95 research outputs found

    Adaptive networks for robotics and the emergence of reward anticipatory circuits

    Get PDF
    Currently the central challenge facing evolutionary robotics is to determine how best to extend the range and complexity of behaviour supported by evolved neural systems. Implicit in the work described in this thesis is the idea that this might best be achieved through devising neural circuits (tractable to evolutionary exploration) that exhibit complementary functional characteristics. We concentrate on two problem domains; locomotion and sequence learning. For locomotion we compare the use of GasNets and other adaptive networks. For sequence learning we introduce a novel connectionist model inspired by the role of dopamine in the basal ganglia (commonly interpreted as a form of reinforcement learning). This connectionist approach relies upon a new neuron model inspired by notions of energy efficient signalling. Two reward adaptive circuit variants were investigated. These were applied respectively to two learning problems; where action sequences are required to take place in a strict order, and secondly, where action sequences are robust to intermediate arbitrary states. We conclude the thesis by proposing a formal model of functional integration, encompassing locomotion and sequence learning, extending ideas proposed by W. Ross Ashby. A general model of the adaptive replicator is presented, incoporating subsystems that are tuned to continuous variation and discrete or conditional events. Comparisons are made with Ross W. Ashby's model of ultrastability and his ideas on adaptive behaviour. This model is intended to support our assertion that, GasNets (and similar networks) and reward adaptive circuits of the type presented here, are intrinsically complementary. In conclusion we present some ideas on how the co-evolution of GasNet and reward adaptive circuits might lead us to significant improvements in the synthesis of agents capable of exhibiting complex adaptive behaviour

    Evolving Modularity in Soft Robots Through an Embodied and Self-Organizing Neural Controller

    Get PDF
    Modularity is a desirable property for embodied agents, as it could foster their suitability to different domains by disassembling them into transferable modules that can be reassembled differently. We focus on a class of embodied agents known as voxel-based soft robots (VSRs). They are aggregations of elastic blocks of soft material; as such, their morphologies are intrinsically modular. Nevertheless, controllers used until now for VSRs act as abstract, disembodied processing units: Disassembling such controllers for the purpose of module transferability is a challenging problem. Thus, the full potential of modularity for VSRs still remains untapped. In this work, we propose a novel self-organizing, embodied neural controller for VSRs. We optimize it for a given task and morphology by means of evolutionary computation: While evolving, the controller spreads across the VSR morphology in a way that permits emergence of modularity. We experimentally investigate whether such a controller (i) is effective and (ii) allows tuning of its degree of modularity, and with what kind of impact. To this end, we consider the task of locomotion on rugged terrains and evolve controllers for two morphologies. Our experiments confirm that our self-organizing, embodied controller is indeed effective. Moreover, by mimicking the structural modularity observed in biological neural networks, different levels of modularity can be achieved. Our findings suggest that the self-organization of modularity could be the basis for an automatic pipeline for assembling, disassembling, and reassembling embodied agents

    Harnessing the Power of Collective Intelligence: the Case Study of Voxel-based Soft Robots

    Get PDF
    The field of Evolutionary Robotics (ER) is concerned with the evolution of artificial agents---robots. Albeit groundbreaking, progress in the field has recently stagnated. In the research community, there is a strong feeling that a paradigm change has become necessary to disentangle ER. In particular, a solution has emerged from ideas from Collective Intelligence (CI). In CI---which has many relevant examples in nature---behavior emerges from the interaction between several components. In the absence of central intelligence, collective systems are usually more adaptable. In this thesis, we set out to harness the power of CI, focusing on the case study of simulated Voxel-based Soft Robots (VSRs): they are aggregations of homogeneous and soft cubic blocks that actuate by altering their volume. We investigate two axes. First, the morphologies of VSRs are intrinsically modular and an ideal substrate for CI; nevertheless, controllers employed until now do not take advantage of such modularity. Our results prove that VSRs can truly be controlled by the CI of their modules. Second, we investigate the spatial and time scales of CI. In particular, we evolve a robot to detect its global body properties given only local information processing, and, in a different study, generalize better to unseen environmental conditions through Hebbian learning. We also consider how evolution and learning interact in VSRs. Looking beyond VSRs, we propose a novel soft robot formalism that more closely resembles natural tissues and blends local with global actuation.The field of Evolutionary Robotics (ER) is concerned with the evolution of artificial agents---robots. Albeit groundbreaking, progress in the field has recently stagnated. In the research community, there is a strong feeling that a paradigm change has become necessary to disentangle ER. In particular, a solution has emerged from ideas from Collective Intelligence (CI). In CI---which has many relevant examples in nature---behavior emerges from the interaction between several components. In the absence of central intelligence, collective systems are usually more adaptable. In this thesis, we set out to harness the power of CI, focusing on the case study of simulated Voxel-based Soft Robots (VSRs): they are aggregations of homogeneous and soft cubic blocks that actuate by altering their volume. We investigate two axes. First, the morphologies of VSRs are intrinsically modular and an ideal substrate for CI; nevertheless, controllers employed until now do not take advantage of such modularity. Our results prove that VSRs can truly be controlled by the CI of their modules. Second, we investigate the spatial and time scales of CI. In particular, we evolve a robot to detect its global body properties given only local information processing, and, in a different study, generalize better to unseen environmental conditions through Hebbian learning. We also consider how evolution and learning interact in VSRs. Looking beyond VSRs, we propose a novel soft robot formalism that more closely resembles natural tissues and blends local with global actuation

    Goal-Based Control and Planning in Biped Locomotion Using Computational Intelligence Methods

    Get PDF
    Este trabajo explora la aplicación de campos neuronales, a tareas de control dinámico en el domino de caminata bípeda. En una primera aproximación, se propone una arquitectura de control que usa campos neuronales en 1D. Esta arquitectura de control es evaluada en el problema de estabilidad para el péndulo invertido de carro y barra, usado como modelo simplificado de caminata bípeda. El controlador por campos neuronales, parametrizado tanto manualmente como usando un algoritmo evolutivo (EA), se compara con una arquitectura de control basada en redes neuronales recurrentes (RNN), también parametrizada por por un EA. El controlador por campos neuronales parametrizado por EA se desempeña mejor que el parametrizado manualmente, y es capaz de recuperarse rápidamente de las condiciones iniciales más problemáticas. Luego, se desarrolla una arquitectura extendida de control y planificación usando campos neurales en 2D, y se aplica al problema caminata bípeda simple (SBW). Para ello se usa un conjunto de valores _óptimos para el parámetro de control, encontrado previamente usando algoritmos evolutivos. El controlador óptimo por campos neuronales obtenido se compara con el controlador lineal propuesto por Wisse et al., y a un controlador _optimo tabular que usa los mismos parámetros óptimos. Si bien los controladores propuestos para el problema SBW implementan una estrategia activa de control, se aproximan de manera más cercana a la caminata dinámica pasiva (PDW) que trabajos previos, disminuyendo la acción de control acumulada. / Abstract. This work explores the application of neural fields to dynamical control tasks in the domain of biped walking. In a first approximation, a controller architecture that uses 1D neural fields is proposed. This controller architecture is evaluated using the stability problem for the cart-and-pole inverted pendulum, as a simplified biped walking model. The neural field controller is compared, parameterized both manually and using an evolutionary algorithm (EA), to a controller architecture based on a recurrent neural neuron (RNN), also parametrized by an EA. The non-evolved neural field controller performs better than the RNN controller. Also, the evolved neural field controller performs better than the non-evolved one and is able to recover fast from worst-case initial conditions. Then, an extended control and planning architecture using 2D neural fields is developed and applied to the SBW problem. A set of optimal parameter values, previously found using an EA, is used as parameters for neural field controller. The optimal neural field controller is compared to the linear controller proposed by Wisse et al., and to a table-lookup controller using the same optimal parameters. While being an active control strategy, the controllers proposed here for the SBW problem approach more closely Passive Dynamic Walking (PDW) than previous works, by diminishing the cumulative control action.Maestrí

    Fast Damage Recovery in Robotics with the T-Resilience Algorithm

    Full text link
    Damage recovery is critical for autonomous robots that need to operate for a long time without assistance. Most current methods are complex and costly because they require anticipating each potential damage in order to have a contingency plan ready. As an alternative, we introduce the T-resilience algorithm, a new algorithm that allows robots to quickly and autonomously discover compensatory behaviors in unanticipated situations. This algorithm equips the robot with a self-model and discovers new behaviors by learning to avoid those that perform differently in the self-model and in reality. Our algorithm thus does not identify the damaged parts but it implicitly searches for efficient behaviors that do not use them. We evaluate the T-Resilience algorithm on a hexapod robot that needs to adapt to leg removal, broken legs and motor failures; we compare it to stochastic local search, policy gradient and the self-modeling algorithm proposed by Bongard et al. The behavior of the robot is assessed on-board thanks to a RGB-D sensor and a SLAM algorithm. Using only 25 tests on the robot and an overall running time of 20 minutes, T-Resilience consistently leads to substantially better results than the other approaches

    Behavior control in the sensorimotor loop with short-term synaptic dynamics induced by self-regulating neurons

    Get PDF
    The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot. © 2014 Toutounji and Pasemann

    Design of artificial neural oscillatory circuits for the control of lamprey- and salamander-like locomotion using evolutionary algorithms

    Get PDF
    This dissertation investigates the evolutionary design of oscillatory artificial neural networks for the control of animal-like locomotion. It is inspired by the neural organ¬ isation of locomotor circuitries in vertebrates, and explores in particular the control of undulatory swimming and walking. The difficulty with designing such controllers is to find mechanisms which can transform commands concerning the direction and the speed of motion into the multiple rhythmic signals sent to the multiple actuators typically involved in animal-like locomotion. In vertebrates, such control mechanisms are provided by central pattern generators which are neural circuits capable of pro¬ ducing the patterns of oscillations necessary for locomotion without oscillatory input from higher control centres or from sensory feedback. This thesis explores the space of possible neural configurations for the control of undulatory locomotion, and addresses the problem of how biologically plausible neural controllers can be automatically generated.Evolutionary algorithms are used to design connectionist models of central pattern generators for the motion of simulated lampreys and salamanders. This work is inspired by Ekeberg's neuronal and mechanical simulation of the lamprey [Ekeberg 93]. The first part of the thesis consists of developing alternative neural controllers for a similar mechanical simulation. Using a genetic algorithm and an incremental approach, a variety of controllers other than the biological configuration are successfully developed which can control swimming with at least the same efficiency. The same method is then used to generate synaptic weights for a controller which has the observed biological connectivity in order to illustrate how the genetic algorithm could be used for developing neurobiological models. Biologically plausible controllers are evolved which better fit physiological observations than Ekeberg's hand-crafted model. Finally, in collaboration with Jerome Kodjabachian, swimming controllers are designed using a developmental encoding scheme, in which developmental programs are evolved which determine how neurons divide and get connected to each other on a two-dimensional substrate.The second part of this dissertation examines the control of salamander-like swimming and trotting. Salamanders swim like lampreys but, on the ground, they switch to a trotting gait in which the trunk performs a standing wave with the nodes at the girdles. Little is known about the locomotion circuitry of the salamander, but neurobiologists have hypothesised that it is based on a lamprey-like organisation. A mechanical sim¬ ulation of a salamander-like animat is developed, and neural controllers capable of exhibiting the two types of gaits are evolved. The controllers are made of two neural oscillators projecting to the limb motoneurons and to lamprey-like trunk circuitry. By modulating the tonic input applied to the networks, the type of gait, the speed and the direction of motion can be varied.By developing neural controllers for lamprey- and salamander-like locomotion, this thesis provides insights into the biological control of undulatory swimming and walking, and shows how evolutionary algorithms can be used for developing neurobiological models and for generating neural controllers for locomotion. Such a method could potentially be used for designing controllers for swimming or walking robots, for instance

    Digital control networks for virtual creatures

    Get PDF
    Robot control systems evolved with genetic algorithms traditionally take the form of floating-point neural network models. This thesis proposes that digital control systems, such as quantised neural networks and logical networks, may also be used for the task of robot control. The inspiration for this is the observation that the dynamics of discrete networks may contain cyclic attractors which generate rhythmic behaviour, and that rhythmic behaviour underlies the central pattern generators which drive lowlevel motor activity in the biological world. To investigate this a series of experiments were carried out in a simulated physically realistic 3D world. The performance of evolved controllers was evaluated on two well known control tasks—pole balancing, and locomotion of evolved morphologies. The performance of evolved digital controllers was compared to evolved floating-point neural networks. The results show that the digital implementations are competitive with floating-point designs on both of the benchmark problems. In addition, the first reported evolution from scratch of a biped walker is presented, demonstrating that when all parameters are left open to evolutionary optimisation complex behaviour can result from simple components

    Gaze control modelling and robotic implementation

    Get PDF
    Although we have the impression that we can process the entire visual field in a single fixation, in reality we would be unable to fully process the information outside of foveal vision if we were unable to move our eyes. Because of acuity limitations in the retina, eye movements are necessary for processing the details of the array. Our ability to discriminate fine detail drops off markedly outside of the fovea in the parafovea (extending out to about 5 degrees on either side of fixation) and in the periphery (everything beyond the parafovea). While we are reading or searching a visual array for a target or simply looking at a new scene, our eyes move every 200-350 ms. These eye movements serve to move the fovea (the high resolution part of the retina encompassing 2 degrees at the centre of the visual field) to an area of interest in order to process it in greater detail. During the actual eye movement (or saccade), vision is suppressed and new information is acquired only during the fixation (the period of time when the eyes remain relatively still). While it is true that we can move our attention independently of where the eyes are fixated, it does not seem to be the case in everyday viewing. The separation between attention and fixation is often attained in very simple tasks; however, in tasks like reading, visual search, and scene perception, covert attention and overt attention (the exact eye location) are tightly linked. Because eye movements are essentially motor movements, it takes time to plan and execute a saccade. In addition, the end-point is pre-selected before the beginning of the movement. There is considerable evidence that the nature of the task influences eye movements. Depending on the task, there is considerable variability both in terms of fixation durations and saccade lengths. It is possible to outline five separate movement systems that put the fovea on a target and keep it there. Each of these movement systems shares the same effector pathway—the three bilateral groups of oculomotor neurons in the brain stem. These five systems include three that keep the fovea on a visual target in the environment and two that stabilize the eye during head movement. Saccadic eye movements shift the fovea rapidly to a visual target in the periphery. Smooth pursuit movements keep the image of a moving target on the fovea. Vergence movements move the eyes in opposite directions so that the image is positioned on both foveae. Vestibulo-ocular movements hold images still on the retina during brief head movements and are driven by signals from the vestibular system. Optokinetic movements hold images during sustained head rotation and are driven by visual stimuli. All eye movements but vergence movements are conjugate: each eye moves the same amount in the same direction. Vergence movements are disconjugate: The eyes move in different directions and sometimes by different amounts. Finally, there are times that the eye must stay still in the orbit so that it can examine a stationary object. Thus, a sixth system, the fixation system, holds the eye still during intent gaze. This requires active suppression of eye movement. Vision is most accurate when the eyes are still. When we look at an object of interest a neural system of fixation actively prevents the eyes from moving. The fixation system is not as active when we are doing something that does not require vision, for example, mental arithmetic. Our eyes explore the world in a series of active fixations connected by saccades. The purpose of the saccade is to move the eyes as quickly as possible. Saccades are highly stereotyped; they have a standard waveform with a single smooth increase and decrease of eye velocity. Saccades are extremely fast, occurring within a fraction of a second, at speeds up to 900°/s. Only the distance of the target from the fovea determines the velocity of a saccadic eye movement. We can change the amplitude and direction of our saccades voluntarily but we cannot change their velocities. Ordinarily there is no time for visual feedback to modify the course of the saccade; corrections to the direction of movement are made in successive saccades. Only fatigue, drugs, or pathological states can slow saccades. Accurate saccades can be made not only to visual targets but also to sounds, tactile stimuli, memories of locations in space, and even verbal commands (“look left”). The smooth pursuit system keeps the image of a moving target on the fovea by calculating how fast the target is moving and moving the eyes accordingly. The system requires a moving stimulus in order to calculate the proper eye velocity. Thus, a verbal command or an imagined stimulus cannot produce smooth pursuit. Smooth pursuit movements have a maximum velocity of about 100°/s, much slower than saccades. The saccadic and smooth pursuit systems have very different central control systems. A coherent integration of these different eye movements, together with the other movements, essentially corresponds to a gating-like effect on the brain areas controlled. The gaze control can be seen in a system that decides which action should be enabled and which should be inhibited and in another that improves the action performance when it is executed. It follows that the underlying guiding principle of the gaze control is the kind of stimuli that are presented to the system, by linking therefore the task that is going to be executed. This thesis aims at validating the strong relation between actions and gaze. In the first part a gaze controller has been studied and implemented in a robotic platform in order to understand the specific features of prediction and learning showed by the biological system. The eye movements integration opens the problem of the best action that should be selected when a new stimuli is presented. The action selection problem is solved by the basal ganglia brain structures that react to the different salience values of the environment. In the second part of this work the gaze behaviour has been studied during a locomotion task. The final objective is to show how the different tasks, such as the locomotion task, imply the salience values that drives the gaze

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion
    corecore