ ∼O

D′ q′ and thus p′
n′+1,D′

Rn′+1,D′q
′
n′+1,D′

. By definition of trO,

σO(qn,D)
a()−→O q′

n′+1,D′
.

110 CHAPTER 5. THREE EXAMPLES

Let R be the family of relations such that for any distinction D:

RD = {(φ(p), φ(q)) | φ : N → N , ∃n ≥ max fn(p ∪ q),

∃D′ s.t. nm(D′) ⊆ n, φ respects D′, D = φ(D′) and pn,D′ ∼S
n,D′ qn,D′}.

We have to prove that R is an open bisimulation.
Suppose that φ(p)RDφ(q). Then there exist n,D′ such that pn,D′ ∼S

n,D′ qn,D′ , φ respects D
and φ(D′) = D. Let σ : N → N be a function over names that respects D′. Thus σ(φ) respects D′.
Suppose that σ(φ(p))

µ−→ p′. Then by Lemma 12 there exists σ1 ∈ ΣO[(n,D′), (n′, σ1(D′))], µ1, p1,

and ρ such that: σ1(p)
µ1

−→ p1, σ(φ) = ρ(σ1), ρ(µ1) = µ and ρ(p1) = p′. Then we proceed by case
on µ1:

• µ1 = τ or ab, then, by definition of trO, σ1
O(pn,D′)

µ1

−→O p1
n′,σ1(D′). Since pn,D′ ∼S

n,D′ qn,D′ ,

then σ1
O(qn,D′)

µ1

−→O q1
n′,σ1(D′) and p1

n′,σ1(D′) ∼S
n′,σ1(D′) q1

n′,σ1(D′). By definition of trO,

σ1(q)
µ1

−→ q1 and, by Lemma 5.1, ρ(σ1(q))
ρ(µ1)−−→ ρ(q1), i.e., σ(φ(q))

µ−→ ρ(q1). Now we have
that p′ = ρ(p1)Rσ(D)ρ(q1) since ρ(σ1(D′)) = σ(φ(D′)) = σ(D).

• µ1 = a(b), then, by definition of trO, σ1
O(pn,D′)

a()−→O p2
n′+1,σ1(D′) and {b/n′+1}p2 = p1. Since

pn,D′ ∼S
n,D′ qn,D′ , then σ1

O(qn,D′)
a()−→O q2

n′+1,σ1(D′) and p2
n′+1,σ1(D′) ∼S

n′+1,σ1(D′) q2
n,σ1(D′).

By definition of trO, σ1(q)
a(n+1)−−−→ q2 and also σ1(q)

a(b)−→ {b/n′+1}q2. By Lemma 5.1,

ρ(σ1(q))
ρ(a(b))−−−→ ρ({b/n′+1}(q2)), i.e.,σ(φ(q))

µ−→ ρ({b/n′+1}(q2)). Now

p′ = ρ({b/n′+1}(p2))Rσ(D)ρ({b/n′+1}(q2)),

since σ(D) = σ(φ(D′)) = ρ(σ1(D′)) = ρ({b/n′+1}(σ1(D′))) because n′ + 1 does not appear
in σ1(D′).

• µ1 = a(b) and b is fresh, then by definition of trO, σ1
O(pn,D′)

a()−→O p2
n′+1,σ1(D′)

and {b/n′+1}p2 =

p1. Since pn,D′ ∼S
n,D′ qn,D′ , then σ1

O(qn,D′)
a()−→O q2

n′+1,σ1(D′)
and p2

n′+1,σ1(D′)
∼S

n′+1,σ1(D′)

q2
n,σ1(D′)

. By definition of trO, σ1(q)
a(n+1)−−−→ q2 and also σ1(q)

a(b)−→ {b/n′+1}q2. Since b is fresh,

by Lemma 5.1, ρ(σ1(q))
ρ(a(b))−−−→ ρ({b/n′+1}(q2)), i.e., σ(φ(q))

µ−→ ρ({b/n′+1}(q2)).

Now we have that p2
n′+1,σ1(D′)

∼
n′+1,σ1(D′) q2

n,σ1(D′)
. Let X be the set of pairs (n′ + 1, i) ∈

σ1(D′) such that i /∈ fn(p ∪ q). By Lemma 13, p2
n′+1,σ1(D′)−X

∼
n′+1,σ1(D′)−X

q2
n,σ1(D′)−X

.

σ1(D′) − X = σ1(D′) ∪ {(n′ + 1, i), ∀i ∈ n′ + 1} \ {(n′ + 1, i)i /∈ fn(σ1(p) ∪ σ1(q))} =
σ1(D′) ∪ {(n′ + 1, i), ∀i ∈ fn(σ1(p) ∪ σ1(q))}.
ρ({b/n′+1}(σ1(D′)−X)) = ρ(σ1(D′))∪{(b, i)∀i ∈ fn(ρ(σ1(p))∪ρ(σ1(q)))} = σ(D)∪{(b, i)∀i ∈
fn(σ(φ(p)) ∪ σ(φ(q)))}.
Thus p′ = ρ({b/n′+1}(p2))RD∗ρ({b/n′+1}(q2)).

The above proposition shows that ∼O=∼S . In the next section we will show that ³ is a
symbolic bisimilarity, and thus ∼O=³ follows from Theorem 4.1.

5.2. OPEN π-CALCULUS 111

5.2.2 A Tile system for open π

Now we have to define a tile system TO that describes how fusions transform transitions. It is well
known from [86] that substitutions preserve all the transitions. But differently from the case of
asynchronous π, the contexts (in this case the substitution) applies also to the observation (Lemma
5.1). This is expressed by the following parametric rules for every σ ∈ Dis[(n,D), (n′, D′)].

n,D

tauσ

σ //

τ

®¶

n′, D′

τ

®¶
n,D

σ
// n′, D′

n,D

in(a)σ

σ //

a()

®¶

n′, D′

σ(a)()

®¶
n + 1, D

σ+1
// n′ + 1, D′

n,D

out(a,b)σ

σ //

ab

®¶

n′, D′

σ(a)σ(b)

®¶
n,D

σ
// n′, D′

n,D

bout(a)σ

σ //

a()

®¶

n′, D′

σ(a)()

®¶
n + 1, D

σ+1

// n′ + 1, D′

where σ+1 ∈ Dis[(n + 1, D), (n′ + 1, D′)] is the fusion that maps n + 1 into n′ + 1 and all the
i ≤ n into σ(i), while σ+1 ∈ Dis[(n + 1, D), (m + 1, D′)] means σ+1 with the enforced distinction
D′.

5.2.3 Symbolic semantics for open π

In the previous section we have introduced O and TO, namely a context interactive system and
a tile system for open π-calculus. In this section we introduce a symbolic transition system for
them, such that symbolic bisimilarity coincides with ³.

Hereafter, for any matching sequence M that respects D, we denote the unique fusion corre-
sponding to M by σM ∈ Dis[(n,D), (m,σM (D))] (the formal correspondence is in the proof of
Lemma 5.4).

The symbolic transition system o is defined by the following rules that rely over the transition
system presented in Table 5.3. In all the rules, we assume as premise that σM respects D.

p
M,ab−−→e p′

pn,D
σM ,σM (a)σM (b)−−−−−−−−−→o σM (p′n,D)

p
M,τ−→e p′

pn,D
σM ,τ−−→o σM (p′n,D)

p
M,a(n+1)−−−−−→e p′

pn,D
σM ,σM (a)()−−−−−−→o σM+1

(p′n+1,D)

p
M,a(n+1)−−−−−→e p′

pn,D
σM ,σM (a)()−−−−−−→o σM+1(p′

n+1,D
)

Our scts differs form the canonical symbolic transition system (Table 5.3), because the sub-
stitution here is applied both to observations and arriving states.

In order to prove that o is a symbolic transition system we mainly use Lemma 5.2 and Lemma
5.3 that are proved in [100] for

,−→e. We will use other lemmas that are reported in appendix.

Proposition 5.6. o is a symbolic transition system with respect to TO and O.

Proof. In order to prove that o is a symbolic transition system, we have to prove:

• (completeness) if pn,D
σ,µ−→SAT q then pn,D

σ′,µ′−−→o q′ and pn
σ′,µ′−−→o q′ `TO pn,D

σ,µ−→SAT q.

• (soundness) if pn,D
σ′,µ′−−→o q′ and pn,D

σ′,µ′−−→o q′ `TO pn,D
σ,µ−→SAT q then pn,D

σ,µ−→SAT q.

112 CHAPTER 5. THREE EXAMPLES

The soundness comes from the soundness of TO (Lemma 14) and from the soundness of o
(Lemma 15).

Let us prove completeness. Suppose that µ = a() (the other are easier). First of all, consider
σ just as a substitution and let M be a matching sequence such that σ = σM (note that there
exists by Lemma 5.4). Consider the context σM ∈ Dis[(n, D), (n′, σM (D))] and the context ε ∈
Dis[(n′, σM (D)), (n′, D′)] that behaves as the identity on names and just enforces the distinction
D′. Thus the context σ = σM ; ε.

If σO(pn,D)
a()−→O qn′+1,D′ , then also σM

O (pn,D)
a()−→O q

n′+1,σM (D)
because σ = σM ; ε and ε does

not fuse any name. By definition of trO, we have that σM (p)
a(n′+1)−−−−→ q. By Lemma 5.3:

p
N,a′(n+1)−−−−−→e q′ and M B N , σM (q′) ≡α q and σM (a′) = a.

Let σN ∈ Dis[(n,D), (n′′, σN (D))] be the fusion corresponding to N . Thus, by definition

of o, pn,D
σN ,σN (a′)()−−−−−−−→o σN+1

O (q′
n+1,D

). By Lemma 16 and by M B N , we derive that ∃ρ ∈
Dis[(n′′, σN (D)), (n′, σM (D))] such that σM = σN ; ρ.

Now we can construct the following diagram.

n,D
id //

=σN

²²

n,D

=σM

²²

id // n,D

σ

²²
n′′, σN (D)

ρ //

σN (a′)()

®¶
bout(σN (a′))ρ

n′, σM (D)

bout(σM (a′))εσM (a)()

®¶

ε // n′, D′

ε(σM (a′))

®¶
n′′ + 1, σN (D)

ρ+1

// n′ + 1, σM (D)
ε+1

// n′ + 1D′

By the above diagram pn,D
σN ,σN (a)()−−−−−−→o σN+1

O (q′
n+1,D

) `TO pn,D
σ,a()−−→ qn′+1,D′ .

Indeed:

• ε(σM (a′)) = σM (a′) = a since ε behaves as the identity on names,

• ε+1(ρ+1(σN+1(q′
n+1,D

))) = σM+1(q′
n+1,D

) = qn′+1,D′ .

Proposition 5.7. Let p, q ∈ O be π-processes, and let n ≥ max fn(p ∪ q) and nm(D) ⊆ n. Then
p ³D q iff pn,D ∼SY M

n,D qn,D.

Proof. Here we just prove that if pn,D ∼SY M
n,D qn,D then p ³D q (the other direction is similar).

Let R be the family of symmetric relation indexed over by D such that ∀D ∈ D,

RD = {(p, q) | pn,D ∼SY M
n,D qn,D}.

We prove that R is an efficient open bisimulation.

Suppose that p
M,ab−−→e p′ (the case of input, τ and bound output are analogous). Suppose that

σM ∈ Σ(n,D),(n′,D′). Then pn,D
σM ,σM (a)σM (b)−−−−−−−−−→o σM (p′). Since pn,D ∼SY M

n,D qn,D then qn,D
σN ,a′b′−−−→o

q′′n′′,D′′ such that qn,D
σN ,a′b′−−−→o q′′n′′,D′′ `TO qn,D

σM ,σM (a)σM (b)−−−−−−−−−→o q′′′ such that σM (p′) ∼SY M
n′,D′ q1.

Thus there exists

5.3. OPEN PETRI NETS 113

n,D
id //

=σN

²²

n,D

σM

²²
. ρ //

a′b′

®¶
out(a′,b′)ρ

n′, D′

σM (a)σM (b)

®¶
n,D

ρ
// n′, D′

such that q1 = ρ(q′′n′′,D′′).

• From σN ; ρ = σM we derive that M B N .

• From qn,D
σN ,a′b′−−−→o q′′n′′,D′′ we derive that q

σN ,a′′b′′−−−−→e q′′′ such that σN (a′′) = a′, σN (b′′) = b′

and σN (q′′′) = q′′.

• From out(a′, b′)ρ ∈ T ∗O, we derive that ρ(a′) = σM (a) and ρ(b′) = σM (b).

Thus σM (a′′) = ρ(σN (a′′)) = ρ(a′) = σM (a). Analogously σM (b′′) = σM (b). Moreover ρ(q′′n′′,D′′) =
ρ(σN (q′′′)) = σM (q′′′), and thus σM (p′)RσM (q′′′).

Now ∼O is the saturated bisimulation for O, while ³ is its symbolic version. By Theorem 4.1,
immediately it follows that they coincide.

Corollary 5.2 (By Theorem. 4.1). ∼O=³ as shown in [100].

We close the section by showing that the scts o has some redundant transitions. Consider the
process q = [a = b]τ + [a = b][c = d]τ with interface 4,∅ (suppose that a, b, c, d are the first names

of N). The transition q
[a=b][c=d],τ−−−−−−→o 0 is dominated by q

[a=b],τ−−−→o 0 as illustrated by the following
diagram

4,∅ id //

=[a=b]

²²

4,∅

[a=b][c=d]

²²
3,∅

[c=d] //

τ

®¶

tau−|am

2,∅

τ

®¶
3,∅

[c=d]
// 2,∅

where by [a = b] we mean the arrows fusing the first two names, by [c = d] : 3 → 2 we mean the
arrow fusing the second and the third name, by [a = b][c = d] : 4 → 2 we mean the arrow fusing
the fist two names and the last two names.

5.3 Open Petri nets

Differently from process calculi, Petri nets do not have a widely known interactive behavior. Indeed
they model concurrent systems that are closed, in the sense that they do not interact with the
environment. Open nets [69, 8] are P/T Petri nets that can interact by exchanging tokens on input
and output places.

Recall the operations about multisets that we have introduced in Example 1.5.

114 CHAPTER 5. THREE EXAMPLES

N1 N2

[A] a
+x //

+y

²²

ax
+x //

+y

²²

α
%%KKK

axx
+x //

+y ²²

α
&&MMM

. . .

c
+x //

+y
²²

. . .

.
. . .

[B] b
〈x,ε〉,α // c

〈y,ε〉,β // z

a
〈xy,ε〉,α//
〈x,ε〉,αvvv

;;vvvv

d

〈ε,ε〉,βuuuu

::uuuu

cy

〈ε,ε〉,β
OO

Figure 5.1: N1 and N2 are two open Petri nets. [A] Part of the infinite transition system of 〈N2, a〉.
[B] The symbolic transition system of 〈N2, a〉, 〈N2, b〉 and 〈N2, cy〉.

(tr) t ∈ T λ(t) = l m =• t⊕ c

N, m
l−→ N, t• ⊕ c

(in) i ∈ IN

N, m
+i−→ N,m⊕ i

(out) o ∈ ON o ∈ m

N, m
−o−→ N,mª o

Table 5.4: Operational Semantics of marked open nets

Definition 5.10 (Open net). An open net is a tuple N = (S, T, pre, post, λ, I, O) where S is the
set of places, T is the set of transitions (with S ∩ T = ∅), pre, post : T → S⊕ are functions
mapping each transition to its pre- and post-set, λ : T → Λ is a labeling function (Λ is a set of
labels) and I,O ⊆ S are the sets of input and output places (with I ∩ O = ∅)3. A marked open
net (shortly, marked net) is pair 〈N, m〉 where N is an open net and m ∈ S⊕ is a marking.

Figure 5.1 shows two open nets where, as usual, circles represents places and rectangles tran-
sitions (labeled with α, β, χ). Arrows from places to transitions represent pre, while arrows from
transitions to places represent post. Input places are denoted by ingoing edges, while output places
are denoted by outgoing edges. Thus in N1, x and y are output places, while z is the only input
place. In N2, it is the converse. The parallel composition of the two nets is defined by attaching
them on their input and output places. As an example, we can compose N1 and N2 by attaching
them through x, y and z.

Note that open input Petri nets (Example 1.7) are a special case of open nets having O = ∅
and all the transitions are labeled with the same label τ .

The operational semantics of marked open nets is expressed by the rules on Table 5.4, where
we use •t and t• to denote pre(t) and post(t) and we avoid putting bracket around the marked net
〈N, m〉, in order to make lighter the notation. The rule (tr) is the standard rule of P/T nets (seen
as multisets rewriting), while the other two are specific of open nets. The rule (in) states that in
any moment a token can be inserted inside an input place and, for this reason, the lts has always
an infinite number of states. The rule (out) states that when a token is in an output place, it can
be removed. Figure 5.1[A] shows part of the infinite transition system of 〈N2, a〉.

The abstract semantics is defined in [9] as the standard bisimilarity (denoted by ∼N) and
it is a congruence under the parallel composition outlined above. This is due to the rules (in)
and (out), since they put a marked net in all the possible contexts. If we consider just the rule
(tr), then bisimilarity fails to be a congruence. Thus also for open nets, the canonical definition
of bisimulation consists of inserting the system in all the possible contexts and observing what
happens, but differently from open and asynchronous bisimilarity, a symbolic lts and an efficient
characterization of ∼N has never been given.

In the next section we will give a context interactive system for open nets and, guided by our
theory, we will introduce a new symbolic semantics for them.

3We can tackle not disjoint I and O by providing a slightly more complex construction.

5.3. OPEN PETRI NETS 115

5.3.1 A context interactive system for open nets

In this section we introduce the context interactive system for open nets N = 〈Tok, N, ON , trN 〉.
The category of interfaces and contexts Tok is formally defined as:

• |Tok| = {(I,O, m) | m ∈ O⊕}, where I and O are sets

• Tok[(I, O,m), (I,O, m′)] = {〈i, o〉 | i ∈ I⊕, o ∈ O⊕, o ⊆ m, m′ = mª o},

• ∀(I, O,m) ∈ |Tok|, idI,O,m is 〈ε, ε〉,

• composition of arrows 〈i1, o1〉; 〈i2, o2〉 = 〈i1 ⊕ i2, o1 ⊕ o2〉.

The objects of this category are triples (I, O,m) where I and O are sets of input places and
output places and m ∈ O⊕ is a marking on the output places.

Arrows of Tok are pairs 〈i, o〉 ∈ Tok[(I, O,m), 〈I,O, m′〉] where i ∈ I⊕, o ∈ O⊕ are, respec-
tively, multisets of tokens added in the input places and removed from the output places. Note
that in the target object, the set of input and output places are the same of the source (meaning
that context cannot modify I and O), while the marking m′ ∈ O⊕ is equal to mª o.

We say that an open net N has interface (I, O) if I and O are respectively its sets of input and
output places. While a marked open net 〈N,m〉 has interface (I,O, m′) if (I,O) is the interface of
N and moreover if m′ = m » O. This means that tokens in the output places are visible from the
environment, while tokens in the input places are not. We can better understand this difference,
by observing that the environment can remove tokens in the output places only if they are present,
while it can always add tokens in the input places.

Let us define the Γ(Tok)-algebra N. For any sort (I, O,m), the carrier set NI,O,m contains all
the marked open nets with interface (I, O, m). Any operator 〈i, o〉 ∈ Dis(I,O,m),(I,O,m′) is defined
as the function that maps 〈N, m1〉 into 〈N, m1 ⊕ iª o〉.

Besides, observing the number of tokens into output places, there are also observations on
transitions. The set of observations ON is Λ, i.e., the set of labels on the transitions.

The transition structure trN (denoted by −→N) associates to any states 〈N, m〉 the transition
obtained by using the rule (tr) of Table 5.4.

Proposition 5.8. Let 〈N1,m1〉 and 〈N2, m2〉 be two marked nets both with interface (I,O, m).
Thus 〈N1,m1〉 ∼N 〈N2,m2〉 iff 〈N1,m1〉 ∼S

I,O,m 〈N2, m2〉.

Proof. Let R be the |Tok|-sorted family of relation such that for all (I, O, m),

R(I,O,m) = {(〈N1,m1〉, 〈N2, m2〉) |

both have interface (I, O,m) and 〈N1,m1〉 ∼N 〈N2,m2〉}

In order to prove that if 〈N1,m1〉 ∼N 〈N2,m2〉 then 〈N1, m1〉 ∼S
(I,O,m) 〈N2,m2〉, we have to

prove that R is a saturated bisimulation.
Let 〈i, o〉 ∈ Tok[(I,O, m), 〈I, O,m′〉] be a an arrow of Tok, and suppose that 〈i, o〉(N1,m1) =

〈N1,m1 ⊕ iª o〉 l−→N 〈N1,m
′
1〉.

By using the rules (in) and (out), the net 〈N1,m1〉 can perform a sequence of step adding
i to m and removing o, arriving in the net 〈N1,m1 ⊕ i ª o〉. Since 〈N1,m1〉 ∼N 〈N2, m2〉, then
〈N2,m2〉 can perform the same sequence of steps arriving in the state 〈N2,m2 ⊕ i ª o〉. Since
this state must be bisimilar to 〈N1,m1 ⊕ iª o〉, we have that 〈N2,m2 ⊕ iª o〉 l−→N 〈N2,m

′
2〉 and

〈N1,m
′
1〉 ∼N 〈N2,m

′
2〉 (i.e., 〈N1,m

′
1〉R〈N2,m

′
2〉).

For proving the other direction of the statement we use that ∼S is a congruence w.r.t. the
addition and deletion of tokens in the input and output places.

116 CHAPTER 5. THREE EXAMPLES

5.3.2 A tile system for open nets

The tile transition system for open nets is

TN = {lI,O,m,m′,i | l ∈ Λ, i ∈ I⊗, (I,O, m) and (I, O, m′) are interfaces},

where lI,O,m,m′,i is the following tile.

I, O, m

lI,O,m,m′,i

〈i,ε〉 //

l

®¶

I,O, m

l

®¶
I,O, m′

〈i,ε〉
// I, O, m′

This tile states that the addition of tokens in the input places preserves transitions. It does not
state anything about the deletion of tokens. Indeed an output place could be in the precondition
of some transition (e.g., y in the net N1 in Figure 5.1) and thus, the deletion of some tokens could
inhibit the transition.

This is a big difference between open Petri nets and the formalisms studied so far. Indeed, in
the latter cases, all contexts preserves transitions while in the case of open nets, only those contexts
that do not delete tokens. For this reason, the symbolic transition system that we will introduce in
the next section have to “saturate” with respect to deletion, i.e., to consider all possible deleting
contexts.

Now, suppose to restrict to the case of open work-flow nets [77], a special kind of open nets,
that are becoming more and more used for specification and the analysis of web-services. Open
work-flow nets are open Petri nets satisfying some requirements on the structure of the net. In
particular, it is required that output places cannot be in the preconditions of transitions. Thus for
open work-flow nets we known that

“∀ 〈N,m〉, i ∈ I⊕ and o ∈ O⊕, if N, m
λ−→ N, m′ then N,m⊕ iª o

λ−→ N,m′ ⊕ iª o ”.

Thus restricting our attention to a subset of open Petri nets, we have more knowledge about
how contexts modify transitions. This allows us to define a more powerful tile system, and thus a
more efficient symbolic transition system (this will be shown in the next section). The tile system
for open work-flow net is

Towf = {lI,O,m,m′,i,o | l ∈ Λ, i ∈ I⊗, o ∈ O⊗ (I, O, m) and (I, O, m′) are interfaces},

where lI,O,m,m′,i,o is the following tile.

I, O, m

lI,O,m,m′,i,o

〈i,o〉 //

l

®¶

I,O, m

l

®¶
I,O, m′

〈i,o〉
// I, O, m′

5.3.3 A symbolic semantics for open nets

In the case of open and asynchronous π-calculi, we already knew the symbolic transition system
by classical results in literature. In the case of open nets, no symbolic semantics does exist, and
thus we have to define it. We use exactly the same intuition underlying the symbolic lts of open
and asynchronous, i.e., we consider the minimal contexts that allow a given system to perform a
transition.

5.3. OPEN PETRI NETS 117

The scts for open nets, η is defined by the following rule.

t ∈ T λ(t) = l m = (m ∩• t)⊕ c i ⊆ I⊕ •t = (m ∩• t)⊕ i o ⊆ c » O

N,m
〈i,o〉,l−−→η N, t• ⊕ cª o

The marking m ∩• t contains all the tokens of m that are needed to perform t. The marking c
contains all the tokens of m that are not useful for performing t, while the marking i contains all
the tokens that m needs to reach •t. Note that i is exactly the smallest multiset that is needed to
perform the transition t. Indeed if we take i1 strictly included into i, m⊕ i1 cannot match •t.

As an example consider the net N1 in Figure 5.1 with marking gxy and let t be the only
transition labeled with χ. We have that gxy ∩• t = gy, c = x and i = z. Thus

N1, gxy
〈z,x〉,χ−−−→η N1, e and also N1, gxy

〈z,ε〉,χ−−−→η N1, ex.

In the former transition we have taken o equal to x = c » O, while in the latter o = ε. The
multiset c » O is the largest that can be safely removed by m without inhibiting the transition t.
Differently than input, in the output we have to consider both the transitions (expressed by the
premise o ⊆ c » O) because one cannot derive (in the sense of Definition 4.6) the other by using
the tile system TN . Indeed the former cannot derive the latter because there are no contexts that
add tokens in the output places, while the latter cannot derive the former because there are not
tiles in TN allowing to remove tokens.

Now suppose to work with open work-flow nets, and to have the tile transition system Towf

described at the end of Section 5.3.2. Here we have that

N1, gxy
〈z,ε〉,χ−−−→η N1, ex `Towf

N1, gxy
〈z,x〉,χ−−−→η N1, e

since in Towf , there are tiles allowing us to remove transitions from output places. For this
reason, in the case of open work-flow nets we can define a more efficient symbolic transition system
by always taking ε as deleting context. The scts for open work-flow net is called owf and it is
defined as follow.

t ∈ T λ(t) = l m = (m ∩• t)⊕ c i ⊆ I⊕ •t = (m ∩• t)⊕ i

N,m
〈i,ε〉,l−−→owf N, t• ⊕ c

It is worth noting that this transition system is smaller than η (and thus more efficient) because
it does not show all the deleting contexts, but just the smaller, i.e., ε.

In the following we will prove that η is a symbolic transition system for open Petri nets, and
in the special case of open work-flow net we can take as symbolic transition system owf .

Proposition 5.9. η is a symbolic transition system for TN and N .

Proof. In order to prove that η is a symbolic transition system, we have to prove:

• (completeness) if 〈N, m〉 〈i,o〉,l−−→SAT 〈N, m′〉 then 〈N, m〉 〈i1,o1〉,l1−−−−→η 〈N,m1〉 and 〈N, m〉 〈i1,o1〉,l1−−−−→η

〈N, m1〉 `TN 〈N,m〉 〈i,o〉,l−−→ 〈N,m′〉.

• (soundness) if 〈N,m〉 〈i1,o1〉,l1−−−−→η 〈N, m1〉 and 〈N,m〉 〈i1,o1〉,l1−−−−→η 〈N, m1〉 `TN 〈N, m〉 〈i,o〉,l−−→
〈N, m′〉 then 〈N, m〉 〈i,o〉,l−−→SAT 〈N, m′〉.

Let us prove completeness.
If N, m ⊕ i ª o

l−→N N, m′, then there exists a transition t ∈ T , such that λ(t) = l and
m⊕ iªo =• t⊕c and m′ = t•⊕c. We can take c1 = mª (•t∩m) and i1 =• tª (•t∩m). Note that
o ⊆ c1 » O, because c1 » O is the biggest multiset that can be removed by m without inhibiting

the transition t. Now we can apply the only rule of η, and N, m
〈i1,o〉,l−−−→η N, t• ⊕ c1 ª o. Note that

i1 ⊆ i, since by definition i1 is the smallest multiset that allow the transition t. Thus let x = iª i1,
and consider the following diagram.

118 CHAPTER 5. THREE EXAMPLES

. id //

=〈i1,o〉
²²

.

〈i,o〉
²².

〈x,ε〉 //

l

®¶

.

l

®¶.
〈x,ε〉

// .

From the above diagram we have that N, m
〈i1,o〉,l−−−→η N, t• ⊕ c1 ª o `TN N, m

〈i,o〉,l−−→TN (η) N, m′.
Indeed:

• 〈i1, o〉; 〈x, ε〉 = 〈i, o〉;
• 〈x, ε〉(N, t• ⊕ c1 ª o) = 〈N, m′〉, because c1 ⊕ xª o = mª (•t ∩m)⊕ xª o = m⊕• tª (•t ∩

m)⊕ xª oª• t = m⊕ i1 ⊕ xª oª• t = m⊕ iª oª• t = c.

For proving soundness just observe that the definition of η is sound and the the rules in TN are
sound.

Proposition 5.10. owf is a symbolic transition system for Towf and N when restricted to open
work-flow nets.

Proof. One can reason analogously to the proof of Proposition 5.9. When proving completeness,
one obtain the following diagram:

. id //

=〈i1,ε〉
²²

.

〈i,o〉
²².

〈x,o〉 //

l

®¶

.

l

®¶.
〈x,o〉

// .

As it is the case of Simple Constraint Calculus, asynchronous and open π-calculus, we cannot
consider the standard definition of bisimilarity over the symbolic transition system. As an example,
consider

〈N2, a〉 and 〈N2, b〉 in Figure 5.1.

Look at their scts in Figure 5.1[A]. The former can perform a transition labeled with 〈xy, ε〉,
while the latter cannot. However they are saturated bisimilar.

In order to formally prove it, we can instantiate the general definition of symbolic and semi-
saturated bisimilarity in the case of open nets.

Definition 5.11 (Symbolic bisimilarity for open nets). Let R = {RI,O,m ⊆ NI,O,m × NI,O,m |
(I, O, m) ∈ |Tok|} be a |Tok| sorted family of symmetric relations. R is a symbolic bisimulation
iff ∀(I, O, m) ∈ |Tok|, whenever 〈N1,m1〉RI,O,m〈N2,m2〉:

• if 〈N1,m1〉 〈i,o〉,l−−→η 〈N1, m
′
1〉 then ∃j, k ∈ I⊕ such that:

1. i = j ⊕ k,

2. 〈N2,m2〉 <j,o>,l−−−→η 〈N2,m
′
2〉 and

3. 〈N1,m
′
1〉R〈N2,m2 ⊕ k〉.

5.3. OPEN PETRI NETS 119

The nets 〈N1, m1〉 and 〈N2,m2〉 are symbolic bisimilar, if there is a symbolic bisimulation R, such
that pRq.

Definition 5.12 (Semi-saturated bisimilarity for open nets). Let R = {RI,O,m ⊆ NI,O,m×NI,O,m |
(I, O, m) ∈ |Tok|} be a |Tok| sorted family of symmetric relations. R is a semi-saturated bisimu-
lation iff whenever 〈N1,m1〉RI,O,m〈N2,m2〉:

• if 〈N1,m1〉 〈i,o〉,l−−→η 〈N1,m
′
1〉 then 〈N2, m2 ⊕ iª o〉 l−→ 〈N2,m

′
2〉 and

〈N1,m
′
1〉R〈N2,m

′
2〉.

The nets 〈N1,m1〉 and 〈N2,m2〉 are semi-saturated bisimilar, if there is a semi-saturated bisimu-
lation R, such that pRq.

Now, in order to prove that 〈N2, a〉 and 〈N2, b〉 are saturated bisimilar, we prove that

R = {(a, b), (b, a), (c, c), (d, cy), (cy, d)(z, z)}

is a symbolic bisimulation (according to Definition 5.11). In the above relation, in order to make
the presentation lighter, we just write x in place of 〈N2, x〉 and we avoid writing sorts (all the pairs
have sort ({x, y}, {z}, ε) with the exception of (z, z) that has sort ({x, y}, {z}, z)).

Now consider the pair (a, b). Consider the transition a
〈xy,ε〉,α−−−−→η d. We can take j = x and k = y

(referring to Definition 5.11). Then b
〈x,ε〉,α−−−→η c and d R cy. Consider the transition a

〈x,ε〉,α−−−→η c. We

can take j = x and k = ε. Then b
〈x,ε〉,α−−−→η c and c R c. All the other pairs are trivial (for all the

transitions take k = ε).
It is worth noting that none of the transitions of a is redundant (Definition 4.7). Indeed

a
〈x,ε〉,α−−−→η c 0TN a

〈xy,ε〉,α−−−−→η d, because cy 6= d. However cy ∼S b. If we consider a “more semantical”
notion of redundancy (that includes the above transitions) we could capture ∼S by forgetting
about redundant transitions. This intuition will be exploited in the third part of the thesis.

As a conclusive remark we want to highlight that in [9], a technique to prove ∼N up to contexts
is introduced. The relationship between our symbolic semantics and this technique is interesting
and we plan to investigate it as future work.

120 CHAPTER 5. THREE EXAMPLES

Part III

Coalgebraic presentation

Chapter 6

Coalgebraic models for context
interactive systems

In Chapter 4, we have introduced the theory of context interactive systems. A context interactive
system consists of a set of states, equipped with an interface, a set of contexts which have both inner
and outer interface, and a transition relation on states that is labeled over a set of observations.
Each state can be inserted into some context provided that the inner interface of the context
coincides with the interface of the state. This insertion results in a new state having as an interface
the outer interface of the context.

Abstract semantics for context interactive system is saturated bisimilarity (∼S), i.e., the largest
bisimulation that is a congruence with respect to the contexts. According to saturated bisimilarity,
two states are bisimilar if they cannot be distinguished by an external observer that at any step
of their execution can insert them into some contexts and observe some labeled transitions. Satu-
rated bisimilarity can also be defined as standard bisimilarity over the saturated transition system
(satts), which is defined as p

c,o−→SAT q iff c(p) o−→ q.
The notion of saturated bisimilarity naturally fits our intuition about equivalence, but when

reasoning about ∼S , one must consider all the possible contexts. In order to simplify proofs and
reasoning about ∼S , we have introduced symbolic semantics. This kind of semantics employs a tile
system, i.e., a set of rules expressing how contexts modify transitions, and a symbolic transition
system (scts), i.e., a system where transitions are labeled with both a context and an observation.
Roughly, the symbolic transition p

c,o−→β p is performed if c(p) o−→ p and, moreover, if c is the minimal
context allowing such a transition. Intuitively, a symbolic transition p

c1,o1−−→β p1 represents all the
saturated transitions p

c2,o2−−→SAT p2 such that p
c1,o1−−→β p1 `T p

c2,o2−−→SAT p2, i.e., such that the latter
transition can be derived by the former through a tile system T .

Unfortunately, bisimilarity over the symbolic transition system (∼SY N) does not coincide with
saturated bisimilarity, due to the presence of redundant transitions in scts. In order to understand
this better, consider a process p that can perform only the transitions p

c2,o2−−→β p2 and p
c1,o1−−→β p1

such that p
c1,o1−−→β p1 `T p

c2,o2−−→β p2 (the second transition is redundant because all the saturated
transitions derivable from this are also derivable from the first). If q can perform only q

c1,o1−−→β q1

with p1 ∼S q1, then p and q are saturated bisimilar, since they perform the same saturated
transitions, but p �SY N q, since p performs two symbolic transitions, while q just one. In order
to capture saturated bisimilarity, we define symbolic bisimilarity as follows: if p

c2,o2−−→β p2 then
q

c1,o1−−→β q1 and q
c1,o1−−→β q1 `T q

c2,o2−−→ q2 with p2 ∼S q2.
Our theory is very general and captures several interesting examples of previously defined

abstract and symbolic semantics. Three of them are shown in Chapter 5. Moreover context
interactive systems also generalize reactive systems as shown in Section 4.2.2. In this chapter, we
focus on giving coalgebraic models for context interactive systems.

124 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

Universal Coalgebra [99] provides a categorical framework where abstract semantics of interac-
tive systems are described as morphisms to their canonical representatives. More precisely, given
an endofunctor B on a category C, a coalgebra is an arrow α : X → B(X) of C and a coalgebra
morphism from α to β is an arrow h : X → Y of C with h ; β = α ;B(h). Under certain conditions
on C and B, a category of coalgebras admits a final object 1B, and the behavior of a coalgebra is
defined as the final morphism. In other words, the final object can be seen as a universe of abstract
behaviors and the unique morphism as a function assigning to each system its abstract behavior.

Ordinary labeled transition systems (ltss) can be represented as coalgebras for a suitable
functor on Set. Then, in order to prove that two states of an lts are equivalent, we have to
check if they are identified by the final morphism. The image of a certain lts through the final
morphism is the minimal representative (with respect to bisimilarity), which in the finite case can
usually be computed via the list partitioning algorithm by Kanellakis and Smolka [67]. Existence
and construction of the minimal transition system is a key property of the coalgebraic approach.

However, this representation of interactive systems forgets about the algebraic structure, which
is usually very relevant in practical cases, since compositionality is the key to master complexity.
In particular, the property that bisimilarity respects the operations, i.e., that it is a congruence,
which is essential for making abstract semantics compositional, is not reflected in the structure of
this model.

In [110], bialgebras are introduced as a model with both algebraic and coalgebraic structure,
while an alternative approach based on structured coalgebras is presented in [33, 35]. In the latter
work, the endofunctor determining the coalgebraic structure is lifted from Set to the category of
Σ-algebras, for some algebraic signature Σ. Morphisms between coalgebras in this category are
both Σ-homomorphisms and coalgebra morphisms: as a consequence the unique morphism to the
final coalgebra always induces a bisimilarity that is a congruence.

In this chapter we show three coalgebraic models for context interactive systems. Firstly, we
show an unstructured coalgebra for the transition structure of context interactive system. Then
we would like to define a corresponding structured coalgebra, but this is generally impossible, since
bisimilarity is not guaranteed to be a congruence. A general way of defining a structured coalgebra
for context interactive systems, consists in modeling the saturated transition system. Indeed, since
bisimilarity over satts (i.e., ∼S) is always a congruence, we can always construct a corresponding
structured coalgebra. This model supplies a characterization of ∼S as final semantics, but it
does not allow us to check ∼S through minimization. Indeed, minimizing the saturated transition
system is usually unfeasible since it is usually infinitely branching (or in any case too big) and,
moreover, also the minimal representative are usually infinitely branching. For this reason, inspired
by symbolic semantics, we introduce the third model.

The main problem in coalgebraically modeling symbolic semantics, is that in symbolic bisim-
ilarity, q can answer with a transition that is not exactly the one proposed but a transition that
derives the proposed one, through the tile system. This kind of asymmetry is very peculiar for
coalgebras, and to our knowledge, has never been studied.

For this reason we introduce normalized coalgebras, as a special kind of coalgebras without
redundant transitions which form a category with a final object, where the unique morphism
induces a notion of bisimilarity which is completely abstract from redundant transitions. We prove
that the category of normalized coalgebras is isomorphic to the category of saturated coalgebras
(i.e., the coalgebras containing all the redundant transitions), where the large saturated transition
system can be directly modelled. Here the normalization and saturation functions are fundamental.
The former takes a set of transitions and throws away all the redundant transitions, the latter closes
the set with all the redundant transitions. Both are natural transformations between the endo-
functors (defining the categories of normalized and saturated coalgebras) and one is the inverse
of the other. As a corollary of the isomorphism theorem, ∼S can be characterized as the final
morphism in the category of normalized coalgebras.

This characterization is really more efficient than the other because the minimization procedure
works with (a part of) the symbolic transition system instead of considering the whole satts and,

6.1. BACKGROUND ON COALGEBRAS 125

moreover, the canonical representative in the final normalized coalgebra are really smaller than
those obtained for satts.

This also brings us to a notion of redundancy that is more semantical. A transition p
c2,o2−−→β p2

is redundant with respect to this new definition if another transition p
c1,o1−−→β p1 such that p

c1,o1−−→β

p1 `T p
c2,o2−−→β p3 and p3 ∼S p2 exists, i.e., it is not required that the arriving state of the redundant

transition (p2) is the same as the derived transition (p3) but just that they are bisimilar.
This notion of redundancy is similar to that of [94] for open bisimilarity, to [88] for asynchronous

bisimilarity, and also to [47] and to [48] for HD-automata semantics of, respectively, canonical π-
calculus [86] and fusion calculus [93].

A small background on coalgebras and structured coalgebras is reported in Section 6.1. The
unstructured coalgebraic model of context interactive system is presented in Section 6.2.1, while
the structured one for saturated transition system is presented in Section 6.2.2. In Section 6.3,
we introduce saturated coalgebras and, in Section 6.4.1, we introduce normalized coalgebras. In
Section 6.4.2, we prove that normalized coalgebras and structured coalgebras are isomorphic. In
Section 6.4.3, we sketch the minimization algorithm for normalized coalgebras and we relate sym-
bolic semantics to normalized coalgebras by showing three different levels of redundancy.

6.1 Background on coalgebras

In this section we introduce the basic notions of the theory of coalgebras that will be useful in the
rest of the chapter to give coalgebraic models for context interactive systems. Since the theory of
coalgebra is very huge, we will focus only on those topics that will be important for our purposes.
The theory of coalgebras have been introduced by Rutten in [99] for coalgebras over the category
Set. However, also coalgebras over an arbitrary category C have been proved useful, but usually
one needs to requires that C has most of the properties of Set. In this section we will report the
theory for a generic category, because in order to tackle context interactive systems we will need to
consider coalgebras over AlgΓ(C). However, in this category, all limits and colimits are constructed
as in Set (recall that AlgΓ(C) is SetC) and a factorization system can defined analogously to Set
(this is illustrated in Appendix 6.4.3).

Since we are mainly interested in context interactive systems, we will show the classical coal-
gebraic characterization of labeled transition systems (Section 6.1.1). Moreover in Section 6.1.2,
we will focus on final coalgebra, by showing a proposition that guarantees its existence and an
algorithm to compute the image through the final morphism. The latter will be fundamental in
Section 6.4 where we will introduce normalized coalgebras. At the end (Section 6.1.3), we will
introduce structured coalgebras that are our main tool for developing a coalgebraic models for
context interactive systems.

6.1.1 Coalgebras, cohomomorphism and bisimulations

In this section we introduce the very basic definitions of the theory of coalgebras [99] over a generic
category C. Then we will show how labeled transition systems can be regarded as coalgebras.

Definition 6.1 (Coalgebra). Let B : C → C be an endofunctor on a category C. A coalgebra for
B or B-coalgebra is a pair 〈X,α〉 where X is an object of C and α : X → B(X) is an arrow.

The object X is called the carrier of the coalgebra, and the arrow α is the structure. B is often
referred as the behavioral functor. The word “coalgebra” comes from the fact that these structures
are dual to algebras. Indeed, given an endofunctor Σ : C → C, a Σ-algebra is a pair 〈X, α〉 for
α : Σ(X) → X.

Definition 6.2 (Cohomomorphism). Let B : C → C be an endofunctor on a category C. A
B-cohomomorphism f : 〈X, α〉 → 〈Y, β〉 is an arrow f : X → Y of C such that the following

126 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

diagram commutes.

X
f //

α

²²

Y

β

²²
B(X)

B(f)
// B(Y)

It is worth noting that Σ-homomorphisms amongst Σ-algebras are defined in an analogous way.
The identity arrows on a B-coalgebra is always a cohomomorphism, and the composition of two
cohomomorphisms is again a cohomomorphism. Thus the collection of all B-coalgebras together
with B-cohomomorphisms forms a category.

Definition 6.3 (Category of coalgebras and cohomomorphisms). Let B : C → C be an endofunc-
tor on a category C. B-coalgebras and B-cohomomorphisms form a category that will be denoted
CoalgB. The underlying functor U : CoalgB → C maps an object 〈X, α〉 to X and an arrow
f : 〈X,α〉 → 〈Y, β〉 to f : X → Y .

The same can be said for algebras. Given an endofunctor Σ : C → C, we denote with AlgΣ the
category of Σ-algebras and Σ-homomorphisms. In the following we will use X to mean an algebra
〈X, α〉 having carrier X, and VΣ : AlgΣ → C for the underlying functor that maps X into X. It is
important to know that the functor Σ corresponds to the signature, i.e., a set of operators with an
arity. In order to better understand the analogy, consider the functor Σ : Set → Set, defined as
Σ(X) = X ×X + X + 1 where 1 is the one element set. In this case, a Σ-algebras is a set X with
a function α : X ×X + X + 1 → X, i.e., a binary operation, an unary operation and a constant.

Concerning coalgebras, the functor B is the dual of the signature of algebras: it describes the
type of coalgebras. In [99], Rutten shows that slightly modifying the behavioral endofunctor, one
can obtain a huge variety of dynamical system (e.g., automata, labeled transition system, Moore
and Mealy machines) and infinite data structures (e.g., streams and infinite trees). In [11], this
approach is applied to different kinds of probabilistic systems resulting in a hierarchy of types
(endofunctors), that well-clarifies the relations amongst these models.

Since we are interested in coalgebras, mainly for modeling context interactive system, we will
just see the coalgebraic characterization of labeled transition systems that will be fundamental
through the rest of the chapter.

Definition 6.4. Let L be a fixed set of labels and P be the powerset functor. The functor PL :
Set → Set is defined as follows:

• for each set X as PL(X) = P(L×X),

• for each function f : X → Y as PL(f) = P(L× f).

The function P(L × f) : P(L × X) → P(L × Y) maps each set A ∈ P(L × X) in the set
{(l, f(x)) s.t. (l, x) ∈ A}. It is well known from [99] that coalgebras for this functor are one-to-one
with labeled transition systems over L. In the following we introduce the classical definition of
labeled transition system, in order to better show this correspondence.

Definition 6.5 (Labeled transition systems and morphisms). Let L be a fixed set of labels. A
labeled transition system (over L), briefly lts, is a structure TX = 〈X,−→X〉, where X is a set
of states, and −→X⊆ X × L × X is a labeled transition relation. As usual, we write x

l−→ y for
〈x, l, y〉 ∈−→.

A transition system morphism f : TX → TY is a function f : X → Y which “preserves” the
transitions, i.e., such that:

x
l−→X x′ implies f(x) l−→Y f(x′).

Labeled transition systems over L and transition system morphisms form a category that we
will denote by LTSL.

6.1. BACKGROUND ON COALGEBRAS 127

Proposition 6.1 (Labeled transition systems as coalgebras). The category CoalgPL
is isomorphic

to the sub-category of LTSL containing all its objects, and all the morphisms f : TX → TY which
also “reflect” transitions, i.e., such that

if f(x) l−→Y y′ then there is a state x′ ∈ X such that x
l−→X x′ and f(x′) = y′.

It is instructive to spell out the correspondence just stated. For objects, a transition system
〈X,−→X〉 is mapped to the coalgebra 〈X, α〉 where α(x) = {〈l, x′〉 | x −→X x′} and, vice versa, a
coalgebra 〈X, α : X → PL(X)〉 is mapped to the system 〈X,−→X〉, with x

l−→X x′ if 〈l, x′〉 ∈ α(s).
For arrows, by spelling out the commuting condition of Definition 6.2 for functor PL, we get

∀x ∈ X, {〈l, y′〉 | f(x) l−→Y y′} = {〈l, f(x′)〉 | x l−→X x′},
and by splitting this set equality in the conjunction of the two inclusions, one can easily see that

inclusion “⊇” is equivalent to x
l−→X x′ ⇒ f(x) l−→Y f(x′), showing that f is a transition system

morphism, while the left-to-right inclusion is equivalent to f(x) l−→Y y′ ⇒ ∃x′ . x l−→X x′ ∧ f(x′) =
y′, meaning that f is a “zig-zag” morphism, i.e., that it reflects transitions.

The property of “reflecting behaviors” enjoyed by cohomomorphisms is pivotal, for example,
in the characterization of bisimulation relations as spans of cohomomorphisms, in the relevance of
final coalgebras, in various other results of the theory of coalgebras [99] and mainly in our definition
of normalized coalgebras in Section 6.4.1.

Intuitively “reflecting behaviors” guarantees that only bisimilar states can be identified by
cohomomorphisms. For a concrete example consider the lts depicted in Figure 6.1(i). The corre-
sponding coalgebra is 〈X, α〉, for X = {a, b, c, d, e} and α the structure depicted in Figure 6.1(ii).
As an example of cohomomorphism consider the function f : X → {1, 2} that maps a in 1 and
b, c, d, e into 2 and consider the lts in Figure 6.1(iii). This f is a cohomomorphism because all
transitions are preserved and reflected. Note that all the elements that are identified by f are
bisimilar.

The theory of coalgebras provides a very general notion of bisimulation that is suitable for any
type of coalgebras.

Definition 6.6. Let B : C → C be an endofunctor on a category C. Let 〈X, α〉 and 〈Y, β〉 be two
B-coalgebras.

A coalgebraic bisimulation on them is an object R and two arrows f, g of C such that:

• R,f,g is a mono-span in C,1

• there exists r : R → B(R) such that f : 〈R, r〉 → 〈X,α〉 and g : 〈R, r〉 → 〈Y, β〉 are
B-cohomomorphisms.

X

α

²²

R
foo g //

r

²²

Y

β

²²
B(X) B(R)

B(f)
oo

B(g)
// B(Y)

In [99], Rutten introduces bisimulations for coalgebras over Set. There a bisimulation was
defined as a relation between X and Y . The first condition of the above definition, substantially
generalizes R ⊆ X × Y , to a generic category C.

Moreover it is worth to note that two states of a labeled transition system TX are bisimilar (in
the standard sense) if and only if there is a PLcoalgebraic bisimulation R ⊆ X ×X which relates
them.

1R,f,g is a mono span in C if and only if for h, i if i; f = h; f and i; g = h; g then h = i.

128 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

a
x //

x
ÂÂ>

>>
>>

>>
> b

y //

y
>>

>

ÂÂ>
>>

d

y

~~
c

y
// e

y

OO

a 7→ {(x, b), (x, c)}
b 7→ {(y, d), (y, e)}

c, d 7→ {(y, e)}
e 7→ {(y, d)}

1
x // 2

y

qq

(i) (ii) (iii)

Figure 6.1: A labeled transition system (i), the corresponding transition function (ii) and its
minimal representative (iii).

6.1.2 Final coalgebra

In the previous section we have introduced the basics definitions of the theory of coalgebras. The
last fundamental notion is that of final coalgebra. In order to give a better intuition, we restrict
our attention to coalgebras for endofuntors over Set.

For any category C, an object 1C is final if for any other object X of C there exists a unique
morphism !CX : X → 1C. In the remainder of the thesis, when considering a category of coalgebra
CoalgB, for some endofuctor B, we will denote its final object as 1B instead of 1CoalgB , and the
unique morphism from some coalgebra 〈X, α〉 as !B〈X,α〉 : 〈X, α〉 → 1B.

If a final coalgebra exists then two elements of the carrier of a coalgebra are bisimilar if and
only if they are mapped into the same element by the final cohomomorphism2.

In the final coalgebra, all the bisimilar states are identified, and thus, the image of a coalgebra
through a final morphism, is the minimal realization (with respect to bisimilarity) of the coalgebra.
Therefore the existence of a final coalgebra guarantees the existence of a canonical representative
for each class of equivalent (bisimilar) elements.

This is theoretically very important, because it allows us to define the abstract semantics as a
function (i.e., the unique morphism to a final coalgebra) that maps each system into the canonical
representative of its equivalence class.

Now, come back to coalgebras corresponding to lts. Unfortunately, due to cardinality reasons,
the category of PL-coalgebras does not have a final object [99]. One satisfactory solution consists
in replacing the powerset functor P by the countable powerset functor Pc, which maps a set to the
family of its countable subsets. Then, by defining the functor Pc

L : Set → Set as X 7→ Pc(L×X),
one has that coalgebras for this endofunctor are one-to-one with transition systems with countable
degree. Unlike functor PL, functor Pc

L admits final coalgebras (Example 6.8 of [99]).

Proposition 6.2 (Final Pc
L-coalgebras). The underlying functor U : CoalgPc

L
→ Set has a right

adjoint R : Set → CoalgPc
L
. As a consequence, the category CoalgPc

L
has a final object, which is

the coalgebra R(1) over a final set 1Set.

The existence of final coalgebra is also very important for pragmatical reason. Indeed, in
order to check if two or more coalgebras are bisimilar, it is sufficient to construct their canonical
representatives (i.e., compute the final morphism). If these are equal, then the coalgebras are
bisimilar, otherwise they are not. Intuitively, computing the final morphism means to minimize
coalgebras. This is usually possible (in the finite case) using the following algorithm [4]3. For a
B-coalgebra 〈X, α〉:

2In order to have the exact correspondence between the biggest bisimulation (defined as in Definition 6.6) and
the kernel of !B〈X,α〉, we have also to require that B preserves weak pullbacks, but this always holds in the cases that

we are going to consider.
3There are several additional requirements that we do not detail, because we will use this algorithm just to drive

our intuition in developing normalized coalgebras.

6.1. BACKGROUND ON COALGEBRAS 129

• Initialization: !0 : X → 1 is the unique morphism in Set from X to 1.

X
!0 //

α

²²

1

B(X)
B(!0)

// B(1)

!

OO

• Iteration: !n+1 is defined as α;B(!n).

X
!n //

α

²²

!n+1

$$JJJJJJJJJJ Bn(1)

B(X)
B(!n)

// Bn+1(1)

Bn(!)

OO

• Termination: If there exists a morphism γ such that the following diagram commutes, then
terminate.

X
!n //

α

²²
!n+1

JJJ
JJ

$$JJJ
J

Bn(1)

γ

²²
B(X)

B(!n)
// Bn+1(1)

We can think to the morphisms !n as to iterative approximations of the final morphism !B〈X,α〉.
The set 1 is the one element set {?} and the unique morphism !0 is the function mapping all

the elements of X into ?. This defines a partition on the states of X that equates all the states. At
the n+1th iteration, a new partition is defined by the morphism !n+1. This partition is finer than
the nth partition, i.e., more elements are distinguished (this is expressed by the second diagram
where !n =!n+1;Bn(!)). If the two partitions are equal (i.e., if there exists γ), then we have reached
a fixed point, and !n and !n+1 equate all and only the bisimilar elements.

It is evident that, if the set of states is finite, then the algorithm terminates.

It is worth noting that the above algorithm, in the case of Pc
L-coalgebras, coincides with the list

partitioning algorithm by Kanellakis and Smolka [67]. In order to give a more concrete intuition
of the algorithm, we apply it to the lts depicted in Figure 6.1(i). Let 〈X, α〉 the corresponding
coalgebra, i.e., X = {a, b, c, d, e} and α the function depicted in Figure 6.1(ii).

At the beginning the algorithm initialize the function !0, as the unique function from X to the
one element set {?}, i.e.,

!0 : a, b, c, d, e 7→ ?.

At the first iteration, !1 is defined as α;Pc
L(!0), i.e.:

!1 : a 7→ {(x, ?)}, !1 : b, c, d, e 7→ {(y, ?)}.
At the second iteration, !2 is defined as α;Pc

L(!1), i.e.:

!2 : a 7→ {(x, {(y, ?)})}, !2 : b, c, d, e 7→ {(y, {(y, ?)})}.
Now note that, the partition of the second iteration coincides with the partition of the first

iteration. Thus we can construct a γ such that the following diagram commute.

X
!1 //

α

²²

Pc
L(1)

γ

²²
Pc

L(X)
Pc

L(!1)
// Pc

L(Pc
L(1))

130 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

Thus the algorithm terminates, and the image of 〈X,α〉 into a final object is the lts depicted in
Figure 6.1(iii).

6.1.3 Structured coalgebras

Recall that our aim is that of giving coalgebraic models for context interactive system. The
coalgebraic representation using functor Pc

L is not completely satisfactory, because by definition
the carrier of a coalgebra is just a set and therefore the intrinsic algebraic structure of states is
lost.

A standard solution is that of considering structured coalgebras, i.e., coalgebras for an endofuctor
on a category AlgΓ of algebras for a specification Γ. Since cohomomorphisms in a category of
structured coalgebras are also Γ-homomorphisms, bisimilarity (i.e., the equivalence induced by the
final morphism) is a congruence with respect to the operations in Γ.

Proposition 6.3. Let Γ be an algebraic specification. Let B : AlgΓ → AlgΓ be a functor and let
CoalgB be the corresponding category of B-coalgebras and B-cohomomorphisms.

If CoalgB has a final object 1B, then bisimilarity (i.e., the equivalence induced by the unique
morphism to 1B) is a congruence with respect to the operations of Γ.

Moreover since we would like that the structured coalgebraic model to be compatible with the
unstructured, set-based one, then the following notion will be fundamental.

Definition 6.7 (Lifting). Let F : C → C and G : D → D be two endofunctors. Let V : C → D
be a functor. We say that F is a lifting of G along V, if F;V = V;G.

In the following we will consider the following lifting, where VΓ : AlgΓ → Set is the underlying
functor that associates to any Γ-algebra its carrier set (i.e., VΓ(X) = X), and to any homomorphism
the corresponding function (i.e., VΓ(h : X→ Y) = h : X → Y).

AlgΓ
BΓ

//

VΓ

²²

AlgΓ

VΓ

²²
Set

B
// Set

Suppose we have a Γ-algebra X and a B-coalgebra 〈X, α〉 with X the carrier set of X. Suppose
that there exists BΓ : AlgΓ → AlgΓ that is a lifting of B along VΓ. If α : X → BΓ(X) is a
Γ-homomorphism (i.e., an arrow of AlgΓ), then 〈X, α〉 is a BΓ-coalgebra.

Now, consider the functor VΓ
B : CoalgBΓ → CoalgB that maps every BΓ-coalgebra 〈X, α :

X→ BΓ(X)〉 into

〈VΓ(X),VΓ(α) : VΓ(X) → VΓ(BΓ(X))〉
that, by the fact that BΓ is a lifting, is equal to

〈X,α : X → B(X)〉.
One can prove that VΓ

B is a right adjoint and thus, if CoalgBΓ has a final object 1BΓ , then it is
preserved by VΓ

B. This means that bisimilarity of the BΓ-coalgebra 〈X, α〉 is uniquely determined
by the bisimilarity of the B-coalgebra 〈X, α〉, and thus, bisimilarity in 〈X,α〉 is a congruence with
respect to the operators in Γ. If there exists such functor BΓ, and if α : X → BΓ(X) is a Γ-
homomorphism, we will often improperly say that 〈X, α〉 can lift (or can be lifted) and that 〈X, α〉
is a lifting of 〈X, α〉.

It is important to note that the above argumentation holds under the hypothesis that CoalgBΓ

has a final system 1BΓ . In order to guarantee the existence of 1BΓ , we can rely on the existence
of 1B for CoalgB. Consider the following diagram where U and UΓ are the underlying functors

6.2. CONTEXT INTERACTIVE SYSTEMS AS COALGEBRAS 131

assigning to each coalgebra its carrier (Definition 6.3) and FΓ and FΓ
B are the left adjoint of the

functors VΓ and VΓ
B described above.

CoalgB

U

©©

FΓ
B --

CoalgBΓ

UΓ

ªª

VΓ
B

mm

Set

R

II

FΓ

,,
AlgΓ

RΓ

II

VΓ

kk

If U has a right adjoint R, then CoalgB has final coalgebra R(1) (for a final set 1). Moreover
R lifts to a right adjoint RΓ for UΓ and thus also CoalgBΓ has a final coalgebra (RΓ(1) for 1 a
final Γ-algebra).

By Proposition 6.2, we have that for the functor Pc
L there exists the right adjoint R for U, and

thus also CoalgBΓ has final coalgebra. All this can be summarized by the following proposition.

Proposition 6.4 (From [34]). Let Γ be an algebraic specification. Let VΓ : AlgΓ → Set be the
underlying functor. If BΓ : AlgΓ → AlgΓ is a lifting of Pc

L along VΓ, then:

1. CoalgBΓ
has a final object,

2. bisimilarity in CoalgBΓ
is uniquely determined by bisimilarity in CoalgPc

L
.

In [110], bialgebras are used as structures combining algebras and coalgebras. Bialgebras are
richer than structured coalgebras, in the sense that they can be seen both as coalgebras on algebras
and also as algebras on coalgebras. Categories of bialgebras over the functor Pc

L have a final object
and bisimilarity abstracts from the algebraic structure, i.e., it is uniquely induced by the final
morphism in CoalgPc

L
.

In [34], it is proved that whenever the endofunctor BΓ : AlgΓ → AlgΓ is a lifting of some
endofunctor B : Set → Set, then structured coalgebras coincide with bialgebras.

Proposition 6.5 (From [34]). Let BΓ : AlgΓ → AlgΓ be an endofunctor. If BΓ is a lifting of
some functor B : Set → Set then BΓ-coalgebras are also bialgebras.

In the next section we will give unstructured coalgebras for context interactive systems. In
general terms, these coalgebras cannot be lifted to structured coalgebras, because bisimilarity
is not guaranteed to be a congruence. A standard solution is that of constructing a structured
coalgebra for the saturated transition system (since here bisimilarity is always a congruence). Since
the behavioral endofunctor for these coalgebras is a lifting, then Propositions 6.4 and 6.5 apply. In
Section 6.4, we will introduce normalized coalgebras whose endofunctor is not a lifting and thus,
these are structured coalgebras but not bialgebras. This is the reason why we decided to work
with structured coalgebras.

6.2 Context interactive systems as coalgebras

In Chapter 4 we have introduced context interactive systems. These are labeled transition systems
(lts) where the states are organized in a many-sorted unary algebra: sorts represents the interface
of the states and the unary operators represents the contexts. More precisely, given a category C,
we define the (many-sorted unary) specification Γ(C) where sorts and operators are respectively
objects and arrows of C. The states of a context interactive systems form a Γ(C)-algebra.

We will first introduce a model as coalgebra over Set|C|, i.e., the category of |C|-sorted families
of sets and |C|-sorted functions (recall that |C| denotes the class of objects of C). Thus in this
first model, all the algebraic structure is missing. Moreover lifting this model to a coalgebra over
AlgΓ(C) is not usually possible, since bisimilarity is not guaranteed to be a congruence. In order
to have a structured coalgebraic model, it is necessary to consider the saturated transition system
(satts), since in the satts, bisimilarity is always a congruence.

132 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

6.2.1 Context interactive systems as unstructured coalgebras

Recall the definition of context interactive system (Definition 4.1). Here, and in the remainder
of the chapter we will always assume to work with a context interactive system I = 〈C, A, O, tr〉,
where C is a small category, i.e., both |C| and ||C|| (respectively the class of objects and arrows of
C) are sets and not proper classes. Moreover in order to have the final coalgebra we must require
that ||C|| is a countable set and that the set of transitions outgoing from a state is countable (as
required by Proposition 6.2). This is not too restrictive, indeed all the examples introduced in
Chapter 5 satisfy these requirements.

Now, for any context interactive system we first define a behavioral endofunctor, and then a
specific coalgebra. The behavioral endofunctor is described as follows.

Definition 6.8. Let I = 〈C, X, O, tr〉 be a context interactive system. The functor F : Set|C| →
Set|C| is defined for each |C|-sorted family of set X, and for each i ∈ |C| by

F(Xi) = Pc(O ×
∑

j∈|C|
Xj).

The functor is defined analogously on arrows of Set|C|.

Note that F is not an endofunctor on Set, as it is the case of the standard PL discussed in the
previous section, but it is defined on Set|C|. Moreover the arriving states might have any possible
sort (represented by

∑
j∈|C|Xj). This is needed since contexts interactive systems have evolving

interfaces.
Notice that X (the carrier set of X) is an object of Set|C|. Thus, every context interactive

system I = 〈C, X, O, tr〉 defines a F-coalgebras, where X is the (many-sorted) carrier set and
tr : X → F(X) is a (many-sorted) function.

Definition 6.9. Given a context interactive system I = 〈C, X, O, tr〉, the F-coalgebra correspond-
ing to it is 〈X, tr〉

Recall that in the definition of context interactive systems (Definition 4.1) tr is a relation
amongst X × O ×X (where X is a family of sorted sets). Following the standard argumentation
that lts are in one to one correspondence with PL-coalgebra (shown in Section 6.1.1), it is trivial
to see that also tr ⊆ X ×O ×X are in one to one correspondence with tr : X → F(X).

This construction does not take into account the algebraic structure. We would like to lift
the F-coalgebras 〈X, tr〉, to a structured coalgebra 〈X, tr〉 over AlgΓ(C), but this is in general
impossible because arrows in AlgΓ(C) are Γ(C)-homomorphisms, and thus the transition structure
tr must be an homomorphism.

Example 6.1 (Running Example). Recall the context interactive system N = 〈OPL, N, {τ}, trN 〉
that has been introduced in Example 4.9. This corresponds to the reactive system of open input
Petri net (Example 1.7) of the open net depicted in Figure 1.3.

Recall that N has two sorts, namely 0 and 1. Both N0 and N1 have as elements multisets over
{a, b, c, d, e, f, x, y}. An operator m : 1 → 1 is a multiset on {x, y}, and mN is defined for all
x ∈ X1, as mN(x) = m⊕x. Hereafter, since we will consider only elements of sort 1 and operators
1 → 1, we will avoid specifying the sort.

Consider the multisets a, ax, c and cx of the open net in Figure 1.3. We have that cx
τ−→ d,

while all the others cannot move. Thus the transition structure trN , maps these states as follows.

a 7→ ∅
ax 7→ ∅
c 7→ ∅
cx 7→ {(τ, d)}

6.2. CONTEXT INTERACTIVE SYSTEMS AS COALGEBRAS 133

Now suppose that we would like to lift this structure to a coalgebra over AlgΓ(C) and suppose
that we have a behavioral endofunctor BΓ : AlgΓ(C) → AlgΓ(C) that is a lifting of F. In order to
have that 〈N, trN 〉 is a BΓ-coalgebra, trN must be a Γ(C)-homomorphism between N and BΓ(N),
that is, ∀u ∈ N and ∀m ∈ Γ(C),

mBΓ(N)(trN (u)) = trN (mN(u)).

But, in our case, this is impossible for all functors BΓ. Indeed, take as operator the multiset
x. We have that xN(a) = ax and xN(c) = cx and thus trN (xN(a)) = ∅ and trN (xN(c)) = {(τ, d)}.
Now note that both a and c are mapped into ∅, and thus, in order to make trN an homomorphism
we must have both xBΓ(N)(∅) = {(τ, d)} and xBΓ(N)(∅) = ∅. This is clearly impossible for all
functions xBΓ(N).

Intuitively, there cannot exist such functor BΓ because a and c perform the same transitions,
while ax and cx perform different transitions.

In the following section, we show that for any context interactive system we can define a
structured coalgebra over AlgΓ(C), by employing the saturated transition system.

6.2.2 Saturated transition system as structured coalgebra

In the previous section we have shown a coalgebraic model for context interactive system, but
in that model the algebraic structure is not represented. Moreover in general, it is impossible to
naively lift this coalgebra to a structured coalgebra. In this section we introduce a general way
to construct structured coalgebraic model by employing the saturated transition system (satts,
Definition 4.3). In satts, transitions are labeled with both a context and an observation such that

p
c,o−→SAT q if and only if cX(p) o−→ q.

The first step in order to characterizes the saturated transition system is to define a proper endo-
functor on Set|C| that uses as labels not only observations but also contexts.

Definition 6.10. Let I = 〈C, X, O, tr〉 be a context interactive system. The functor D : Set|C| →
Set|C| is defined for each |C|-indexed set X and for each i ∈ |C| by

D(Xi) = Pc(
∑

j∈|C|
(C[i, j]×O ×

∑

k∈|C|
Xk)).

The functor is defined analogously on arrows of Set|C|.

Recall that C[i, j] denotes the set of arrows from i to j. The only novelty with respect to F is
that now also contexts, i.e., arrows of C are taken as labels. Notice that for a state with interface
i we consider as labels only those arrows having i as source.

Definition 6.11 (Saturated transition system as D-coalgebras). Given a context interactive sys-
tem I = 〈C, X, O, tr〉, the saturated transition system (Definition 4.3) is the D-coalgebra 〈X,αI〉,
where ∀i ∈ |C|, ∀x ∈ Xi, (d, l, x′) ∈ αI(x) iff (l, x′) ∈ tr(dX(x)).

It is immediate to see that the definition of αI exactly corresponds to Definition 4.3. Requiring
||C|| to be a countable set is here fundamental, otherwise the αI(x) could be uncountable for some
x.

Example 6.2 (satts for open input Petri nets). Recall N = 〈OPL, N, {τ}, trN 〉, the context
interactive system for the open net represented in Figure 1.3. The D-coalgebra corresponding to
its saturated transition system is 〈N,αN 〉. In Example 6.1 we have shown trN . The map αN is
defined (for some interesting multisets) as follows (recall that xxxiyj denotes the multiset mapping
x in i + 2 and y in j).

134 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

a 7→ {(yxiyj , τ, cxiyj) s.t. i, j ∈ ω} ∪ {(xyxiyj , τ, dxjyj) s.t. i, j ∈ ω}
ax 7→ {(yxiyj , τ, cxiyj) s.t. i, j ∈ ω} ∪ {(yxiyj , τ, dxjyj) s.t. i, j ∈ ω}
c 7→ {(xxiyj , τ, dxiyj) s.t. i, j ∈ ω}
cx 7→ {(xiyj , τ, dxiyj) s.t. i, j ∈ ω}
e 7→ {(xiyj , τ, fxiyj) s.t. i, j ∈ ω}
b 7→ {(yxiyj , τcxiyj) s.t. i, j ∈ ω}

d, f 7→ ∅

Note that, with the exception of d and f , each state can perform an infinite number of transi-
tions, but these are always countable.

In Example 6.1, we have proved that there cannot exist a behavioral endofunctor BΓ such that
trN : N→ BΓ(N) is a Γ(C)-homomorphism, because a and c have the same transitions in trN while
ax and cx have different transitions. With αN , the set of transitions of a and c are distinguished,
and thus it is possible to construct a proper endofunctor BΓ. This will be shown later on this
section.

In the remainder of this section we will introduce a behavioral endofunctor on AlgΓ(C) that is
a lifting of D and we will show that 〈X, αI〉 is a structured coalgebra for this endofunctor.

In order to define D̂ : AlgΓ(C) → AlgΓ(C) as a lifting of D : Set|C| → Set|C|, we must define
how the operation of a Γ(C)-algebra X are modified by D̂. In [110], it is shown that defining the
endofuntor on the operators of a signature exactly corresponds to give a set of GSOS rules.

In our case, the endofunctor is defined by the following parametric rule for all arrows c1, c2, d ∈
||C||.

p
c1,l−→ x c1 = d; c2

d(p)
c2,l−→ x

Intuitively, from the set of transitions of a state p, one can derive all the transitions of a state d(p)

for all contexts d. Indeed, if d(p)
c2,l−→ x then, by definition of satts, p

d;c2,l−−→ x.

Now recall that a Γ(C)-algebra X is a multi-sorted unary algebra where sorts are objects of C
and operations are arrows. Hereafter we will avoid specifying the sort of sets and operations, in
order to make more readable the whole presentation. Thus, we will denote a Γ(C)-algebra X as
〈X, d1

X, d
2
X, . . .〉 where X is the multi-sorted set and d1

X, d2
X . . . are the operations of X corresponding

to the arrows d1, d2, . . . of C.

Definition 6.12. The endofunctor D̂ : AlgΓ(C) → AlgΓ(C) is defined as follows. For each
X = 〈X, d1

X, d
2
X, . . . 〉 ∈ AlgΓ(C),

D̂(X) = 〈D(X), d1bD(X)
, d2bD(X)

, . . . 〉

where: ∀d ∈ Γ(C), ∀A ∈ D(X), dbD(X)A = {(c2, l, x) s.t. (c1, l, x) ∈ A and d; c2 = c1}.
On arrows of AlgΓ(C) is defined as D.

Note that the definition of D̂ on the operators d exactly coincides with the above SOS rule.
Now proving that D̂ is a lifting of D is almost trivial.

Proposition 6.6. Let VΓ(C) : AlgΓ(C) → Set|C| be the underlying functor that associates to each
Γ(C)-algebra X = 〈X, d1, d2 . . .〉 its many-sorted carrier set X. Then D̂ is a lifting of D along
VΓ(C).

AlgΓ(C)
bD //

VΓ(C)

²²

AlgΓ(C)

VΓ(C)

²²
Set|C| D

// Set|C|

6.2. CONTEXT INTERACTIVE SYSTEMS AS COALGEBRAS 135

Proof. Let X be a Γ(C)-algebra. Thus VΓ(C)(D̂(X)) is D(X) and D(VΓ(C)(X)) is D(X).

In Section 6.1.3 we have shown structured coalgebras over one-sorted algebras. In order to model
context interactive systems, we need to consider many-sorted algebras. However Proposition 6.4
extends trivially to the case of many sorted algebras and sets [36]. Thus the Propositions 6.4 and
6.6 together guarantees that CoalgbD has final object 1bD.

In [110], the authors show that every process algebra whose operational semantics is given
by GSOS rules, defines a bialgebra. In that approach the carrier of the bialgebra is an initial
algebra TΣ for a given algebraic signature Σ, and the GSOS rules specify how an endofunctor
BΣ behaves with respect to the operations of the signature. Since there exists only one arrow
?Σ : TΣ → BΣ(TΣ), to give SOS rules is sufficient for defining a bialgebra (i.e., 〈TΣ, ?Σ〉) and then
for assuring compositionality of bisimilarity. Our construction slightly differs from this. Indeed,
the carrier of our coalgebra is X, that is not the initial algebra of AlgΣ(C). Then there might exist
several or none structured coalgebras with carrier X. In the following we prove that αI : X→ D̂(X)
is a Γ(C)-homomorphism. This means that 〈X, αI〉 is a structured coalgebra and then bisimilarity
is a congruence with respect to the operations of Γ(C).

Theorem 6.1. Let I = 〈C, X, O, tr〉 be a context interactive system. Then 〈X, αI〉 is a D̂-coalgebra.

Proof. We have to prove that αI : X → D̂(X) is a Γ(C)-homomorphism, i.e., that ∀x ∈ X and
∀d ∈ Γ(C), αI(dX(x)) = dbD(X)(αI(x)).

Let (c1, l1, x1) ∈ αI(dX(x)) be a saturated transition of dX(x). Then by definition of αI ,
(l1, x1) ∈ αI(c1

X(dX(x))), and thus (d; c1, l1, x1) ∈ αI(x). By definition of dbD(X) and by (d; c1, l1, x1) ∈
αI(x), follows that (c1, l1, x1) ∈ dbD(X)(αI(x)).

Now let (c1, l1, x1) ∈ dbD(X)(αI(x)). We want to prove that (c1, l1, x1) ∈ αI(dX(x)). By definition
of dbD(X) we have that (d; c1, l1, x1) ∈ αI(x) and, analogously to before, (c1, l1, x1) ∈ αI(dX(x)).

Now, since 〈X, αI〉 is a D̂-coalgebras and since there exists a final coalgebra 1bD in CoalgbD,
then the unique morphism !bD〈X,αI〉 : 〈X, αI〉 → 1bD identifies all and only the saturated bisimilar
states.

Corollary 6.1. Let I = 〈C, X, O, tr〉 be a context interactive system. Then ∀x, y ∈ X,

x ∼S y if and only if !bD〈X,αI〉(x) =!bD〈X,αI〉(y).

Example 6.3 (Open input Petri nets as structured coalgebras). Recall N = 〈OPL, N, {τ}, trN 〉,
the context interactive system for the open net represented in Figure 1.3. The D-coalgebra corre-
sponding to its saturated transition system is 〈N, αN 〉 as shown in Example 6.2. By Theorem 6.1, it
follows that αN : N→ D̂(N) is also a Γ(OPL)-homomorphism, and thus 〈N, αN 〉 is a D̂-coalgebra.

Now consider O = 〈OPL, N, {τ}, ω〉, a context interactive system having the same category of
N , the same algebraic structure, the same set of observations, but different transition structure.
More precisely, ω is defined as follow:

a, c 7→ {(τ, d)}
otherwise 7→ ∅

Also for this context interactive system we can construct the saturated transition system as a
function αO : N → D̂(N). Note that, by Theorem 6.1, this is a Γ(OPL)-homomorphism and thus
〈N, αO〉 is a D̂-coalgebra.

Notice that there exist two morphisms from N to D̂(N).

We round up the example by showing how the functor D̂ behaves on the operators of Γ(OPL).
Recall the definition of Γ(OPL) given in Example 4.9. We have that the operators of Γ(OPL)

136 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

are all the multisets over {x, y}. The functor D̂ behaves on operators, as specified by the following
rule.

p
m,τ−→ q n ⊆ m

n(p)
mªn,τ−−−→ q

6.3 Saturated bisimilarity through saturated coalgebras

In the previous section we have introduced 〈X, αI〉, a D̂-coalgebra corresponding to the saturated
transition system of I = 〈C, X, O, tr〉. A characterization of saturated bisimilarity as final seman-
tics (Corollary 6.1) follows from this construction. This is theoretically interesting (and almost
straightforward), but pragmatically useless, since the satts is labeled with all contexts (that are
usually infinitely many). In Section 6.4, we will introduce normalized coalgebras that, analogously
to symbolic semantics, efficiently characterizes saturated bisimilarity by employing some general
knowledge expressed through a tile system (Definition 4.5).

In this section we will introduce saturated coalgebras for a tile system T . These coalgebras
are those D̂-coalgebras satisfying T (i.e., such that all the rules of T hold in the coalgebra). We
will introduce the category of saturated coalgebras CoalgST

for a behavioral endofunctor ST :
AlgΓ(C) → AlgΓ(C). Moreover we will show that CoalgST

is a full subcategory of CoalgbD. We
will prove that CoalgST

has a final coalgebras and that the unique morphism !ST

〈X,αI〉 : 〈X, αI〉 → 1ST

still characterizes saturated bisimilarity.
In Section 6.4, we will show that the category of saturated coalgebra is isomorphic to the

category of normalized coalgebras, and thus we can reason about saturated bisimilarity in the
“efficient way” provided by normalized coalgebras.

6.3.1 Tile systems for D̂-coalgebras

In Section 4.1.2, we have introduced tile systems in order to describe some general knowledge
about how contexts modify transitions. There, we also explained when a transition derives another
through a tile system (Definition 4.6). This definition was given for context interactive systems,
here we generalize it to D̂-coalgebras.

Definition 6.13 (Derivation between transitions of D̂-coalgebras). Let I = 〈C, X, O, tr〉 be a
context interactive system and T be a tile system. Let Y be a Γ(C)-algebra.

A transition p
c1,l1−→ q1 derives a transitions dY(p)

c2,l2−→ q2 in Y through T (written (c1, l1, q1) `d
T,Y

(c2, l2, q2)) iff there exist e ∈ ||C|| such that c1; e = d; c2 and φ : l1
e

e′
// l2 ∈ T ∗ and e′Y(q1) = q2.

. d //

=c1

²²

.

c2

²². e //

l1

®¶
φ

.

l2

®¶.
e′

// .

The above definition extends Definition 4.6 to the case of a generic algebra Y. Substantially
here we require that e′Y(q1) = q2 instead of e′X(q1) = q2. Often we will write `T,X to mean `id

T,X.

Definition 6.14 (Sound tile system). A tile system T is sound w.r.t. a D̂-coalgebra 〈X, α〉 iff
whenever (c, l, q) ∈ α(p) and (c, l, q) `d

T,X (c′, l′, q′) then (c′, l′, q′) ∈ α(dX(p)). Viceversa, we say
that a D̂-coalgebra 〈X, α〉 satisfies T if and only if T is sound w.r.t. it.

We say that T is sound w.r.t. a context interactive system I = 〈C, X, O, tr〉, if it is sound w.r.t.
〈X, αI〉 (Definition 6.11).

6.3. SATURATED BISIMILARITY THROUGH SATURATED COALGEBRAS 137

Example 6.4. Consider the tile system TN introduced in Example 4.9 for open input Petri nets.
It substantially states that all contexts (multisets on {x, y}) preserve τ -transitions. It is immediate
to see that the context interactive system N (Example 4.9) satisfies it.

Now consider the context interactive system O = 〈OPL, N, {τ}, ω〉 introduced in Example 6.3.
Clearly the tile system TN is not sound w.r.t. O, because c

τ−→ d, but cx 6−→. More formally,
consider the coalgebra 〈N, αO〉 corresponding to its saturated transition system. We have that
(ε, τ, d) ∈ αO and since x

τ

τ
// x ∈ TN , we have that (ε, τ, d) `x

N,TN (ε, τ, dx). But xN(c) = cx

and (ε, τ, dx) /∈ αO(cx).

The following lemmas state some important properties of `T that will be fundamental in the
next sections.

Lemma 6.1 (composition of `d
T). If (c, l, x) `d

T,X (c′, l′, x′) `e
T,X (c′′, l′′, x′′) then (c, l, x) `d;e

T,X

(c′′, l′′, x′′).

Proof. From the hypothesis we derives that there exists d′, d′′, e′, e′′ ∈ C such that d; c′ = c; d′ and

e; c′′ = c′; e′ and l
d′

d′′
// l′ and e′ l′

l′′
// e′′ such that d′′X (x) = x′ and e′′X (x′) = x′′. From all this,

we derive that (d; e); c′′ = c; (d′; e′) and that d′; e′ l

l′′
// d′′; e′′ and that e′′X (d′′X (x)) = x′′. Then

the thesis immediately follows.

Lemma 6.2 (`d
T is preserved by homomorphisms). Let h : X → Y be a Γ(C)-homomorphism. If

(c, l, x) `d
T,X (c′, l′, x′), then (c, l, h(x)) `d

T,Y (c′, l′, h(x′)).

Proof. If (c, l, x) `d
T,X (c′, l′, x′), then there exists d′ ∈ C such that d; c′ = c; d′ and d′ l

l′
// d′′ and

d′′X (x) = x′. Since h is an homomorphism h(x′) = h(d′′X (x)) = d′′(h(x))Y, and then (c, l, h(x)) `d
T,Y

(c′, l′, h(x′)).

Lemma 6.3 (`d
T is reflected by homomorphisms). Let h : X → Y be a Γ(C)-homomorphism. If

(c, l, h(x)) `d
T,Y (c′, l′, y′), then ∃x′ ∈ X, such that h(x′) = y′ and (c, l, x) `d

T,X (c′, l′, x′).

Proof. From the hypothesis we derive that there exists f ∈ Γ such that c; f = d; c′ and f
l

l′
// f ′

and f ′Y(h(x)) = y′. Since h is an homomorphism, h(f ′X(x)) = y′. Then we have that (c, l, x) `d
T,X

(c′, l′, f ′X(x)).

6.3.2 Saturated coalgebras

In this section we introduce saturated coalgebras for a tile system T , as those D̂-coalgebras satis-
fying T . Let us start with the definition of saturated set of transitions.

Definition 6.15 (Saturated set and saturation). Let I = 〈C, X, O, tr〉 be a context interactive
system, let T be a tile system and X be a Γ(C)-algebra.

A set A ∈ D(X) is saturated in T, X if and only if whenever (c, l, x) ∈ A and (c, l, x) `T,X

(c′, l′, x′) then (c′, l′, x′) ∈ A. The set STX(X) is the subset of D(X) containing all and only the
saturated sets in T, X.

For any A ∈ D(X), the saturation function satT,X : D(X) → STX(X) maps A in

{(c′, l′, x′) s.t. (c, l, x) ∈ A and (c, l, x) `T,X (c′, l′, x′)}.

The saturation function satT,X transforms each set of transitions into a saturated one, by
adding all the transitions that are derivable through `T,X. This fucntion will be later for proving
the isomorphism theorem in Section 6.4.2.

138 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

Example 6.5. As an example of saturated set of transitions consider the tile system TN introduced
in Example 4.9 (recall that here we are always considering states and contexts with sort 1) and
consider the algebra N introduced in the same example. It is trivial to prove that ∀c1, c2, d1, d2 ∈
Γ(OPL)

(c1, τ, d1) `TN ,X (c2, τ, d2) if and only if ∃m ∈ {x, y}⊕ such that c2 = c1 ⊕m and d2 = d1 ⊕m.

Now consider the set of transitions αN (c) = {(xxiyj , τ, dxiyj) s.t. i, j ∈ ω}. It is easy to see
that it is saturated with respect to TN and N. While the set of transitions αO(c) = {(ε, τ, d)} is not
saturated (recall that O is the context interactive system of Example 6.3).

Definition 6.16. The endofunctor ST : AlgΓ(C) → AlgΓ(C) is defined as follows. For each
X = 〈X, d0

X, d
1
X, . . . 〉 ∈ AlgΓ(C),

ST(X) = 〈STX(X), d0
ST(X), d

1
ST(X), . . . 〉

where: ∀d ∈ Γ(C), ∀A ∈ D(X), dST(X)A = {(c2, l2, x2) s.t. (c1, l1, x1) ∈ A and (c1, l1, x1) `d
T,X

(c2, l2, x2)}.
On arrows of AlgΓ(C) is defined as D.

There are two differences with respect to the definition of D̂ (Definition 6.12). First, we require
that all the sets of transitions are saturated. Then the operators are defined by using the relation
`d

T,X. This guarantees that dST(X)A is saturated with respect to T , X. Intuitively, we use the
following rule.

p
c1,l1−→ x1 (c1, l1, x1) `d

T,X (c2, l2, x2)

d(p)
c2,l2−→ x2

Now we would like to have a final coalgebra for the category CoalgST
. As we have done for

CoalgbD, we would like to apply Proposition 6.4, but we cannot. Indeed the functor ST cannot be
regarded as a lifting of any endofunctor over Set|C|. In other words, there not exists any functor
F such that the following diagram commutes.

AlgΓ(C)
ST //

VΓ(C)

²²

AlgΓ(C)

VΓ(C)

²²
Set|C| F

// Set|C|

This can be better understood noting that the definition of saturated set of transitions, is strictly
dependent from the algebraic structure X. In Section 6.4, we will show that CoalgST

is isomorphic
to the category of normalized coalgebras, that are a special kind of coalgebras that efficiently
characterize saturated bisimilarity. The efficiency of normalized coalgebras relies on this algebraic
structure, and thus it is natural that both the endofunctors for saturated and normalized coalgebras
are not lifting. At our knowledge saturated coalgebras and normalized coalgebras are the first
interesting example of structured coalgebras that are not bialgebras.

In order to prove the existence of final object in CoalgST
, we will rely on the existence of

final object in CoalgbD. Indeed, we will show that CoalgST
is the full subcategory of CoalgbD

containing all and only the coalgebras satisfying T . More precisely we will show that |CoalgST
|

is a covariety of CoalgbD, i.e., a class of objects having some nice closure properties. From this
follows that we can construct 1ST

as the biggest subobject of 1bD satisfying T .
The following lemma states that every ST-coalgebra is a D̂-coalgebra where T holds.

Lemma 6.4. Let 〈X, α〉 be a D̂-coalgebra. Then it is a ST-coalgebra iff it satisfies T .

6.3. SATURATED BISIMILARITY THROUGH SATURATED COALGEBRAS 139

Proof. Let 〈X, α〉 be a D̂-coalgebra. Then, ∀d ∈ Γ(C), ∀x ∈ X we have that dbD(X)(α(x)) =
α(dX(x)). In order to prove that 〈X, α〉 is a ST-coalgebra, we have to prove that dST(X)(α(x)) =
α(dX(x)).

Now let (c, l, x) ∈ dST(X)(α(x)), then there exists (c′, l′, x′) ∈ α(x) such that (c′, l′, x′) `d
T,X

(c, l, x). Since T is correct, we have that (c, l, x) ∈ α(dX(x)). Now suppose that (c, l, x) ∈ α(dX(x)).
Since 〈X, α〉 is a D̂-coalgebra, we have that (c, l, x) ∈ dbD(X)(α(x)) and then we have also that
(c, l, x) ∈ dST(X)(α(x)). Thus 〈X, α〉 is a ST-coalgebra.

If T is not sound, then ∃x ∈ X, d ∈ Γ(C) such that (c, l, y) ∈ α(x) and (c, l, y) `d
T,X (c′, l′, y′)

and (c′, l′, y′) /∈ α(dX(x)). Thus dST(X)(α(x)) 6= α(dX(x)).

Example 6.6. From the above lemma immediately follows that 〈N, αN 〉, i.e., the D̂-coalgebra
corresponding to the satts of N (Example 4.9) is a saturated coalgebras for the tile system TN .
While, 〈N, αO〉, i.e., the D̂-coalgebra corresponding to the satts of O (Example 6.3), is not a
saturated coalgebra since it does not satisfies TN (Example 6.5).

Proposition 6.7. The category CoalgST
is a full subcategory of CoalgbD.

Proof. The objects of CoalgST are all and only the D̂-coalgebras satisfying T (by Lemma 6.4).
The arrows of CoalgST

are all the D̂-cohomomorphisms between two ST-coalgebras. Indeed, a
Γ(C)-homomorphism h : X→ Y is a cohomomorphism between the ST-coalgebras 〈X, α〉 and 〈Y, β〉
if and only if α;ST(h) = h; β, and by definition of ST, i.e., if and only if α; D̂(h) = h;β, if and
only if h is a cohomomorphism between the D̂-coalgebras 〈X, α〉 and 〈Y, β〉.
Proposition 6.8. Let I = 〈C, X, O, tr〉 be a context interactive system and T an tile system sound
with respect to I. Then 〈X, αI〉 is a ST-coalgebra.

Proof. It follows immediately by Lemma 6.4 and Theorem 6.1.

Now, in order to prove that CoalgST
has final system, we will prove that |CoalgST

| is a
covariety of CoalgbD. For a detailed introduction on covarieties the reader is referred to Section
17 of [99] and to [72]. Roughly, covarieties are dual to algebraic varieties, i.e., classes of algebras
of the same signature that are closed under homomorphic image, subalgebra and product. The
Birkoff’s variety theorem states that any class of algebras is a variety if and only if it is equationally
definable. Therefore the category of Γ-algebras for some some algebraic specification Γ = (Σ, E)
where Σ is a signature (i.e., an endofunctor as detailed in 6.1.1) and E a set of equational axioms,
is a variety of AlgΣ. Dually, a covariety is a class of coalgebras for the same endofcuntor that
is closed under under homomorphic image, subalgebra and coproduct. The Birkoff’s theorem has
been dualized in [99]. Co-equational logic [3], coalgebraic logic [90] and modal logic [71] have been
proposed as dual of equational axioms.

Proposition 6.9. |CoalgST
| is a covariety of CoalgbD, i.e., is closed under:

1. subcoalgebras,

2. homomorphic images and

3. sums.

Proof. A coalgebra 〈X, α〉 is a subcoalgebra of 〈Y, β〉 if there is an arrow m : 〈X, α〉 → 〈Y, β〉 that is
mono in all its components (for a more formal definition look at Appendix 6.4.3).

The fact that |CoalgST
| is closed under subcoalgebras means that whenever there is a subcoal-

gebra m : 〈X, α〉 → 〈Y, β〉 in CoalgbD such that 〈Y, β〉 ∈ |CoalgST |, then also 〈X, α〉 ∈ |CoalgST |.
This can be easily proved by employing Lemma 6.4.

If 〈Y, β〉 ∈ |CoalgST
|, then it satisfies T . Suppose ab absurdum that 〈X, α〉 does not satisfy

T . Then there exists x ∈ |X|, (c1, l1, x1) ∈ α(x) and (c2, l2, x2) /∈ α(x) such that (c1, l1, x1) `X,T
(c2, l2, x2). Now, since m is a cohomomorphism we have that (c1, l1,m(x1)) ∈ β(m(x)). By

140 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

Lemma 6.2, it follows that (c1, l1,m(x1)) `Y,T (c2, l2,m(x2)). Since 〈Y, β〉 satisfies T then also
(c2, l2,m(x2)) ∈ β(m(x)). At this point, since m is a cohomomorphism then it must exist a x3 ∈ X,
such that (c1, l1, x3) ∈ α(x) and m(x3) = m(x2). But since m is mono in all its components, then
x2 = x3 and thus (c1, l1, x2) ∈ α(x) against the hypothesis.

Let h : 〈X, α〉 → 〈Y, β〉 be an arrow in CoalgbD. The homomorphic image of 〈X, α〉 through h, is
the coalgebra 〈I, γ〉 induced by the unique factorization of h = e; m (as shown below), where e is
an arrow with all components epi and m is an arrow with all components mono (look at Appendix
6.4.3).

X
h //

α

²²

e

((RRRRRRRRRR Y

β

²²

I

γ
Â
Â
Â
Â

²²Â
Â
Â
Â

m

66llllllllll

D̂(X)
bD(h) //

bD(e) ''NNNNNN D̂(Y)

D̂(I)
bD(m)

77pppppp

The fact that |CoalgST
| is closed under homomorphic images means that whenever there

is a cohomomorphism h : 〈X, α〉 → 〈Y, β〉 in CoalgbD such that 〈X, α〉 ∈ |CoalgST
|, then also

〈I, γ〉 ∈ |CoalgST
|. This can be easily proved by employing Lemma 6.4.

If 〈X, α〉 ∈ |CoalgST
|, then it satisfies T . Suppose ab absurdum that 〈I, γ〉 does not satisfy

T . Then there exists an i ∈ |I|, (c1, l1, i1) ∈ γ(i) and (c2, l2, i2) /∈ γ(i) such that (c1, l1, i1) `I,T
(c2, l2, i2). Now, since e is epi in all its components, there exists x1, such that e(x1) = i1 and since
e is a cohomomorphism there exists x ∈ X such that h(x) = i and (c1, l1, x1) ∈ α(x). By Lemma
6.3 and by (c1, l1, i1) `I,T (c2, l2, i2), it follows that there exists x2 ∈ (X) such that e(x2) = i2 and
(c1, l1, x1) `X,T (c2, l2, x2). Now, since 〈X, α〉 satisfies T , then also (c2, l2, x2) ∈ α(x). And now,
since e is a cohomomorphism (c2, l2, i2) ∈ γ(i) against the initial hypothesis.

In CoalgbD, all the colimits are defined as in AlgΓ(C) (for classical argument in coalgebra
theory). Recalling that AlgΓ(C) is isomorphic ro SetC, it is easy to see that all colimits exists and
they are constructed as in Set. Thus, it is trivial to prove that if 〈X, α〉 and 〈Y, β〉 satisfy T , also
their sum, i.e., 〈X + Y, α + β〉, satisfies T .

Theorem 6.2. CoalgST
has a final object 1ST

.

Proof. The proof is a standard argument in the theory of coalgebras. In order to construct 1ST
,

consider all the unique D̂-cohomorphisms of ST-coalgebras to 1bD (the final object of CoalgbD).
Consider their homomorphic images through these final morphisms. All of them are subobjects of
1bD and all of them are ST-coalgebras, because |CoalgST

| is closed under homomorphic images.
Now, since these are subobjects of 1bD, we can define 1ST as their union . In order to prove that 1ST

is final, it is important to note that it is still a subcoalgebra of 1bD (Corollary 1.4.14 of [72]), and
thus we have a mono m : 1ST

→ 1bD 4 . Then for any ST-coalgebra 〈X, α〉 there exists a morphism
to 1ST

since it is the union of all the images to 1bD. Then, this morphism is unique since m is
mono. Moreover 1ST

satisfies T , since covarieties are also closed by unions of subcoalgebras.

Corollary 6.2. Let 〈X, α〉 be a ST-coalgebras. Let !bD〈X,α〉 be the unique morphism to 1bD and let

!ST

〈X,α〉 be the unique morphism to 1ST
. Thus

!bD〈X,α〉(x) =!bD〈X,α〉(y) if and only if !ST

〈X,α〉(x) =!ST

〈X,α〉(y).

4For this is important to notice that all morphisms in MC (defined in Appendix 6.4.3) are also mono.

6.4. SATURATED BISIMILARITY THROUGH NORMALIZED COALGEBRAS 141

Proof. From the proof of the above theorem, we have that 1ST
is a subobject of 1bD.

Therefore since !bD〈X,αI〉 characterizes saturated bisimilarity, then also !ST

〈X,αI〉.

Corollary 6.3. Let I = 〈C, X, O, tr〉 be a context interactive system and T a tile system sound
w.r.t it. Then ∀x, y ∈ X,

x ∼S y if and only if !ST

〈X,αI〉(x) =!ST

〈X,αI〉(y).

6.4 Saturated bisimilarity through normalized coalgebras

In Section 6.2 we have characterized saturated bisimilarity (∼S) as the equivalence induced by the
final morphisms from 〈X, αI〉, the D̂-coalgebra corresponding to the saturated transitions system
(satts), to 1bD. This is theoretically interesting because it assures the existence of a canonical
model, but pragmatically useless. Indeed the satts is usually infinite branching (or in any case
very inefficient), and so it is the minimal model. Thus minimization is unfeasible in CoalgbD.
In Chapter 4 we have introduced symbolic bisimilarity that efficiently characterizes ∼S . In this
section we use the main intuition of symbolic bisimilarity in order to give an efficient and coalgebraic
characterization of ∼S . We provide a notion of redundant transitions and we introduce normalized
coalgebras as coalgebras without redundant transitions. The category of normalized coalgebras
(CoalgNT

) is isomorphic to the category of saturated coalgebras (Definition 6.16), and thus the
final morphisms in CoalgNT

induces an equivalence that coincides with ∼S . This provides a
characterization of ∼S really useful: every equivalence class has a canonical model that is smaller
than that in CoalgbD, because normalized coalgebras do not have redundant transitions. Moreover
minimizing in CoalgNT

is feasible because it abstracts away from redundant transitions.
Normalized Coalgebras are theoretically interesting for one more reason. They are, at our

knowledge, the only meaningful example of structured coalgebras that are not bialgebras. This is
because the notion of redundant transition strictly depends on the algebraic structure, and thus
the endofunctor NT cannot be seen as a lifting. This is even more evident when considering the
minimization procedure, where we have to take care of the algebraic structure.

In Section 6.4.1 we introduce normalized coalgebras and in Section 6.4.2 we prove that CoalgNT

is isomorphic to CoalgST
. In Section 6.4.3, we relate normalized coalgebras to symbolic semantics

and we sketch a procedure for minimizing in CoalgNT
.

6.4.1 Normalized coalgebras

In Section 4.1.2 we have introduced tile systems and in Section 6.3 we have introduced the relation
`T,X amongst the transitions of a D̂-coalgebra 〈X, α〉. Roughly, (c1, l1, x1) `T,X (c2, l2, x2) means

that if the tile system T holds in 〈X, α〉, then ∀p ∈ X, p
c1,l1−→α x1 implies that p

c2,l2−→α x2. Therefore
when computing bisimilarity, we can forget about the latter transition, since only the former is
really discriminating. We will call redundant such transitions.

In this section we introduce normalized coalgebras in order to characterizes saturated bisimi-
larity without considering redundant transitions. The naive way of doing it, is that removing all
the redundant transitions from the saturated transition system. As an example, consider 〈N, αN 〉,
the D̂-coalgebra corresponding to the satts of N (Example 6.2). The labeled transition system
for the multisets a, b, c, d, e, f and cx that is obtained by removing all the redundant transitions,
is depicted in Figure 6.2. Note that e and cx are bisimilar in this transition system and they are
also saturated bisimilar (in the same example). However, also a ∼S b (as shown in Example 3.2),
but these are not bisimilar in this lts. This happens because a

y,τ−→ c and a
xy,τ−→ e with cx ∼S e,

but a
y,τ−→ c 0TN ,N a

xy,τ−→ e (note that xc 6= e).

142 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

b
y,τ // c

x,τ // d

cx

ε,τ 77pppppp

a
xy,τ //

y,τ

@@£££££££££
e

ε,τ // f

Figure 6.2: Part of 〈N, αN ; normTN ,〉.

Similar problems arise with the other examples that we have introduced. Consider the following
processes of asynchronous π-calculus (Section 5.1)

p = a(b).(ab | r′) + τ.r q = τ.r

where r and r′ are syntactically different, but bisimilar. Here we have that p ∼S q, but when
considering the labeled transition system obtained by pruning redundant transitions of satts we

have that p
−|ab,τ−−−→ ab | r′ and p

−,τ−→ r, but q can perform only the latter. Analogously to the
case of open input Petri nets, this happens because r ∼S r′ (and thus r | ab ∼S r′ | ab), but

p
−|ab,τ−−−→ ab | r′ 0TA,A p

−,τ−→ r.
Now consider the following process of open π-calculus (Section 5.2).

p = [a = b]τ.r q = p + [a = b][c = d]τ.r′

where r and r′ are syntactically different, but open bisimilar. Here we have that p ∼S q, but when
considering the labeled transition system obtained by pruning redundant transitions of satts we

have that q
[a=b][c=d],τ−−−−−−→ [a = b][c = d]r′ and that q

[a=b],τ−−−→ [a = b]r, but p can perform only the latter.
One more time, this happens because r ∼S r′ (and thus [a = b][c = d]r′ ∼S [a = b][c = d]r′),

but q
[a=b][c=d],τ−−−−−−→ [a = b][c = d]r′ 0TO,O q

[a=b],τ−−−→ [a = b]r.

At the general level, when p
c1,l1−→ p1 and p

c2,l2−→ p2 with (c1, l1, p1) `T,X (c2, l2, p3) and p3 ∼S

p2, both the transitions are not considered redundant, because p3 is different from p2 (even if

semantically equivalent). But, when comparing p with a process q performing only q
c1,l1−→ q1 with

p1 ∼S q1, these are saturated bisimilar. Therefore we would like a different, “more semantical”,
notion of redundancy. We need to consider redundant not only those transitions that can be
derived by `T,X, but also those where the arriving state is bisimilar to a derivable one, i.e., all the

transitions p
c2,l2−→ q2 such that p

c1,l1−→ q1 and (c1, l1, q1) `T,X (c2, l2, q) and q ∼S q2.

But immediately a problem arises. How can we decide which transitions are redundant, if
redundancy itself depends on bisimilarity?

Our solution is the following. First we consider redundant only those transitions p
c2,l2−→ q2 such

that p
c1,l1−→ q1 and (c1, l2, q2) `T,X (c1, l1, q1). Then we define a category of coalgebras without

redundant transitions. Since in the final object, all the bisimilar states are identified, all the
transitions p

c2,l2−→ q2 such that p
c1,l1−→ q1 and (c1, l1, q1) `T,X (c2, l2, q) and q ∼ q2, will be forgotten.

More formally, let 〈1, φ〉 be a final coalgebra and ! be the final morphism. Since in a final coalgebra
all the bisimilar state are identified, we have that if (c1, l1, q1) `T,X (c2, l2, q) and q ∼ q2 then
(c1, l1, !(q1)) `T,1 (c2, l2, !(q2)).

We can better understand this idea thinking about minimization. We normalize, i.e., we throw
away all the redundant transitions and then we minimize w.r.t. the canonical bisimilarity. Now
the bisimilar states are identified and if we normalize again, we will throw away new redundant
transitions. We repeat this procedure until we reach a fix point (the final object). Since all the

6.4. SATURATED BISIMILARITY THROUGH NORMALIZED COALGEBRAS 143

b
y // c x // d = f

a
xy //

y

;;wwwwwwwww
e = cx

id
99sssssssss

b
y // c x // d = f

a

y

;;wwwwwwwww
e = cx

id
99sssssssss

a = b
y // c x // d = f

cx = e

id
99sssssssss

(i) (ii) (iii)

Figure 6.3: (i) Part of 〈B, β〉. (ii)Part of 〈B, β; normTN B〉. (iii)Part of 〈C, γ〉.

bisimilar states are identified in the final object, we will have forgotten not only all the transitions
p

c2,l2−→ q2 such that p
c1,l1−→ q1 and (c1, l1, q1) `T,X (c2, l2, q) and q = q2, but also those where q ∼S q2.

Consider for example the lts depicted in Figure 6.2. If we minimize it, then we get the lts
depicted in Figure 6.3(i) where the multisets c and ex are identified. If now we normalize it, we
throw away the transition a

xy,τ−→ e (Figure 6.3(ii)). Note that, at the beginning, this transition was
not considered redundant because e and cx was different. By performing a further minimization
we reach the lts depicted in Figure 6.3(iii) where all the saturated bisimilar states are identified.

It is worth noting that normalization and minimization have to be repeated iteratively. Indeed
we cannot minimize once and then normalize, or normalize once and then minimize (try with our
example).

Definition 6.17 (Normalized set and normalization). Let I = 〈C, X, O, tr〉 be a context interactive
system and T a tile system sound w.r.t. I. Let Y be a Γ(C)-algebra with carrier set Y and
A ∈ D(Y).

A transition (c′, l′, x′) is equivalent to (c, l, x) in T, Y (written (c′, l′, x′) ≡T,Y (c, l, x)) iff
(c′, l′, x′) `T,Y (c, l, x) and (c, l, x) `T,Y (c′, l′, x′).

A transition (c′, l′, x′) ∈ A dominates (c, l, x) ∈ A in I, Y (written (c′, l′, x′) ≺T,Y (c, l, x)) iff
(c′, l′, x′) `T,Y (c, l, x) and (c, l, x) 0T,Y (c′, l′, x′).

A transition (c, l, x) ∈ A is redundant in A w.r.t. T, Y if ∃(c′, l′, x′) ∈ A such that (c′, l′, x′) ≺T,Y

(c, l, x).
The set A is normalized w.r.t. T, Y iff it does not contain redundant transitions and it is closed

w.r.t. equivalent transitions. The set NTY(Y) is the subset of D(Y) containing all and only the
normalized sets w.r.t. T, Y.

For any A ∈ D(Y), the normalization function normT,Y : D(Y) → NTY(Y) maps A ∈ D(Y)
in
{(c′, l′, x′)s.t. ∃(c, l, x) ∈ A s.t. (c′, l′, x′) ≡T,Y (c, l, x) and (c, l, x) not redundant in A w.r.t. T, Y}.
Example 6.7 (Normalization in open input Petri nets). Recall N = 〈OPL, N, {τ}, trN 〉 the con-
text interactive system for open input Petri nets introduced in Example 4.9. Recall TN , the tile
transition system introduced in the same example. Recall the characterization of `TN ,N given in
Example 6.5.

Note that in this setting, there are no equivalent transitions, i.e., if (c1, τ, x1) ≡TN ,N (c2, τ, x2)
then c1 = c2 and x1 = x2. Thus the relation ≺TN ,N coincides with `TN ,N \Id (where Id is the
identity relation).

Now consider αN (a), i.e., the set of saturated transitions of the satts (Example 6.2). Clearly
this set of transitions in not normalized with respect to TN , N. However, we can normalize it,
through the normalization function normTN ,N. The resulting set of transitions is normTN ,N(αN (a)) =
{(y, τ, c), (xy, τ, e)} as depicted in the lts of Figure 6.2. This set now is clearly normalized since
both (y, τ, c) 0TN ,N (xy, τ, e) and (xy, τ, e) 0TN ,N (y, τ, c).

Let B be the Γ(OPL)-algebra obtained by quotienting N with e = cx and d = f , and let C be the
algebra obtained by quotienting B with a = b.

Note that the set {(y, τ, c), (xy, τ, e)} is not normalized in B, because (y, τ, c) ≺TN ,B (xy, τ, e).
This is represented in Figure 6.3(i). In order to get a normalized set we apply the normalization

144 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

function normTN ,B that simply prunes the redundant transition (xy, τ, e). This is represented in
Figure 6.3(ii)

It is worth noting that the notion of redundancy is slightly more refined than that described
at the beginning of this section. Indeed, we define redundant a transition if this can be derived
by another that is not equivalent. This is fundamental, because, if we consider redundant two
equivalent transitions, normalization will throw away both of them. This is in contrast with our
main intuition of normalization, i.e., the normalized set must contain all the minimal transitions
that are needed to derive the original set (Lemma 6.5).

Example 6.8. In most of the examples that we have introduced, if (c1, l1, x1) ` (c2, l2, x2) then
(c2, l2, x2) 0 (c1, l1, x1). This means that there are no equivalent transitions and that ≺ coincides
with ` \Id (where Id is the identity relation). However, there are several interesting cases where
there are equivalent transitions, and it is important to properly tackle them. Consider for example
the category of distinctions and substitutions D of [79]. This is used to give a presheaf model of
open bisimilarity. Arrows of D are substitutions of names. Thus for a fusions of names there
are several possible arrows. For example, the fusion [a = b] corresponds to both {a/b} and {b/a}.
Thus suppose that p

τ−→ q when a and b are fused. In the satts of p there will be both ({a/b}, τ, q)
({b/a}, τ, q) and clearly one derives the other. This is an example of equivalent transitions. For
our theory is necessary to consider both of them.

Intuitively, normalization prunes a set of transitions by throwing away all the redundant tran-
sitions. We would like that the normalized set contains all the transitions that are needed to
re-derive the original set. Therefore we must impose that not all transitions can be redundant.

Definition 6.18 (Normalizable system). A context interactive system I = 〈C, X, O, tr〉 is normal-
izable w.r.t. T iff ∀Y ∈ AlgΓ(C), ≺T,Y is well founded, i.e., there are not infinite descending chains
of ≺T,Y.

Example 6.9 (open input Petri nets are normalizable). The context interactive system N =
〈OPL, N, {τ}, trN 〉 is normalizable w.r.t. TN . By definition of OPL, we have that c; d = e if and
only if c ⊕ d = e. Then, for all Γ(OPL)-algebra, (c1, τ, x1) ≺TN ,X (c2, τ, x2) only if c1 is strictly
included in c2. Since all multisets are finite also the descending chains must be finite.

Example 6.10. As an example of not normalizable context interactive system consider the category
NAT≥ defined as follow:

• objects are natural numbers and ∞,

• there is an arrow n → m, if n ≥ m or if n = ∞.

Since for any two objects n,m there is only one arrow, we call this arrow just as n → m. Consider
now a context interactive system NAT≥ = 〈NAT≥, X, O, tr〉 for some X, O, tr. Let T be the tile
system that states that all contexts preserve transitions.

We have that NAT≥ is not normalizable with respect to T . Indeed, let 1 be the final Γ(NAT≥).
In this algebra there is only one element ? for each sort (natural number), and an arrow n → m
of NAT≥ is interpreted in the function mapping ? of sort n into ? of sort m. Since ∞ → n can
be decomposed in ∞→ n + 1 → n, then (∞→ n + 1, l, ?) ≺T,1 (∞→ n, l, ?) and then there is an
infinite descending chain.

The following lemma assures that in a normalizable system, whenever we normalize a set of
transitions, we do not throw any meaningful transition.

Lemma 6.5. Let I be a normalizable system w.r.t. T . Let X be Γ(C)-algebra and A ∈ D(|X|).
Then ∀(d, l, x) ∈ A, ∃(d′, l′, x′) ∈ normT,X(A), such that (d′, l′, x′) ≺T,X (d, l, x).

Proof. Consider a chain · · · ≺T,X (d2, l2, x2) ≺T,X (d1, l1, x1) ≺T,X (d, l, x). Since ≺T,X is well
founded there exists no infinite chains like this. Let (d′, l′, x′) ∈ A be the last element of such a
chain. Since it is the last, it is not redundant and then (d′, l′, x′) ∈ normT,X(A). Moreover since
≺T,X is transitive (as proved in the next lemma), we have that (d′, l′, x′) ≺T,X (d, l, x).

6.4. SATURATED BISIMILARITY THROUGH NORMALIZED COALGEBRAS 145

Lemma 6.6. Let I be a context interactive system and T be a tile system sound w.r.t. I. Let X,
Y be Γ(C)-algebras.

1. ≺T,X is transitive, (or better, if (d′′, l′′, x′′) `T,X (d′, l′, x′) ≺T,X (d, l, x) then (d′′, l′′, x′′) ≺T,X

(d, l, x))

2. If (d′0, l
′
0, x

′
0) ≡T,X (d0, l0, x0) ≺T,X (d1, l1, x1) ≡T,X (d′1, l

′
1, x

′
1) then (d′0, l

′
0, x

′
0) ≺T,X (d′1, l

′
1, x

′
1),

3. If h : X→ Y and (d, l, x) ≡T,X (d′, l′, x′) then (d, l, h(x)) ≡T,Y (d′, l′, h(x′)).

Proof. Suppose that (d′′, l′′, x′′) `T,X (d′, l′, x′) ≺T,X (d, l, x), then we have both (d′′, l′′, x′′) `T,X

(d′, l′, x′) `T,X (d, l, x) and (d, l, x) 0T,X (d′, l′, x′). By the former we derive that (d′′, l′′, x′′) `T,X

(d, l, x), and by the latter, we derive that (d, l, x) 0T,X (d′′, l′′, x′′) (otherwise if (d, l, x) `T,X

(d′′, l′′, x′′) then also (d, l, x) `T,X (d′, l′, x′)).
For the second point is sufficient to note that (d′0, l

′
0, x

′
0) `T,X (d0, l0, x0) `T,X (d1, l1, x1) `T,X

(d′1, l
′
1, x

′
1), and then (d′0, l

′
0, x

′
0) `T,X (d′1, l

′
1, x

′
1). Moreover (d′1, l

′
1, x

′
1) 0T,X (d′0, l

′
0, x

′
0), since other-

wise (d1, l1, x1) `T,X (d0, l0, x0).
For the third point we use that `T,X is preserved by homomorphisms (Lemma 6.2).

Definition 6.19. The endofunctor NT : AlgΓ(C) → AlgΓ(C) is defined as follows.
For each X = 〈X, d1

X, d
2
X, . . . 〉 ∈ AlgΓ(C),

NT(X) = 〈NTX(X), d1
ST(X);normT,X, d

2
ST(X); normT,X, . . . 〉

For all h : X→ Y, NT(h) = D̂(h); normT,Y

Note how the functor is defined on arrows. If we apply D̂(h) to a normalized set A, the resulting
set may be not normalized. Thus we apply the normalization function normT,Y, after the mapping
ST(h).

This is the most important intuition behind normalized coalgebras. Normalization after map-
ping makes bisimilar also transition systems which are such only forgetting redundant transitions.
As an example consider the normalized coalgebras 〈N, αOPL;normTN ,〉 (partially represented in
Figure 6.2) and the normalized coalgebra 〈B, β; normTN ,N〉 (partially represented in Figure 6.3)(ii).
Consider the Γ(OPL)-homomorphism h : N → B (that just equates e and cx, and d and f). It
is not a D̂-cohomomorphism since it does not preserve the transition (xy, τ, e). However it is a
NT-cohomomorphism, since the normalization function in the algebra B prunes (xy, τ, e).

As Pc
L-cohomomorphisms must preserve and reflect transitions, NT-cohomomorphism must

preserve and reflect non redundant transitions.
As an example of a not normalized coalgebra consider 〈B, β〉 partially represented in Figure

6.3(i). Since (y, τ, c) ≺TN ,B (xy, τ, e), the set β(a) is not normalized w.r.t. B and TN .

Hereafter we will always implicitly assume to have a normalizable context interactive system.
The next lemma will be useful later to develop our theory. In order to develop our theory, first of
all, we have to prove that NT is a functor. The following properties of normalization function will
be fundamental.

Lemma 6.7. If (d, l, x) ∈ normT,X; cST(X)(A), then (d, l, x) ∈ cST(X)(A).

Proof. If (d, l, x) ∈ normT,X; cST(X)(A), then by definition of cST(X), there exists (d′, l′, x′) ∈
normT,X(A) such that (d′, l′, x′) `c

T,X (d, l, x). Now by definition of normalization, there exists
(d′′, l′′, x′′) ∈ A such that (d′′, l′′, x′′) ≡T,X (d′, l′, x′). Then (d′′, l′′, x′′) `T,X (d′, l′, x′) `c

T,X (d, l, x),
and then (d, l, x) ∈ cST(X)(A).

Lemma 6.8. ∀X, Y ∈ |AlgΓ(C)| and ∀h ∈ AlgΓ(C)[X, Y],

1. normT,X; dST(X); normT,X = dST(X); normT,X,

2. normT,X; D̂(h); normT,Y = D̂(h); normT,Y,

146 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

3. normT,X is idempotent.

Proof. For the first point we prove that ∀A ∈ |D̂(X)| and ∀c ∈ Γ,

cST(X);normT,X(A) = normT,X; cST(X); normT,X(A).

cST(X); normT,X(A) ⊆ normT,X; cST(X); normT,X(A)

Suppose that (e′, l′, x′) ∈ cST(X); normT,X(A), then there exists (e, l, x) ∈ cST(X)(A) such that:

1. (e, l, x) ≡T,X (e′, l′, x′),

2. it is not redundant in cST(X)(A).

By definition of cST(X), there exists (d0, l0, x0) ∈ A such that (d0, l0, x0) `c
T,X (e, l, x).

Now, by Lemma 6.5, there exists (d′0, l
′
0, x

′
0) ∈ normT,X(A) that dominates (d0, l0, x0). From

definition of cST(X), it follows that (e, l, x) ∈ normT,X; cST(X)(A). Now we have directly that
(e, l, x) ∈ normT,X; cST(X);normT,X(A). Indeed, if (e, l, x) /∈ normT,X; cST(X); normT,X(A), then
there exists a (e1, l1, x1) ∈ normT,X; cST(X)(A) that dominates (e, l, x). Now, by Lemma 6.7, we
have also that (e1, l1, x1) ∈ cST(X)(A) that leads to absurd with 2.
Then (e, l, x) ∈ normT,X; cST(X); normT,X(A), and also (e′, l′, x′) ∈ normT,X; cST(X); normT,X(A),
since the normalization function closes w.r.t. all equivalent transitions.

normT,X; cST(X); normT,X(A) ⊆ cST(X); normT,X(A)

Suppose that (e′, l′, x′) ∈ normT,X; cST(X); normT,X(A). Then exists (e, l, x) ∈ normT,X; cST(X)(A)
such that:

1. (e, l, x) ≡T,X (e′, l′, x′),

2. it is not redundant in normT,X; cST(X)(A).

Now, by lemma 6.7, (e, l, x) ∈ cST(X)(A). Now we have that (e, l, x) ∈ cST(X); normT,X(A). Indeed,
suppose ab absurdum that (e, l, x) /∈ cST(X);normT,X(A), then there exists a (e1, l1, x1) ∈ cST(X)(A)
that dominates (e, l, x). Now, by definition of cST(X), (d′′0 , l′′0 , x′′0) ∈ A such that (d′′0 , l′′0 , x′′0) `c

T,X

(e1, l1, x1). Now, by Lemma 6.5, and by (d′′0 , l′′0 , x′′0) ∈ A, it follows that (d′′′0 , l′′′0 , x′′′0) ∈ normT,X(A)
that dominates (d′′0 , l′′0 , x′′0). By definition of cST(X), (e1, l1, x1) ∈ normT,X; cST(X)(A) and this to-
gether with 2 leads to an absurd.
Thus (e, l, x) ∈ cST(X); normT,X(A), and since (e, l, x) ≡ (e′, l′, x′), (e′, l′, x′) ∈ cST(X);normT,X(A).

For the second point we prove that ∀A ∈ D̂(X),

normT,X; D̂(h); normT,Y(A) = D̂(h); normT,Y(A).

normT,X; D̂(h); normT,Y(A) ⊆ D̂(h); normT,Y(A)

Suppose that (d′, l′, y′) ∈ normT,X; D̂(h); normT,Y(A). Then exists (d, l, y) ∈ normT,X; D̂(h)(A)
such that

1. (d, l, y) ≡T,Y (d′, l′, y′),

2. it is not redundant in normT,X; D̂(h)(A).

Then ∃x ∈ X such that h(x) = y and (d, l, x) ∈ normT,X(A) and then ∃(d′′, l′′, x′′) ∈ A such that
(d, l, x) ≡T,X (d′′, l′′, x′′) and (d′′, l′′, h(x′′)) ∈ D̂(h)(A).

Now suppose ab absurdum that (d′′, l′′, y′′) /∈ D̂(h); normT,Y(A) where y′′ = h(x′′). Then
∃(d0, l0, y0) ∈ D̂(h)(A) such that (d0, l0, y0) ≺T,Y (d′′, l′′, y′′). However, if (d0, l0, y0) ∈ D̂(h)(A),
then (d0, l0, x0) ∈ A such that h(x0) = y0 and by Lemma 6.5 there exists (d′0, l

′
0, x

′
0) ∈ normT,X(A)

that dominates (d0, l0, x0). By Lemma 6.2, we have that (d′0, l
′
0, h(x′0)) `T,Y (d0, l0, h(x0)) ≺T,Y

6.4. SATURATED BISIMILARITY THROUGH NORMALIZED COALGEBRAS 147

(d′′, l′′, y′′) and, by Lemma 6.6.1, (d′0, l0, h(x′0)) ≺T,Y (d′′, l′′, y′′) ≡T,Y (d, l, y). Since (d′0, l
′
0, h(x′0)) ∈

normT,X; D̂(h)(A), this leads to an absurdum.
Now we have that (d′′, l′′, y′′) ∈ D̂(h); normT,Y(A) and that (d′′, l′′, y′′) ≡T,Y (d, l, y) ≡T,Y

(d′, l′, y′) and, since normT,Y closes w.r.t. all equivalent transitions (d′, l′, y′) ∈ D̂(h); normT,Y(A).

D̂(h); normT,Y(A) ⊆ normT,X; D̂(h); normT,Y(A)

Suppose that (d′, l′, y′) ∈ D̂(h); normT,Y(A), then there exists (d, l, y) ∈ D̂(h)(A), such that:

1. (d, l, y) ≡T,Y (d′, l′, y′),

2. it is not redundant in D̂(h)(A).

Then ∃x ∈ X, such that h(x) = y and (d, l, x) ∈ A.
By Lemma 6.5, ∃(d0, l0, x0) ∈ normT,X(A) (and (d0, l0, x0) ∈ A) that dominates (d, l, x), and

by Lemma 6.2 (d0, l0, h(x0)) `T,Y (d, l, h(x)). Now we have two possible cases: or (d, l, h(x)) 0T,Y

(d0, l0, h(x0)), or (d, l, h(x)) `T,Y (d0, l0, h(x0)). In the first case we have that (d0, l0, h(x0)) ≺T,Y

(d, l, h(x)), and this lead to absurdum with 2. Then, only the latter is possible.
Now suppose ab absurdum that (d0, l0, h(x0)) /∈ normT,X; D̂(h); normT,Y(A). Then there exists

(d1, l1, y1) ∈ normT,X; D̂(h)(A) that dominates (d0, l0, h(x0)). Thus there exists x1 ∈ X such that
h(x1) = y1 and (d1, l1, x1) ∈ normT,X(A) and (d′1, l

′
1, x

′
1) ∈ A such that (d′1, l

′
1, x

′
1) ≡T,X (d1, l1, x1).

Thus (d′1, l
′
1, h(x′1)) ∈ D̂(h)(A) and (d′1, l

′
1, h(x′1)) ≡T,Y (d1, l1, y1) ≺T,Y (d0, l0, h(x0)) ≡T,Y

(d, l, y), i.e., (d′1, l
′
1, h(x′1)) ≺T,Y (d, l, y), against 2.

Then we have that (d0, l0, h(x0)) ∈ normT,X; D̂(h); normT,Y(A) and then also (d′, l′, y′) ∈
normT,X; D̂(h); normT,Y(A).

For the third point we prove that ∀A ∈ NT(X), normT,X(A) = A. This is trivial, since normT,X

throws away all the redundant transitions and add all those equivalent. But since A is normalized,
it does not contain any redundant transitions, and it is still closed by equivalent transitions.

The first and the second points are needed to have that ∀h : X → Y, NT(h) is still a Γ(C)-
homomorphism. Indeed, recalling that D̂(h) = ST(h),

cNT(X);NT(h) = cST(X);normT,X;NT(h) = cST(X);normT,X;ST(h); normT,Y =

(by point 2)
cST(X);ST(h); normT,Y = ST(h); cST(Y);normT,Y =

(by point 1)

ST(h); normT,X; cST(X)normT,Y = NT(h); cST(Y); normT,Y = NT(h); cNT(Y).

The third point just means that if we normalize a normalized set, we get the same set. This
is used to prove that NT preserves identities. The second point describes a property that really
fits with our intuition of normalization: normalizing a set, applying an homomorphism and then
normalizing again is equivalent to applying the homomorphism and then normalizing. This is used
to prove that NT preserves composition: ∀h : X→ Y, g : Y→ Z,

NT(h; g) = D̂(h; g); normT,Z = D̂(h); D̂(g); normT,Z

= D̂(h); normT,Y; D̂(g); normT,Z = NT(h);NT(g).

In the next section, we will prove that CoalgNT
has a final system 1NT

and that the equivalence
relation induced by the unique morphism exactly coincides with saturated bisimilarity. In order to
do that, we would like to apply the theory illustrated in Section 6.1.3, but this is impossible since
the notion of normalization (and then the functor) strictly depends on the algebraic structure. In
categorical terms, this means that NT-coalgebras are not bialgebras, or equivalently, that there
exists no functor F : SetC → SetC such that NT is a lifting. This is the reason why we have used
structured coalgebras and not bialgebras.

148 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

X
h //

α

²²

Y

β

²²
ST(X)

ST(h)
// ST(Y)

ST(X)
ST(h) //

normT,X

²²

ST(Y)

normT,Y

²²
NT(X)

NT(h)
// NT(Y)

NT(X)
NT(h) //

satT,X

²²

NT(Y)

satT,Y

²²
ST(X)

ST(h)
// ST(Y)

(i) (ii) (iii)

Figure 6.4: normT and satT are natural transformations.

6.4.2 Isomorphism theorem

In this section, we prove that CoalgNT
is isomorphic to CoalgST

. This guarantees that the final
morphism in CoalgNT

induces an equivalence relation that coincides with ∼S . For any equivalence
classes we have a canonical representative that is smaller than that in CoalgST

, since normalized
coalgebras do not have redundant transitions.

Recall the saturation function (Definition 6.15). Saturation is intuitively the opposite of nor-
malization (this will be made formal in Lemma 6.11). Indeed saturation adds to a set all the
redundant transitions, while normalization throws all of them and leave only those meaningful.

We are going to prove that CoalgST
is isomorphic to CoalgNT

by showing that normalization
and saturation are two natural isomorphisms between the functors NT and ST.

Lemma 6.9. normT,X : ST(X) → NT(X) and satT,X : NT(X) → ST(X) are Γ(C)-homomorphisms.

Proof. For all operators c, cST(X); normT,X = by Lemma 6.8.1 = normT,X; cST(X);normT,X =
normT,X; cNT(X).

For satT,X we have that cNT(X); satT,X = cST(X);normT,X; satT,X, but since saturation adds ev-
erything that is removed by normalization, cST(X);normT,X; satT,X = cST(X); satT,X. At this point,
it is sufficient to prove that cST(X); satT,X = satT,X; cST(X).

We have to prove that ∀A ∈ |D̂(X)|, cST(X); satT,X(A) = satT,X; cST(X)(A).

cST(X); satT,X(A) ⊆ satT,X; cST(X)(A)

Suppose that (e, l, x) ∈ cST(X); satT,X(A), then by definition of saturation, there exists (e′, l′, x′) ∈
cST(X)(A) such that (e′, l′, x′) `T,X (e, l, x), and by definition of cST(X), there exists (e′0, l

′
0, x

′
0) ∈ A

(and then also in satT,X(A)) such that (e′0, l
′
0, x

′
0) `c

T,X (e′, l′, x′) `T,X (e, l, x). Then (e′0, l
′
0, x

′
0) `c

T,X

(e, l, x), and then (e, l, x) ∈ satT,X; cST(X)(A).

satT,X; cST(X)(A) ⊆ cST(X); satT,X(A)

Suppose that (e, l, x) ∈ satT,X; cST(X)(A), then, by definition of cST(X), there exists (d′, l′, x′) ∈
satT,X(A) such that (d′, l′, x′) `c

T,X (e, l, x). Thus, by definition of satT,X, there exists (d′′, l′′, x′′) ∈ A
such that (d′′, l′′, x′′) `T,X (d′, l′, x′). Then (d′′, l′′, x′′) `c

T,X (e, l, x) and then (e, l, x) ∈ cST(X)(A),
and then (e, l, x) ∈ cST(X); satT,X(A).

Proposition 6.10. Let normT and satT be respectively the families of morphisms {normT,X :
ST(X) → NT(X), ∀X ∈ |AlgΓ(C)|} and {satT,X : NT(X) → ST(X), ∀X ∈ |AlgΓ(C)|}. Then
normT : ST ⇒ NT and satT : NT ⇒ ST are natural transformations.

Proof. Since by Lemma 6.9, normT,X and satT,X are morphisms in AlgΓ(C), we have just to
prove that diagrams (ii) and (iii) in Figure 6.4 commute. Notes that by definition, NT(h) =
D̂(h); normT,Y and thus diagram (ii) commutes by Lemma 6.8.2.

In order to prove that Diagram (iii) commutes we prove that ∀A ∈ NT(X),

D̂(h); normT,Y; satT,Y(A) = satT,X; D̂(h)(A).

6.4. SATURATED BISIMILARITY THROUGH NORMALIZED COALGEBRAS 149

D̂(h); normT,Y; satT,Y(A) ⊆ satT,X; D̂(h)(A)

Suppose that (d, l, y) ∈ D̂(h); normT,Y; satT,Y(A), then there exist (d′, l′, y′) ∈ D̂(h); normT,Y(A)
such that (d′, l′, y′) `T,Y (d, l, y). Now by definition of normT,Y, there exists (d′′, l′′, y′′) ∈ D̂(h)(A)
such that (d′′, l′′, y′′) ≡T,Y (d′, l′, y′). Thus (d′′, l′′, y′′) `T,Y (d, l, y). Now ∃x′′ ∈ X such that h(x′′) =
y′′ and (d′′, l′′, x′′) ∈ A. By Lemma 6.3, ∃x ∈ X such that h(x) = y and (d′′, l′′, x′′) `T,X (d, l, x).
Then (d, l, x) ∈ satT,X(A) and then (d, l, y) ∈ satT,X; D̂(h)(A).

satT,X; D̂(h)(A) ⊆ D̂(h); normT,Y; satT,Y(A)

Suppose that (d, l, y) ∈ satT,X; D̂(h)(A). Then ∃x ∈ X such that h(x) = y and (d, l, x) ∈ satT,X(A)
and then (d′, l′, x′) ∈ A such that (d′, l′, x′) `T,X (d, l, x). Then we have that (d′, l′, h(x′)) ∈
D̂(h)(A), and then (d′, l′, h(x′))D̂(h); normT,Y; satT,Y(A), since saturation adds all the transitions
removed by normalization. Moreover since (d′, l′, h(x′)) `T,Y (d, l, h(x)), (d, l, h(x)) ∈ D̂(h); normT,Y; satT,Y(A).

Proposition 6.11. normT and satT are natural isomorphisms, one the inverse of the other.

Proof. We have to prove normT,X; satT,X = idST(X) and satT,X; normT,X = idNT(X).

normT,X; satT,X(A) ⊆ A

If (d, l, x) ∈ normT,X; satT,X(A), then (d′, l′, x′) ∈ normT,X(A) such that (d′, l′, x′) `T,X (d, l, x).
Thus (d′′, l′′, x′′) ∈ A such that (d′′, l′′, x′′) ≡T,X (d′, l′, x′). Then (d′′, l′′, x′′) `T,X (d, l, x). Now,
also (d, l, x) ∈ A, since A is saturated.

A ⊆ normT,X; satT,X(A)

If (d, l, x) ∈ A then, by Lemma 6.5, there exists (d′, l′, x′) ∈ normT,X(A) that dominates (d, l, x).
Thus (d, l, x) ∈ normT,X; satT,X(A).

satT,X; normT,X(A) ⊆ A

If (d′, l′, x′) ∈ satT,X; normT,X(A) then there exist (d, l, x) ∈ satT,X(A) such that

1. (d, l, x) ≡T,X (d′, l′, x′),

2. it is not redundant in satT,X(A).

Then ∃(d0, l0, x0) ∈ A such that (d0, l0, x0) `T,X (d, l, x). Now we have two possibilities:

• (d, l, x) 0T,X (d0, l0, x0), then (d0, l0, x0) ≺T,X (d, l, x) and this is absurd with 2.

• (d, l, x) `T,X (d0, l0, x0), then (d, l, x) ≡T,X (d0, l0, x0), and since A is normalized, (d, l, x) ∈ A.

A ⊆ satT,X; normT,X(A)

If (d, l, x) ∈ A, then (d, l, x) ∈ satT,X(A). Suppose ab absurdum that (d, l, x) /∈ satT,X;normT,X(A)
then there exists a (d′, l′, x′) ∈ satT,X(A) that dominates (d, l, x). Then, by definition of satT,X,
(d′′, l′′, x′′) ∈ A that dominates (d′, l′, x′). But then (d′′, l′′, x′′) dominates also (d, l, x), against the
hypothesis that A is normalized.

In Section 15 of [99], Rutten shows that any natural transformation between endofunctors,
induces a functor between the corresponding categories of coalgebras.

In our case, the natural transformation normT : ST ⇒ NT induces the functor NORMT :
CoalgST

→ CoalgNT
that maps every coalgebra 〈X, α〉 in 〈X, α;normT,X〉 and every cohomomor-

phism h in itself. Indeed, since h is a ST-cohomorphism, then diagram (i) in Figure 6.4 commutes,
and since normT is a natural transformation, then diagram (ii) commutes. Then the composition
of the two squares commutes, that is h is a NT-cohomomorphism.

Similarly, the functor SATT : CoalgNT
→ CoalgST

maps every coalgebra 〈X, α〉 in 〈X, α; satT,X〉
and every cohomomorphism h in itself.

150 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

Theorem 6.3. CoalgST
and CoalgNT

are isomorphic.

Proof. Note that by Proposition 6.11, NORMT : CoalgST
→ CoalgNT

and SATT : CoalgNT
→

CoalgST
are one the inverse of the other.

The above theorem guarantees that CoalgNT
has a final system 1NT

. Moreover the unique
morphism !ST

〈X,αI〉 in CoalgST
is equal to the unique morphism !NT

〈X,αI ;normT,X〉 in CoalgNT
. Therefore

the latter characterizes saturated bisimilarity.

Corollary 6.4. Let I = 〈C, X, O, tr〉 be a context interactive system and T a tile system sound
w.r.t it. Let !NT

〈X,αI ;normT,X〉 be the unique morphism from 〈X, αI ; normT,X〉 to 1NT
. Then ∀x, y ∈ X,

x ∼S y if and only if !NT

〈X,αI ;normT,X〉(x) =!NT

〈X,αI ;normT,X〉(y).

6.4.3 From symbolic semantics to ∼O through normalization.

In the previous section we have shown that the category of normalized coalgebras (CoalgNT
) is

isomorphic to the category of saturated coalgebras (CoalgST
), where the coalgebra corresponding

to satts, namely 〈X, αI〉, exists. The NT-coalgebra corresponding to 〈X, αI〉 is 〈X, αI ; normT,X〉
that is obtained by pruning all the transitions in αI that are redundant with respect to the tile
system T and X. We will often refer to 〈X, αI ; normT,X〉 as to normalized transition system.

In Section 6.3, we have shown that the unique morphism !ST

〈X,αI〉 to the final coalgebra 1ST

characterizes saturated bisimilarity (∼S). Therefore !NT

〈X,αI ;normT,X〉, that is the unique morphism
form the 〈X, αI ; normT,X〉 to a final coalgebra 1NT , still characterizes ∼S . This is pragmatically
interesting because, !NT

〈X,αI ;normT,X〉 disregards redundant transitions and works only with the mean-

ingful ones, while the !ST

〈X,αI〉 consider all the redundant transitions. Moreover the states in 1NT

are the minimal representatives of the equivalence classes of ∼S . The same happened in 1ST
, but

there, minimal representative are “bigger”, since they contains all the redundant transitions.
In this section we sketch a feasible procedure for computing !NT

〈X,αI ;normT,X〉. It is important
to say that this is just an intuition driven by the coalgebraic minimization algorithm seen in
Section 6.1.2. The precise definition, the (eventual) proofs of soundness and completeness, and a
complexity analysis are left as future works.

First of all, note that in order to recover∼S , we have to minimize the coalgebra 〈X, αI ;normT,X〉.
Unfortunately, normalizing αI is usually unfeasible, because the satts is usually infinitely branch-
ing. Instead of normalizing the satts, we can normalize the symbolic transition system (Section
4.1). The following proposition guarantees that this is correct.

Proposition 6.12. Let I = 〈C, X, O, tr〉 be a context interactive system, and let T be a tile system.
Let β be a symbolic transition system for I and T . Then

αI ;normT,X = β;normT,X.

Proof. Recall the definition of symbolic transition system (Definition 4.8). We have that β is a
symbolic transition system if and only if

p
c1,o1−−→SAT p1 ⇔ p

c2,o2−−→β p2 and p
c2,o2−−→ p2 `T,X p

c1,o1−−→ p1.

Here we prove that αI ; normT,X ⊆ β;normT,X. Suppose that (c1, o1, p1) ∈ αI ; normT,X(p), then
(c1, l1, x1) ∈ αI(p) and it is not redundant in αI(p). Since β is symbolic, then (c2, o2, p2) ∈ β(p) and
(c2, o2, p2) `T,X (c1, o1, p1). From (c2, o2, p2) ∈ β(p) and from the fact that β is symbolic we derive
that (c2, o2, p2) ∈ αI . Now since (c2, o2, p2) `T,X (c1, o1, p1) and since (c1, o1, p1) is not redundant
in αI(p), then it must be that (c1, o1, p1) `T,X (c2, o2, p2), i.e., (c1, o1, p1) ≡T,X (c2, o2, p2).

Now suppose ab absurdum that (c1, o1, p1) (and thus (c2, o2, p2)) is redundant in β(p). Then
there exists (c3, o3, p3) ∈ β(p) such that (c3, o3, p3) ≺T,X (c1, o1, p1). Since β is symbolic, also

6.4. SATURATED BISIMILARITY THROUGH NORMALIZED COALGEBRAS 151

(c3, o3, p3) ∈ αI(p) against the hypothesis that (c1, o1, p1) is not redundant in αI(p). Therefore
(c1, o1, p1) ∈ β; normT,X(p).

The other direction is analogous.

The proposition above make clearer the link between symbolic transition system (scts) and
normalization. Symbolic transition system is half-way through the saturated transition systems
(αI) and normalized transition system (αI ; normT,X). Indeed saturated transition system contains
all the redundant transitions, symbolic transition system contains just some redundant transitions,
and normalized transition system does not contain any redundant transitions.

It is worth noting that by “redundant transitions” we refer to redundancy in the sense of
Definitions 6.17 and 4.7 (note that the former is just a generalization of the latter). However,
during the thesis, we have seen that there are also other two kinds of redundancy: in Section
1.1.3 we have said that IPO semantics forget about redundant transitions and at the beginning
of Section 6.4.1, we have shown that there exists also a “more semantical” notion of redundancy.
More precisely there exists three level of redundancy.

Local Redundancy. One transition is locally redundant if it is dominated by another transition
that employs the same rule. This is very precise in the case of reactive systems, while more intuitive
in the generalization to context interactive system.

In the case of reactive system, all the transitions that are not IPOs are locally redundant, since
these can be derived by an IPO transition employing the same rule. For example, concerning the
reactive system for open input Petri nets (Example 1.7) the transition bb

xy→SAT bcx is locally
redundant because we also have bb

y→SAT bc with the same reaction rule (i.e., 〈by, c〉), as shown in
the following diagram.

1

1

xy
@@¡¡¡¡¡¡ y // 1

x

OO

0

bx
^^>>>>>>

boo

0
bb

^^>>>>>> by

@@¡¡¡¡¡¡

For the case of context interactive systems, recall that symbolic transition systems are a generaliza-
tion of IPO transition systems (Theorem 4.2). Thus we can intuitively say that local redundancy
is also eliminated by symbolic transition system (this is not really precise because in context inter-
active systems there is not a notion of rule, but it holds for all the case that we have considered).
For example, in the case of open π-calculus (Section 5.2), we have that in the satts, there is a
transition τ.p

σ,τ−→SAT σ(p), for all the substitutions σ, but in the symbolic transition system we

have just τ.p
id,τ−→o p.

Global Redundancy. One transition is globally redundant if it is dominated by another tran-
sition. Notice that there is not any hypothesis on the rules and thus this redundancy is global in
the sense that it concerns all the transitions of a system. This kind of redundancy is the one of
Definitions 6.17 and 4.7 and thus normalizing means pruning all globally redundant transitions.
For this reason, the normalized transition system αI ; normT,X does not have globally redundant
transitions, while the symbolic transition systems usually have globally redundant transitions. As
an example consider the following asynchronous π-process

p = a(b).(ab | r) + τ.r.

The transition p
−|ab,τ−−−→α ab | r of the symbolic transition system is not locally redundant (since it is

the smallest of the left part of p), but it is globally redundant because it is dominated by p
−,τ−→α r

(performed by the right part of p).

152 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

In the symbolic transition system of open π-calculus we also have globally redundant transitions.
Consider the process

q = [a = b][c = d]τ.r + [a = b]τ.r.

The transition p
[a=b][c=d],τ−−−−−−→o [a = b][c = d]r of the symbolic transition system is not locally

redundant (since it is the smallest of the left part of p), but it is globally redundant because it is

dominated by p
id,τ−→o r (performed by the right part of p).

The same happens in the IPO transition system of reactive system. Suppose to have two rules
〈l, r〉 and 〈l′, r′〉. The IPO transition p

c→I r; d is not locally redundant (since it is the smallest
performed through the rule 〈l, r〉), but it is globally redundant, because it is dominated by the

transition p
c′→I r′; d′ (performed through the rule 〈l′, r′〉).

n yeoo

k

c

@@¢¢¢¢¢¢¢
c′pppppp

77pppppp

j

d===

^^===

x

d′
^^=======

0
p

^^======
l

@@¢¢¢¢¢¢¢ l′

77pppppppppppp

It is worth noting that in all the examples that we have considered in the first part of the thesis
where ∼IPO was too strict, there was globally redundant IPO transitions. These are shown in
Figure 3.3.

Semantical Redundancy A transition p
c1,o1−−→ q1 is semantically redundant if p

c2,o2−−→ q2 and
p

c2,o2−−→ q2 `T p
c1,o1−−→ q and q ∼S q1. While globally redundant transitions can be pruned by

normalization, semantically redundant transitions cannot, since their definition relies on saturated
bisimilarity. Therefore semantically redundant transitions are presents also in the normalized
transition system, and can be removed just by minimizing the corresponding normalized coalgebra
in CoalgNT

. Through the whole thesis we have seen several cases of semantically redundant
transitions that are not globally redundant.

As an example consider the asynchronous-π process

p = a(b).(ab | r′) + τ.r

with r ∼S r′. The transition p
−|ab,τ−−−→α ab | r of the normalized transition system is not globally

redundant (since, r is syntactically different from r′), but it is semantically redundant because
p
−,τ−→α r′ and ab | r ∼O ab | r′. Analogously for the case of open π-calculus.

In the case of open input Petri nets the transition a
xy,τ−→ e is not globally redundant, but it is

semantically redundant because a
y,τ−→c and cx ∼S e.

Let us come back to the minimization algorithm seen in Section 6.1.2. We can instantiate it, in
the case of CoalgNT

for our normalized coalgebras 〈X, αI ;normT,X〉. Hereater we will write !NT
n

to mean the nth aprroximation of !NT

〈X,αI ;normT,X〉.

At the beginning, !NT
0 : X→ 1 is the final morphism to 1 (the final Γ(C)-algebra).

At any iteration, !NT
n+1 = αI ; normT,X;NT(!NT

n) = αI ;normT,X; D̂(!NT
n); normT,Nn

T(1).

X
!
NT
n //

αI ;normT,X

²²

!
NT
n+1

%%JJJJJJJJJJJ Nn
T(1)

NT(X)
NT(!

NT
n)

// Nn+1
T (1)

6.4. SATURATED BISIMILARITY THROUGH NORMALIZED COALGEBRAS 153

The peculiarity of minimization in CoalgNT
is that we must normalize at every iteration. Note

that the normalization is performed not only in the source algebra X, but also on the target algebra
Nn

T(1). Thus the minimization procedure strictly depends on the algebraic structure. This further
explains why normalized coalgebras are structured coalgebras but not bialgebras where we can
completely forget about the algebraic structure.

We left the precise definition and the analysis of the algorithm as future work. We round up
the section by showing how minimization works for our running example.

Example 6.11 (Minimization for open input Petri nets). Recall the context interactive system
N = 〈OPL, N, {τ}, trN 〉 introduced in Example 4.9 and the tile system TN introduced in the same
example. In Example 3.2, we have formally proved that a ∼S b, by showing a semi-saturated
bisimulation relating them. Here we prove that a ∼S b by proving that !NTN (a) =!NTN (b), i.e.,
by showing that the canonical representatives in the category of normalized coalgebras, for both a
and b are the same. It is worth noting that proving this in the category of saturated coalgebras is
unfeasible since their canonical representatives (in CoalgST

) are infinite.

The sets of transitions αN ; normTN ,N(a) and αN ;normTN ,N(b) are shown in Figure 6.2. By
Proposition 6.12 these can be computed by normalizing in N a symbolic transition system (in this
case we can take the IPO transition system of Figure 1.5).

The final Γ(OPL)-algebra 1 has only one element for each sort. Since we are interested only
in elements and operations of sort 1, we will write ? to mean the only element of sort 1 of 1.

The homomorphism !
NTN
0 : N→ 1 maps all the elements of N into ?.

In order to compute !
NTN
1 , we first compute α; normTN ,N; D̂(!

NTN
0) for all the states reachable

from a and b (the results are reported in the second column of Figure 6.5) and then we normalize
in the final algebra 1 (third column). The normalization prunes the transition a

xy,τ−→ ?. Indeed
(y, τ, ?) ≺1,TN (xy, τ, ?) because

1
id1 //

=y

²²

1

xy

²²
1

x //

τ

®¶
x

1

τ

®¶
1 x

// 1

and x1(?) = ?. The morphism !
NTN
1 partitions the set of states in {a, b}, {c}, {d, f}, {e}.

For computing !
NTN
2 we proceed as before, using !

NTN
1 instead of !

NTN
0 and normalizing on

NTN (1) instead of normalizing on 1. The results of the second iteration are reported in Figure
6.6. Normalization throws away the transitions a

xy,τ−→ {(ε, τ, ?)} because (y, τ, {(x, ?)}) ≺NTN (1),TN

(xy, τ, {(ε, ?)}). The morphism !
NTN
2 partitions the set of states in {a, b}, {c}, {d, f}, {e}, as well

as !
NTN
1 .
Thus the algorithm terminates and then a ∼S b.
The minimal representative of both a and b is depicted in Figure 6.3(iii).

154 CHAPTER 6. COALGEBRAIC MODELS FOR CONTEXT INTERACTIVE SYSTEMS

multisets αN ; normTN ,N; D̂(!
NTN
0) !

NTN
1

a {(xy, τ, ?), (y, τ, ?)} {(y, τ, ?)}
b {(y, τ, ?)} {(y, τ, ?)}
c {(x, τ, ?)} {(x, τ, ?)}
d ∅ ∅
e {(ε, τ, ?)} {(ε, τ, ?)}
f ∅ ∅

Figure 6.5: First iteration of the minimization algorithm.

multisets αN ;normTN ,N; D̂(!
NTN
1) !

NTN
2

a {(xy, {(ε, τ, ?)}), (y, {(x, τ, ?)})} {(y, {(x, τ, ?)})}
b {(y, {(x, τ, ?)})} {(y, {(x, τ, ?)})}
c {(x, τ,∅)} {(x, τ,∅)}
d ∅ ∅
e {(ε, τ,∅)} {(ε, τ,∅)}
f ∅ ∅

Figure 6.6: Second iteration of the minimization algorithm.

Conclusions

Here we summarize the main results of the thesis and outline future work.

Inadequacy of IPO semantics. The starting point of the thesis has been the theory of reactive
systems by Leifer and Milner. The main contribution of our work to this field has been to show
that in many interesting cases IPO semantics are too strict. We provide the examples of open
input Petri nets (Example 1.9), Logic Programming (Section 3.2) and open π-calculus (Section
3.3). Besides showing this fact, we have also understood the reasons for this phenomenon.

In the IPO labeled transition system there are redundant transitions that allow an external
observer to distinguish systems that should be considered equivalent. By working with concrete
examples and studying their coalgebraic semantics, we have understood that three levels of redun-
dancy exist that, in Section 6.4.3, we have called local, global and semantical redundancy. The IPO
labeled transition system avoids only the locally redundant transitions, but not those globally and
semantically redundant.

A further reason for the inadequacy of IPO semantics exists: in reactive systems, only one label
must represents both interactions and observations. Since these two concepts are often distinct (as
is the case of asynchronous message-passing formalisms) only one label cannot represent both.

Besides pointing out the inadequacy of IPO semantics, the thesis has discussed other limitations
of the theory of reactive systems that are summarized in Section 3.4.

A reactive system for CCS. In Chapter 2, we have shown a reactive system for CCS by
employing a graphical encoding and borrowed contexts rewriting. The derived labeled transition
system is similar to the original one and the resulting bisimilarity coincides with the canonical
one. This is is very important because it is the first result stating such a correspondence for a
fully flagged process calculus, but it is in contrast with our aim to prove IPO semantics to be
inadequate. From our point of view, the theory of reactive systems works well in the case of CCS
because here all the interactions are observable.

This work is also interesting because it proposes borrowed contexts rewriting as a valid al-
ternative to bigraphs for deriving lts of process calculi. The greatest advantage with respect to
bigraphs is the possibility to employ a few rewriting rules instead of an infinite number of them.
This results in deriving a finite branching lts (while in the case of bigraphs it is always infinite)
and to tackle well recursive processes.

The general framework. The thesis also proposes a meta theory for reasoning on the abstract
semantics of a large variety of formalism modeling interactive systems. The framework supplies:

1. A general notion of abstract semantics, namely saturated semantics.

2. A theory for defining symbolic semantics that efficiently characterize the saturated ones.

3. A coalgebraic characterization of both saturated and symbolic semantics.

Our framework generalizes the theory of reactive systems (as formally shown in Section 4.2.2).
Indeed, in the definition of the symbolic transition system, we take as a label the minimal context
that is needed to perform a transition (analogoulsy to the IPO transition system), but we consider

156 CHAPTER F. CONCLUSIONS

a more refined notion of bisimulation, namely symbolic bisimulation. Moreover, our symbolic
transition system is labeled also with observations and for this reason our theory is very flexible
and applicable in a lot of cases. We have shown that our framework can be applied to asynchronous
π-calculus (Section 5.1), open π-calculus (Section 5.2) and open Petri nets (Section 5.3). In the
first two cases we re-derive existing results, while in the latter we obtain a new symbolic semantics.

Normalized Coalgebras. In a category of coalgebras, the equivalence induced by the unique
morphisms to a final object coincides with bisimilarity. Therefore, saturated bisimilarity is simply
the equivalence induced by the final morphism from the saturated transition system (satts).

This is theoretically interesting because it guarantees the existence of both a minimal repre-
sentative for each equivalence class of saturated bisimilar system and a minimization procedure.
However, it is pragmatically useless because the satts is usually infinite branching and thus also
the minimal representatives are infinite branching and the minimization procedure is unfeasible.

Since most of the transitions of satts are redundant, we would like to avoid considering them.
As is the case of symbolic semantics, we cannot simply throw away redundant transitions and
then consider the standard bisimilarity because the resulting equivalence is strictly finer than
saturated bisimilarity. For this reason we have introduced normalized coalgebras as a special kind
of coalgebras without redundant transitions. Theorem 6.3 states that the category of normalized
coalgebras is isomorphic to the category of saturated coalgebras, i.e., the coalgebras having all
redundant transitions. Since satts is a saturated coalgebras we can transform it into a normalized
coalgebra and then considering the unique morphism in the category of normalized coalgebras.
Here the minimal representatives are smaller than that of saturated coalgebras, because they do
not have redundant transitions. Moreover, the minimization procedure is feasible since redundant
transitions are forgotten.

Normalized coalgebras are also interesting because they are the first meaningful structures that
are structured coalgebras [34] but not bialgebras [110].

The large variety of presented examples bears testimony to the usefulness of our work. However,
besides the presented material, the notion of saturated and symbolic semantics have been used in
[17] to give an abstract semantics to OWL-S [91], a well known specification language for web
services. For this purpose, we have introduced a peculiar kind of open Petri nets, namely open-
consume-produce-read nets (OCPR nets) and we have defined an encoding of OWL-S expressions
into OCPR nets. Then we have defined a weak version of saturated bisimilarity for these nets. This
equivalence is weak (i.e., it abstracts away from internal transitions) compositional and computable.
Thanks to compositionality, given a web service that is composed by several other sub-services,
we can safely replace a sub-service with an equivalent one, without changing the behavior of the
composite service. Based on this semantics, in [18] we have defined a methodology for web services
publication and web services replaceability and we have applied it to a concrete banking scenario.

The two above mentioned papers show that our theoretical work could be fruitfully employed
in order to solve pragmatical problems.

We can round up the thesis outlining some possible lines of research.

Relationship with bialgebras over presheaves. Bialgebras over categories of presheaves have
been used as a fully abstract and compositional model of names and values passing process calculi
[52] that are specified through SOS rules. In Section 4.2.1, we have sketched that context interactive
systems can be seen as coalgebras over presheaves. By exploiting this relationship, we would like to
develop a systematic way of translating bialgebras over presheaves into “normalized bialgebras”.
This could allow us to transform SOS specifications into a “symbolic SOS specifications”, i.e.,
instead of constructing the symbolic transition system by hand, this could be done automatically
starting from the original SOS rules.

F.4. CONCLUSIONS 157

Minimization algorithm. Normalized coalgebras provide a minimal representative for each
equivalence class of saturated bisimilar states. The main difference with respect to the standard
coalgebraic characterization of saturated semantics (i.e., saturated coalgebras) is that the mini-
mal representatives of normalized coalgebras have no redundant transitions, while the minimal
representative of saturated coalgebras are saturated, i.e., they have all the redundant transitions.
For this reason, minimizing saturated coalgebras is usually unfeasible, or however very complex.
As sketched in Section 6.4.3, normalized coalgebras provide an efficient minimization algorithm
that forgets about redundant transitions. On the one hand, minimization could be useful to prove
bisimilarity (two or more systems are bisimilar if and only if their minimal representatives are
the same), on the other hand minimization could be used for model checking several properties
eliminating useless states and transitions. In fact, most of model checking logics are adequate,
namely either a formula holds in both the given system and its minimal representative or it does
not hold in both of them.

The precise definition and the analysis of this minimization algorithm has been left for future
work.

Applying the framework to other formalisms. Inspired by [63, 100], Boreale and De Nicola
proposed in [26], a symbolic semantics for early and late bisimilarity of π-calculus. We are confident
that we could recast their results into our framework. Indeed, Lemma 3.10 of [26] states that their
symbolic transition system is sound and complete as required by our Definition 4.8.

Besides this, we would like to apply our framework to give symbolic semantics to [5, 113, 49].
In [19] we have used our theory for concurrent constraint π-calculus [30].

Weak semantics. When considering concrete applications, weak semantics are often more use-
ful. Our framework can also be easily applied to weak semantics, as we have done in [17]. In order
to get a weak saturated semantics and its symbolic characterization, it is sufficient to apply our
framework to the weak lts, i.e., the lts ⇒ defined by the following two rules for an observation
o 6= τ .

p1
τ∗−→ p2

o−→ p3
τ∗−→ p4

p1
o⇒ p4

p1
τ∗−→ p2

p1
ε⇒ p2

However our theory could be used also from a different perspective. Notice that in the definition
of weak bisimulation given in [80], a strong transition o−→ could be matched by a weak transition
o⇒. If we think to o−→ as the symbolic transition system and to o⇒ as the saturated one, we retrieve
exactly our definition of semi-saturated bisimulation.

If we are able to recast weak bisimilarity into our framework, we could also get a coalgebraic
characterization of weak bisimilarity (which is still missing in literature).

158 CHAPTER F. CONCLUSIONS

Bibliography

[1] Samson Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus. In-
formation and Computation, 105(2):159–267, 1993.

[2] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational semantics, 1999.

[3] Jiŕı Adámek. A logic of coequations. In Proc. of CSL ’05, volume 3634 of LNCS, pages
70–86. Springer, 2005.

[4] Jiŕı Adámek and Václav Koubek. On the greatest fixed point of a set functor. Theoretical
Computer Science, 150(1), 1995.

[5] Roberto M. Amadio. A synchronous π-calculus. Information and Computation, 205(9):1470–
1490, 2007.

[6] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for the asyn-
chronous pi-calculus. In Proc. of CONCUR ’96, volume 1119 of LNCS, pages 147–162.
Springer, 1996.

[7] Paolo Baldan, Andrea Bracciali, and Roberto Bruni. Bisimulation by unification. In Proc.
of AMAST ’02, volume 2422 of LNCS, pages 254–270. Springer, 2002.

[8] Paolo Baldan, Andrea Corradini, Hartmut Ehrig, and Reiko Heckel. Compositional semantics
for open petri nets based on deterministic processes. Mathematical Structures in Computer
Science, 15(1):1–35, 2005.

[9] Paolo Baldan, Andrea Corradini, Hartmut. Ehrig, Reiko Heckel, and Barabara König. Bisim-
ilarity and behaviour-preserving reconfiguration of open petri nets. In Proc. of CALCO ’07,
volume 4624 of LNCS, pages 126–142. Springer, 2007.

[10] Paolo Baldan, Hartmut Ehrig, and Barbara König. Composition and decomposition of DPO
transformations with borrowed context. In Proc. of ICGT ’06, pages 153–167.

[11] Falk Bartels, Ana Sokolova, and Erik P. de Vink. A hierarchy of probabilistic system types.
ENTCS, 82(1), 2003.

[12] J. Bénabou. Introduction to bicategories. 42:1–77, 1967.

[13] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

[14] Stefano Bistarelli and Fabio Gadducci. Enhancing constraints manipulation in semiring-based
formalisms. In Proc. of ECAI ’06, pages 63–67. IOS Press, 2006.

[15] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfac-
tion and optimization. J. ACM, 44(2):201–236, 1997.

[16] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J. ACM,
42(1):232–268, 1995.

160 BIBLIOGRAPHY

[17] Filippo Bonchi, Antonio Brogi, Sara Corfini, and Fabio Gadducci. A behavioural congruence
for Web services. In Proc. of FSEN ’07, volume 4767 of LNCS, pages 240–256. Springer,
2007.

[18] Filippo Bonchi, Antonio Brogi, Sara Corfini, and Fabio Gadducci. Compositional specifica-
tion of web services via behavioural equivalence: A case study. In Proc. of ATPN ’08, volume
5062 of LNCS, pages 52–71. Springer, 2008.

[19] Filippo Bonchi, Marzia Buscemi, and Ugo Montanari. Symbolic semantics for cc-pi: an
algebraic view. Presented at WADT ’08, 2008.

[20] Filippo Bonchi, Fabio Gadducci, and Barbara König. Process bisimulation via a graphical
encoding. In Proc. of ICGT ’06, volume 4178 of LNCS, pages 168–183, 2006.

[21] Filippo Bonchi, Barbara König, and Ugo Montanari. Saturated semantics for reactive sys-
tems. In Logic in Computer Science, pages 69–80. IEEE, 2006.

[22] Filippo Bonchi and Ugo Montanari. A coalgebraic theory of reactive systems. ENTCS, to
appear.

[23] Filippo Bonchi and Ugo Montanari. G-reactive systems as coalgebras. ENTCS, to appear.

[24] Filippo Bonchi and Ugo Montanari. Coalgebraic models for reactive systems. In Proc. of
CONCUR ’07, volume 4701 of LNCS, pages 364–380. Springer, 2007.

[25] Filippo Bonchi and Ugo Montanari. Symbolic semantics revisited. In Proc. of FoSSaCS ’08,
volume 4962 of LNCS, pages 395–412. Springer, 2008.

[26] Michele Boreale and Rocco De Nicola. A symbolic semantics for the pi-calculus. Information
and Computation, 126(1):34–52, 1996.

[27] Roberto Bruni, Fabio Gadducci, Ugo Montanari, and Pawel Sobociński. Deriving weak
bisimulation congruences from reduction systems. In Proc. of CONCUR ’05, volume 3653 of
LNCS, pages 293–307. Springer, 2005.

[28] Roberto Bruni, Ugo Montanari, and Francesca Rossi. An interactive semantics of logic
programming. Theory and Practice of Logic Programming, 1(6):647–690, 2001.

[29] Roberto Bruni, Ugo Montanari, and Vladimiro Sassone. Observational congruences for dy-
namically reconfigurable tile systems. Theoretical Computer Science, 335(2-3):331–372, 2005.

[30] M.G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specifying service
level agreements. In Proc. of ESOP ’07, volume 4421 of LNCS, pages 18–32. Springer, 2007.

[31] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[32] Andrea Corradini and Fabio Gadducci. An algebraic presentation of term graphs, via gs-
monoidal categories. Applied Categorical Structures, 7:299–331, 1999.

[33] Andrea Corradini, Martin Große-Rhode, and Reiko Heckel. Structured transition systems as
lax coalgebras. ENTCS, 11, 1998.

[34] Andrea Corradini, Martin Große-Rhode, and Reiko Heckel. A coalgebraic presentation of
structured transition systems. Theoretical Computer Science, 260:27–55, 2001.

[35] Andrea Corradini, Reiko Heckel, and Ugo Montanari. From sos specifications to structured
coalgebras: How to make bisimulation a congruence. ENTCS, 19, 1999.

[36] Andrea Corradini, Reiko Heckel, and Ugo Montanari. Tile transition systems as structured
coalgebras. In Proc. of FCT ’09, pages 13–38, 1999.

0.0. BIBLIOGRAPHY 161

[37] Andrea Corradini, Ugo Montanari, and Francesca Rossi. Graph processes. Fundamenta
Informaticae, 26:241–265, 1996.

[38] Pietro di Gianantonio, Furio Honsel, and Marina Lenisa. Rpo, second-order contexts, and
λ-calculus. In Proc. of FoSSaCS ’08, volume 4962 of LNCS, pages 334–349. Springer, 2008.

[39] Hartmut Ehrig, A.Gajewski, and Francesco Parisi-Pressicce. High-level replacement systems
with applications to algebraic specification and Petri Nets, volume 3 of Handbook of Graph
Grammar and Computing by Graph Transormation, chapter 6, pages 341–400. World Scien-
tific, 1999.

[40] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of
Algebraic Graph Transformation. Monographs in Theoretical Computer Science. Springer,
2006.

[41] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz Rozen-
berg, editors. Handbook of Graph Grammars and Computing by Graph Transformation,
volume 1-3. World Scientific, 1997-1999.

[42] Hartmut Ehrig, Annegret Habel, Hans Jörg Kreowski, and Francesco Parisi-Presicce. Par-
allelism and concurrency in high-level replacement systems. Mathematical Structures in
Computer Science, 1:361–404, 1991.

[43] Hartmut Ehrig and Barbara König. Deriving bisimulation congruences in the DPO approach
to graph rewriting. In Proc. of FoSSaCS ’04, volume 2987 of LNCS, pages 151–166. Springer,
2004.

[44] Hartmut Ehrig, Michael Pfender, and Hans Jrgen Schneider. Graph-grammars: an algebraic
approach. In Switching and Automata Theory, pages 167–180. IEEE Computer Society Press,
1973.

[45] Joost Engelfriet and Tjalling Gelsema. Multisets and structural congruence of the π-calculus
with replication. Theoretical Computer Science, 211:311–337, 1999.

[46] Moreno Falaschi, Giorgio Levi, Catuscia Palamidessi, and Maurizio Martelli. Declarative
modeling of the operational behavior of logic languages. Theoretical Computer Science,
69(3):289–318, 1989.

[47] Gian Luigi Ferrari, Ugo Montanari, and Emilio Tuosto. Coalgebraic minimization of hd-
automata for the pi-calculus using polymorphic types. Theoretical Computer Science, 331(2-
3):325–365, 2005.

[48] Gian Luigi Ferrari, Ugo Montanari, Emilio Tuosto, Björn Victor, and Kidane Yemane. Mod-
elling fusion calculus using hd-automata. In Proc. of CALCO ’05, volume 3629 of LNCS,
pages 142–156, 2005.

[49] Gianluigi Ferrari, Roberto Guanciale, and Daniele Strollo. Jscl: A middleware for service
coordination. In Proc. of FORTE ’06, volume 4229 of LNCS, pages 46–60. Springer, 2006.

[50] Gianluigi Ferrari, Ugo Montanari, and Emilio Tuosto. Model checking for nominal calculi.
In Proc. of FoSSaCS ’05, volume 3441 of LNCS, pages 1–24. Springer, 2005.

[51] Marcelo P. Fiore, Eugenio Moggi, and Davide Sangiorgi. A fully abstract model for the
pi-calculus. Information and Computation, 179(1):76–117, 2002.

[52] Marcelo P. Fiore and Daniele Turi. Semantics of name and value passing. In Logic in
Computer Science, pages 93–104. IEEE, 2001.

[53] Wan Fokkink and Rob J. van Glabbeek. Ntyft/ntyxt rules reduce to ntree rules. Information
and Computation, 126(1):1–10, 1996.

162 BIBLIOGRAPHY

[54] Fabio Gadducci. Term graph rewriting and the π-calculus. In Programming Languages and
Semantics, volume 2895 of LNCS, pages 37–54. Springer, 2003.

[55] Fabio Gadducci and Reiko Heckel. An inductive view of graph transformation. In Recent
Trends in Algebraic Development Techniques, volume 1376 of LNCS, pages 219–233. Springer,
1997.

[56] Fabio Gadducci and Ugo Montanari. A concurrent graph semantics for mobile ambients.
volume 45 of ENTCS, 2001.

[57] Fabio Gadducci and Ugo Montanari. Observing reductions in nominal calculi via a graphical
encoding of processes. In Processes, terms and cycles (Klop Festschrift), volume 3838 of
LNCS, pages 106–126. Springer, 2005.

[58] Fabio Gadduci and Ugo Montanari. The tile model. In Proof, Language and Interaction:
Essays in honour of Robin Milner. MIT Press, 1999.

[59] J. Goguen. What is unification? A categorical view of substitution, equation and solution.
In Resolution of Equations in Algebraic Structures, pages 217–261. 1989.

[60] Davide Grohmann and Marino Miculan. Directed bigraphs. ENTCS, 173:121–137, 2007.

[61] Davide Grohmann and Marino Miculan. Reactive systems over directed bigraphs. In Proc.
of CONCUR ’07, volume 4703 of LNCS, pages 380–394. Springer, 2007.

[62] Jan Friso Groote and Frits W. Vaandrager. Structured operational semantics and bisimula-
tion as a congruence. Information and Computation, 100(2):202–260, 1992.

[63] Matthew Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science,
138(2):353–389, 1995.

[64] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In
Proc. of ECOOP ’91, volume 512 of LNCS, pages 133–147. Springer, 1991.

[65] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 151(2):437–486, 1995.

[66] Ole H. Jensen and Robin Milner. Bigraphs and transitions. In POPL, pages 38–49, 2003.

[67] Paris C. Kanellakis and Scott A. Smolka. Ccs expressions, finite state processes, and three
problems of equivalence. Information and Computation, 86(1):43–68, 1990.

[68] G.M Kelly. Basic concepts of enriched category theory. 64, 1982.

[69] Ekkart Kindler. A compositional partial order semantics for petri net components. In Proc.
of ATPN ’97, volume 1248 of LNCS, pages 235–252, 1997.

[70] Bartek Klin, Vladimiro Sassone, and Pawel Sobociński. Labels from reductions: Towards a
general theory. In Proc. of CALCO ’05, volume 3629 of LNCS, pages 30–50. Springer, 2005.

[71] Alexander Kurz. A co-variety-theorem for modal logic. In Advances in Modal Logic, pages
367–380. CSLI Publications, 1998.

[72] Alexander Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis,
2000.

[73] Stephen Lack and Pawel Sobociński. Adhesive and quasiadhesive categories. Informatique
Théorique et Applications/Theoretical Informatics and Applications, 39:511–545, 2005.

0.0. BIBLIOGRAPHY 163

[74] Francis W. Lawvere. Some algebraic problems in the context of functorial semantics of
algebraic theories. In Proc. of the Midwest Category Seminar II, volume 61 of Lecture Notes
in Mathematics, pages 41–61, 1968.

[75] James Leifer. Operational Congruences for reactive systems. PhD thesis, University of
Cambridge, 2001.

[76] James J. Leifer and Robin Milner. Deriving bisimulation congruences for reactive systems.
In Proc. of CONCUR ’00, volume 1877 of LNCS, pages 243–258. Springer, 2000.

[77] Peter Massuthe, Wolfgang Reisig, and Karsten Schmidt. An operating guideline approach
to the SOA. Annals of Mathematics, Computing & Teleinformatics, 1(3):35–43, 2005.

[78] Massimo Merro and Francesco Zappa Nardelli. Bisimulation proof methods for mobile am-
bients. In Proc.of ICALP ’03, volume 2719 of LNCS, pages 584–598. Springer, 2003.

[79] Marino Miculan and Kidane Yemane. A unifying model of variables and names. In Proc. of
FoSSaCS ’05, volume 3441 of LNCS, pages 170–186. Springer, 2005.

[80] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[81] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press, 1999.

[82] Robin Milner. Bigraphical reactive systems. In Proc. of CONCUR ’01, volume 2154 of LNCS,
pages 16–35. Springer, 2001.

[83] Robin Milner. Bigraphs for petri nets. In Lectures on Concurrency and Petri Nets, volume
3098 of LNCS, pages 686–701. Springer, 2004.

[84] Robin Milner. Pure bigraphs: Structure and dynamics. Information and Computation,
204:60–122, 2006.

[85] Robin Milner. Local bigraphs and confluence: Two conjectures. ENTCS, 175(3):65–73, 2007.

[86] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, (i) and
(ii). Information and Computation, 100(1):1–40, 41–77, 1992.

[87] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Proc. of ICALP ’92, volume
623 of LNCS, pages 685–695. Springer, 1992.

[88] Ugo Montanari and Marco Pistore. Finite state verification for the asynchronous pi-calculus.
In Proc. of TACAS ’99, volume 1579 of LNCS, pages 255–269. Springer, 1999.

[89] Ugo Montanari and Vladimiro Sassone. Dynamic congruence vs. progressing bisimulation
for ccs. Fundamenta Informaticae, 16(1):171–199, 1992.

[90] Lawrence S. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96(1-3):277–317, 1999.

[91] OWL-S Coalition. OWL-S: Semantic Markup for Web Service, 2006.
http://www.ai.sri.com/daml/services/owl-s/1.2/overview/.

[92] David Park. Concurrency and automata on infinite sequences. In Theoretical Computer
Science, volume 104 of LNCS, pages 167–183. Springer, 1981.

[93] Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and simmetry in
mobile processes. In Logic in Computer Science, pages 176–185. IEEE Computer Society
Press, 1998.

[94] Marco Pistore and Davide Sangiorgi. A partition refinement algorithm for the pi-calculus.
Information and Computation, 164(2):264–321, 2001.

164 BIBLIOGRAPHY

[95] Gordon Plotkin. A structural approach to operational semantics. Technical Report DAIMI
FN-19, Aarhus University, Computer Science Department, 1981.

[96] Julian Rathke, Vladimiro Sassone, and Pawel Sobociński. Semantic barbs and biorthogonal-
ity. In Proc. of FoSSaCS ’07, volume 4423 of LNCS, pages 302–316. Springer, 2007.

[97] Sergiu Rudeanu and Dragos Vaida. Semirings in operations research and computer science:
More algebra. Fundamenta Informaticae, 61(1):61–85, 2004.

[98] Jan J. M. M. Rutten. Processes as terms: Non-well-founded models for bisimulation. Math-
ematical Structures in Computer Science, 2(3):257–275, 1992.

[99] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000.

[100] Davide Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Informatica, 33(1):69–97,
1996.

[101] Valdimiro Sassone and Pawel Sobociński. Reactive systems over cospans. In Logic in Com-
puter Science, pages 311–320. IEEE Computer Society Press, 2005.

[102] Vladimiro Sassone and Pawel Sobociński. A congruence for Petri nets. In Petri Nets and
Graph Transformation, volume 127 of ENTCS, pages 107–120. Elsevier, 2005.

[103] Vladimiro Sassone and Pawel Sobociński. Locating reaction with 2-categories. Theoretical
Computer Science, 333(1-2):297–327, 2005.

[104] Vladimiro Sassone and PaweÃl Sobociński. Reactive systems over cospans. In Logic in Com-
puter Science, pages 311–320. IEEE, 2005.

[105] Dana Scott and Christopher Strachey. Toward a mathematical semantics for computer lan-
guages. In Programming Research Group Technical Monograph, volume PRG-6. Oxford Uni-
versity, Computing Laboratory, 1971.

[106] Peter Sewell. From rewrite to bisimulation congruences. In Proc. of CONCUR ’98, volume
1466 of LNCS, pages 269–284. Springer, 1998.

[107] Robert De Simone. Higher level synchronizing devices in meije-sccs. Theoretical Computer
Science, 37:245–267, 1985.

[108] Pawel Sobociński. Deriving process congruences from reaction rules. PhD thesis, 2004.

[109] Ian Stark. A fully abstract domain model for the π-calculus. In Logic in Computer Science,
pages 36–42. IEEE, 1996.

[110] Daniele Turi and Gordon D. Plotkin. Towards a mathematical operational semantics. In
Logic in Computer Science, pages 280–291. IEEE, 1997.

[111] Lucian Wischik. Thesis Explicit Fusions: Theory and Implementation. PhD thesis, Computer
Laboratory, Cambridge, 2002.

[112] Lucian Wischik and Philippa Gardner. Strong bisimulation for the explicit fusion calculus.
In Proc. of FoSSaCS ’04, volume 2987 of LNCS, pages 484–498. Springer, 2004.

[113] Lucian Wischik and Philippa Gardner. Explicit fusions. Theoretical Computer Science,
340(3):606–630, 2005.

List of notations

Abbreviations of calculi and formalisms

CCS Calculus of Communicating Systems
dpo Double pushout
bc Borrowed contexts
C/E Condition events Petri nets
P/T Place transition Petri nets
SPC Simple Process Calculus (Example 1.3)
SCC Simple Constraint Calculus (Example 4.1)
SOS Structured Operational Semantics

Sets

ω Set of natural numbers
∅ Empty set
ε Empty string
ε Empty multiset
⊆ Set and multiset inclusion
∩ Set and multiset intersection
] Disjoint union
X∗ Free monoid over the set X
X⊕ Free commutative monoid over the set X
P(X) Power-set of X, i.e., the set of subsets of X
× Cartesian product
X = {Xi|i ∈ I} I sorted set

Algebras

Σ Signature
Γ Algebraic specification
ar(f) Arity of the operator f
X, Y, Z algebras
X = 〈X, cX, dX, . . .〉 Algebras X with carrier set X and operation c and d . . .
cX Operation c interpreted over the algebra X
TΣ Free Σ-algebra
TΣ(X) Free Σ-algebra over the set of variables X
Var(t) Set of variables of term t
σ »X Restriction of substitution σ to the set of variables X
Γ(C) Algebraic specification corresponding to the category C (Section 4.1.1)

166 LIST OF NOTATIONS

Categories

C Category C
|C| Class of objects of C
||C|| Class of morphisms of C
C[m,n] Class of morphisms with source m and target n
F : C → D Functor from the category C to the category D
α : F ⇒ G Natural transformation from the functor F : C → D to the functor G : C → D
α : f ⇒ g 2-cell from the arrow f : X → Y to the arrow g : X → Y
1C Final object of the category C
!CX : X → 1C Final morphism from X ∈ |C| to a final object 1C

IPO Idem pushout (Definition 1.9)
RPO Relative pushout (Definition 1.8)
GIPO Groupoidal idem pushout [108]
GRPO Groupoidal relative pushout [108]

Set Category of sets and fuctions
Th[Σ] Lawvere-theory over the signature Σ (Definition 1.3 and [74])
CΣ Free terms category over the signature Σ (Definition 1.4)
XY Category of covariant functors F : Y → X and natural transformations
SetX Category of covariant presheaves over X

Σ : C → C Signature endofunctor
AlgΣ Category of Σ-algebras and Σ-homomorphsms
AlgΓ Category of Γ-algebras and Γ-homomorphisms
VΣ : AlgΣ → C Underlying functor

B : C → C Behavioural endofunctor over a category C
CoalgB Category of B-coalgebras and B-cohomomorphisms (Definition 6.3)
〈X, α〉, 〈Y, β〉 B-coalgebras
U : CoalgB → C Underlying functor (Definition 6.3)
1B Final object of the category CoalgB

!BX : X → 1B Final morphism from X ∈ |CoalgB|

P : Set → Set Power-set functor
Pc : Set → Set Countable powerset functor (Section 6.1.2)
PL : Set → Set PL(X) = P(L×X) endofunctor for lts (Definition 6.4)
Pc

L : Set → Set Pc
L(X)Pc(L×X) endofunctor for countable branching lts

D : Set|C| → Set|C| Endofunctor for the satts (Definition 6.10)
〈X, αI〉 D-coalgebra corresponding to the satts of I = 〈C, X, O, tr〉 (Definition 6.11)
D̂ : AlgΓ(C) → AlgΓ(C) Endofunctor for the satts (Definition 6.12)
〈X, αI〉 D̂-coalgebra corresponding to the satts for I = 〈C, X, O, tr〉 (Theorem 6.1)
X = 〈X, d1

X, d
2
X, . . .〉 Γ(C)-algebra with multi-sorted carrier set X and operations di

X, for di arrows of C
ST : AlgΓ(C) → AlgΓ(C) Behavioural endofunctor for saturated coalgebras (Definition 6.16)
NT : AlgΓ(C) → AlgΓ(C) Behavioural endofunctor for normalized coalgebras (Definition 6.19)

LIST OF NOTATIONS 167

Reactive systems

R = 〈C, 0,D,R〉 Reactive system (Definition 1.1)
C Underlying category C
0 Distinguished object of C
D Composition-reflecting subcategory of reactive contexts
R Set of reaction rules

Context interactive systems

I = 〈C, X, O, tr〉 Context interactive system (Definition 4.1)
C Category of interfaces and contexts
X Γ(C)-algebra
O Set of observations
tr Transition relation
T Tile system (Definition 4.5)
ρ : c

o

u
// d Short notation denoting a tile ρ

T ∗ Closure of T (Definition 4.5)
`d

T Derivation amongst transitions (Definition 4.6)
`T `id

T

`d
T,X Derivations amongst transitions w.r.t. algebra X (Definition 6.13)
`T,X `id

T,X

≺T,Y Dominations amongst transitions (Definition 6.17)
≡T,X Equivalence amongst transitions (Definition 6.17)
STX(X) Set of all saturated sets of transitions (Definition 6.15)
satT,X : D(X) → STX(X) Saturation function (Definition 6.15)
satT,X : NT(X) → ST(X) Saturation homomorphism (Lemma 6.9)
satT : NT ⇒ ST Saturation natural transformation (Proposition 6.10)
NTX(X) Set of all normalized sets of transitions (Definition 6.17)
normT,X : D(X) → NTX(X) Normalization function (Definition 6.17)
normT,X : ST(X) → NT(X) Normalization homomorphism (Lemma 6.9)
normT : ST ⇒ NT Normalization natural transformation (Proposition 6.10)

Transition relations

lts Labeled transition system
l−→ Transition labeled with l

rs Reactive system (also called rewriting or reduction system)
Ã Reaction, reduction, rewriting step

satts,
c[−]→SAT , p

c[−],o−−→SAT q Saturated transition system (Definition 1.7 and Definition 4.3)

its,
c[−]→I IPO labeled transition system (Definition 1.10)

scts,
c[−],o−−→β Symbolic transition system (Definition 4.8)

gipots GIPO labeled transition system (Section 1.3.1)
J½F←K−−−−−→ Rewriting step with borrowed context (Definition 2.15)
−→CO, J½F¾K−−−→CO Concise transition system (Definition 2.16)
⇒σ SLD resolution step (Table 3.1)
M,µ−→e Efficient transition system for open bisimilarity (Table 5.3 and [100])

168 LIST OF NOTATIONS

Equivalence relations

≡ Structural equivalence
≡α α-equivalence

∼ Bisimilarity
∼S Saturated bisimilarity (Section 1.1.2 and Definition 4.2)
∼SS Semi-saturated bisimilarity (Definition 3.2 and Definition 3.2)
∼SY M Symbolic bisimilarity (Definition 3.3 and Definition 4.10)
∼SY N Syntactic bisimilarity (Definition 3.9, Definition 4.9, Definition 5.3 and Definition 5.8)
∼IPO IPO bisimilarity (Section 1.1.3)

∼CCS Bisimilarity of CCS(Definition 2.5)
∼C Concise bisimilarity (Section 2.6.3)
∼SCC Bisimilarity of SCC(Example 4.1)
∼oτ oτ -bisimilarity (Definition 5.1 and [6])
∼1 1-Bisimilarity for asynchronous π-calculus (Definition 5.2 and [6])
∼4 4-bisimilarity for asynchronous π-calculus (Definition 5.5 and [6])
∼a Asynchronous bisimilarity (Definition 5.4 and [6])
∼O Open bisimilarity (Definition 3.8, Definition 5.7 and [100])
³ Efficient open bisimilarity (Definition 5.9 and [100])
∼N Open Petri nets bisimilarity (Section 5.3 and [9])

'φ φ-trace equivalence (Definition 3.4)
'φ

I IPO φ-trace equivalence (Section 3.1.2)
'φ

SAT Saturated φ-trace equivalence (Section 3.1.2)
'φ

SS Semi-saturated φ-trace equivalence (Definition 3.5)

'L Logic equivalence (Section 3.2.1)
'S S-equivalence (Section 3.2.1 and [46])
'C Correct answer equivalence (Section 3.2.1)

≡T,X Equivalence amongst transitions (Definition 6.17)

Petri nets

pre(t) Pre-set of the transition t
post(p) Post-set of the transition t
•t pre(t)
t• post(t)
〈N, m〉 An (open) (input) Petri nets with the marking m
N,m 〈N, m〉
⊕ Multiset composition, defined in Example 1.5
ª Multiset subtraction, defined in Example 1.5
m » Y Restriction of the multiset m to the set Y , defined in Example 1.5

LIST OF NOTATIONS 169

Process Calculi

p,q,r . . . Processes
α Prefixes
µ Actions
M Matching sequence
σ Substitutions
D Distinctions (Definition 5.6)
D Set of all distinctions
N Set of channels names
τ internal (invisible) action
nm(p), nm(µ), nm(M), nm(σ), nm(D) Names of the process p, action µ, matching sequence M , . . .
fn(p), fn(µ), fn(M), fn(σ), fn(D) Free names of the process p, action µ, matching sequence M , . . .
bn(p), bn(µ), bn(M), bn(σ), bn(D) Bound names of the process p, action µ, matching sequence M , . . .
{a/x} Substitution that exchanges the name x with a

Graphs

G (Typed) Graph
G Graph with interfaces (Definition 2.8)
G ◦G′ Sequential composition of graphs with interfaces (Definition 2.9)
G⊗H Parallel composition of graphs with interfaces (Definition 2.9)

Examples

SPC = 〈CΣ, 0,CΣ,R〉 Reactive system of the Simple Process Calculus (Examples 1.3 and 1.4)
N = 〈PL(S), 0,PL(S), T〉 Reactive system for Petri nets (Example 1.5)
N = 〈OPL(N), 0,OPL(N), T〉 Reactive system for open input Petri nets (Example 1.7)
RCCS Rewriting system for CCS (Section 2.5)
R(P) Reactive system for the logic program P (Definition 3.7)
PAC Reactive systems for open π-calculus (Definition 3.13)

SCC = 〈Con, C, Act] {τ}, trSCC〉 Context interactive system for SCC (Example 4.2)
TSCC Tile System for SCC (Example 4.4)
,−→γ Symbolic transition system for SCC (Example 4.5)
A = 〈Out, A, OA, trA〉 Context interactive system for asynchronous π-calculus (Section 5.1.1)
−→A Transition system of A
TA Tile system for asynchronous π-calculus (Section 5.1.2)
,−→α Symbolic transition system for A (Section 5.1.3)
O = 〈Dis, O, OO, trO〉 Context interactive system for open π-calculus (Section 5.2.1)
−→O Transition system of O
TO Tile system for the open π-calculus (Section 5.2.2)
,−→o Symbolic transition system for O (Section 5.2.3)
N = 〈Tok, N, ON , trN 〉 Context interactive system for open Petri nets (Section 5.3.1)
−→N Transition system for N
TN Tile system for Open Petri nets Section 5.3.2
,−→η Symbolic transition system for open Petri nets (Section 5.3.3)

Towf Tile system for open work-flow nets
,−→owf Symbolic transition system for open work-flow nets
N = 〈OPL, N, {τ}, trN 〉 Context interactive system for open input Petri nets (Example 4.9)
TN Tile system for N (Example 4.9)

170 LIST OF NOTATIONS

Logic Programming

Γ = (Σ, Π) Logic signature: Σ for functions and Π for predicates (Section 3.2)
∧ Conjunction operator
¤ Empty formula

Appendix

172 APPENDIX

Initial pushouts

Here we briefly report the definition of initial pushout, and the two easy results proved in [40],
which are useful in order to prove Proposition 2.4.

Note that the category of (typed) hypergraph we are working in has initial pushouts for all
arrows.

Definition 1 (Initial pushout). Let the square (1) below be a pushout. It is an initial pushout of
C → D if for every other pushout as in diagram (2) there exist two unique morphisms A → A′

and B → B′ such that diagram (2) commutes.

A //

²²
PO

B

²²
C // D

A //

²²

""
B

²²

||
A′

||yyy
//

PO

B′

""EEE

C // D
(1) (2)

Lemma 1. Let the square (1) below be an initial pushout of B → E, and the square (2) a pushout.
Then the exterior square is an initial pushout of C → F .

A //

²²
(1)

D

²²
B //

²²
(2)

E

²²
C // F

Lemma 2. Let the square (1) below be an initial pushout of C → D. The pushout complement of
E → C → D exists if and only if there exists a morphism h : A → E such that i ◦ h = j.

A //

j

²²
h

¿¿

(1)

B

²²
C // D

E

i

OO

APPENDIX 173

Proof of Proposition 2.6

The proof of Proposition 2.6 is rather long and technical, and thus we decided to report it in a
separate section.

During the whole section we use D, C, G+, H, F and K to denote the graphs used during the
bc rewriting step of Definition 2.15.

Definition 2 (Reachability). Let J → G be a graph with interfaces. We say that J → G is
reachable if and only if it is the encoding of some CCS process or it can be reached through a bc
rewriting step in RCCS from a reachable graph.

First of all, in order to avoid confusion, note that this definition is not related with the reach
function defined in Section 2.5.

Note that not every reachable graph is in the image of our encoding. This fact is mirrored
in the rules simulating the reduction semantics, where all the discarded summations remain in
the resulting graph as disconnected parts. However, for the resulting graph K → H also K may
assume a somewhat strange shape. Consider as an example the state K → H resulting from the
bc transition shown in Figure 2.11. The interface K contains a summation node (¦) pointing to an
isolated summation node, and a new process node (•) pointing on the root. The following lemma
describes how interface are structured in reachable graphs.

Lemma 3. Let i : J → G be a reachable graph. Then the following holds

1. J is discrete,

2. i is mono on name and summation nodes (not necessarily on process nodes),

3. i sends summation nodes to isolated summation nodes.

Proof.

1. The interface J is discrete in the encoding of all CCS processes. Now suppose we have a
graph with discrete interface and consider one of its possible transition. Since both Is and
Iτ are discrete, then all the edges involved in the rewriting step occur neither in C nor in K
(since F contains only the nodes and edges needed for rewriting).

2. This property holds in the encoding of all CCS processes. Suppose we have a graph with
i mono on name and summation nodes and consider a possible transition. The morphisms
F → G+ and K → C are mono on names and summations. Since Is → Rs and Iτ → Rτ are
mono on names and summations, so will be also C → H. Summing up, since K → C and
C → H must be mono on names and summations, so is K → H. Note that this does not
hold for process nodes since the continuation nodes of Is are fused in the root node in Rs.

3. This property holds for the encodings of all CCS processes (since in the encoding of processes
there is no summation node in the interface). Let i : J → G be a graph where J contains
summations nodes pointing to isolated nodes. Then all the edges attached to those nodes by
the environment (as label F) will be removed during the rewriting step.

Some more steps are missing before we are ready to use Proposition 2.5, since there exist
reachable graphs that do not have a mono interface.

This allows us to derive some labels F with the canonical bc construction that can not be
derived with the construction proposed in Proposition 2.5. In fact, if J → G is not mono there
could be several pushout complements (i.e., several labels F), and some of them can not be derived
with the construction proposed in Proposition 2.5. Consider as an example the diagrams in Figure
7. Here we have several pushout complements of J → G ½ G+

174 APPENDIX

• Fϕ is also the pushout of (the obvious) JD → FD and of jϕ : JD → J that maps • of JD to
ϕ of J ,

• Fφ is also the pushout of (the obvious) JD → FD and of jφ : JD → J that maps • of JD to
φ of J ,

• Fϕ,φ cannot be constructed in a such way.

However Proposition 2.5 may hold also for non mono matches.

Lemma 4. Let J → G be a reachable graph. Then J → G
J½F←K−−−−−→ K → H is a bc rewriting step

via D = SND (or D = RCV) if and only if F and H can be constructed as stated by Proposition
2.5.

Proof. It is shown in the proof of Proposition 2.5 that the construction of H is correct and complete
also for non mono interfaces, while the construction of F is still correct but not anymore complete.
The completeness does not hold because there could be some pushout complements of J → G ½
G+ that can not be derived with the new construction, as the labels Fϕ,φ of Figure 7. However, a
case like that never happens taking D = SND (or D = RCV), since in the possible labels there is
only one edge attached to the root node.

Lemma 4 defines a strong link between bc derivations and concise transitions generated by
choosing D = SND or D = RCV . However it does not give any information about how to obtain
the resulting interfaces K.

Consider again the bc transition shown in Figure 2.11. Intuitively, this transition can be

described as recx.(νa)(a.x | (a.0 + b.0))
−|b̄.P+M−−−−−→ 0 | P . The concise ltsforgets about P and M ,

and the corresponding transition in −→CO is recx.(νa)(a.x | (a.0 + b.0))
−|b̄.0−−→ 0. The previous

example is extended by the lemma below to all those derivations performed via a D that is either
SND or RCV . In the following of this section we use SND , RCV , FSND , FRCV , JSND and JRCV

to mean the graphs depicted in Figure 2.9.

Lemma 5. Let J → G be a reachable graph, and let J → G
J½F←K−−−−−→ K → H be a bc transition

step via D = SND (or D = RCV). Then

• FSND (or FRCV) occurs in F , i.e., there exists a mono FSND ½ F (FRCV ½ F);

• K is isomorphic to J + U , where U is a discrete graph consisting only of a process node (•)
and a summation node (¦), and + denotes the disjoint union;

• K → F coincides with J ½ F on J , further mapping • into the continuation node of FSND

(or FRCV), and ¦ into the summation node of FSND (or FRCV);

• K → H maps • into the root node of H and ¦ into an isolated summation node of H.

Proof. By Lemma 4, the labels of a bc derivation generated choosing D = SND (or D = RCV)
can be constructed as the pushout of JSND ½ FSND and of a mapping JSND ½ J that it is surely
mono. Then the pushout F entirely contains FSND as a subgraph.

Moreover note that F contains all the nodes of J (remember that J is discrete since the graph
J → G is reachable) and all the nodes of FSND . Note that in FSND there are a summation node
(¦) and a continuation process (•) node that do not occur in JSND: hence these do not occur in
G and J . Then, the nodes of F are all the nodes of J plus ¦ and •.

Now note that all the nodes of F are present in G+ and, since Ls ¾ Is preserve all the nodes,
all the nodes of F occur also in C and hence also in K.

The bc rewriting steps performed by a reachable graph J → G via D = SND (or D = RCV)
are thus in one to one correspondence with the transitions performed in the concise lts. These
latter transitions can be obtained from the bc transitions forgetting the nodes • and ¦ occurring

APPENDIX 175

•
• //

##GGG
G c // ¦

c // ¦

JD FD

go

•
>> go

• //

$$III
II

>>

c // ¦

c // ¦

... ... •ϕ //

##GGG
G c // ¦

•φ c // ¦

D L I R Fϕ

go

•
>> go

• //

$$III
II

>>

c // ¦

c // ¦

... ... •ϕ c // ¦

•φ //

;;wwww
c // ¦

G G+ C H Fφ

•ϕ

•φ

? ... •ϕ // c // ¦

•φ // c // ¦

J ? K Fϕ,φ

Figure 7: The graphs D, L, G, G+ and J are part of a bc derivation for a generic left hand
side of a rule L. The upper square is the initial pushout of D ½ L. The graphs Fϕ, Fφ and
Fϕ,φ are the possible labels associated to the derivation, i.e., the possible pushout complements of
J → G ½ G+, denoted by ? in the table.

176 APPENDIX

in K: in the following, we write FORGET (J ½ F ← K → H) to denote that these nodes are
deleted in K, but not in H. On the other hand, the bc transitions can be obtained by the concise
lts by adding • and ¦ (and the adequate mapping) to J (this is denoted by FORGET−1).

The remark above is summed up by the following lemma.

Lemma 6. Let J → G a reachable graph. Then J → G
J½F←K−−−−−→ K → H via D = SND (or

D = RCV) if and only if J → G
J½F¾J−−→CO J → H, and J ½ F ¾ J → H = FORGET (J ½ F ←

K → H).

Proof. Trivially follows from Lemma 4 and Lemma 5.

In the following FORGET (K → H) denotes the application of FORGET only to the target
graph with interfaces. The following two lemmas state that the forgetting and the enriching of the
interface do not change bisimilarity.

Lemma 7. Let K → G and K → G′ be two reachable graphs such that J → G = FORGET (K →
G) and J → G′ = FORGET (K → G′). If K → G ∼ K → G′, then J → G ∼ J → G′.

Proof. Let ϕ and σ be the process and summation nodes occurring in K and forgotten in J . If
J → G performs a bc rewriting step, then this can be performed also by K → G without involving
ϕ and σ. Since K → G is bisimilar to K → G′, then also K → G′ can perform this transition
without involving ϕ and σ. Since this transition does not involve ϕ and σ, this can be performed
also by J → H ′.

Lemma 8. Let J → G and J → G′ be two reachable graphs such that K → G = FORGET−1(J →
G) and K → G′ = FORGET−1(J → G′). If J → G ∼C J → G′, then K → G ∼C K → G′.

Proof. Note that in −→CO the label completely depends on the interface J and the chosen JD,
while the resulting state completely depends from the graph G. However, given a mono D ½ G,
the transition is allowed only if there exists a morphism JD ½ J such that JD ½ D ½ G = JD ½
J → G.

Let ϕ and σ be respectively the process and summation nodes occurring in K and forgotten
in J . The adding of σ does not allow any other bc rewriting step, while ϕ allows a new family of
concise transitions of K → G that cannot be performed by J → G. These transitions are added
because there is a new morphism JD ½ K such that JD ½ D ½ G = JD ½ K → G. These
morphisms map the root node of JD into ϕ. However, all these new transitions can be equally
added from J → G′ to K → G′.

In the following of this section we write J ½ J ¾ J to mean the cospan of identities idJ :
J ½ J .

Lemma 9. Let J → G be a reachable graph. Then, J → G is the source of a transition labeled
with J ½ J ¾ J if and only if the transition is generated by choosing as D either Ls or Lτ .

Proof. If J → G performs a transition labeled with idJ , then it does not need any structure from
the environment and thus one of the left hand sides of the two rules must be completely embedded
in G.

Now suppose that Ls ½ G then, in the borrowed context derivation diagram G+ = G, and J
is a pushout complement of J → G ½ G.

Now, since all the nodes of Ls are in Is, the pushout complement of Is ½ Ls ½ G exists and
the resulting graph C contains all the nodes of G. Thus the pullback of J → G and C ½ G will
be again J .

Analogously for Lτ .

Lemma 10. Let J → G be a reachable graph. Then, J → G
J½J←J−−−−→ J → H if and only if

J → G
J½J¾J−−→CO J → H.

APPENDIX 177

Proof. If J → G
J½J←J−−−−→ J → H then, by Lemma 9, there exists D ½ G mono for D equal to

either Ls or Lτ . Now note that if such a morphism exists then also J → G
J½J¾J−−→CO J → H since

JD is the initial object ∅. Then the pushout of id∅ : ∅→ ∅ and !J : ∅½ J is idJ : J ½ J .
If J → G

J½J¾J−−→CO J → H then there exists D ½ G mono for D equal to either Ls or Lτ . Then
a bc transition using this D can be built, obtaining the identity cospan on J as a label.

The following lemma is the last result that is needed in order to prove Proposition 2.6.

Lemma 11. Let J → G be a reachable graph, and let J → Gn denote the same graph enriched
with n edges labeled go which are attached to the root. Then, for any n,m > 0

• J → Gn ∼ J → Gm, and

• J → Gn ∼C J → Gm.

Proof. Let R = {(J → Gn, J → Gm) | n,m > 0}. We show that R is a bisimulation. In fact, if
J → Gm J½F←K−−−−−→ K → H, then H has m or m + 1 go edges. Since the subgraph D may have
at most one go, a transition with exactly the same label can be executed by J → Gn, but it will
arrive in a state having n or n + 1 go edges. In any case the resulting pairs are contained in R.

For the second statement, note that the transitions of −→CO are completely independent of the
number of go edges. The only important point is that there exists at least one go edge attached
to the root.

Proposition 1. Let ∼ be the bc bisimilarity, and let ∼C be the bisimilarity defined on −→CO.
Then ∼C and ∼ coincide for all those graphs with discrete interfaces belonging to the image of our
encoding.

Proof. In order to show that ∼ ⊆ ∼C , we prove that the relation S over reachable graphs is a
bisimulation with respect to −→CO, where

S = {(J → G, J → G′) | J → G ∼ J → G′}

If J → G
J½F¾J−−→CO J → H, then this transition has to be generated by a D.

If D is either Ls or Lτ then J → G
J½J¾J−−→CO J → H and, by Lemma 10, J → G

J½J←J−−−−→ J → H.
Now, since J → G ∼ J → G′, then J → G′ J½J←J−−−−→ J → H ′ with J → H ∼ J → H ′. Again by
Lemma 10, we have that J → G′ J½J¾J−−→CO J → H ′.

If D is either SND or RCV then, by Lemma 6, J → G
J½F←K−−−−−→ K → H where J ½ F ← K →

H = FORGET−1(J ½ F ¾ J → H). Now, since J → G ∼ J → G′, then J → G′ J½F←K−−−−−→ K →
H ′ with K → H ∼ K → H ′. Again by Lemma 6, it follows that J → G′ J½F¾J−−→CO J → H ′. Now
by Lemma 7 and by K → H ∼ K → H ′, it follows that J → H ∼ J → H ′.

Now we prove that ∼C⊆∼, showing that the relation S over reachable graphs is a bisimulation
with respect to →, where

S = {(J → G, J → G′) | J → G ∼C J → G′}

If J → G
J½F←K−−−−−→ K → H, then this transition must be generated by D ½ L and D ½ G.

The proof proceeds by case analysis on the possible D’s.
If D is discrete, then all the nodes of D must be in the interface J . The labels resulting from

these D’s only depend on the interface J ; then, these transitions can be equally performed by
graphs having the same interface. Moreover the states resulting from these transitions are again
bisimilar with respect to −→CO, since these transitions do not modify the relevant items of the
graphs with interfaces. In fact, these transitions only add isolated nodes both in the graphs and
in the interfaces.

178 APPENDIX

Now consider a D with edges. Since by Lemma 3, the summation nodes in the interface of
reachable graphs always point to isolated summation nodes, we can exclude a priori all those D’s
having no isolated summation node as a boundary node.

Thus, the possible remaining D’s are those graphs Lτ , Ls, SND and RCV depicted in Figure
2.9, and their counterparts without the go edge Lg

τ , Lg
s , SNDg and RCV g.

For the first four we proceed as before, using Lemma 8 instead of Lemma 7.
Now, let D be Lg

τ . Note that a reachable graph can perform a bc rewriting via such a D if and
only if it can perform a rewriting via Lτ . Then the only difference between these two rewriting
steps is that the first has a go edge attached to the root node in the label F , and an additional
go edge attached to the root node in the resulting H. By Lemma 11 the two resulting states are
always bisimilar, since the number of go edges does not change the behavior.

The same reasoning applies to Lg
s , SNDg and RCV g.

APPENDIX 179

Proofs for open π-Calculus

Lemma 12. Let σ : N → N be function on names, and let σ(p)
µ−→ q be a transition. Let

n = max fn(p ∪ q) and let D be a distinction respected by σ such that nm(D) ⊆ n. Then there

exists σ1 ∈ Dis[(n,D), (n′, σ1(D))], µ1, q1, ρ : N → N such that: σ1(p)
µ1

−→ q1, ρ(σ1) = σ,
ρ(µ1) = µ and ρ(q1) = q.

Proof. Let σ » n be the substitution σ restricted to n. It is evident that σ » n(p)
µ−→ q. Let R be

the kernel of σ » n, i.e., R = {(i, j) | i, j ≤ n, σ(i) = σ(j)}.
By Lemma 5.4, there exists a unique σR ∈ Dis[(n,D), (m,σ(D))] such that iRj ⇔ σR(i) =

σR(j). Now since σR and σ » n equate the same names, they differ only for a permutation ρN ,
i.e., ρN (σR) = σ » n, and since the possibility of a transition depends only on the equivalence of

names, σR(p)
µ1

−→ q1 such that ρN (µ1) = µ and ρN (q1) = q.

Lemma 13. Let p, q ∈ O be two processes, let n ≥ max fn(p ∪ q) be a natural number and
D be a distinction such that nm(D) ⊆ n. Let x, y /∈ fn(p ∪ q) be names such that xDy. Let
D − (x, y) be the distinction D without the pairs (x, y) and (y, x). Then pn,D ∼n,D qn,D iff
pn,D−(x,y) ∼n,D−(x,y) qn,D−(x,y).

Lemma 14. Let σ ∈ Dis[(n,D), (n′, D′)] be an operator of Γ(Dis).
If pn,D

τ−→O qn,D, then σO(pn,D) τ−→O σO(qn,D).

If pn,D
ab−→O qn′,D′ , then σO(pn,D)

σ(a)σ(b)−−−−→O σO(qn′,D′).

If pn,D
a()−→O qn+1,D, then σO(pn,D)

σ(a)()−−→O σ+1
O (qn′+1,D′).

If pn,D
a()−→O qn+1,D, then σO(pn,D)

σ(a)()−−→O σ+1
O(qn′+1,D′).

Proof. We prove only the last case. All the others are analogous. Suppose that pn,D
a()−→O qn+1,D

then by definition of trO, we have that p
a(n+1)−−−→ q. Note that n+1 is fresh, and thus, by Lemma 5.1,

we have that σ(p)
σ(a)(n+1)−−−−−→ σ(q), but also σ(p)

σ(a)(n′+1)−−−−−−→ σ({n′+1/n+1}q) = σ+1(q). Now, again by

definition of trO, we have that σO(pn,D)
σ(a)()−−→O σ+1

O (qn′+1,D′).

Lemma 15. Let σM ∈ Dis[(n, D), (n′, D′)] be an operator of Γ(Dis).

If pn,D
σM ,τ−−→o p′n′,σM (D), then σM (pn,D) τ−→O p′n′,σM (D).

If pn,D
σM ,ab−−−→o p′n′,σM (D), then σM (pn,D) ab−→O p′n′,σM (D).

If pn,D
σM ,a()−−−→o p′n′+1,σM (D), then σM (pn,D) a−→O p′n′+1,σM (D).

If pn,D
σM ,a()−−−→o p′

n′+1,σM (D)
, then σM (pn,D)

a()−→O p′
n′+1,σM (D)

.

Proof. We prove the last case (the others are easier). Suppose that pn,D
σM ,a()−−−→o p′

n′+1,σM (D)
, then

by definition of o, p
M,a0(n+1)−−−−−−→e p′′ and σM (a0) = a and σM+1

O(p′′n+1,D
) = p′

n′+1,σM (D)
. From this it

follows that σM+1

O (p′′n+1,D)) = p′n′+1,σM (D). Now, by Lemma 5.2, σM (p)
σM (a0)(n+1)−−−−−−−→ σM (p′′), but

also σM (p)
a(n′+1)−−−−→ σM ({n′+1/n+1}p′′) = σM+1

(p′′) = p′. Then by definition of trO, σM (pn,D)
a()−→

p′
n′+1,σM (D)

.

Lemma 16. If M B N , then there exists ρ such that σM = σN ; ρ.

180 APPENDIX

Factorization system for D̂-coalgebras

The notions of subcoalgebra and homomorphic image have been introduced in [99], for coalgebras
over Set. These notions have been extended by Kurz in his thesis [72] to coalgebras over a generic
category C, by employing factorization systems.

Since subcolagebras and homomorphic images are fundamental for proving that |CoalgST
| is a

covariety of CoalgbD (and thus proving the existence of final system), we briefly report here these
definitions.

Definition 3 (Factorization system). Let C be some category, and let E,M be classes of mor-
phisms in C. Then (E, M) is a factorization system for C if and only if

1. E, M are closed under isomorphism,

2. C has (E,M)-factorizations, i.e., every morphism f in C has a factorization f = e; m for
e ∈ E and m ∈ M ,

3. C has the unique (E,M)-diagonalisation property, i.e., whenever the square

A

f

²²

e // B

g

²²
d
~

~

~~~
~

C m
// D

commutes for m ∈ M and e ∈ E, then there is a unique diagonal d making the two triangle
commute.

The theory of coalgebras have been mainly developed for coalgebras over Set. In Section 1.4
of [72], Kurz generalizes this theory for coalgebras over a generic category C, by providing four
axioms relying on a factorization system for C and some properties of the endofunctor. These
axioms guarantees that the resulting category has all the good qualities of coalgebras over Set,
such as, for example, that the collection of all subcoalgebras of a coalgebra is a complete lattice.

It can be easily proved (looking at AlgΓ(C) as SetC) that the endofunctor D̂ satisfies these
four axioms when considering the following factorization system.

Definition 4. The factorization system for AlgΓ(C) is (EC,MC), where EC is the class of |C|-
indexed homomorphism having all components epi, while MC is the class of |C|-indexed homomor-
phism having all components mono.

Here, we want to show that the forgetful functor U : CoalgST
→ AlgΓ(C) creates factorizations

with respect to (EC,MC) (Axiom 1.2). This means that if h : (X, α) → (Y, β) is a morphism in
CoalgST

and h = e; m is a factorization in (EC, MC), then it is also a factorization in CoalgST
,

i.e., e, m are also cohomomorphisms. This is graphically depicted below.

X
h //

α

²²

e

((RRRRRRRRRR Y

β

²²

I

γ
Â
Â
Â
Â

²²Â
Â
Â
Â

m

66llllllllll

D̂(X)
bD(h) //

bD(e) ''NNNNNN D̂(Y)

D̂(I)
bD(m)

77pppppp



APPENDIX 181

If the square behind commutes and h = e;m is factorization with respect to (EC, MC), then
also D̂(e) is in EC and D̂(m) is in MC. The unique arrow γ comes from the diagonalization
property noting that:

X
e //

α;bD(e)
²²

I

m;β
²²

γw
w

w

{{w
w

D̂(I) bD(m)

// D̂(Y)

At this point we can define subcoalgebra and homomorphic image.

Definition 5 (Subcoalgebra). Let m : 〈X, α〉 → 〈Y, β〉 be an arrow of CoalgbD. Then 〈X, α〉 is said
a subcoalgebra of 〈Y, β〉 if m ∈ MC.

Definition 6 (Homomorphic image). Let f : 〈X, α〉 → 〈Y, β〉 be an arrow of CoalgbD. The homo-
morphic image of 〈X, α〉 through f is the coalgebra 〈I, γ〉 shown in the diagram above.


