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Abstract

In [12] we introduced the tile model, a framework encompassing a wide class of com-
putational systems, whose behaviour can be described by certain rewriting rules.
We gathered our inspiration both from the world of term rewriting and of con-
currency theory, and our formalism recollects many properties of these sources.
For example, it provides a compositional way to describe both the states and the
sequences of transitions performed by a given system, stressing their distributed
nature. Moreover, a suitable notion of typed proof allows to take into account also
those formalisms relying on the notions of synchronization and side-effects to deter-
mine the actual behaviour of a system. In this work we narrow our scope, presenting
a restricted version of our tile model and focussing our attention on its expressive
power. To this aim, we recall the basic definitions of the process algebras paradigm
[3,24], centering the paper on the recasting of this framework in our formalism.

1 Introduction

It is not an overstatement to say that, in recent years, there has been an
unprecedented flow of proposals, aiming at methodologies to describe the se-
mantics of rule-based computational systems. Widely spread in the field of
concurrency theory, transition systems [16] offered a useful tool for recovering
suitable descriptions. They are roughly defined as a set of states, represent-
ing e.g. the possible memory contents, and a transition relation over states,
where each element (s,t) denotes the evolution from the state s to the state
t. Due to its simplicity, however, this view is clearly no more adequate when
we need to take into account a compositional structure over states, and the
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transition relation needs to be inductively defined according to that struc-
ture. This is the case of formalisms like Petri nets [30], where a state is a
multiset of basic components, and each of them may evolve simultaneously
(i.e., in parallel); or term rewriting systems [17], where states are terms of a
given algebra, and rewrites are freely obtained from a set of deduction rules.
Furthermore, we may need to consider formalisms relying on the use of syn-
chronization and side-effects in determining the actual behaviour of a system.
Maybe, the most important breakthrough is represented by the so-called sos
approach [28]: states are compositionally described as terms of a suitable al-
gebra, whose operators express basic features of a system, and the transition
relation is defined by means of inference rules, guided by the structure of the
states. Along this line, further extensions, which proved fruitful for our view,
are contert systems [22], where the transition relation is defined not on states
but on contexts, each of them describing a partially unspecified component
of a system; and structured transition systems [9,6], where, in order to give
a faithful account of the spatial distribution of a system, also transitions are
equipped with an algebraic structure.

In [12] we introduced the tile model, as an attempt to encompass the prop-
erties of the already mentioned formalisms. As it happened for rewriting logic
(23], the underlying idea of the tile model is to take a logical viewpoint, re-
garding a rule-based system R as a logical theory, and any transition step
— making use of rules in R — as a sequent entailed by the theory. The en-
tailment relation is defined inductively by a set of inference rules, expressing
basic features of the model, like its compositional and spatial properties. In
particular, there are three composition rules. First, they allow different com-
ponents of a system to act simultaneously, explicitly describing parallelism by
a monotdal structure over transitions. Moreover, the compositional structure
of states is reflected on computations: sub-components may synchronize and,
according to their action, be contextualized. Finally, they can be sequentially
composed, expressing in this way the execution of a sequence of transitions.

A sequent « : s —(Z> t is a tuple where s — t is a rewrite step, « is a proof
term (representing the structure of the step), a is the trigger of the step, and b
is its effect. Its intuitive meaning is: the context s is rewritten to the context
t, producing an effect b, but the rule can be applied only if the variables of s
(representing still unspecified sub-components) are rewritten with a cumula-
tive effect a. Moreover, two sequents «, 5 can be composed in parallel (a® 3),
composed sequentially (a- ) or contextualized (a*3), varying accordingly the
corresponding source, target, trigger and effect. Proof terms allow us to equip
each rewriting step with a suitable encoding of its causes, while the fact that
sequents carry information also about the effect of the associated computation
expresses certain restrictions about the class of sequents a given rule can be
applied to. Alternatively, a sequent can be considered as synchronized to its
context via its trigger and effect components, and the possibility of express-
ing restrictions and synchronization will be fundamental when applying our
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paradigm to the operational description of distributed systems.

The tile model also admits a sofisticated characterization by means of
double-categories [19], structures that may be roughly described as the su-
perposition of a wvertical and a horizontal category. In [12] it is shown that,
starting from a rewriting system, with a free contruction (by means of a suit-
able adjunction) a double-category can be obtained whose “arrows” are in a
one-to-one correspondence with the sequents entailed by that system. This
result generalizes the analogous property for term rewriting [29,5], and it un-
derlines the wide applicability of our model [11]. Along this line, in this paper
we decided to narrow our attention: instead of describing in full details our
formalism, for which we refer the interested reader to [12], we aim at analyz-
ing its expressive power. The focus of the paper, then, is the recasting of the
process algebras paradigm [3,14,24] in our model, which can be considered as a
real benchmark for any general framework (se e.g. [26]). In particular, we deal
with a suitable case study, the Calculus of Communicating Systems (also ccs,
[24]), considered as the standard representative of the paradigm. ccs offers a
constructive way to describe concurrent systems, considered as structured en-
tities (the agents) interacting by means of some synchronization mechanism.
Each system is then defined as a term of an algebra over a set of process
constructors: new systems are built from existing ones, on the assumption
that algebraic operators represent basic features of a concurrent system. The
structure over agents allows for an immediate definition of the operational se-
mantics of the language by means of the sos approach: the dynamic bahaviour
of an agent is then described by a suitable labelled transition system, where
each transition step is a triple (s, i, t), with p the observation associated to
the transition itself. Finally, a further abstraction is obtained with the asso-
ciated notion of bisimulation: an equivalence over agents equating those with
the same observable behaviour.

The paper has the following structure. In Section 2.1 we introduce a for-
malization of term algebras, providing a concrete description which underlines
the assumptions implicitly made in the ordinary notion. In Section 2.2 we in-
troduce our rewriting systems, equipping them with a logic that describes the
classes of derivations entailed by a system using (possibly abstract) sequents.
In Section 3 we recall the basic definitions of ccs, its operational semantics
and the associated strong bisimulation equivalence, along with its finite ax-
iomatization. Finally, in Section 4 we show how the process algebras paradigm
can be recovered in our framework. In particular, in Section 4.1 we describe a
rewriting system which faithfully recovers the ordinary sos semantics of ccs;
in Section 4.2 we introduce the notion of tile bisimulation, in order to recast
a suitable notion of observational equivalence in our formalism: this enables
us to recover also ccs bisimilarity; finally, in Section 4.3 we turn the finite
axiomatization of bisimilarity in a confluent rewriting system, providing each
class of bisimilar agents with a canonical representative.
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2 A Summary of the Tile Model

In this section we describe the basic features of the tile model, within a presen-
tation biased towards the process algebras framework we deal with in Sections
3 and 4. For a comprehensive introduction we refer the reader to [12].

2.1 Building States

We open this section recalling some definitions from graph theory, that will
be used to introduce algebraic theories [21,18]. Developed in the early Sixties,
these theories received a lot of attention during the Seventies from computer
scientists as a suitable characterization of the ordinary notion of term algebra.

Definition 2.1 (graphs). A graph G is a 4-tuple (Og, Ag, d0,91): Og, Ag
are sets whose elements are called respectively objects and arrows (ranged
over by a,b,... and f,g,...), and dy,d; : Ag — Og are functions, called
respectively source and target. A graph G is reflerive when equipped with
an identity function id : Og — Ag such that 0y(id(a)) = d;(id(a)) = a for
all a € Og; it is with pairing if its class Og of objects forms a monoid; it
is monoidal if it is reflexive with pairing and also its class of arrows forms a
monoid, such that, if 0 is the neutral element of Og, then id(0) is the neutral
element of Ag. O

We can think of a signature ¥ as a graph, whose nodes are (underlined)
natural numbers, and its arcs are univocally labeled by an operator, such that
f:n—1iff f € ¥,. The usual notion of term can be formalized along this
intuition, which allows to recover also alternative structures.

Definition 2.2 (graph theories). Given a signature X, the associated graph
theory G(X) is the monoidal graph with objects the elements of the commu-
tative monoid (IN, ®, 0) of underlined natural numbers (where 0 is the neutral
object and the sum is defined as n ® m = n 4+ m); and arrows those generated
by the following inference rules:

n—1eX —m,t:n —m
(generators) fin—l (sum) AT LTI
f:in—1eGX) st:n®n > mem'
: iy eN
(identities) 2t
id, :n —n
satisfying the monoidality axiom id,g,, = id, ® id,, for all n,m € IN. O

Identities could be given just for 0, 1, using the monoidality axiom to define
inductively the operator for all the objects, so obtaining a finitary presentation
of the theories. The solution we chose is equivalent, yet easier to describe, and
it is used for all the auxiliary operators introduced in the next definitions.

Definition 2.3 (monoidal theories). Given a signature X, the associated
monoidal theory M(X) is the monoidal graph with objects the elements of
the commutative monoid (N, ®,0) of underlined natural numbers and arrows

4



GADDUCCI AND MONTANARI

those generated by the following inference rules:

(generators) fin—oleXd (sum) sin—m,t:n —m
! fin—1€eM(X) st nen smem
(identities) L= (composition) f-ho—mt:m— R

idy i —1n sitin—k

Moreover, the composition operator ; is associative, and the monoid of arrows
satisfies the functoriality axiom

(s®@t); (s @) = (s;8") ® (t;¢)
(whenever both sides are defined); the identity axiom id,;; s = s = s;id,, for all
s :n — m; and the monoidality axiom id,gm, = id, ® id,, for all n,m € N. O

Further enriching the auxiliary structure, we are finally able to present the
more expressive kind of theories we deal with in our paper, algebraic theories.

Definition 2.4 (algebraic theories). Given a signature X, the associated
algebraic theory A(Y) is the monoidal graph with objects the elements of
the commutative monoid (IN, ®,0) of underlined natural numbers and arrows
those generated by the following inference rules:

n—1eX n—m,t: "' s m!
(generators) finzl (sum) AL SRS LAE S
f:n—1€eS(%) s@t:n®n - mem'
eN — m,t — k
(identities) - 2= (composition) phT Lt A
idy i —1n s;t:n—k
. €N , €N
(duplicators) = (dischargers) L=
Vpin—=>n®n L,:n—0
, n,m €N
(permutation)

Ppm NOM —>mAONn

Moreover, the composition operator ; is associative, and the monoid of arrows
satisfies the functoriality axiom

(s@t); (s @t) = (s;8) ® (1)
(whenever both sides are defined); the identity axiom id,;s = s = s;id,, for
all s : n — m; the monoidality axioms

dpem = iy ® idn Pnom,p = (idn ® pm,g)? (P@,g ® idpm)
lngm =!n®m Vigm = (Vo ® Vi); (idy @ ppm @ idp,)
h=Vo=po=1idy  pop=Ppo=idy
for all n,m,p € IN; the coherence axioms
Vi (idy ® Vi) = V3 (Vy ®idy) Vi Pan = Vi

Va; (id,®V,) = id, Prm; P = 1y, ® idy,

for all n, m € IN; and the naturality axioms
(s®1); Pm.qg = Pn,p (t®s)
silm =y $;Vm =V (s®59)

forall s:n —m,t:p—q. O
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As for identities, also permutation and the other auxiliary operators could
be inductively extended to all n € N starting from the basic cases, interpret-
ing in a constructive way the monoidality axioms.

Let us consider the signature ¥, = U~ , X;, where o = {a, b}, X, = {f, g}
and Yy = {h} (that same signature is also used in the following sections).
Some of the elements in A(X,.) areay; fx: 0 —= 1, fu;9v: 1 — 1, ax; Vi (f5®
idy); hy : 0 — 1, intuitively corresponding to the terms f(a), g(f(z)) and
h(f(a),a), respectively, for a given variable z. In fact, a classical result we al-
ready anticipated proves that algebraic theories are equivalent to the ordinary
construction (as it can be found e.g. in [2]) for term algebras.

Proposition 2.5 (algebraic theories and term algebras). Let ¥ be a
signature. Then for all n,m € IN there exists a one-to-one correspondence
between the set of arrows from n to m of A(X) and the m-tuples of elements
of the term algebra —over a set of n variables— associated to Y. O

The previous result states that each arrow ts : n — 1 identifies an element
t of the term algebra over the set {z1,...,x,}: an arrow n — m is an m-tuple
of such elements, and arrow composition is term substitution. Note that this
correspondence requires that V and ! are natural: if this were not the case,
we get s-monoidal theories [10,12]. In these more concrete structures, such
elements as ay; Vy; hy and (ax ® ax); hy, that intuitively represent the same
term h(a,a), are different. In fact, in the PhD thesis [10] of the first author
it is shown that a fundamental property of correspondence holds between s-
monoidal theories and term graphs (as defined e.g. in the introductory chapter
of [8]): each arrow ty : n — m identifies a term graph ¢ over ¥ with a spec-
ified m-tuple of roots and a specified n-tuple of variables nodes, and arrow
composition is graph replacement.

The incremental description of algebraic theories has received little atten-
tion in the literature (see [15,20]), despite the relevant fact that, differently
from the usual categorical construction, all the elements of the class A(X) are
inductively defined, making a much handier tool to deal with. In fact, the
relevant point for our discussion is that, although their definitions are more
involved than the classical, set-theoretical ones, algebraic theories allow for a
characterization of terms which is far more general, and at the same time more
concrete, than the one allowed by the usual formalization of the elements of a
term algebra, separating in a better way the “X-structure” from the additional
algebraic structure that the meta-operators used in the ordinary description
(like substitution) implicitly enjoy. In this view, ! and V represent respectively
garbage collection and sharing (as discussed in [7,5]). As an example, let us
consider the constant a: as a generator, the corresponding arrow is asx, : 0 — 1,
while, when considered as an element of the term algebra over {z;,xs}, the
associated arrow is lg;ay @ 2 — 1, where !y intuitively corresponds to the
garbaging of the two variables. Also the difference between ay; Vi;hy, and
(ay, ® ax); hy, has a similar justification: in the first element, the a is shared;
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in the latter, it is not. For our purposes, the difference between shared and
unshared — discharged and undischarged — subterms does not play a relevant
part, while instead s-monoidal theories hold a fundamental réle in [12], when
dealing with truly concurrent semantics in the setting of process algebras.

2.2 Describing Systems

In this section we recall the basic formulation of our framework, inspired both
from the rewriting logic approach by Meseguer [23] and the sos approach by
Plotkin [28]. Intuitively, an algebraic rewriting system is just a set of rules,
each of them carrying information (i.e., expressing some conditions) on the
possible behaviours of the terms to which they can be applied.

Definition 2.6 (algebraic rewriting systems). An algebraic rewriting
system (Ars) R is a tuple (X,,3,, N, R), where X, ¥, are signatures, N is a
set of rule names and R is a function R : N — A(X,)xG(Z;)xG(Z;) xA(X,)
such that for all d € N, if R(d) = (l,a,b,r), then | : n = m,r : p — ¢ iff
a:@%g,b:m%g.Weusuallywrited:l—z>r. a

A context system [22] is just a very simple ars, where R : N — X, X
G(X,) x G(X;) x X,, with the further restriction that a: 1 — 1 for all a € X,
(hence, for all d € N, if R(d) = (l,a,b,r) then [,r have the same source and
target). Term rewriting systems [17], instead, are given by a pair (X, R) where
¥ is an ordinary signature, and R is a set of rules, i.e., of pairs (I, r) for I, r el-
ements of the term algebra over . Hence, thanks to Proposition 2.5, they are
just a very particular case of algebraic rewriting systems, where X, is empty:
in the following, we will refer to these systems as horizontal rewriting systems
(also nrs’s), and a rule will be simply denoted as d : [ —» r. In fact, an nrs
is what is called an unconditional rewriting theory in [23]. It is actually less
general, since in this paper we decided to consider rewriting systems built over
signatures Y instead that over equational theories (2, E), even if the extension
of ars’s to deal with them is quite straightforward.

Let us consider the signatures Y,. (already introduced) and 3, = ¥,
where ¥; = {u,v,w}. Our running example will be the algebraic rewriting
system Re = (Zg¢, Xre, Ne, Re), where the function R, is described by

Re={d:a——=bdy: f—>g,do: [ ——> f,d3 : h 22% 1, @ g}.

(where ¢ is a shorthand for the identitiy arrow idy € M(X,.)). The intuitive
meaning of the rules is: for d, the element a can be rewritten to b, producing
an effect u; for dy, f can be rewritten to g, producing an effect v, whenever
there exists a suitable rewriting with an effect u. Or, in the ordinary term
rewriting view: the term f(z) is rewritten to g(z), producing an effect v, but
the rule can be applied only if the subterm associated to x is rewritten with
an effect u; and so on for the other rules.
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An ars R can be considered as a logical theory, and any rewriting —using
rules in R— as a sequent entailed by the theory. An algebraic sequent is then a
5-tuple («, s, a, b, t), where s — t is a rewrite step, « is a proof term (encoding
of the causes of the step), a and b are respectively the input and output
conditions, the actions associated to the rewrite. We say that s rewrites to t
via « (using a trigger a and producing an effect b) if we obtain the sequent
o : s —> t by finitely many applications of a set of inference rules.

Definition 2.7 (algebraic tile logic). Let R = (3,,%,, N, R) be an Ags.
We say that R entails the class R of the algebraic sequents o : s —3> 1 ob-
tained by finitely many applications of the following inference rules:

basic rules

d:s—y>=t€eR
(generators)

d:s—>teR

s:n—me AX,)

: M(X
(vrpefy 22 ENIE
idg :idy, —g>id, € R

(h-refl) —
idg:s ——>s €R

composition rules

a !
Oz:s—b>t,a’:s’%>t’€R

(p-comp) -
a®a: S®8'b®7t®t’ eR

a:s—4>td:s—=teR

h-comp
( ) axa:s;s — =ttt €R

!
a:s—>u,du—>teR
(v-comp) ;

a;a’
a-a’:s#tGR

auxiliary rules

a:n—m,b:n —m e M)

. a®b
Pap : Pnp g Pmm’ € R

(perm)

: M(X
(dupl) a:n—meME,)

(disch) a:@%mEM(ET).
Va:V@ a%; VmER | 'QTjg>'m€R

*a

O

The different sets of rules are self-explaining. Basic rules provide the gen-
erators of the sequents, together with suitable identity arrows, whose intuitive
meaning is that an element of A(X,) or M(X,) can be rewritten to itself
(showing no effect/using no trigger, so to say). Composition rules provide all
the possible ways in which sequents can be composed, while auxiliary rules
are the counterpart of the auxiliary operators for algebraic theories.
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Let us consider the ars R, we previously defined. It entails the sequent

d:a——=0b di:f——g

h-comp.) ———
dxdy:a;f ——b;g ( ) dy: f—5> f

(d*dy)*dy:a;f; f—5>bg; f
where ¢ is a shorthand for i¢dy and the entailment is described in a natural
deduction style. It also entails the sequent

(h-comp.)

d:a—b di:f—>¢g

d:a——b dxdy:a;f ——b;g
d@(dxdi):a®(a;f) wexb® (b;g9) dy:h 221 ®yg
(d @ (dxdy))«ds: (a® (a; f));h —5>bigig

where the entailment is still described in a natural deduction style, but with-
out using the rule names.

The class R is too concrete, in the sense that many sequents that intuitively
should represent the same rewrite have a different representation. An equiv-
alence over sequents can then be considered as a way to abstract away from
implementation details, identifying computationally equivalent derivations.

Definition 2.8 (abstract algebraic sequents). Let R = (3,, X,, N, R) be
an Ars. We say that it entails the class Rg of abstract algebraic sequents:
equivalence classes of algebraic sequents entailed by R modulo the set E of
axioms, which are intended to apply to the corresponding proof terms. The
set /' contains three associativity axioms, stating that all the composition
operators are associative; the functoriality axioms

(a-B)*(v-0)=(ax7) - (B%0) (a®pP)*(y®J) = (a*x7y)®(8*0)
(@®p)- (v®d)=(a-7)®(B-9)

(satisfied whenever both sides are defined); the identity axioms id; - o = o =
«-idy and idy x o = a = a xid, for all a : s —Z> t; the monoidality axioms

idyoy = idy @ idy,  idyey = id, @ id)
idyy = idy % idy  iday = ida - idy
a®idigy = o = idig, ® @ Pasbe = (ida @ po.c) * (Pac @ idy)
lagh =!a® Vg = (Vo ® V) * (idy @ pay @ idy)

Lidg = Vidy = Pidy,idy = 1didy Pidg,a = Paidy = G
for all « € R, s,t € A(X,) and a,b, ¢ € M(X,); the coherence axioms
Vo (id, @ Vy) = Vg x (V, ®id,) Vi * paa = Va
Vo (id,®),) = id, Pab * Pba = idg @ tdy

for all a,b € M(X,); and the naturality axioms
(@ ®a') * poy = pou * (¢ ® @)
ax!y, =1, axVy,=V,x(a® a)
9



GADDUCCI AND MONTANARI

foralla:s—2>t,a’:s’%>t’ER. O

This axiomatization properly extends the one given for unconditional rewrit-
ing logic in [23]. Note also that, as already happened for the theories of Section
2.1, even in this case we could have inductively defined identities, permutations
and the other auxiliary operators starting from the basic cases, interpreting
in a constructive way the monoidality axioms.

As an example, if we consider the ars R., from identity and monoidality
axioms we have that

hence the entailed proof terms
(d® (d*dy)) *ds (d®d) * (id, ® dy)) * ds

are equivalent, even if the latter has a derivation unrelated to the one already
shown for (d ® (d x dy)) * ds.

3 Operational Semantics for CCS

It is quite common in concurrency theory to deal with formalisms relying on
the notion of side-effects and synchronization in determining the actual be-
haviour of a system, features wich are quite difficult to recast in frameworks
like (classical) term rewriting. Process (Description) Algebras [3,14,24] offer
a constructive way to describe concurrent systems, considered as structured
entities (the agents) interacting by means of some synchronization mecha-
nism. They define each system as a term of an algebra over a set of process
constructors, building new systems from existing ones, on the assumption
that algebraic operators represent basic features of a concurrent system. We
present here one of the better known example of process algebra, the Calculus
of Communicating Systems (ccs), introduced by Milner in the early Eighties
[24], restricting ourselves, for the sake of exposition, to the case of finite ccs.

Definition 3.1 (the Calculus of Communicating Systems). Let Act
be a set of atomic actions, ranged over by u, with a distinguished symbol 7
and equipped with an involutive function 7 such that 7 = 7. Moreover, let
a, @, ... range over Act\{7}. A ccs process (also agent) is a term generated
by the following syntax

P = mnil, p.P, P\o, P[®], P1 + Py, PA||

where ® : Act — Act is a relabeling function, preserving involution and 7.
Usually, we let P,Q, R, ... range over the set Proc of processes. O

In the following, we indicate as ¥, the signature associated with ccs
processes (for example, nilis a constant, p a unary operator for each element in
Act, and so on...). Given a process P, its dynamic behaviour can be described
by a suitable transition system, along the lines of the sos approach, where the
transition relation is freely generated from a set of inference rules.

10



GADDUCCI AND MONTANARI

Definition 3.2 (operational semantics of CCS. The ccs transition sys-
tem is the relation T..; C Proc x Act x Proc inductively generated from the
following set of axioms and inference rules

———— for p € Act P=Q
=P Plo] 24 Qla]
P-5Q
P\a == Q\a
P-5Q P-5Q
P+R%5Q R+P-5Q
PQ P-%QP-%qQ P5Q
PR - QIR PP — Q|Q' R|IP = RI|Q
where P -5 Q means that (P, 1, Q) € Tie,. O

for @ relabeling

for p & {a, @}

A process P can execute an action y and become @ if we can inductively
construct a sequence of rule applications, such that the transition (P, u, Q) €
Tees- As an example, to infer that from P = («.nil + B.nil)|[@.nil we can
deduct P - Q = nil|[a.nil, three different rules must be applied. Moreover,
a process P can be rewritten into () if there exists a computation from P to
Q, i.e., achain P=P, 25 P,...P,_, % P, = Q of one-step reductions.

The operational semantics we just defined is however too intensional, and
more abstract semantics have been introduced by defining suitable behavioural
equivalences, which identify processes exhibiting the same observational be-
haviour. Most of them are defined on the basic notion of bisimulation [27]:
intuitively, two processes P, (Q are bisimilar if, whenever P performs an action
1 evolving to a state P’, then also () may execute that same action, evolving
to a state Q' which is still bisimilar to P’.

Definition 3.3 (bisimulation equivalence). A symmetric equivalence re-
lation ~,C Proc X Proc is a bisimulation if, whenever P ~; @) for generic
P, Q processes, then for any transition P —— P’ there exists a corresponding
transition Q - Q' with Q ~; @'. The maximal bisimulation equivalence is
called strong bisimulation, and denoted by ~. O

It is well-known that strong bisimilarity for ccs is also a congruence, and
that it can be described by an equational theory over ¥.. [24]. In [3], the
authors defined a finitary equational theory for an observational equivalence
over their Algebra of Communicating Processes, introducing auxiliary opera-
tors. An obvious extension of their formalism can be adapted to get a finite
description of strong bisimilarity for ccs, introducing three auxiliary oper-
ators, which intuitively split the parallel operator into three distinct cases,
corresponding to left, right and synchronous composition of the sub-agents.
On the other hand, Moller [25] has proved that bisimilarity cannot be finitely
axiomatized without resorting to auxiliary operators. So, let ¥...s be the
signature obtained extending X..; with the operators {[, |,|:2 — 1}.
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Definition 3.4 (B-K axioms). Let P, be eccs processes. The Bergstra-
Klop (also B-K) aziomatization is given by the following axioms for the par-
allel, relabelling and restriction operators

PllQ = ((P|Q) + (P]Q)) + (P|Q);
(1.P)|Q = PJ(1.Q) = pu.(P]|Q);

T.(P||Q) if 4/ =T and p # T,

(u-P)|(1.Q) =
nil otherwise;
p-(P\a) if p & {o, @},
(-PNa=1q '
nal otherwise;

(1-P)[®] = @ (p).(P[®]);
nil| P = P|nil = nil|P = Pnil = nil\, = nil[®] = nil;
extended with the Hennessy-Milner (also H-M) axioms for the choice operator
P+P=P+nil=P P+Q=Q+P (P+Q)+R=P+(Q+R).

We usually write P ~pg @ if P and () are in the same equivalence class with
respect to the B-K axioms. O

The H-M axioms simply state the associativity, commutativity, identity
and idempotency of the non-deterministic operator (see [13]). The importance
of the B-K axioms is given by their soundness and completness with respect
to the bisimulation equivalence, as stated in the following result. ;From our
point of view, however, equally relevant is the fact that these axioms can be
easily turned into rewriting rules, obtaining a confluent rewriting system, that
identifies bisimilar agents: more on this in the next section.

Proposition 3.5 (B-K axioms and strong bisimulation). Let P,Q be
ccs processes. Then P~ Q iff P ~pg Q. ad

4 Operational Semantics from Rewriting Systems

In this section we show how the ccs operational semantics can be recovered
by suitable rewriting systems. In particular, in Section 4.1 we define an alge-
braic rewriting system R..; which faithfully corresponds to the ccs transition
system T,.;. Then, in Section 4.2 we define the notion of tile bistmulation,
roughly identifying sequents with the same effect: when applied to the se-
quents entailed by R, it provides a recasting of strong bisimilarity for ccs
processes. Finally, in Section 4.3 we describe a horizontal rewriting system
Rk, that derives, for each element of a class of bisimilar ccs processes, a
canonical representative of the class itself.

4.1 Using Tiles for CCS

As shown in the previous section, from an operational point of view a pro-
cess algebra can be faithfully described by a triple (X, A, R), where X is the

12



GADDUCCI AND MONTANARI

signature of the algebra of agents, A is the set of actions and R is the set of
deduction rules. Note that these rules are conditional: you need information
on the action performed by the transitions in the premise, before applying a
rule. Moreover, the rewriting steps are always performed on top: the order in
which the rewrites are actually executed is important since, as an example,
the correct operational behaviour of the agent P = «a.3.nil is expressed saying
that it executes first o and then (. If we let A..; be the signature containing
all the atomic actions of Act (i.e., Aees = {pt: 1 — 1| p € Act}), then both
those features are easily described in the framework of tile logic.

Definition 4.1 (the CCS rewriting system). The ars R, associated to
ccs is the tuple (Xees, Aees, IV, R), with the following set of rules:

act, : p Ldl> udy relg : P % P

©)

resa t \a —> \a for & {a,a}

n®idy

(+1+ 20 ddi@l )+ A

1 ®1dy

d d o
| VR ] 2|

(where we omitted the subscripts for the sake of readibility). O

Note that there is exactly one basic rule for each operational rule of ccs;
some of them (such as act, and rely) are parametric with respect to the set of
actions or to the set of relabeling functions, since the corresponding rules are
so. The effect ;1 indicates that the process is actually “running”, outputting
the action p. For example, the rule act, prefixes an idle process with the
action u, and then starts the execution, consuming that same action. There
are also three rules dealing with the parallel operator: &; synchronizes two
running processes, while & and &, perform an asynchronous move, taking a
running and an idle process.

As an example of sequent construction, let us consider again the process
P = «.f3.nil, executing sequentially first the action «, then the action 3. The
computation is represented by the sequent

(idnir.p * acty) - (idpy * actg) = nil; B; o a—L[f nil

whose two-steps entailment is the following

idnip 2 il B ——=nil; B acty oo —g=idy

idniip * acty : nily B; 0 —5= nil; B

iy il ——mnil actg: B —> idy

idni * actg : nil; 3 —ﬂ> nil

(where ¢ is a shorthand for both idy and id;, since no confusion can arise),
showing the importance of effects in expressing the ordering constraints: P
can execute « only if the underlying process P’ = .nil is actually idle.

13
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For the agent P = ((a.nil)\s)\,, instead, the execution of the action « is
represented by the sequent ((id,; * acty) * resg) * res,, whose entailment is

i il ——mnil  acty o —5>id;

idpi * acty = nil; o —== nil resg: \g —a> \g

(idni * acty) x resg = nily o; \ g —= nil; \g resy : \y —a=> \y

((idyi * acty) * resg) * resy = nil; a; \g; \y —a= nil; \g; \y
where the basic sequent act, has been provided with a suitable context.

Note that the axioms impose an equivalence relation over sequents (i.e.,
over computations), and then offer a description that, even if more concrete
than the one given by the set-theoretical relation entailed by a transition
system, is still somewhat “abstract”: there are many derivations that are
identified, corresponding to “essentially” equivalent ccs computations. There
is however an obvious adequacy result, stated by the following theorem.

Proposition 4.2 (computational correspondence). Let P, Q) be ccs agents,
and Pr, Qg the associated elements of A(X..s). Then the transition P LN Q
is entailed by the ccs transition system T.., iff an abstract algebraic sequent

a: Pg ﬂﬂ% Qr is entailed by Rees. O

The correspondence is instead one-to-one if we consider the restriction R,
of Rees over A (Bees) X G(Aees) X G(Aces) X A(Sees): i.e., the relation obtained
by dropping the proof terms from sequents. Or, equivalently, if we take into
account the class of abstract sequents modulo the set of axioms E’, obtained
adding to E the axiom

ars—y=t,0:s— =t
a=/0
Proposition 4.3 (interleaving correspondence). Let P, () be ccs agents,

and Pr, Qg the associated elements of A(X..s). Then the transition P Ly Q
is entailed by the ccs transition system Tees (i.e., (P, Q) € Tees) iff the

abstract algebraic sequent (modulo the set of axioms E') o @ Pg LZQ> Qr is
entailed by Rees (i.e., (Pr,idy, 11, Qr) € Ry). a

4.2 Recovering Bisimulation for Tiles

It seems quite reasonable that the notion of bisimulation could be extended to
deal with our framework. In this section we introduce tile bisimulation, show-
ing its (intuitive) correspondence with strong bisimilarity for ccs processes.

Definition 4.4 (tile bisimulation). Let R = (¥,,%;, N, R) be an ars. A
symmetric equivalence relation =,C A(X,) X A(X,) is a tile bisimulation
for R if, whenever s =, ¢ for generic s,t elements of A(3,), then for any
abstract sequent « : s —7> s entailed by R there exists a corresponding one
Bt —p>t with s’ =, . The maximal tile bisimulation equivalence is called
strong tile bistmulation, and denoted by =. a

14
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This is an obvious generalization of Definition 3.3, due to the more con-
crete representation of states and the richer structure on effects shown by
sequents with respect to ccs transitions. But of course there is a complete
coincidence between bisimilarity over ccs processes and tile bisimilarity over
the corresponding elements of A (X..s).

Proposition 4.5 (bisimulation corrispondence). Let P, Q be ccs agents,
and Pgr,Qr the associated elements of A(Xees). Then P ~ Q iff Pr =g Qr.O

We need now to develop a concept analogous to congruence. Usually, an
equivalence is a congruence whenever it preserves the operators. In our case,
this “operator preserving” property can be restated in terms of parallel and
horizontal composition.

Definition 4.6 (tile functoriality). Let R = (X,,%,, N, R) be an Ags.
A symmetric equivalence relation =;C A(X,) x A(X,) is functorial for R
if, whenever s =; t,s' =; t' for generic s,s’,t,t' elements of A(X,), then
s;s' =y t;t' (whenever defined) and s ® s' =, t @ t'. O

It is not in general true that a tile bisimulation equivalence is also func-
torial. The following results provide a characterization of such a property in
terms of tile decomposition.

Definition 4.7 (tile decomposition). Let R be an ars. We say that R
verifies the (tile) decomposition property if i) whenever it entails an abstract
sequent « : s;t —p u, then it entails also two sequents 3 : s —%= s’ and

v it —5> 1t with u = ¢;¢; and ii) whenever it entails an abstract sequent

o : s@t — u, then it entails also two sequents 3 : s % s'and v :t % t'

withu =8 ®t, a=a, ®ay and b = by ® bs. O

A very simple system not verifying the (tile) decomposition property is
given by R, = (Zan, Xay Nay Ry), where ¥y, = {nil : 0 —- l,a : 1 — 1},
Yo={a1:1—=1a3:1— 1} and

R, = {act : nil;a —%> nil, cons : a —> id, }.
The basic sequent act cannot be decomposed, while its source obviously can.

Proposition 4.8 (decomposition and bisimulation). Let R be an ars.
If it verifies the decomposition property, then the associated strong tile bisim-
ulation is functorial. a

The converse is not true. In fact, the tile bisimulation associated to
the ars R, is functorial, and it is freely generated from the basic classes
{nit}, {idy}, {id,},{a,a;a,...} = {a"|n > 1}, but the system does not verify
the decomposition property. Note also the importance of ay € ¥,, which is
responsible for the non-equivalence of id; and a: on the contrary, that equiv-
alence would have destroyed functoriality.

While it may be difficult to check out if a given rewriting system is “de-
composable”, the following proposition provides an easy syntactical property
that implies decomposition.
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Proposition 4.9 (basic source and decomposition). Let R be the ars
(X, X7, N, R) such that, for alld : s —>t € R, s € &, (hence, the source is
a basic operator). Then R satisfies the decomposition property. O

Proof (sketch). The proof can be carried out in two steps.

First, each abstract sequent a can be decomposed into the vertical com-
position aq-as .. .-y of “concrete” sequents «; such that the operator - does
not appear in any of them. These kind of sequents are called one-step, and
they can be obtained without using the v-comp rule.

Then, let us suppose that « : s —;—>t is one-step. Now, since the source
of each rule must be a basic operator, we have that the structure of o exactly
mirrors the one of its source s. And since also the axioms of algebraic sequents
mirror those of algebraic theories, the result holds. O

In fact, both R..s and R, verify this “basic source” property, hence the
decomposition one, so that the following corollary holds.

Corollary 4.10 (strong bisimulation is functorial). The strong tile bisim-
ulation =g associated to Rees 1S functorial.

Thanks to Proposition 4.5, this result implies that strong bisimilarity for
ccs processes is also a congruence. In fact, if an equivalence is functorial it
preserves contexts, and a fortiori also operators. As an example, let P, Q)
be ccs agents, Pg, Qg the associated elements of A (X..), and let us assume
that P ~ Q. Hence Pr =5 Qr (also Qr =5 Pg by symmetry) and, by
functoriality, (Pr ® Qr); || =st (Qr ® Pr); ||, so that also P||Q ~ Q|| P holds.

In general, it should be worthy to identify suitable “formats” for the rules
such that, given a rewriting system R, then whenever its rules fit a format then
R is decomposable. An analogous work has been done on process algebras:
see e.g. [1] for more details on the so-called asos format. For our tile model,
some preliminary considerations can be found in [12].

4.3 B-K Azioms as Rewriting Rules

The aim of this section is to show that the axiomatization given in Definition
3.4 can be turned into a horizontal rewriting system, which is adequate for
bisimilarity, in the sense that, given two ccs processes, they are bisimilar iff
they may evolve to the same element.

Definition 4.11 (B-K axioms as rewriting rules). The urs Rpx associ-
ated to the B-K axioms is the tuple (X, 0, Npi, Rk ), with the following
set of rules:

dec : [| — V; (Va3 ([®]); +) ® |); +
o (p@idy); [— [l 0w (nil @ idy); | —igy; nil
o (idy@p);] — |l ove : (idy @ nil); | —ig,; nil
o (a@a)| — |7 oe: (p@p);| —lymnil for ff FRor p=r
ot (Nl @idy); | —lsnil  op, : (idy ® nil); | — 1y nil
resa : p \a — \a; i for p & {a, @}
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rese t a; \o —;nil  resy :nily \o — nil
rele : p; ® — &;®(u)  rely, : nil; ® — nil
together with the rules for for the choice operator
idem : Vqi;+ — idy  idnil : (idy @ nil); + — idy
comm : + — p11;+  assoc: (idi®;+);+ — (+ @ idy); +
(where we omitted the subscripts for the sake of readibility). With Rppx we
denote the nrs obtained without the rules for the choice operator; with R

the one containing only the rules idem and idnil and finally with R 4 the one
containing only the rules comm and assoc. a

The system we defined is convergetnt but not terminating: it is well-known
that the axioms for associativity and commutativity of an operator cannot be
in general turned into terminating rules. In fact, it is easy to see that

+—put— o tt=+—p,+— ...

However, let Ygs = {nil,u,+} C Y. be the signature of sequential ccs
(sces) processes: next result shows that R is still adequate with respect to
strong bisimulation.

Proposition 4.12 (bisimulation as normal form, I). Let P,Q be Bccs
processes. Then P ~pi @ iff there exists a sccs process S such that Rpi
entails two sequents a: P — S and 3 :Q — S. O

Notice that the normalization procedure is totally orthogonal to the usual
notion of transition in the sos framework. In fact, let us consider the ccs
processes P = a.f.nil and @ = ((a.nil)\z)\,: the associated computations
evolving from them have been shown in the previous section. Note instead
that, from a normalization point of view, P cannot move. Instead, () sequen-
tially executes two different res operations (one causally dependent from the
other), and finally it evolves to «.nil, as shown by the following sequents

idpg : nil — nil  resg : o \ﬁ — \g;a

idpi * resg : nily o \g —> nil; \gia idy \, —\,

(idnir * Tesg) x id\ 2 nily a; \g; \y — nil; \g; a5\,

idnit 5 - il \g —> nil;\g  res s\, — \y

idnity\ 5 * T€Sy 1 0l \gs 0 \y — nil; \g; \y; @

rese :nily\g —> nil id\ ot \ys o — \yja

rese x idy o 2 il \g; \ys 0 — nil; \y; @

rese : nily\y —> nil  idy o — «

rese * idy 1 nil; \y; o — nil; a
such that, by the axioms of Definition 2.8, we have
((idpa x resg) x idy ) - (rese x resy) - (rese x idy) : nil; o5 \g; \, — nil; .
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The above denotation of the abstract sequent in the example suggests a re-
duction where two steps are executed in parallel. Proposition 4.12 also has a
stronger formulation, which is stated by the following result.

Proposition 4.13 (bisimulation as normal form, II). Let P,Q be vccs
processes. Then P ~pi @ iff there exists a sccs process S such that the
sequents o : P —sppg P’ —ac P —1 S and 0 : Q —Bpr Q' —ac
Q" —>1 S are entailed by Rpx (where P —>ppx P' means that it is entailed
by Rppk, and so on). O

Since both Rppx and R are terminating, then, if we considered an equa-
tional extension of our tile model, each class of bisimilar processes would be
provided with a normal form, modulo associativity and commutativity.
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