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Abstract

This dissertation investigates the evolutionary design of oscillatory artificial neural
networks for the control of animal-like locomotion. It is inspired by the neural organ¬
isation of locomotor circuitries in vertebrates, and explores in particular the control
of undulatory swimming and walking. The difficulty with designing such controllers
is to find mechanisms which can transform commands concerning the direction and
the speed of motion into the multiple rhythmic signals sent to the multiple actuators
typically involved in animal-like locomotion. In vertebrates, such control mechanisms
are provided by central pattern generators which are neural circuits capable of pro¬
ducing the patterns of oscillations necessary for locomotion without oscillatory input
from higher control centres or from sensory feedback. This thesis explores the space of
possible neural configurations for the control of undulatory locomotion, and addresses
the problem of how biologically plausible neural controllers can be automatically gen¬
erated.

Evolutionary algorithms are used to design connectionist models of central pattern
generators for the motion of simulated lampreys and salamanders. This work is inspired
by Ekeberg's neuronal and mechanical simulation of the lamprey [Ekeberg 93]. The
first part of the thesis consists of developing alternative neural controllers for a similar
mechanical simulation. Using a genetic algorithm and an incremental approach, a

variety of controllers other than the biological configuration are successfully developed
which can control swimming with at least the same efficiency. The same method
is then used to generate synaptic weights for a controller which has the observed
biological connectivity in order to illustrate how the genetic algorithm could be used
for developing neurobiological models. Biologically plausible controllers are evolved
which better fit physiological observations than Ekeberg's hand-crafted model. Finally,
in collaboration with Jerome Kodjabachian, swimming controllers are designed using a
developmental encoding scheme, in which developmental programs are evolved which
determine how neurons divide and get connected to each other on a two-dimensional
substrate.

The second part of this dissertation examines the control of salamander-like swimming
and trotting. Salamanders swim like lampreys but, on the ground, they switch to a

trotting gait in which the trunk performs a standing wave with the nodes at the girdles.
Little is known about the locomotion circuitry of the salamander, but neurobiologists
have hypothesised that it is based on a lamprey-like organisation. A mechanical sim¬
ulation of a salamander-like animat is developed, and neural controllers capable of
exhibiting the two types of gaits are evolved. The controllers are made of two neural
oscillators projecting to the limb motoneurons and to lamprey-like trunk circuitry. By
modulating the tonic input applied to the networks, the type of gait, the speed and
the direction of motion can be varied.

By developing neural controllers for lamprey- and salamander-like locomotion, this
thesis provides insights into the biological control of undulatory swimming and walk¬
ing, and shows how evolutionary algorithms can be used for developing neurobiological
models and for generating neural controllers for locomotion. Such a method could po¬
tentially be used for designing controllers for swimming or walking robots, for instance.
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Chapter 1

Introduction

1.1 General overview

This thesis presents the development of neural controllers for locomotion using evol¬

utionary algorithms. My approach is inspired by biological studies of animal loco¬

motion, and takes inspiration from biology at three levels: 1) in the type of locomotion
— swimming and walking; 2) in the type of control mechanisms — neuronal circuits;

and 3) in the type of adaptation mechanisms which have led to animals — evolution
and development. In particular, I investigate the anguiliform swimming of the lamprey

and the swimming and walking of salamanders, and how to control these gaits using

connectionist models with the organisation observed in vertebrates. My tools for this

investigation are numerical simulation and evolutionary algorithms. Simulation is used

to calculate the activity of networks of neurons modeled as leaky integrators and to

model simple mechanical bodies made of rigid links and simple muscles. The evolu¬

tionary algorithms are used to design the configurations of the neural controllers for

locomotion. Given a fixed body structure, neural controllers are evolved which can

produce the patterns of oscillations necessary for locomotion, and which can modulate

the speed and the direction ofmotion of the simulated body when simple inputs signals
are varied.

1



2 CHAPTER 1. INTRODUCTION

The animat field

This work follows the animat approach to the development of autonomous agents. An
animat is an autonomous agent which, similarly to animals, has to move, act and
survive in an environment [Meyer & Guillot 94]. Although its long term objective is to
be able to create systems with the cognitive capacities of humans, the animat approach
is bottom-up, starting from simple survival skills. It takes inspiration from how animals
function and behave, and gives a large importance to the sensing-acting loop within a

dynamical environment.

Computational neuroethology

More precisely, this thesis is included in computational neuroethology [Beer 90, Cliff 95]
(or also synthetic psychology [Braitenberg 84]). Computational neuroethology is a spe¬

cial field in the animat approach. It has the same aims as the animat approach, i.e.
the study and creation of agents which present an adaptive behaviour, and studies

specifically how this behaviour results from neural mechanisms. It is therefore very

close to neuroethology, which is concerned with how animal behaviour is rooted in
neuronal circuitries, and to computational neuroscience, which tries to decode and
to simulate the neural mechanisms of the central nervous system found in animals.

However, computational neuroethology differs from these two fields in that it not only
studies (existing) animals but autonomous agents in general, where autonomous agents
can be described as self-governing systems capable of operating (i.e. perceiving and

acting) in environments which are complex, uncertain and dynamic [Cliff 95]. There¬

fore, computational neuroethology has not only a scientific or analytic aspect —the

understanding of existing mechanisms— but also an engineering or synthetic aspect

—the creation of artifical systems. It is particularly interesting when these two as¬

pects interact, as creating artificial systems allows one to gain a good understanding
of what are the necessary properties of a neural mechanism for a specific behaviour,

and studying existing systems in animals allows one to study what mechanisms are

sufficient (although not necessarily minimal) for a specific behaviour. The artificial

systems can be either simulated and integrated in a simulated environment or phys¬

ically, in the form of robots. This situatedness into an environment is important as
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having a complete agent-environment system lessens the chances of making untenable

assumptions concerning issues of representation and processing [Cliff 95].

Animal-like locomotion

In this thesis, I study one particular aspect of neural control which is the control of

locomotion. As mentioned, I shall study and take inspiration from examples found

in nature both in the types of locomotion, such as swimming and walking, and in

the types of control mechanisms, such as central pattern generators. Locomotion is a

fundamental skill for animals as they need it for finding food, for encountering a mate

for reproduction, for escaping predators, for moving to a more friendly environment,...
For robotics as well, the capacity to move efficiently is essential, if we want robots to do

something useful. Using wheeled robots has greatly simplified the task of the control
of locomotion as it means that the direction and the speed of the motion is determined

by only a few actuators, typically two. However, as wheeled robots are strongly limited

in the kind of environments in which they can move, some engineers have turned to

biological systems for inspiration and started to develop robots which move using more

animal-like types of gaits. This means that more complex means of locomotion than

powered wheels are needed, involving a greater number of actuators generally used
in a rhythmic way. Very quickly, the engineer is then faced with the same control

problems faced by biological systems, namely the control of multiple actuators which

only produce the desired behaviour when appropriately coordinated. The problem is

to find the right control mechanism which can translate commands concerning the

speed and direction of motion into the set of signals sent to the multiple actuators.

I therefore believe that robotics may not only gain from inspiration from biology for
the structure of the robot (e.g. legged robots) but also for its control system (i.e.
networks of neurons). Note that there is no reason that the structure and control

systems found in nature should be optimal (Darwinian evolution just requires them to

be good enough), but even the simplest animal is for the moment much more efficient

and better adapted to its environment than the most complex robot.
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Central pattern generators

The neural mechanisms used by animals to control complex motions are remarkably

well adapted; they present several interesting features such as distributed control, flex¬

ibility, robustness against lesions, etc.. I take inspiration from the oscillatory neural
circuitries found in vertebrates. Oscillatory networks play a very important role in an¬

imals, as they are used for many fundamental functions such as locomotion, breathing,

chewing, blood circulation and even thinking. Many of these networks are based on

circuits called central pattern generators (CPG) which can produce oscillations without

oscillatory input either from the brain or from sensory feedback. CPGs are an inter¬

esting way to distribute control. They are located close to the muscles they control
— the CPGs for the locomotion for vertebrates are, for instance, located in the spinal
cord — and they produce, when receiving tonic input, the basic patterns of oscillation

necessary for the function they control. These patterns form the templates for motion
which can then be modulated by higher control and by sensory feedback depending on

the external conditions.

1.2 Content and motivations of the thesis

In this dissertation, neural controllers for the swimming of the lamprey and the swim¬

ming and trotting of the salamander are developed using evolutionary algorithms. The
thesis can be seen as an experiment in computational neuroethology with strong links
with neurobiology. In a first part, it is inspired by findings of neurobiologists on the

swimming circuitry of the lamprey, and develops alternative controllers using evolu¬

tionary algorithms. By doing so, I evaluate the quality of evolutionary algorithms as a

design technique and investigate alternative neural configurations to the one found in
the lamprey. In the second part, I develop potential controllers for the swimming and

trotting of salamanders, whose locomotion circuitry has not been decoded yet. The

dissertation therefore not only investigates a design method for locomotion controllers
which could be useful for neurobiologists and roboticists, but also develops circuitries

which, when analyzed, may give some insights into the functioning of biological net¬
works. The tools in this investigation are simulation of the neural circuitries and the
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simplified mechanical bodies, and evolutionary algorithms.

5

1.2.1 The lamprey

A lamprey swims by creating a lateral undulation of its body which travels from head to
tail. Because of its relative simplicity and because the isolated spinal cord can produce

patterns of oscillation very similar to those of the intact animal (fictive swimming),
the CPG of the lamprey has been studied in great detail by neurobiologists and it

is one of the best known vertebrate CPGs. Physiological observations have allowed

neurobiologists to make a model of the neural circuitry of the CPG whose capacity to

produce most of the observed patterns of oscillations has been demonstrated through
simulations. The lamprey constitutes an interesting starting point for this dissertation.

It has the advantages of being one of the few animals whose CPG has been modeled

in detail and of having a locomotion gait which is simple while presenting the basic

features of any natural motion control, namely the creation and the modulation of sets
of oscillations with characteristic frequencies and phase lags.

In this thesis, the existing models of the swimming CPG of the lamprey are studied,

and alternative connectionist controllers are generated using evolutionary algorithms.

There are several motivations for developing these alternative controllers. The first mo¬

tivation is to evaluate whether evolutionary algorithms can be useful tools for develop¬

ing connectionist locomotion controllers. Having one example of swimming controller,

the biological model, is then very useful because it ensures that at least one solution

exists in the search space of all possible solutions, and because it gives an example with

which the performance of the evolved controllers can be compared. Another interest is

to study whether there exist other solutions than that found in nature that can control

swimming with the same efficiency. Studying the variety of solutions evolved may give
indirect information on the characteristics needed for making good CPGs in general.

Finally, because — in the case of Ekeberg's model —the CPG has been hand-crafted

to fit physiological measurements, it is probably possible to slightly change Ekeberg's
values to fit the measurements even better. In this thesis, I show that a GA could be a

very useful tool for making neurobiological models when it is used to instantiate vari¬

ables such as synaptic strengths which are difficult to measure. From a more general
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point of view, especially a robotics point of view, the technique of evolving swimming
controllers is naturally attractive. Swimming is a more efficient way to move in the
water than using propellers. Having a method which could automatically generate a

swimming controller for any given body shape would therefore be very useful.

1.2.2 The salamander

This thesis also considers animals which can both swim and walk. Salamanders, for

instance, swim like lampreys by creating a traveling wave along their trunk. On the

ground, they switch to a trotting gait in which the trunk performs a standing wave

with the nodes at the level of the girdles. Such a gait increases the reach of the
limbs which are attached laterally to the trunk. Although neurobiologists have not yet

decoded the CPG for locomotion of the salamander, they have hypothesised that, as

salamanders have evolved from simpler vertebrates like the lamprey, their locomotor

circuitries have a similar organisation. The main question is then to understand which
kind of neural circuitry can produce both traveling waves for swimming and standing
waves for trotting. In this thesis, based on lamprey-like swimming circuitries, neural
controllers are evolved which can exhibit both types of gaits. Similarly to what has
been hypothesised by neurobiologists, the controllers consist of two neural oscillators
which project to limb motoneurons and to a lamprey-like trunk CPG.

The first motivation behind this experiment is to gain a better understanding of which
kind of neural circuitries could exhibit the two gaits, and to develop potential control¬
lers which could be compared with the actual circuitry of the salamander when it is

finally decoded. The second motivation is that an autonomous agent that could both
walk and swim would be able to move over most the surface of the earth. An amphi¬

bian robot could have numerous applications, and therefore being able to generate a

controller which can produce the right patterns of oscillations for walking and swim¬

ming, and modulate them to vary the speed and direction of the locomotion would be

most interesting.
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1.2.3 Tools

7

Neuronal simulation

In the field of artificial neural networks and computational neuroscience, simulation

has always been the main tool of investigation. Because networks of neurons (be it

perceptron-like neurons or realistic biophysical models of neurons) usually form unsolv-
able sets of equations, numerical tools are used to calculate their activity.1 As with any

simulation of a biological neuronal circuit, one has to choose at which level of abstrac¬
tion to simulate the system. Biologically-based neural networks can be simulated at a

biophysical, a connectionist or a more abstract level like chains of oscillators. Biophys¬
ical models simulate neurons relatively realistically, taking into account the physical

properties of neurons and therefore modeling dendritic and somatic compartments with
ion channels. Connectionist models capture the main feature of neurons, that is, their

ability to change the frequency of action potential spikes in their axon (the output)

depending on the sum of the activity in their dendrites (the inputs). Finally some

CPGs, like that of the lamprey, have been modelled as chains of abstract oscillators.

The connectionist level is chosen for this thesis. A connectionist model has the ad¬

vantages of being abstract enough to be tractable, in the sense that the simulation of
the CPG and of the body (see below) does not require too much computation time

and too many parameter choices. At the same time, it is concrete enough to give some

insights into the functioning of the CPG of the real lamprey and salamander. Finally,
the connectionist models of the lamprey's CPG are very similar to those currently

used for the control of some robots [Lewis et al. 93]. Therefore, learning how to design
them may be directly applicable to the design of a controller for a swimming robot,
for instance.

Mechanical simulation

Simulation is also used for representing a simplified mechanical body of a lamprey and
of a salamander, in interaction with water or with the ground. I believe that it is

important, especially in the study of neural controllers for locomotion, to investigate
1 Alternatively, networks of neurons can be encoded directly into electronic circuits.
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the effect of the neural activity on a mechanical body rather than simply analysing the
neural activity. Analysing the motion of a mechanical body gives a direct evaluation
of how good the neural controller is, since the production of efficient motion requires

taking in account the inherent dynamics of the mechanical system and producing mo¬

toneuron signals with the right phases and amplitudes. It is also the only way to study
the effect of sensory feedback on the controller. And finally, it allows one to integrate

the CPGs in a more complete animat in order to study higher level behaviours (and
make experiments in synthetic neuroethology). The main reason for my using simula¬
tion rather than a real robot is the absence of physical robots on which the CPGs could
be tested. In addition, simulation has several interesting properties which make it a

preferable choice, at least initially, for this thesis. Simulation gives a good control of
all parameters involved which allows the experimenter to make perfectly reproductible

experiments. This also allows (relatively) easy variation of the conditions under which

experiments are made. Also, like any experiment in evolutionary robotics, it has the

advantage of not risking any material damage of a physical robot due to wear or to

bad controllers which are inevitably created in an evolutionary process. Note that,
in contrast with many experiments in evolutionary robotics, simulation is not used to
shorten the time to test robots as the time for running a mechanically realistic simula¬
tion with current computational power is not necessary shorter than that required by
a real robot for evaluation of a controller.

Evolutionary algorithms

I use evolutionary algorithms, in particular genetic algorithms (GAs) and genetic pro¬

gramming (GPs), for the design of the neural controllers. These optimization al¬

gorithms are inspired by the process of Darwinian evolution found in Nature. The

idea is to encode potential solutions to a problem into chromosomes, which are eval¬
uated and given a fitness value depending on their capacity to solve the problem.
New solutions are created by "breeding" the chromosomes depending on their fitness.
The fitness of the population, i.e. the capacity of the solutions to solve the prob¬

lem, increases gradually because of selective pressure applied to the population due to
the selection of parent chromosomes and the rejection of the worst solutions at each

generation. Prom a general point of view, design by evolutionary algorithms has the in-
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teresting property ofmoving the design process from the classical engineering approach
where all the building bricks of a solution have to be specified, to a process which only

needs the definition of basic building bricks (the representation) and of the problem

(the evaluation function) and then uses the evolutionary algorithm to construct the

system until the problem is satisfactorily solved. Applied to neural networks, evolu¬

tionary algorithms present a great flexibility that most traditional learning algorithms
do not offer. This point will be discussed in more detail in the following chapters.

Note that the evolutionary algorithms are used as design tools and not as simulations

of natural evolution.

1.2.4 Original contribution

This thesis is not revolutionary, but rather a set of small new steps in different direc¬

tions, in the relatively new field which is computational neuroethology. To the best of

my knowledge, the original contributions of the thesis are the following:

• evolution of connectionist controllers for anguiliform swimming,

• study and development of neural controllers for the lamprey which are alternative

to the biological circuitry,

• development of connectionist controllers which can exhibit both the swimming

and the trotting gait of the salamander,

• mechanical simulation of a salamander-like animat.

The term connectionist is here important because the development of controllers for

lamprey- and salamander-like locomotion and their application to robotics has been

studied before by Lewis, but at a more abstract level [Lewis 96]. As we will see in the
next chapter, Lewis developed an abstract representation of CPGs called Adaptive Ring
Rules. He used this representation to develop "C" bending for a simulated lamprey,
and hand-crafted a controller for the walking of a robot with a one-joint flexible spine.

Although I also take inspiration from lampreys and salamanders, this work differs
from Lewis' in the following ways: 1) it takes more inspiration from neurobiology,

2) it is situated at a connectionist level with networks of neurons rather than abstract
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structures, 3) it uses a mechanical simulation of the salamander with a trunk flexible at
multiple points and which can both swim and walk, 4) it uses evolutionary algorithms
rather than self-organising rules as design tool, and 5) it develops controllers which
can modulate the speed and the direction of the locomotion (features which Lewis did
not address).

Finally, this thesis is also among the first examples of the use of evolutionary algorithms
for designing neurobiological models. In the next chapter (section 2.7), some other
recent work will be presented in which evolutionary algorithms are used for setting
variables in neurobiological models.

1.2.5 Summary of the objectives

The objectives of this thesis can be summarized as a series of questions I will try to
answer:

• How can neural networks be used to control locomotion, and what can we learn
from the neural circuitry found in vertebrates?

• How efficient are evolutionary algorithms for the design of neural controllers?
• Can evolutionary algorithms be used as design tools in neurobiology?
• What kinds of neural circuitry can produce the undulatory swimming of lampreys?
In particular, are there alternative neural configurations to those found in Nature
which can control locomotion with at least the same efficiency?

• How can controllers for undulatory swimming be extended to control both the
swimming and the trotting of a salamander-like animat?

1.3 Summary of the thesis

Chapter 2: As I am interested in taking inspiration from animals, a significant part
of the thesis is dedicated to the analysis of the mechanisms of control found in animals.
I look in particular at the neural circuitries controlling the swimming of the lamprey
and at the studies made of the locomotion of salamanders. Related research in the
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artificial neural network community is then presented, and an overview of biologically

inspired swimming and walking machines is made. The mutual benefits of interactions
between biology and artificial intelligence are discussed.

Chapter 3: After having made a review of the different models of the lamprey's

CPG in chapter 2, this chapter presents in more detail the neuronal and mechanical

simulation of the lamprey developed by Ekeberg [Ekeberg 93]. This connectionist

model is an important inspiration of this thesis, and it is the model with which the

evolved swimming controllers will be compared. I reproduce that model with both
the neural and the mechanical simulation. The different properties of the model are

described.

Chapter 4: This chapter presents the development of alternative controllers to the

biological model using a GA. The alternative controllers are based on similar neurons
to those of Ekeberg, although their sign (excitatory or inhibitory) can change. In this

first research, a direct encoding and an incremental approach for developing swimming

controllers are used. Solutions are developed in three stages, with first the evolution

of segmental oscillators, then the evolution of the coupling between 100 copies of a

segmental oscillator, and finally the evolution of sensory feedback from stretch sensitive

cells.

Chapter 5: This chapter demonstrates how the GA can be used as a tool for neuro-

biological modeling, when used to instantiate variables which are difficult to measure.

To illustrate this, the evolutions of swimming controllers are repeated and the possible

solutions are restricted to solutions which present the observed biological connectiv¬

ity. The evolutionary process is therefore used to automatically generate a part of the

model Ekeberg has designed by hand.

Chapter 6: In order to test a more sophisticated encoding, I started a collaboration

with Jerome Kodjabachian to try the developmental encoding he designed. The idea
is to evolve developmental programs which determine how neurons divide and grow

connections on a 2-dimensional substrate. For this we use simpler neurons than those

used in earlier chapters and also fewer neural segments. Swimming controllers are

evolved in only one stage, with a fitness function only based on mechanical aspects



12 CHAPTER 1. INTRODUCTION

such as the speed of swimming and the capacity to turn.

Chapter 7: This chapter presents how swimming controllers for the lamprey can be
extended to control both the swimming and the trotting of a salamander-like animat.
The mechanical simulation is an extension of that of the lamprey with the addition

of simplified limbs. Similarly to hypotheses of neurobiologists, controllers are evolved
which are made of limb oscillators which project to a trunk CPG similar to that of the

lamprey. The fitness function is only based on mechanical aspects such as the control
of speed and of direction. The same direct encoding scheme as for the first experiment
on the lamprey is used, and the evolution of the walking CPG can be seen as a fourth

evolutionary stage following the evolution of the swimming controller.

Chapter 8: Finally, in order to study how the CPGs could be used by higher control

levels, I carry out, with both the lamprey and the salamander, a preliminary experiment
in which the command signals sent to the evolved CPGs are determined by a simple
visual system composed of two retinae. The visual system and the connections from
it to the CPGs are hand-coded for the animats to exhibit a tracking behaviour of a

randomly moving target.

Chapter 9: The dissertation concludes with a general discussion of the results.



Chapter 2

Background

Fields such as neurobiology, neuroethology, cognitive science, artificial life, robotics,

artificial neural networks, artificial intelligence, are progressively coming closer as they

are pushing further their respective barriers, which little by little leads to increasing

overlap between the different fields.

In this chapter, I give an overview of the research carried out in these different fields

on locomotion and its control. I start from biology and little by little move towards

artificial intelligence— more specifically artificial neural networks and robotics—, and
close the loop by looking at how artificial intelligence may help biology and vice versa.

First, some general considerations on animal locomotion are reviewed. Then the or¬

ganization of locomotion control in animals and, in particular, the concept of central

pattern generation is presented (section 2.2). As an example of locomotion controlled

by central pattern generator, I summarize neurobiological findings on the control of

the swimming in lampreys (section 2.3). Lampreys have been studied extensively by

neurobiologists, whose research has inspired this thesis. The locomotion of salamanders
is also presented. I then give an overview of the research carried out in the artificial

neural network community on dynamical neural networks (section 2.5). This type of
network has many similarities with connectionist models used in neurobiological mod¬

eling, and I especially look at the kind of design techniques developed in the ANN

community. One of these techniques, evolutionary algorithms, is presented in more de¬

tail as it is the design method used in this thesis. In section 2.6, I give an overview of
the research on locomotion carried out in the animat field, with a survey of swimming

13
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and legged robots. Section 2.6.2 presents different design methods for developing con¬

trollers for locomotion, especially neural controllers and evolutionary design. Finally, I

present work which highlights the fruitful interaction between artificial intelligence and

neurobiology with, in particular, the application of artificial intelligence techniques to

neurobiology (section 2.7).

2.1 Animal-like locomotion: general considerations

A large variety of different types of locomotion have been developed in the animal

kingdom, as animals adapted to different ecological niches. Animals, for instance,

swim, fly, run, crawl, hop, etc. The different locomotion gaits are usually very well

adapted to the environment of the animal, and animal locomotion presents fascinating

agility and mechanical efficiency. These properties have made animal locomotion an

interesting field to study by biologists and an interesting example to follow for robotics

engineers.

Animal locomotion is characterized by a large number of actuators, a rhythmic activ¬

ity, and the fact that efficient motion is only obtained when the actuators are well
coordinated. This leads to several control problems. The main difficulty is how to

transform commands concerning the speed and the direction of motion into the sig¬
nals sent the different actuators. Such a transformation is significantly more difficult
than for a powered two-wheeled robot, for instance, where a simple relation can be

found between the voltages sent to the two motors and the direction and speed of
motion. The difficulty arises from the fact that motion is obtained from the coordin¬

ated rhythmic activity of the different actuators. A signal sent to a single actuator

has therefore a complex influence on the motion, as the effect of the signal depends
on the state of the other actuators and of the state of the mechanical system which is

controlled. The timing of the signals (i.e. the phase relation between the actuators)
is crucial, especially for locomotion gaits which are not statically stable such as the

gallop.

The dynamics of the mechanical system is also very important as it largely determines
what movements are possible and it leads to delayed effects of a control signal. The
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control of locomotion has to take account (and take advantage) of the inherent dy¬
namics of the mechanical system, such as its natural frequencies, its elasticity, etc. As

Raibert puts it, "the mechanical system has a mind of its own, governed by the physical

structure and the laws of physics. Rather than issuing commands, the nervous system

can only make "suggestions" which are reconciled with the physics of the system and

the task" [Raibert & Hodgins 93].

Finally some animals, such as cats, use different gaits (the walk, the trot and the

gallop) for different speeds of motion and need therefore control mechanisms able to

produce significantly different patterns of signals depending on the desired speed.

An important question in locomotion control is how to organize the control mechanism.

For instance having a central control center responsible for coordinating and sending

the signals to all individual actuators, or having a more distributed control with differ¬
ent centers responsible for a subgroup of actuators with some communication between

the centers. Also the importance of sensory feedback must be considered, as it can

either be used for refining the signals sent by a central control mechanism, or play a

direct role in the generation of the signals.

These issues will be considered in the next sections. We will first consider the motor

organization of animals, as far as it is known.

2.2 Motor organization in animals

2.2.1 Peripheral or central mechanism?

The locomotion of animals has been studied for a long time, but biologists had to wait

for relatively modern techniques for gaining a better understanding of the different

locomotion gaits and control mechanisms used by animals. These techniques include

photography and video for the gait characterization, microscopes for the anatomy of
the control circuitries, intracellular measuring techniques for the physiology of the

circuitries, pharmacology for the understanding of the cellular properties, and more

recently computer simulations for verifying hypotheses about the neural circuitries

involved.
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During this century, two theories have been proposed for the control mechanisms:

peripheral control and central control [Delcomyn 80]. The peripheral control point of
view is that the rhythmic sequences of actions linked with locomotion are due to chains
of reflexes. Locomotor patterns could, for instance, be induced by a simple alternating

signal, and signals from sensory feedback would then determine the complex sequence

of actions necessary for motion, with each movement providing the trigger for the next

one. Conversely, the central control point of view is that the central nervous system

has the capacity for producing the patterns of oscillations in the absence of sensory
feedback.

Although experiments in the '40s by Sir James Gray seemed to support peripheral
control (as reported in [Delcomyn 80]), the current opinion is that most animals have
a central control of rhythmic behaviour. Gray found out that sensory stimuli could
initiate stepping in a toad whose spinal cord had been severed just behind the head,
and that completely deafferented spinal cords of toads did not reveal any rhythmic

activity. Gray therefore suggested that the stepping behaviour was due to a chain of
reflexes. However more recent (and more careful) experiments contradicted his latter
results by showing that completely deafferented toads were, in some cases, still able to

produce rhythmic sequences and use their legs in the normal sequences, demonstrating
therefore the existence of a central control mechanism. Similar oscillatory networks

have nowadays been observed in many animals, both invertebrates and vertebrates,

by making experiments on animals whose oscillatory circuits are isolated from sensory

information1 (see [Delcomyn 80] for a review). A central control mechanism does not

mean, however that it does not integrate sensory feedback. Several experiments have,
for instance, been done which demonstrate that sensory feedback plays an important

role in "shaping" the output of the oscillatory circuits. In particular, sensory input can

initiate oscillations in the control circuitry as demonstrated by Gray's first experiment.
Such an experiment shows that sensory input plays an important role in the pattern

generation, but it is not a proof that sensory feedback is necessary for the pattern

generation.

1 The sensory information is prevented to reach the oscillatory circuitries by either completely isolating
the circuitry, or by cutting its afferent connections, i.e. deafferentating the circuitry, or by paralysing
the animal, using curare for instance, which has the effect of eliminating movement-related feedback.
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2.2.2 Central pattern generators

17

Once central control was commonly accepted by neurobiologists, another important

question, especially for vertebrates, was to determine at which "level" the patterns of
oscillations are generated and which kind of information has to travel from the brain

to the motoneurons for the production of the locomotor sequence. In vertebrates,

there is now strong evidence that the oscillatory circuits are located in the spinal

cord. Completely isolated spinal cords of lampreys and frog embryos can for instance

produce patterns of neural activity very similar to those used by the intact animal for

swimming. Experiments by Shik, Orlovky and Severin in the 1960's (as reported by

[Grillner 85, Grillner 96]) showed that the walking gait in a decerebrated cat could be
induced by a very simple electric stimulus in a specific area of the brainstem. When

the amplitude of the signal is increased, the speed of locomotion increases and the cat

switches to the trot and to the gallop. Vertebrates have therefore circuits in their spinal

cord which can produce the patterns of oscillations necessary for locomotion without

oscillating input from the brainstem or from sensory feedback; such circuits are called

central pattern generators (CPGs).

The characteristics of CPGs can be summarized as follows (see [Grillner 85, Getting 88,

Cohen 88, Kleinfeld & Sompolinsky 89]):

1. CPGs can produce rhythmic neural output in the absence of sensory feedback

from the muscles and structures controlled by the CPG and in the absence of

control by higher neural centers.

2. Some CPGs function without a pacemaker cell, implying that the rhythmic out¬

put is a collective property of the network.

3. A CPG is capable of producing multiple patterns of rhythmic behaviours de¬

pending on the input to the CPG, with the same set of neurons being involved
in different patterns.

4. Most locomotion CPGs are considered to be composed of coupled oscillators (or
sub-CPGs). Tetrapods, for instance, have different CPGs for each limb, and

probably different oscillators for each joint of a limb.
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5. The output can be modulated by external output such as feedback from proprio¬

ceptors and from higher neural centers. For example modulation is used to both
turn the CPG on and off and to control the period of its rhythm.

CPGs therefore provide the templates for the patterns of oscillations which can be

shaped by sensory feedback or control commands from higher neural centers depend¬

ing on the situation. This type of distributed control means that, during stationary
locomotion (i.e. motion with constant speed and direction), only simple signals need to
be sent to the CPG, carrying information about the speed of motion, for instance. It
is only for specific, voluntary movements that more complex input signals are needed
from the higher neural centers. A variety of CPGs have been identified, not only
for locomotion, but also for breathing, swallowing, chewing, ..., both in invertebrates

(see [Getting 88]) and in vertebrates (see [Grillner et al. 88, Cohen 88]). Among ver¬

tebrates, one of the most studied animals is the lamprey, which I shall present next.

2.3 Locomotion of lampreys

Lampreys are primitive fish (cyclostomes) which resemble eels, but which lack jaws.
A lamprey's life cycle begins with a larval stage in the sand of rivers before living a

parasitic life in the sea or in lakes. Lampreys have become famous by the nuisance they
created to the fish population of the American Great Lakes, which they reached in the
1800s through shipping canals. Because of their simple swimming gait and because of
their relatively simple control circuitries, lampreys have been extensively studied by

neurobiologists for understanding the circuitries underlying vertebrate locomotion.

Figure 2.1: Picture of lamprey (New York State Department of Environmental Conservation).
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Lampreys have an elongate body, with a smooth, scaleless skin. They have two dorsal

fins, but no paired fins (Figure 2.1). A lamprey swims like an eel using an anguili-

form gait, i.e. by propagating a traveling undulation of its body from head to tail.
The undulation is lateral and propagates over the whole body with an approximately

constant wavelength, which means that the whole body is activated for producing the

swimming gait (Figure 2.2).

Figure 2.2: Anguiliform swimming of the lamprey. The traveling waves of muscle contraction
are highlighted.

2.3.1 A good preparation for the study of vertebrate locomotion

The lamprey's locomotion circuitry is one of the most studied and well known verteb¬

rate locomotor circuitries. It is a good subject for studying vertebrate locomotion for

several reasons:

1. Its anatomy and type of locomotion are simple. The lamprey swims without

using limbs and with only one type of gait, which makes it therefore significantly
easier to analyse than tetrapods, for instance, which move by coordinating the
muscular activity of several joints in the four limbs and which use several gaits

(walking, trotting, galloping,..) depending on the speed of motion.

2. As it is one of the earliest vertebrates, its nervous system is relatively simple and
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contains relatively few neurons compared to higher vertebrates, which makes the
identification of the different cell types and their connectivity easier.2

3. Its isolated spinal cord can be maintained for several days in a glass dish, while

producing patterns of oscillations which are almost identical to those of the intact
animal. This allows in vitro cellular measurements of the locomotor circuitry.

4. Although simpler, the lamprey central nervous system presents an organization
which has largely been conserved in more complex vertebrates. Findings on the
locomotor circuitry of the lamprey may therefore give insights on the functioning
of higher vertebrates as well.

2.3.2 The swimming central pattern generator

The circuitry which produces the neural oscillatory activity for swimming is

located in the spinal cord. As mentioned above, studies on the isolated spinal
cord have shown that the isolated circuitry can produce patterns of oscillations

very similar to those of the intact animal, demonstrating that the circuitry is
a CPG. This neural activity is called fictive swimming. I will here summarize

neurobiological findings on the swimming CPG of the lamprey from papers includ¬

ing [Grillner et al. 88, Williams et al. 90, Grillner et al. 91, Ekeberg et al. 91,
Matsushima & Grillner 92, Wallen et al. 92, Williams 92a, Traven et al. 93,

Williams & Sigvardt 94, Grillner et al. 95, Sigvardt & Williams 96].

When the isolated spinal cord is immersed in an excitatory bath, oscillations of neural

activity can be measured along the ventral roots of the spinal cord. The spinal cord
is made of approximately 100 segments, with one ventral root per segment through
which motoneurons project to the muscles (see below). Neural activity in each segment

oscillates with contralateral sides out of phase, and each segment oscillates with a small

phase lag compared to its rostral neighbour, which explains the rostro-caudal traveling
undulation of the body. As the phase between 2 neighbour segments is approximately
1% of the oscillation period, the most rostral and caudal segments of the spinal cord

2 The identification of cells and their connectivity is, however, more difficult that for invertebrates
where single cells can be identified. In the lamprey, the identification concerns populations of
functionally similar neurons, rather than single cells.
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oscillate in phase, and the neural wave makes one complete wave over the spinal cord.

An interesting property of the CPG is that it maintains, both in the intact animal and
in the isolated spinal cord, a constant phase relation between segments even when the

frequency of oscillation is varied. A lamprey changes its speed of swimming by changing
the frequency of oscillation (between 0.25 and 10Hz), while maintaining a wavelength

corresponding to the length of the body. The same behavior has been observed in

the isolated spinal cord, where the phase lag between segments stays approximately

constant while the frequency of oscillation is varied by changing the concentration of

the excitatory bath.

As small parts (up to 2 segments) of any part of the spinal cord can be isolated and
made to oscillate independently from neighbouring segments, it is believed that the

whole circuit is made of an interconnection of segmental oscillators. It is not clear

however, how distinct the oscillators are from each other. The spinal cord has distinct

ventral roots through which the motoneurons project to the muscles, but the neurons

in the spinal cord rather form a continuous column. In most models, the spinal cord

is considered as a coupling of distinct neural oscillatory units.

Apart from motoneurons, three types of interneurons have been found to play a role in

the generation of the swimming patterns. There are excitatory neurons which project
to ipsilateral (i.e. on the same side) neurons (EIN), and two types of inhibitory neurons,
one which projects ipsilaterally (LIN) and one which projects contralaterally (CIN).
Based on anatomical studies, a segmental circuitry between these neurons has been

proposed by Buchanan and Grillner [Buchanan & Grillner 87] as shown in Figure 2.3.

Figure 2.3: Segmental connectivity as proposed in [Buchanan & Grillner 87], The lamprey's
CPG is composed of four types of neurons: 3 types of interneurons EIN, CIN and LIN and the
motoneurons MN. The neural units in the figure represent populations of neurons of the same

type. The total number of neurons in a segment is approximately 1000.

The network is normally activated from the brainstem via reticularspinal neurons, but
can also be activated experimentally by increasing the level of excitability pharmaco-
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logically in the isolated segments of the spinal cord. The behaviour of this segmental
network is determined by the contralateral inhibition of the CIN neurons and burst

terminating mechanisms which makes the neural activity switch from one side to the
other. Once one side is slightly more active than the other, its activity will increase
because of the ispilateral excitatory neurons, while the activity on the opposite side
will lessen because of the contralateral inhibition of the CIN neurons. After a while a

burst terminating mechanism stops the ipsilateral CIN activity, which therefore cease

to inhibit the neurons on the opposite side. This means that the neurons on the other
side become active, and among them the CIN neurons which will ensure that the activ¬

ity on the initial side ceases completely. Half a cycle has then been performed, and the
neural activity will similarly switch back and forth from one side to the other. Several
burst terminating mechanisms have been proposed and I will review them below. One
of them is the delayed activation of LIN neurons which could inhibit the ispilateral

CIN (see Figure 2.3) late in the burst, allowing neurons on the other side to become
active.

While the segmental connectivity has now been described in detail, the coupling of

segments over the spinal cord is not perfectly known yet. A general observation is
that when one type of neuron has connections to another type of neuron in the same

segment, it can also project to corresponding neurons in neighbouring segments (syn¬

aptic spread [Williams 92a]). The projections vary from one type of neuron to another.

EIN, for instance, project in both rostral and caudal directions for approximately 5

segments, LIN have long caudal projections to up to 50 segments and CIN mainly

projects in the caudal direction to approximately 20 segments with some short rostral

projections. There is, for the moment, very little information on the respective pro¬

jections to different neurons types (for instance, whether CIN has similar projections
to all neurons types or different projections depending on the postsynaptic cell type),
and on the synaptic strength of the different projections.

Several hypotheses have been proposed for explaining the origin of the phase lags
between segments. The phase lags are clearly not due to delays in conduction along

descending axons. The fact that the phase lag does not vary with the frequency means

indeed that the time delays between segments are kept at a fixed proportion of the
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cycle duration, and that they vary 40 fold when the frequency varies between 0.25 and
10 Hz. As conduction velocities along axons are more or less constant, conduction

delays cannot be the origin of the phase lags.

Two other hypotheses are: a difference of the intrinsic frequencies of segments over

the spinal cord; and a property of the coupling between segments. The difference
of intrinsic frequencies is proposed by Sten Grillner in his trailing oscillator hypo¬

thesis [Matsushima & Grillner 92]. The idea is that some segments in the most rostral

part of the spinal cord have a higher intrinsic frequency and therefore lead the other

segments. As there is no evidence for systematic difference of intrinsic frequencies in
isolated segments from a same spinal cord, it is proposed that higher intrinsic frequency

is obtained through higher excitation from the brain stem. This hypothesis also ex¬

plains how the lamprey can swim backwards, as it would correspond to providing more

excitation to the most caudal segments. Experiments in which a spinal cord is main¬

tained in a excitatory bath with different compartments and different concentrations

shows that both caudally and rostrally directed waves can be obtained depending on

the concentrations.

The other hypothesis is proposed by Thelma Williams and mathematicians modeling

the spinal cord as a chain of oscillators [Williams et al. 90, Williams 92b] (see also sec¬

tion 2.3.3) and comes from the observation that, on average, any part of the spinal cord

oscillates with a caudally directed phase lag between segments while being submitted

to a uniform excitatory bath. This tends to support the idea that the coupling has an

asymmetrical functionality which leads to caudally directed waves.

Note that the two hypotheses are not mutually exclusive as one could imagine that

the coupling between segments favours caudally directed waves, and that excitation

from higher control centers determines the exact value of the phase lag, with the

possibility to induce rostrally directed waves when the most caudal segments receive

more excitation.
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2.3.3 Models of the swimming circuitry

Based on anatomical and physiological findings, the swimming circuitry has been
modeled at three levels of abstraction, namely at a biophysical, a connectionist and an

abstract oscillator level. Biophysical models using relatively realistic neural models in¬

vestigate whether the current state of knowledge of the lamprey is sufficient to produce
models whose results agree with the physiological observations. Connectionist models
of the CPG use less realistic neuron models which capture only the main feature of

neurons, that is, their ability to change the frequency of action potential spikes in
their axon (the output) depending on the sum of activity in their dendrites (the total

input). These studies analyse the importance of the connectivity in the generation
of swimming patterns. Finally, at the most abstract level, the swimming controller
can be modeled as a chain of mathematical oscillators in order to study which kind of

couplings can produce a phase relation between segments which is constant over the
whole spinal cord and which remains a fixed proportion of a cycle when the frequency
of the oscillations is changed.

Biophysical models

Several biophysical simulations based on the CPG's anatomy and physiology have

been made, mainly by Sten Grillner and his colleagues at the Nobel Institute for

Neurophysiology in Stockholm [Ekeberg et al. 91, Grillner et al. 91, Wallen et al. 92,

Hellgren et al. 92, Traven et al. 93, Wadden et al. 97]. These simulations are com¬

posed of relatively realistic models of neurons of Hodgkin-Huxley type which are com¬

posed of several electrically coupled isopotential compartments, to represent the soma

and the dendritic tree, equipped with ion channels.

These studies have progressively investigated the single cells implicated in the pat¬

tern generation [Ekeberg et al. 91], then the segmental circuitry [Grillner et al. 91,
Wallen et al. 92, Hellgren et al. 92, Traven et al. 93], and have recently looked at the

intersegmental coordination [Wadden et al. 97]. The simulations model experiment¬

ally established types of neurons with their specific membrane properties and synaptic

interconnections. Except for [Hellgren et al. 92], they simplifiy the neural circuitry by
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representing whole populations of neurons of the same type by single neuron units.

Simulations of the segmental circuitry as shown in Figure 2.3 demonstrated that it can

produce the patterns of oscillations observed physiologically, and that several phar¬

macological experiments on the isolated spinal cord can be reproduced in computo.

The simulations especially investigate the mechanisms of burst termination, i.e. the

mechanisms which lead the neural activity to cease on one side of the spinal cord and

to switch to the other.

Four possible burst terminating mechanisms have been proposed and investigated: 1)
a frequency adaptation in CIN and EIN neurons, 2) the termination of the depolar¬

ized NMDA-evoked plateau in CIN and EIN neurons, 3) the synaptic inhibition from

ipsilateral inhibitory neurons (LINs), and 4) the effect of sensory input from stretch
sensitive cells. [Wallen et al. 92, Hellgren et al. 92] find that the first two (cellular)

aspects play an important role for oscillations at low frequencies, while the synaptic

inhibition from ipsilateral neurons (LINs) is mainly useful for high frequency oscilla¬

tions. Similarly to physiological observations, they find out that, at low frequencies,

NMDA receptors play an essential role in the rythmogenesis and evoke pacemaker-like

membrane potential oscillations in individual neurons. [Hellgren et al. 92] also finds
that duplicating the interneuron units of the segmental network, by using populations
of network interneurons, leads to a more robust burst activity and covers a wider fre¬

quency range than simulation with single neuron units representing the interneurons.

In [Traven et al. 93] the effect of sensory input from stretch sensitive cells located

on both sides of the spinal cord, the edge cells, is also investigated. The findings of

experiments in which Active swimming oscillations are entrained by moving the caudal

end of the spinal cord from one side to the other with a manipulator [Grillner et al. 91],
are reproduced by simulating rhythmic input from the stretch sensitive cells to the

segmental network. Because of ipsilateral excitatory connections and contralateral

inhibitory connections, the effect of the edge cells is to synchronize the neural activity
with the movements of the body. The sensory input then acts as a burst terminating
factor by inhibiting the activity on the contracting side and exciting the interneurons
on the side about to become active.

[Wadden et al. 97] investigates the intersegmental coordination. Unlike the previous
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studies, this simulation includes more than one segmental network and models 60

segments of the spinal circuitry. The circuitry is also continuous in the sense that
interneurons are spread out evenly along the length of the spinal cord with rostral and
caudal projections which respect the biological projections as far as they are known.
The simulation produces patterns of oscillations with phase lags between segments

which are constant over most of the spinal cord. The model also reproduces effects
of locally increasing the excitation in the spinal cord, similarly to the experiments

reported in [Matsushima & Grillner 92]. However, unlike physiological observations,
these simulations can not reproduce the independence between the phase lag and the

frequency of oscillation, as, in these simulations, the phase lag varies with the frequency
instead of maintaining a value correponding to 1% of the burst duration.

One problem with biophysical simulations is that they require the setting of many

parameters defining the cellular and synaptic properties of the neurons. Many of
these parameters can not be measured with current intracellular recording techniques,
and have to be set by hand in order to fit the physiology of the neurons. As the
number of unknown parameters grows rapidly with the number of neurons, biophysical
simulations have difficulties to simulate large networks of neurons. The growing number
of parameters which have to be artificially instantiated means that the larger the

network, the less realistic the simulation and therefore the less motivation for using

such a computationally expensive simulation. An interesting alternative for simulating
networks of neurons is therefore to use connectionist models.

Connectionist models

Connectionist models investigate the dynamics of networks of neurons using less real¬
istic neuron models than biophysical simulations. Rather than studying the detailed
membrane activity of neurons, they study the effect of synaptic weights and synaptics

delays on the overall activity of the network. These types of model are therefore

very similar to dynamical recurrent neural networks from the artificial neural network

community (see section 2.5).

The neuron model of connectionist simulations computes the mean firing rate of biolo¬

gical neurons (rather than spiking action potentials) depending on the synaptic input
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and depending on the neuron time constant(s). The mathematical models of neurons
are either models in which the neuron activity is updated with discrete time steps

depending on the current input and the previous activation, or differential equations

representing leaky integrators. The important parameters of a network are the time
constants of the neurons and the synaptic weights of the interconnections. The number

of parameters is significantly lower than for biophysical simulations.

The lamprey's swimming circuitry has been modeled by different connectionist

models [Buchanan 92, Williams 92a, Ferrar et al. 93, Ekeberg 93, Ekeberg et al. 95,

Jung et al. 96]. These models simulate one or several segments of the swimming CPG,
and are based on the segmental connectivity sketched in Figure 2.3. Because the neuron

models do not include complicated neural mechanisms, the oscillations in these models

are entirely due the synaptic connectivity (although the neuron model in [Ekeberg 93]
includes a frequency adaptation mechanism). These models rely on the LIN neurons

for acting as burst terminator, and they can therefore be considered to simulate the

functioning of the biological network in the higher frequency range.

The simulations of [Buchanan 92, Williams 92a, Ekeberg 93, Jung et al. 96] demon¬
strate that the segmental connectivity is sufficient for producing oscillations, without

the need for special neuronal properties such as action potentials and endogenous os¬

cillations. The frequency of the oscillations can be increased by increasing the external
excitation applied to the neurons, similarly to physiological experiments.

[Buchanan 92] and [Williams 92a] also study the effect of coupling different segmental
oscillators. The couplings are obtained by projecting a segmental connection to the

corresponding post-synaptic neuron in the neighbour segment. Different couplings,
both unilateral and bilateral, are tested. Buchanan looks in particular at a variety of

possible couplings between two oscillators which leads to stable phase locking between
the two segments with one segment leading the other. Williams simulates a chain of

20 segments and uses a closest neighbour coupling in which each segmental connec¬
tion is projected with a lower synaptic weight to the rostral and caudal neighbouring

segments. Constant intersegmental phase lags can be obtained as long as the connec¬

tions between oscillators are asymmetric. The neural activity travels from head to tail

if the synaptic weights in the rostral direction are stronger than those in the caudal
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direction. Independence between frequency and phase lag is also obtained when the

frequency is increased by increasing the tonic excitation the EIN cells alone. However,
unlike physiological experiments, if the tonic excitation to all cells is increased, both
the frequency and the phase lag are increased. She does not study the effect of varying
the synaptic weight of the intersegmental coupling depending on the connection (e.g.
increasing the inhibitory connections and decreasing the excitatory connections) or the
effect of longer coupling than closest neighbour projections.

[Ferrar et al. 93] demonstrates that the current model of the segmental circuitry is

remarkably robust against stochastic variations of the synaptic weights, and, similarly
to [Hellgren et al. 92], that the network becomes even more robust when cells are

duplicated.

[Ekeberg 93] presents a model combining a neural simulation of the whole spinal cord

(100 segments) with a simple mechanical simulation of the body of the lamprey in
interaction with water. This model has inspired our work on the lamprey and will be
described in more detail in chapter 3. It uses more complex neuron models than the

previous studies —integrators with three state variables which include features such
as frequency adaptation. The model is able to produce swimming patterns similar to
those observed in the lamprey, with a phase lag which is constant over the spinal cord
and which is independent of the frequency. In [Ekeberg et al. 95], the effect of sensory
feedback from the mechanical simulation is investigated with the simulation of the
stretch sensitive edge cells. Ekeberg shows that these cells can be useful for crossing
a simulated speed barrier. That paper also presents an extension of the CPG for

controlling the swimming of a 3-dimensional simulation of a lamprey. An interesting

aspect of Ekeberg's work is that, because both the neural circuit and a mechanical

body are simulated, it enables study of control aspects such as the modulation of the

speed and the direction of swimming.

Models using mathematical oscillators

The lamprey's swimming CPG can be studied at an even more abstract

level than connectionist simulations, when regarded as a chain of math¬
ematical oscillators [Rand et al. 88, Williams et al. 90, Kopell et al. 91,
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Williams 92b, Somers & Kopell 93, Nishii et al. 94a, Nishii et al. 94b, Kopell 95,

Williams & Sigvardt 95, Sigvardt & Williams 96]. Such an approach is essentially
taken to investigate the structure and the function of the intersegmental coupling.
Each segment of the spinal cord is represented as a non-linear oscillator, without

considering the cellular and connectivity of the segmental circuitry. The idea is to

find general properties of the coupling between the oscillator units which can produce
the swimming patterns of the lamprey, and which do not depend on the details of the
individual oscillators.

1 k-1 k k+1 n

Figure 2.4: Chain of coupled oscillators

These studies use non-linear oscillators usually coupled with a closest neighbour coup¬

ling (Figure 2.4). Most of the mathematical framework is due to Nancy Kopell and
Bard Ermentrout (see for instance [Ermentrout & Kopell 91, Kopell et al. 91]). All
these studies rely on an averaging technique, which states that if the effect of one oscil¬

lator on the instantaneous frequency of another is averaged over the entire cycle, then

this effect can be expressed as a function of only the phase difference between the two os¬

cillators, rather than on the state of an oscillator at each time step. This averaging tech¬

nique is shown to be valid if the coupling signals are dispersed around the cycle rather

than occurring at only one or two points within the cycle [Ermentrout & Kopell 91],
and following [Williams et al. 90], this can be considered true for the lamprey. The

chain of oscillators is then mathematically described as:

O = uji + Ha(4>i) k = 1
0 = LOk + HA(4>k) + HD{-(j)k_i) l<k<n (2.1)
0 = u)n + HD(-cj)n-i) k — n

where co^ is the intrinsic frequency of the oscillator k (i.e. the frequency at which it

would oscillate when isolated), fl is the ensemble frequency of the coupled oscillators

(i.e. the frequency of all oscillators when they are phase-locked due to the coupling),
4>k is the phase difference between oscillator k and oscillator k-1, and Ha(4>) and

Hd(4>) are the ascending and descending coupling functions respectively. Because of
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the averaging technique, the effect of one oscillator on the frequency of oscillation of
the other depends only on the phase lag between them.

The aim is to find the charateristics of the coupling functions Ha(</>) and Ho((p) which,
similarly to the lamprey's spinal cord, can produce a phase lag between segments which
is constant over the chain and which is independent of the ensemble frequency D of the
oscillators. As there is no biological evidence that there is a systematic variation of the
intrinsic frequencies of the oscillators along the spinal cord, most studies assume that
all oscillators have the same intrinsic frequency, which means that the phase lags are

due only to the coupling. [Williams et al. 90] gives a summary of the properties the

coupling functions Ha and Ho should possess for the chain to produce lamprey-like
oscillations. In particular, she points out that the value taken by the intersegmental

phase lag (pk is near the zero crossing of either the ascending or descending coupling

(i.e. 4>a or (f>o where Ha{<Pa) — 0 and Ho{~(pD) = 0). Which value it is near depends
on the relative magnitudes of each coupling function at the zero crossing of the other.
For instance, if |Ha(<Pd)\ > \Ho{~<Pa)\i the chain will phase-lock with a phase lag of

4>a for most of the chain, and the ascending coupling Ha is then said to dominate.

The mathematical predictions have been compared with several biological experiments

in order to determine which coupling, ascending or descending, dominates:

1. Experiments in which mechanical entrainment is applied to the extremities of
the spinal cord, have shown that caudal forcing can induce a larger range of fre¬

quencies than rostral forcing [Williams et al. 90]. When compared to the math¬
ematical framework, this indicates that the ascending coupling is dominant.

2. Analysis of the phase lags between segments over the spinal cord shows that the

phase lag is constant for most of the spinal cord except at the rostral bound¬

ary [Williams & Sigvardt 94]. This is also evidence that the ascending coupling
dominates.

3. When the spinal cord is immersed in an excitatory bath with two different con¬
centrations between the rostral and the caudal half, the phase lag changes signific¬

antly within the rostral but not the caudal compartment, indicating a dominating

ascending coupling [Sigvardt & Williams 96].
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4. But in the same experiment, it is also observed that the ensemble frequency of

the spinal cord with different activations in the rostral half and the caudal half

is always closer to the intrinsic frequency of the rostral segments rather than

the caudal ones [Sigvardt & Williams 96]. In the framework, this would mean

that the descending coupling is dominant, which is opposite to the previous

observations.

[Sigvardt & Williams 96] conclude that although the mathematical theory agrees with
most of the biological observations, it should be extended to explain the last obser¬

vation. The authors suggest introducing another type of coupling which affects an

oscillator's frequency independently of its phase lag, and to include both short and

long range couplings.

One problem with this mathematical model is that it does not give a clear relation

between the meaning of dominance of a coupling and neural properties such as the

synaptic strength, the length and the sign (inhibitory or excitatory) of connections
between neurons. In the theory, a coupling is said to dominate when it gives the main

contribution to the determination of the phase lag between segments. This does not

mean that the neural wave should travel in the direction of the dominant coupling,
i.e. an ascending coupling can potentially lead to both positive or negative phase lags
between segments. Also, although it is clear that for a coupling in one direction to exist

there must be synaptic connections in that direction, a dominant coupling does not

necessary mean that the synaptic connections in that direction have stronger excitatory
or inhibitory synapses or longer projections.

In an attempt to bring the mathematical theory closer to neural properties,

[Williams 92a] presents a modification of the mathematical theory and provides a link

between the mathematical theory and a connectionist model similar to that developed
in [Buchanan 92]. In particular, she proposes a variant of the coupling function which

can be measured from the interaction of two neural oscillators, and shows that the

mathematical chain of oscillators correctly predicts the behaviour of the simulated

connectionist model. Further work in that direction should provide a better under¬

standing of the relation between the mathematical coupling functions and the synaptic

properties of a simulated or biological neural network.
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2.4 Locomotion of salamanders

Salamanders (and newts) are legged amphibians which are capable of swimming and

walking. This property makes an interesting inspiration for robotics, as a salamander¬
like amphibian robot would be able to move in a large variety of environments.

Salamanders swim like lampreys using an anguiliform swimming gait and, on the

ground, they move with a trotting gait in which the body performs a standing wave,

rather than the travelling wave of the anguiliform swimming. The standing wave leads
to an S-bending of the body with the nodes at the girdles [Frolich & Biewener 92].
The movement of the body is coordinated with the movements of the limbs in order
to increase their reach, as the limbs are fixed laterally to the body. An interesting

question is therefore to find out which kind of neural circuitry can produce both types

of gaits, and especially both the traveling and standing wave of the body.

The locomotor circuitry of the salamander is much less known than that of the

lamprey. Kinematic studies of locomotion as well as elecromyographic (EMG)
studies of muscle activity have given a fairly clear idea of the output of the
locomotion circuitry [Frolich & Biewener 92, Carrier 93, Ashley-Ross 94a, Gillis 97,

Ashley-Ross & Lauder 97, Delvolve ef al. 97], but the interneurons and the connectiv¬

ity of that circuitry is for the moment undecoded.

Based on EMG measurements of the swimming and trotting motor patterns,

[Delvolve et al. 97] have shown that the muscles of the body are activated with a

traveling wave for swimming and with a standing wave for trotting (Figure 2.5). The
authors have distinguished three different traveling waves during the swimming, along
the neck, the mid-trunk (the part of the body between the girdles) and the tail. The
three waves travel in the caudal direction with slightly different speeds. During trot¬

ting, the muscles of the mid-trunk express single synchronous bursts which lead to the

body forming a standing wave. The muscles of the neck and the tail display a double

bursting pattern in the form of two waves of EMG activity propagating in opposite
directions (see Figure 2.5). The authors therefore suggest that the motor patterns

may be created by a lamprey-like CPG, receiving tonic input from the limb CPGs

during swimming and phasic input during trotting. This would mean that, during
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Figure 2.5: Neural activity of body muscles during swimming (top) and trotting (bottom), and
proposed neural configuration (adapted from [Delvolve et al. 97]). Middle: The thick black
lines represent EMG bursts in the left muscles along the body. During trotting (bottom),
midtrunk muscles contract in synchrony while tail and neck muscles present a double bursting
pattern in a complete stepping cycle T. Right: Hypothesised neural organisation and schematic
neural activity during a cycle. Inhibitory and excitatory effects are represented by filled circles
and arrows, respectively.

swimming, three segments of the body CPG would receive extra excitation and, fol¬

lowing Grillner's "trailing oscillator hypothesis", would generate the observed three

traveling waves. During trotting the phasic input from the limb oscillators would force

the mid-trunk muscles to oscillate in phase, while rhythmicaly exciting and inhibiting
the most rostral and caudal segments leading to the double traveling waves observed in

the neck and the tail. The model would also indicate that the intersegmental coupling
of the body is asymmetrical and favours the caudal direction, as the three traveling
waves measured during swimming only propagate in the caudal direction.

Similarly, by studying transspecies similarities, Avis Cohen has hypothesized that
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the locomotor circuitry may have several similarities with that of the lamprey CPG

[Cohen 88]. Amphibians are believed to have evolved from simpler vertebrates similar
to the lamprey and, based on both phylogenetic and ontogenetic comparisons, she pro¬

poses a pathway between them made of simple transformations. The idea is mainly
that morphological changes have seen segments of the body becoming fins and then

limbs, and that similarly some segments of a lamprey-like spinal cord have specialized
to control them. In chapter 7, I will evolve controllers for the swimming and the trot¬

ting gaits of the salamander based on a similar idea, with two segmental oscillators

specializing for controlling the motoneurons of the limbs.

Finally the capacity of a lamprey-like CPG to produce standing S-waves as observed

during the trotting of the salamander has been studied in the mathematical framework
of chains of oscillators [Ermentrout & Kopell 94b]. Long coupling from the extremities
to segments next to the middle of a chain with otherwise only closest neighbour coup¬

ling can produce S-waves, when the local coupling is designed to produce synchrony
and the long coupling is designed to produce anti-phase behaviour (i.e. an abstraction
of inhibition). By performing a bifurcation analysis on different parameters of the net¬

work, the authors find that the S-wave is a stable solution in a region of the parameter

space.

2.5 Dynamical neural networks

The fascinating computational power of neuronal circuitries found in animals has led

researchers in artificial intelligence to develop the artificial neural network (ANN) field

[Hertz et al. 91, Arbib 95]. In that field, abstract neuron units are used in a network
for distributed computation tasks. The mathematical neurons typically calculate a

weighted sum of their inputs and produce an output through a transfer function. The
main interest of the field is to develop learning algorithms for setting the parameters

of the network, such as the weights of the connections between neurons, in order to

perform some computation. A large number of algorithms and network structures

have thus been developed for a variety of applications such pattern recognition and

classification, associative memories, etc.
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More recently, potential applications such as control and signal processing have led
researchers in artificial neural networks to develop networks which present temporal

behaviour. These networks exhibit some dynamics because of their operation and

structure by incorporating recurrent connections and/or because of the dynamics of
their neuron models. Because of their temporal behavior, these types of neural net¬

works present many similarities with biological networks and the connectionist models

of neurobiologists. The field of dynamical neural networks and connectionist models

therefore represents a field in which ANNs and computational neurobiology meet. I

will here give a brief overview of the research on dynamical neural networks (for more
detail see [Hertz et al. 91, Haykin 94, Arbib 95], for instance).

2.5.1 Neural networks which deal with time

Dynamics in the operation of the network

Recurrent networks, such as Jordan's or Elman's networks [Jordan 86, Elman 90], in¬
troduce time-dependent behaviour by containing recurrent connections in an otherwise

feedforward network which feed back the states of some neurons in the network as in¬

puts to the network at the next time step (the feedback is provided through units called

context units). In this way, the operation of the network introduces time-dependent

output with discrete time steps. The neurons themselves are not time dependent and

are typical neurons of a feedforward network, where the output a, of a neurons is cal¬

culated from its weighted input sum, aj = g{Jf,wijaj), through a saturating function
such as the sigmoid function (g(z) = 1/(1 + e~z)).

More generally, recurrent networks, in which each connection transmits the state of its

pre-synaptic neuron to the post-synaptic at the next time step, can be trained with

a variation of the back-propagation of feedforward networks called back-propagation

through time [Williams & Peng 90]. Because of the discrete time steps, the recurrent

network can be "unfolded" over time into a multilayer feedforward network, with a new

layer added at each time step. A backpropagation algorithm can then be applied with

the restriction that the synaptic weights of the unfolded connections corresponding to
the same connection in the recurrent network are constrained to have the same value

for the whole unfolded network.
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A Hopfield network is another example of a recurrent network which presents a dy¬
namics because of the way it is updated [Hopfield 82]. The network is a fully recurrent
network with neurons whose ouputs are either +1 or —1 depending whether their

weighted inputs are positive or negative, respectively. The connectivity is symmetric,
without self connections (wji — Wij and wu = 0). The update rule has the particularity
that neurons are updated randomly and asynchronously (i.e. one at a time). Because of
the symmetric connectivity, the update rule means that the network always converges

to a stable state, which corresponds to a minimum of a Lyapunov function. This
function depends on the weights of the network, and the stable states of the network
can be defined by a "storage" rule without iterative learning. Note that although this
network exhibits a dynamics before reaching a stable state, its main interest is in the
states to which it converges for applications such as associative memory or constraint
satisfaction problems.

Dynamics in the neuron models

Time dependence can also be explicitely incorporated in the neuron models through

time-delayed synaptic connections. Finite-duration impulse response (FIR) neurons

have, for instance, been used to introduce time in feedforward networks [Wan 90] (see
also the time-delay neural network [Lang & Hinton 88]). These neurons have synapses

which are modeled as linear, time-invariant filters. The activation of each synapse

depends not only on the current input but also on a fixed number of steps M in

the past (finite memory). The linear filter computes the activation of the synapse

by making a convolution sum on the memorized activity of its input. A synapse is
therefore represented by M weights rather than a single weight. The output of a
neuron at a time step is then calculated depending on the activity of the different

synapses through a saturating function such as the sigmoid function. Feedforward
networks with FIR neurons can be trained with a variation of the back-propagation

algorithm called temporal back-propagation, and have showed very good performance
at time-series prediction (see [Wan 94], for instance, for an example of prediction of a
chaotic time series).
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Continuous-time recurrent networks

37

The models described so far work with discrete time steps, either in the operation of

the network or in the synaptic filters of the neurons. Continous-time neurons have

been developed in which the neurons' behaviour is expressed in first-order differential

equations. The activity of a network is then described as a nonlinear dynamical system
of coupled differential equations.

The types of neurons used for dynamical recurrent networks are very similar, and often

identical, to models of neurons used for connectionist models of biological systems. It is

therefore not surprising that terms such as mean firing rate and membrane potentials

are used in these kinds of models. A popular neuron model is the leaky integrator.

According to this model, the mean membrane potential rrii of a neuron N{ is governed

by the equation:

Tj • dmi/dt = -mi + Wi,jXj + R

where Xj = <p{rrij) represents the neuron's short-term average firing frequency, r, is
a time constant associated with the passive properties of the neuron's membrane,

whj is the synaptic weight of a connection from neuron Nj to neuron N{, and R is
an external input applied to the neuron. The function (p(m,j) is the activation or

transfer function, i.e. a nonlinear saturating function such as the sigmoid function

ip(mj) — (1 + e(mi+b^)~1 where bj is the neuron's bias, or the hyperbolic tangent
function <p(rrij) = (1 — )/(l + e~9imi) where gj is the gain.

Depending on the application, several types of network structures and learning al¬

gorithms have been developed. For instance, some applications require networks which

always converge to stable states, such as the continuous Hopfield network. For these

applications, the state space trajectories followed to reach the stable states are not im¬

portant and specific "fixed point" learning algorithms have been developed for them.

Other applications require the recurrent network to produce specific trajectories, and

need therefore more general learning algorithms.

Hopfield extended his discrete model and made it continous using leaky-integrator
neurons with the hyperbolic tangent function as activation function [Hopfield 84], The
output of neurons is then a real number between -1 and 1 rather than the binary
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output of the discrete net's neuron. The network has symmetric weights similarly
to the discrete model. The evolution of the states of the neurons is determined by

the system of coupled differential equations, instead of the asynchronous update rule.

Similarly to the discrete model, it can be shown that because of the symmetry of the

connections, the network will always converge to stable attractors, i.e. the network is

globally asymptotically stable. When the gain of the neurons is high, these attractors

correspond to those of the discrete model. With lower gains, these attractors can no

longer be predicted as easily, and a fixed point learning algorithm must be used instead
of the discrete learning rule (see [Pearlmutter 95] for instance).

The continous Hopfield network can be used as a content addressable memory or for

optimization problems. These applications rely on the fact that the network is asymp¬

totically stable, and are not concerned with the details of the dynamics of the network,

except for determining the basins of attraction of the different stable states, i.e. the
different initial states from which the network converges to a given attractor.

For many applications such as control or time series predictions, the details of the
state space trajectories are important. These applications take advantage of the
fact that continous-time recurent networks are universal dynamics approximators

[Funahashi & Nakamura 93]. Dynamical recurrent networks can exhibit complex dy¬
namics before reaching stable states; they can also converge to limit cycles or exhibit
chaos. The aim is then to define the synaptic weights and time constants such that the
network produces specific desired trajectories. This is done by minimizing a function
which computes the difference between the actual trajectory y(f) and a desired traject¬

ory D(t), such as E = £i J)" ('Vi(t) — Di{t))2dt. Several algorithms have been proposed
to calculate dE/dwij and dE/dri for updating the synaptic weights and the time con¬

stants and minimizing E, such as an extension of backpropagation through time to

continous neurons or the real time recurrent learning algorithm (see [Pearlmutter 95]
for a review).

One problem with these learning algorithms, based on a gradient descent on E, is
that they require a desired trajectory D(f) to be provided by the user. For many

problems, especially in control, the desired output over time of the network is not

known in advance. The performance of the network then depends on the effect of its
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output on the system it controls. The parameters of the network have to be updated

depending on an evaluation of the performance of the system, rather than a desired

trajectory. In these cases, especially if the system which is controlled by the network
has its own complex dynamics and if it is difficult to provide a differentiate evaluation

of the system, an interesting alternative to gradient-based learning algorithms is to use

evolutionary techniques for designing the networks. In the next section, I will give a

short presentation of evolutionary algorithms and, in section 2.5.3, I will present how

they can be applied to evolve neural networks.

2.5.2 Evolutionary algorithms

Evolutionary algorithms are parallel and stochastic optimization algorithms which are

inspired by natural evolution. The idea is to somehow encode solutions of a prob¬

lem into chromosomes, to evaluate potential solutions through a fitness function,

which returns a scalar depending on how well the solution solves a given problem,

and to evolve (see below) the population of chromosomes until satisfactory solutions

are generated. Three types of evolutionary algorithms have been developed: ge¬

netic algorithms [Holland 75], evolution strategies [Schwefel 95] and genetic program¬

ming [Koza 92], These algorithms differ in the type of encodings and genetic operators

they use, but they share the same basic functioning. I give here a brief overview of the

algorithms; for a more formal description see [Goldberg 89, Back 96, Michalewicz 96],
for instance.

Once the encoding and the fitness function are specified, the algorithms start with a

randomly generated population of chromosomes which are evaluated and given a fitness
value depending on the fitness function. The algorithms then start a loop through three

operations: selection, variation and rejection. Selection consists of randomly choosing
parent chromosomes with a probability depending on their fitness value. This probab¬

ility is typically somehow proportional to the fitness value of the chromosome. Then,
new chromosomes are created which resemble the parents except for some variations

introduced by one or several genetic operators (see below). These new chromosomes

are evaluated and given a fitness value. Finally the size of the population is kept
constant by rejecting some of the chromosomes with the lowest fitness values. When
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looping through these operations, the algorithms little by little improve the mean fit¬
ness of the population because of the selective pressure which favours genetic material
of good chromosomes to be copied within the population and which rejects the worst

chromosomes.

In genetic algorithms, the chromosomes are composed of binary gene strings

[Goldberg 89]. Pairs of child chromosomes are created from pairs of parent chromo¬
somes by a crossover operator followed by a mutation operator. Crossover consists of

swapping parts of gene strings between chromosomes which are copies of the parent

chromosomes. Researchers have used single-point, two-point or uniform crossover. The
mutation operator is then applied on each child chromosome and consists of switching
the binary genes with some probability.

In evolutionary strategies, chromosomes are composed of a string of real numbers
between 0 and 1 [Schwefel 95]. The first part of the string represents the variables
of the problem to solve, and the second part represents parameters defining gaussian
distributions of probability for the variables of the problem. In their first applications,

evolutionary strategies were used with populations consisting of one individual only
and with constant mutation parameters. They were later improved to use larger pop¬

ulations and a mutation operator which keeps a memory of the success of previous
mutations. This is done by first making small mutations of the parameters of the

probability distributions for problem variables, and then defining new values for the

problem variables by mutating them following these (new) probability distributions.
Parameters which have led to good mutations are therefore transmitted with the values
of the problem variables.

Genetic Programming uses a more sophisticated encoding than GAs and ES. Instead
of evolving a string of scalars, GP evolves trees with nodes made of functions of a

programming language such as LISP, and of scalars. The genetic operators are similar
to those used in GAs, but are modified to be applied to tree structures. Crossover for
instance consists of exchanging two subtrees between two trees and mutation is applied

both on a tree structure, by replacing a subtree by another randomly created one, or

on a scalar by changing it by some random value. An interesting aspect of GPs is that

they can perform symbolic regression rather than only parametric regression.
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As there exist many variations on the types of encodings and on the type of genetic

operations applied, these three types of algorithms little by little overlap to form a

continous group of evolutionary algorithms. Many GAs, for instance, applied to op¬

timizing problems with real parameters are now used with a real number encoding
rather than binary encodings. The real number GA I shall use is described in detail in

chapter 4.

2.5.3 Evolution of neural networks

Evolutionary algorithms have been used to design neural networks for approxim¬

ately ten years (for reviews see [Schaffer et al. 92, Yao 93, Balakrishnan & Honavar 95,

Whitley 95]). They have been used either to optimize the topology of the network, or
as the learning algorithm in a fixed network structure, or for defining a network com¬

pletely (both the structure and the synaptic weights).

The interest of using GAs for defining the topology for neural networks is that for

feedforward networks, for instance, there exists no method for determining the num¬

ber of layers and neurons per layers for obtaining the best performance for a specific

problem. For the moment, the configuration of such networks is determined by trial

and error and depends on the experience of the user. A GA can be used to optimize

the topology when used with learning algorithms (see [Miller et al. 89] for instance).
The fitness of a topology is determined from the performance of the network on its

task after training.

GAs have also been used with networks with a fixed structure as an alternative learning

algorithm to backpropagation, for instance [Whitley & Hanson 89, Montana & Davis 89]
Their parallel and stochastic nature makes them less likely to be trapped in a local

minimum than gradient-based algorithms. However, they tend to be slower and may

have problems to adequately tackle the numerous symmetries of most neural networks.

Some researchers therefore use GAs for making a first search and then use a gradient
based algorithm for finishing the search [Belew et al. 91].

The main interest for using evolutionary algorithms as learning algorithms is when the

details of the desired output are not known in advance. As mentioned earlier, most



42 CHAPTER 2. BACKGROUND

learning algorithms developed for neural networks minimize an error function based
on a desired output or state trajectory which has to be specified by the user. These

algorithms are then not adequate for control problems where the performance of a net¬

work depends on the output of the system it controls. These types of problems require
a kind of reinforcement learning, in which the network can only be rewarded after a

complete control sequence. Evolutionary algorithms can then provide a very useful

learning algorithm as they can optimize any function based on the behaviour of the

system rather than a specific error function based on the output of the network. They
have furthermore the advantage that the function does not need to be differentiable or

even continous, because an evolutionary search is not gradient based.

GAs have also been used for defining both the topology and the synaptic weights. In the
animat field, in particular, GAs are a popular method for defining neural controllers
for locomotion and behaviours. I will review several examples of this approach in

section 2.6.2.

Encodings Researchers have used several types of encoding of the neural network
into the chromosome, which are either direct or indirect. In direct encodings, there
is a one-to-one mapping between one gene (or string of genes if the encoding is bin¬

ary) of a chromosome and one parameter of the network. Miller, for instance, used a

direct encoding of the topology of a feedforward network into a chromosome by hav¬

ing the chromosome represent a binary matrix of all possible feedforward connections

[Miller et al. 89]. Note that a chromosome with direct encoding does not necessarily
need to be of a fixed size [Cliff et al. 93].

Direct encodings have the advantage of being simple and easy to implement, but have
the drawback that chromosomes grow rapidly with the size of the network. Large

populations of chromosomes are then needed to cope with the number of dimensions,

making the evolutionary process very computationally costly. For evolving large struc¬

tures some constraints for reducing the search space may be necessary.

In indirect encodings, a chromosome encodes some rules of how the network is con¬

structed, and therefore determines the network indirectly. These type of encodings
have more similarities with the type of encoding found in biology, with a genotype
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being decoded into a phenotype through some developmental process. Several indirect

encodings, with the aim of encoding neural networks in a more compact way, have been

developed. In many approaches a GP-like evolutionary algorithm is used. In such ap¬

proaches (for a review see [Kodjabachian & Meyer 95]), some kind of grammars, e.g.

grammars with rewriting rules [Kitano 90, Gruau 95], or grammars determining ax-

onal growth [Nolfi & Parisi 92], are evolved which determine how the neural network
is constructed. These types of encoding present therefore several similarities with bio¬

logical development and some types of encoding come very close to natural genetic

encoding [Kitano 95, Eggenberger 97].

Indirect encodings have the advantages, compared to direct encodings, of being more

compact and potentially allowing modularity. A more compact encoding means that

there are fewer dimensions in the search space, which makes the search easier for the

evolutionary algorithm. Modularity is an interesting property especially in problems

with symmetries, as it allows for the same substructure to be used several times in the

complete solution.

2.6 Swimming and walking animats

I will give here a short survey of the animat field, especially related to locomotion. As

mentioned in the introduction, the remarkable agility of animals to move and survive

in an environment has led several researchers to take inspiration from animals for the

creation of autonomous agents. An animat is a simulated or physical agent whose

rules of behavior are inspired by those of animals [Meyer & Guillot 94], An animat is

therefore equipped with sensors and actuators and with a control mechanism which

enables it to survive and to act in a dynamic environment, i.e which leads to an

adaptive behaviour. An important aspect of the animat approach (or the behavior-

based approach) is the strong interaction of the agent and the environment, and the
belief that human-like intelligence can not be reached without first solving the problems
of sensing, moving, and reacting in an environment. Researchers in the animat field

are therefore naturally interested in analysing the structure and control mechanisms of

animals and trying to take inspiration from them for the building of artificial agents.
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Note that the interest in simulated agents or robots which move using an animal type
of gait is not limited to researchers from the animat field. Many engineers have, for

instance, built machines which move with an animal-like gait for some specific purpose
without aiming to build agents showing adaptive behaviour. Researchers in biomech¬
anics are also interested in replicating legged systems. Finally, in graphics animation
there is now a strong interest for developing realistic characters, and physically based
simulations of articulated bodies are used for more realism.

In the two next sections, I give an overview of different machines (both physical and

simulated) which use animal-like types of gait, and of the locomotion controllers which
have been developed for them.

2.6.1 Morphologies

Swimming animats

Swimming robots are relatively rare, compared to walking robots for instance, because
of the technical difficulties of building a system with many degrees of freedom, which is

water-tight and which has to move in an environment with difficult access (it is difficult
for humans to follow the robot, it is difficult to stay in connection with the machine,...).

However, there are several motivations for building swimming robots. The main mo¬

tivation is that the swimming gaits of fishes and swimming mammals are remarkably

adapted to the hydrodynamics. Swimming is for instance more mechanically efficient
than propeller propulsion and it is significantly more agile in terms of accelerations
and change of direction. Building swimming machines may therefore be interesting for
underwater robotics and for gaining a better understanding of the hydrodynamics of
fish swimming. These considerations have led to the construction of swimming robots,

such as the Robotuna at the MIT. The Robotuna is swimming machine made of 8 rigid

segments which are driven through a system of pulleys and cables by motors situated
above the waterline. The carangiform swimming movements of the tuna, in which a

wave travels from head to tail with increasing amplitude, are reproduced by control
software producing an analytical wave defined by seven parameters. Researchers at

MIT have found that Robotuna, similarly to fishes, presents Gray's paradox which is

that the drag on the swimming fish appears to be less than the drag on the straight
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fish, demonstrating that fish take advantage of the hydrodynamics to reduce their drag

while swimming (see http://web.mit.edu/towtank/www/tuna/index.html).

Anguiliform swimming is also currently studied on a robotics platform at Northeast¬
ern University [Jalbert et al. 95]. In this project, shape memory metal wires are used

as linear actuators, and a prototype body of a lamprey-like robot has been built

with four segments. The prototype is fixed and can produce undulatory movements

when the wires are activated with a lamprey-like activation pattern. The control

system is inspired from that of the lamprey and is implemented as a set of finite-
state machines. The long term aim of the project is to extend the fixed proto¬

type into an autonomous swimming machine (for a description of this project see:

http://www.dac.neu.edu/msc/lamprey.html).

Terzopoulos and his colleagues have developed an interesting example of a physically-

based simulated 3D underwater world [Terzopoulos et al. 94, Terzopoulos et al. 96].
The appearance, movement, and behaviour of autonomous artificial fishes are simu¬

lated, with algorithmic controllers for producing the motor sequences. The fish body

is a spring-mass model with some springs with variable spring constant representing

muscles (with some similarities to Ekeberg's model of the lamprey's body [Ekeberg 93]).

Other examples of simulated swimming creatures are the works by Sims [Sims 94b] and
Ventrella [Ventrella 98]. An interesting aspect of these works is that the morphologies

(and the control mechanisms) are evolved. The evolved bodies are made of articulated

rigid parts, with several types of simplified joints (in 3 dimensions for Sims and 2

dimensions for Ventrella). The evolutionary process for building the bodies and the

control mechanisms will be discussed in section 2.6.2.

Legged animats

Many legged machines have been designed and built, with several motivations. The first
motivation is to build machines which can move in a larger variety of environments

than wheeled robots. These environments include man-made environments such as

factories, offices with uneven floors, stairs,... or rough natural environments. Another

motivation is to reproduce and analyse the biomechanics and locomotion of legged
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animals. Finally, as mentioned earlier, there is also the motivation of designing realistic

legged agents for computer graphics.

A variety of physical legged machines with one, two, four, six or eight legs have been
constructed (for reviews see [Raibert & Hodgins 93, Reeve 98]). The machines also

vary in the type of gaits they use; motion can, for instance, be either statically or

dynamically stable. In statically stable motion, the center of gravity of the machine
remains over the base of support at all times, which means that the machine is always
in static equilibrium. This is obtained either through using large feet or by having

enough legs to always keep three legs on the ground. The forward velocity must also
be kept low enough to minimize the effect of kinetic energy on stability.

Most legged animals use dynamically stable motion for fast locomotion. This type of
motion is stable over time, rather than at all times, with the gait going through some

periods with limited (e.g. during trot or biped walking), or even no, support (e.g.
during gallop). Dynamically stable legged machines which walk, hop, trot, run, etc.

have been constructed (see [Raibert & Hodgins 93]), with the motivation, similarly to

animals, of having faster and more agile motion. These machines require more complex
control mechanisms because of the need for active balance.

Although trunk movements seem to be important for running in quadruped animals
and for increasing the reach of limbs for animals such as the salamander, which have
the limbs attached laterally to the body, few robots have been built with flexible spines.
Lewis studied the body movements of salamander and built a robot, GEO, with an

articulated spine made of two parts connected by a 3 degree of freedom joint [Lewis 96].
As this thesis presents several similarities with his work, it will be described in more

details in section 2.6.2.

Several walking machines have been simulated, mainly as a basis for studying the
control mechanism needed for legged gaits. Beer, for instance, developed a kinematic
simulation of a six-legged insect [Beer 90], which has been reproduced by several re¬
searchers as a test bed for evaluating design methods for locomotion controllers (see
section 2.6.2).

Simulation is also used to study the control of biped locomotion with, for instance, the
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2D stick biped model [deGaris 90, Taga et al. 91, Reeve & Hallam 95]. In [deGaris 90],
the simulation is only kinematic, but in the other works, forces on each joint are

calculated, and the simulation is therefore dynamic.

Other animats

Although swimming and legged animats are the most commun, other animal-like lo¬

comotion systems have also been designed such as snake-like robots [Paap et al. 96],
robots capable of hanging and swinging like monkeys [Saito & Fukuda 96], ornithopters

(flying machines which flapping wings have also been built, see the University of
Toronto ornithopter http://www.utias.toronto.edu/lowsped.htm), etc.

2.6.2 Design of locomotion controllers

As discussed in section 2.1, animal locomotion is characterized by a large number of

actuators, a rhythmic activity, and the fact that efficient motion is only obtained when

the actuators are well coordinated. An efficient control mechanism has to make the

right transformation from commands concerning the direction and speed ofmotion into
the rhythmic signals sent to the different actuators. Key issues are the correct timing

of the different signals and taking in account the dynamics of the controlled mechanical

system. The complexity also depends on the type of gait. Controlling statically stable

walking is not too difficult, for instance, because the correct control signal is time

independent and only depends on the current state of the machine. For swimming and

dynamically stable walking, the control signals are not only state-dependent but must

also be coordinated over time for efficient motion.

Researchers have taken different approaches for solving this control problem, using dif¬
ferent implementations and different design techniques. Locomotion controllers have,

for instance, been implemented as explicit control algorithms [Raibert & Hodgins 93],
finite state machines [Brooks 89], classifiers [Bull et al. 95], neural networks [Beer 90,

Quinn & Espenschied 93]. They have been designed either completely by hand, or by

learning algorithms, or with evolutionary algorithms.

In the next sections, I will present different results with an emphasis on works which
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are biologically inspired (either in the organization or because they are neural based)
and on approaches which use evolutionary algorithms as a design technique.

Biologically inspired locomotion controllers

Brooks applied the subsumption architecture he developed for controlling the motion
of hexapod robots [Brooks 89]. His architecture distributes control in different mod¬
ules. An important aspect of the architecture is that control is divided into separate

behaviours rather than different functions. In the architecture, each module (made of
a collection of finite state machines) connects sensor to actuators and is responsible
for one behaviour such as avoiding obstacles, wandering about,... This approach was

a reaction to the traditional robotics approach in which control is divided into func¬
tional modules such as a perception module, a planner and inference module and an

actuator module. Brooks' aim was to build robust control systems which do not rely

on a representation of the world in order to perform some task in an environment.

This type of distributed and decentralized control has been pointed out to have sev¬

eral similarities with the neural organization found in animals such as the locust, in
which inputs are integrated in several neural centers with output being a consensus of
different centers [Altman & Kien 89].

Inspiration from insects, especially stick insects and cockroaches, has been used more

directly for the control of a robot. For instance, Cruse and his colleagues have used

analyses of the leg patterns and the interleg coordinating mechanisms in stick insects
for developing a control algorithm for an hexapod robot. They have also developed a

neural network model (with some parts hand-coded and other designed with learning

algorithms) satisfying these observed mechanisms for controlling a simulated stick in¬
sect (see [Cruse et al. 95] for a review). As the neural circuitry underlying locomotion
in the insect is not decoded yet, Cruse believes that such a neural model could be used
to guide electrophysiological studies.

As mentioned above, Beer has simulated an artificial insect which is capable of exhibit¬

ing some basic survival behaviours in an artificial environment, including locomotion,

wandering, recoil, edge-following, and feeding [Beer 90]. The insect is a six-legged
animat whose locomotion and behaviour are entirely generated by artificial neurons.
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The design of the neural controllers was done by hand and is inspired from several
natural animals (mainly the cockroach) but without copying one. The leg-controller

is a CPG whose rhythm is generated by the properties of pace-maker cells. The co¬

ordination between legs is obtained through inhibitory coupling between the pace¬

makers of each leg. The behaviour controller connects sensors such as antenna tact¬

ile sensors, antenna chemical sensors, energy sensors, and so on, to the locomotion

controller. This type of locomotion controller was later implemented in a hexapod

robot similar to the simulation, with 2 degree of freedom legs which can swing and

retract [Quinn & Espenschied 93].

Evolution of locomotion controllers

One of the first examples of evolutionary design of a walking controller is [deGaris 90],
in which a controller is evolved for a simplified kinematic simulation of a biped system.

The controller is a two layer network whose inputs are the angles and the angular

velocities of the joints and whose outputs are the angular accelerations. The weights

and the signs of the connections are evolved with a binary GA. Efficient walking is

obtained when the population of solutions is evolved in three evolutionary phases (i.e.
a population is first evolved with a fitness function A which rewards the swing of a

single leg, then with a function B which rewards a correct complete step and finally
with a function C which measures the distance covered over a fixed time period).

Beer spent a long time (his doctoral study) hand-coding the neural controller for his

six-legged insect [Beer 90]. Following his experiment, several researchers, including

himself, used simulations inspired by his kinematic simulation as a testbed for the

evolutionary design of locomotion controllers. The motivation was to develop a method

for automatically generating and optimizing such a controller.

In [Beer & Gallagher 92], a neural locomotion controller is evolved with a genetic

algorithm and a staged-evolution approach. First, a leg controller is generated by

evolving the synaptic weights of a fully interconnected five-neuron dynamical neural
network. The complete controller is then obtained by evolving the coupling between
six copies of the leg controller. Successful locomotion with a tripod gait is obtained.
Unlike [Beer 90], the oscillations are due to the dynamics of the network rather than
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to pace-maker cells. Another experiment where the whole controller is evolved from
scratch (without the leg controller stage) results in even more efficient walking; but
the oscillations in each leg depend on the whole system and disappear when the leg
controller is isolated.

Gruau evolved similar neural controllers using his indirect, cellular encoding [Gruau 95].
In this work the cellular encoding is extended in order to allow modularity and reuse

of sub-networks. This allowed him to evolve controllers for the six-legged insect in one

stage only, without fixing in advance the symmetries of the network as Beer did. The

modularity allows the evolutionary process to find its own symmetries, and therefore
is less reliant on the a priori assumptions of the experimenter.

Kodjabachian also evolved controllers for Beer's insect with a developmental encoding

which is similar to cellular encoding but which also incorporates geometrical aspects

[Kodjabachian & Meyer 98a, Kodjabachian & Meyer 98b]. Unlike Gruau, the sym¬

metries of the problem are fixed in advance, but the encoding has the interesting prop¬

erty of being context-dependent (each precursor cell will develop following the same

developmental program, but the effect of the program will depend on their place on

the geometrical substrate), which enables the evolutionary process to take advantage
of side-effects in the development for introducing asymmetries. This encoding scheme
will be described in more detail in chapter 6, where it is used for evolving swimming

controllers for the lamprey in a collaboration with Jerome Kodjabachian.

Alternatively to neural networks, controllers for Beer's hexapod insect can developed

using genetic programming [Spencer 94]. The GP evolves programs using a few simple
mathematical functions, with terminals which either provide constants, or an oscillat¬

ory input or sensory input. The GP is successful in evolving programs for walking

patterns either based on these intrinsic oscillators or on sensory feedback. The ad¬

vantage of these controllers is that they are "readable", as they resemble conventional

computer programs, but with the disadvantage that they are not adaptive and distrib¬
uted as neural networks are.

[Lewis et al. 93] present experiments in which dynamical neural networks for the walk¬

ing of a real hexapod robot are evolved on-line. It is the first example of evolutionary
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robotics in which each evaluation is carried out on the real robot rather than in simu¬

lation. Similarly to [Beer & Gallagher 92], controllers are evolved in two stages, with
first the evolution of two-neuron oscillators for a single leg, and then the evolution of
the coupling between the oscillators of the legs for coordinating their movement. The

fitness of a leg oscillator is defined by visual inspection of the experimenter. As this

thesis presents several similaties with Lewis' doctoral research, that work is described

in more detail in the next section.

Locomotion controllers for swimming have also been developed using evolutionary al¬

gorithms, but, to the best of my knowledge, never with dynamical neural networks as

controllers. Sims demonstrated a methodology for jointly evolving morphologies and

controllers for artificial simulated creatures [Sims 94b]. The creatures have a 3D body
and move in a physically-based simulation, either on the ground or in water. The mor¬

phology of a creature and neurons controlling its behaviour are encoded into a directed

graph of nodes and connections. The morphology and the neural controller are evolved

simultaneously. The neurons used have little in common with biological neurons or the

usual artificial neurons. They represent a function such as sum, product, min, max, sin,

cos, integrate, memory, oscillate,... The resulting creatures present impressive realistic

behaviour and are able to perform all kind of locomotions, such as swimming, jumping,

crawling,... Sims' work is interesting as it shows the kind of complex results that can

be achieved with evolutionary methods. In another work, controllers and morpholo¬

gies are evolved for catching a food resource by making two individuals compete for a

common resource and rewarding the individual which performs best [Sims 94a].

Ventrella also develops both the bodies and control mechanisms of swimming creatures

in a 2-dimensional world [Ventrella 98]. The bodies can be made of up to eight poly¬

gons, and the evolved controllers are algorithmic oscillators, defining the movements of

the segments, whose amplitude and phase are determined genetically. An interesting

aspect of this work is that there is no explicit fitness function for rewarding swimming

behaviour. A population of "swimbots" is allowed to evolve and new creatures are

created when two swimbots meet and mate. The child then inherits a mixture of genes

from each parent using genetic crossover with some mutation. As the swimbots are

dispersed in the 2D world, solutions which are good swimmers have a higher probab-
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ility to reproduce. Note that Ventrella not only studies the emergence of swimming

behaviours, but also the effect of mate preference on the evolution, as the swimbots
are geneticaly driven to preferentially search out mates exhibiting specified phenotypic
features. For another example of evolution of algorithmic swimming controllers (but
without evolution of the morphology) see [Usami et al. 98].

Although, I have here concentrated on the evolution of controllers for locomotion, a

significant amount of work has also been carried out on the evolution of behaviour
controllers for robots, in particular neural controllers. See [Floreano 97, Floreano 98]
for reviews.

Lewis' doctoral research

Anthony Lewis' thesis [Lewis 96] addressed two issues which are directly revelant to

my research: the evolution of trunk motion and its importance in robotics design,

and the automatic generation of locomotion controllers using principles of vertebrate

development and evolutionary computational techniques. I will therefore summarize
here the main results of his research.

As already mentioned, Lewis used a genetic algorithm for the evolution of a neural
controller for the walking of a hexapod robot. He then addressed the control of the

swimming of the lamprey and the trotting of the salamander. Rather than using
connectionist models, he tackled these problems by using mathematical oscillators and
a graphical representation called a ring-rule (as proposed in [Winfree 80]). A ring
rule represents the activity of the oscillator by unfolding it on a circle whose radius

corresponds to the period of oscillations. Unit CPGs are modeled as a ring stack, with
one output ring and several adaptive rings. The adaptive rings determine how the

output ring is altered by input from other unit CPGs or from sensory input. Several

adaptive rings are developed for rules such as in-phase synchronization, out-of-phase

synchronization, burst length adaptation, gain adaptation,...

Lewis developed a mechanical simulation of a lamprey similar to that of Ekeberg

[Ekeberg 93], and used a control mechanism made of two ring stacks per mechan¬
ical segment (the simulated model has 5 segments in the reported experiments). He
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designed the ring stacks to have one output ring and 4 adaptive rings (contralateral

phase adaptation, ipsilateral phase adaptation, burst duration adaptation and burst

height adaptation). He reports an experiment for the development of a C-bending of
the body (i.e. a bending in which all muscles on one side contract in synchrony). By

sequentially turning on the adaptive rules, a similar development as observed in real

lamprey is obtained. No experiment is reported on the intersegmental coordination

and on how phase lags between segments can be induced for swimming.

For testing the salamander locomotion, Lewis constructed a quadruped robot with

a flexible spine (one joint with 3 DOF). An experiment with a handcrafted set of

output rings is conducted (no adaptive rules). The experiment is unfortunately scarcely

reported (summarized in one page). It seems that for being able to move forward, the

robot needs both a phase lag between segments and a twist of the spine (synchronized
with bending). Walking without phase lag between segments was not possible, which

is in opposition with the recent findings that the midtrunk segments of salamanders

oscillate in synchrony [Delvolve et al. 97].

A general comment about Lewis' thesis is that it presents several very interesting ideas,
but that the experiments on the development of swimming controllers for the lamprey

and walking controllers for the salamander are far from conclusive (they are described

in only 8 pages for the lamprey and 2 for the salamander). One would like to know

how the adaptive ring rules can be used for setting the intersegmental coordination
for the lamprey's controller for the creation of the swimming gait, rather than just

the C-bending. As Lewis' aim was to develop a method for automatically generating

locomotion controllers, one would also like to know what adaptive rules could lead

to the walking gait of the salamander robot. Futhermore, it would be interesting to

understand why the robot cannot move forward without twisting and without phase

delays between segments. Finally, although Lewis considered the issue of pattern

generation, he did not address in any of his experiments the issue of control, namely
how the speed and direction of motion can be modulated by input signals to the pattern

generator.

In this thesis, I will try, similarly to Lewis, to address the issues related to lamprey and
salamander locomotion but at a connectionist level and using evolutionary algorithms.
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The connectionist level has the advantage of being less abstract than ring rules, and
the evolved neural controllers can therefore be directly compared with biological neural

configurations. Designing the controllers with evolutionary algorithms will allow design
with significantly fewer a priori assumptions than the adaptive ring rules, but it will
not allow study of the biological development of the lamprey's controller as Lewis'

approach did.

2.7 Interactions between artificial intelligence and bio¬
logy

Advances in biology and artificial intelligence (AI) have led these two fields to come

closer. Improved knowledge of the functioning of animals has brought an increasing
number of models and mechanisms from which AI can take inspiration. Especially,
the increasing use of computer simulation in biology, for instance in computational

neuroscience, in biomechanics,..., has led to models and simulations which can readily
be integrated into, compared with, and inspire artificial intelligence research.

In the previous sections, we have mainly looked at how AI has taken inspiration from

biology. For instance, inspiration from biology has led to neural networks, legged

machines, the animat approach, evolutionary algorithms, etc. I will here summarize a

few aspects in which the interaction between AI and biology may bring something to

biology in return.

From a general point of view, the synthetic approach of AI towards adaptive behaviour

and intelligence might provide some clues and hypotheses to test about potential func-

tionings in animals. Similary, research in artificial neural networks on applications such

as pattern recognition or control, for instance, can give some hints on the computation

performed in the central nervous system.

More concretely, implementing a biological control model into a robot (or a realistic
mechanical model) is a useful exercise for testing the completeness of the model, that is,

to verify whether all elements necessary for the production of the observed behaviour

have been taken in account. It is also useful for analysing the effect of having a real

body in terms of sensory feedback and body dynamics. Sensory feedback can be an
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essential part of the control system, and the body dynamics can play a significant role

in determining the effect of a neural command on a motor action. If the model does

not produce the desired behaviour, or if the implementation in the robot relies on

several construction hypotheses, the robotic experiment may point to new biological

experiments for gaining a better understanding of the model. Potentially, experiments

such as lesions can be carried out both on the animal and on the robot to test how

closely the artifical implementation and the real animal match.

Techniques developed in AI can also be useful for biology, and for neuroscience in partic¬
ular. I will here look at how computational neuroscience may benefit from techniques

developed in the ANN field. Computational neuroscience and ANN have different

objectives and different approaches to the simulation of neuronal networks. Computa¬

tional neuroscience tries to model existing neuronal circuits found in animals in order

gain some insight into their functioning. Its main priority is designing models which

produce all the detail of the physiological measurements. A significant task is there¬

fore to set the parameters of the individual neuron units such that their functioning

corresponds to cellular recordings, and then to see if the different units put together

can produce the overall behaviour of the network of neurons studied3 (see [Getting 89]
for a nice example of the modelling methodology applied to the swimming CPG of

Tritonia).

The aim of ANN researchers is not to simulate a particular part of an animal central

nervous system, but to develop distributed computation systems for solving partic¬

ular problems. Therefore most of ANN research is focussed on developing powerful

algorithms for automatically designing the network for a particular task. These al¬

gorithms can be interesting tools for neurobiology for specifying parts of biological
models for which there exists unsufficient physiological data. The algorithms are then

not used as a model of the learning process (they are usually not biological plausible),
but as a tool to define some parameters, such as synaptic weights, which are difficult

or impossible to measure. [Lockery & Sejnowski 93a, Lockery &; Sejnowski 93b] give,
for instance, an interesting example of how a version of the backpropagation algorithm

3 Ideally none of the parameter setting should be based on the overall behaviour of the system, as
the capacity of the model to produce that behaviour from lower level elements is the main factor to
determine whether the model accurately simulates the corresponding neuronal circuitry.
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can be applied to define some synaptic weights of a connectionist model representing
the escape reflex in a leech.

Because they have fewer restrictions on the functions they minimize than learning al¬

gorithms, evolutionary algorithms are particularly useful for defining parameters in

neurobiological modeling. They have recently been used for determining parameters

of biophysical models of single cells, for instance [West & Wilcox 97, West et al. 98,
Vanier & Bower 98]. Evolution strategies have also been applied for defining the syn¬

aptic weights in a neural model of the salamander's visual system [Eurich et al. 95,
Eurich et al. 97], In chapter 5, I will present how a GA can be used for defining and

optimizing a connectionist model of the lamprey's swimming CPG.

2.8 Summary

This chapter has presented the study of locomotion and its control in different fields
such as biology, neurobiology, artificial neural networks and robotics. The main task
in controlling animal-like locomotion is to be able to transform general commands,

concerning directions and speeds ofmotion, into commands to the numerous actuators

typically involved in the generation of motion. The difficulty of this transformation

resides, firstly, in the necessary coordination between all the actuators for effective
locomotion and, secondly, in the strong time-dependence of the signals sent to the

actuators; the signals are typically rythmic and their timing (their phase relation) is
crucial for the motion, especially in dynamically stable gaits.

In animals, the control mechanisms are provided by networks of neurons. Natural

evolution has led to a motor organisation which is distributed and which relies on

central control for the generation of the rhythmic patterns. Rather than relying on

chains of reflexes, the rhythmic patterns are generated by central pattern generators,

which are networks of neurons which can produce rhythmic activity without rhythmic

input either from higher control centers or from sensory feedback. CPGs provide
the templates for stationary motion which can be modulated by higher control and

sensory feedback. I have presented the findings of neurobiologists on the CPG for the

swimming of the lamprey which is one of the vertebrates whose locomotion circuitry
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is best understood. This thesis takes strong inspiration of one of the connectionist

simulations developed from the neurobiological findings and which will presented in

more details in the next chapter. I have also presented current knowledge about the

locomotion of salamanders. Because salamanders are believed to have evolved from

simpler vertebrates like the lamprey, and because the salamander uses a swimming

gait very similar to that of the lamprey, neurobiologists believe that the salamander

locomotion circuitry is based on a similar organization than that of the lamprey. The

circuitry is however not known for the moment, and one of the aims of this thesis is to

study which kind of neural circuitries could exhibit the typical swimming and trotting

gaits of the salamander.

The computation performed by networks of neurons is also studied in the artificial

neural network community. I have presented an overview of the subfield of ANN which

is concerned with the temporal behaviour of neural networks. Some of the network

models developed come very close to the connectionist models used by neurobiologists,

but with a particular emphasis on the algorithms for automatically designing the net¬

work for a specific task. One of these techniques, design by evolutionary algorithms,

is used in this thesis and is described in more detail.

There is a strong motivation for understanding and reproducing animal locomotion in

several fields such as robotics, the animat field, biomechanics, graphical animation,...

I have presented a brief overview of walking and swimming machines, physical or sim¬

ulated, developed in these fields. Of direct interest to this thesis are the different

control mechanisms and the different design methods used for controlling animal-like

locomotion. I reviewed in particular the combination of neural networks and evolu¬

tionary algorithms.

Finally, although the interaction between biology and artificial intelligence seems to

be mainly in one direction, with the artificial intelligence researchers taking inspira¬

tion from biological findings, there are more and more examples where research and

techniques from artificial intelligence can be directly applied to biology for gaining a

better understanding of the functioning of animals.
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Chapter 3

Ekeberg's neuronal and
mechanical model of the lamprey

This chapter presents the reproduction of Ekeberg's two-dimensional connectionist

model [Ekeberg 93] of the lamprey swimming circuitry. This model has inspired this

thesis and it is the biological model with which the evolved controllers will be compared.

I will refer to it as the biological model. The model combines a simulation of the neural

controller with a mechanical simulation of a lamprey in water allowing direct evaluation

of how neural activity is transformed into mechanical movements. It also offers the

possibility of investigating the effect of sensory feedback from stretch sensitive cells.

I present here the model and analyze it quantitatively (Ekeberg's paper presents mainly

qualitative behaviours of the model). This quantitative analysis will give the basis with

which the performances of the evolved swimming controllers of chapters 3 and 4 will

be compared.

3.1 Neural controller

The neural controller represents the complete circuitry of the lamprey and is com¬

posed of 100 interconnected segmental networks (Figure 3.1). Each segmental network

corresponds to the connectivity observed in the lamprey and is based on the model

proposed by Grillner and Buchanan (1987, see Figure 2.3, pp 21). The segmental net¬

work is composed of the four types of neurons discovered to play a role in the pattern

generation: two motoneurons (MN), two excitatory interneurons (EIN), two contralat-
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Figure 3.1: Configuration of the biological controller. The controller is made of 100 intercon¬
nected segmental oscillators (only 4 segments shown) composed of 8 neurons each. Four types
of neurons are present in the oscillators: 3 types of interneurons EIN, CIN and LIN and the
motoneurons MN. The controller can receive feedback from the stretch sensitive edge cells EC.
(See text for explanation.)

from:
in:

EIN1 CIN1 LIN1 EINr CINr LINr BS

EIN1 0.4 [2, 2] - - - -2.0 [1, 10] - 2.0

CIN1 3.0 [2, 2] - -1.0 [5, 5] - -2.0 [1, 10] - 7.0

LIN1 13.0 [5, 5] - - - -1.0 [1, 10] - 5.0
MN1 1.0 [5, 5] - - - -2.0 [5, 5] - 5.0
EINr - -2.0 [1, 10] - 0.4 [2, 2] - - 2.0

CINr - -2.0 [1, 10] - 3.0 [2, 2] - -1.0 [5, 5] 7.0

LINr - -1.0 [1, 10] - 13.0 [5, 5] - - 5.0

MNr - -2.0 [5, 5] - 1.0 [5, 5] - - 5.0

Table 3.1: Biological configuration, as given in [Ekeberg 93]. Excitatory and inhibitory con¬
nections are represented by positive and negative weights respectively. Left and right neurons
are indicated by I and r. BS stands for brain stem. The extension of the segmental connec¬
tion to neighbour segments is given in brackets (extensions to the rostral and caudal direction,
respectively).

Neuron type 0 r td h ta

EIN -0.2 1.8 30 ms 0.3 400 ms

CIN 0.5 1.0 20 ms 0.3 200 ms

LIN 8.0 0.5 50 ms 0.0 -

MN 0.1 0.3 20 ms 0.0 -

Table 3.2: Neuron parameters, as given in [Ekeberg 93]. 0 is the threshold, T the gain, td
the time constant of the dendritic sums, // the coefficient of frequency adaptation and ta, the
time constant of the frequency adaptation.
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eral inhibitory interneurons (CIN) and two lateral inhibitory interneurons (LIN). Each
neuron unit in the model represents a population of functionally similar neurons in the

real lamprey. Neurons receive excitatory input from the brainstem. The weights of the

segmental connections are given in Table 3.1.

Figure 3.2: Typical output of a CIN neuron. From time t = 0 constant inputs: excitatory
input = 10, inhibitory input = 1. The dashed line shows the same behaviour but without the
frequency adaptation (/l/=0).

A neuron unit is modeled as a leaky integrator with a saturating transfer function.

Its output u corresponds to the mean firing frequency of the population it represents

(G [0,1]) and is calculated as follows:

£+ = — ( Yj UiWi -£+) (3-1)
TD ie®+

C- = — uiwi ~ i-) (3.2)
Td

■d = — (it-tf) (3.3)
ta

( l-exp{(0-£+)r} — £_ — (u > 0)
U -

\ 0 (tt < 0) ld-4J
where Wi are the synaptic weights, T+ and represent the groups of pre-synaptic

excitatory and inhibitory neurons respectively, and £_ are the delayed 'reactions' to

excitatory and inhibitory input and $ represents the frequency adaptation observed in

some real neurons 1 [Ekeberg 93]. The parameters of each type of neuron are given in

Table 3.2. Figure 3.2 illustrates the kind of dynamics the neuron models exhibit. The
1
Frequency adaptation means that the firing rate of a neuron is not constant for a constant input,
with, typically, a slight decrease of the firing rate over time. This is a neural property which
should not be mistaken for an effect on the oscillation frequency of the network (although frequency
adaptation may indirectly affect it).
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neuron parameters, as well as the connection weights of Table 3.1, have been defined
so that the simulation of the model fits physiological observations [Ekeberg 93]. The

activity of a segmental network or the complete controller is calculated by integrating
the system of coupled differential equations given by equations 3.1 to 3.4. I use the
fourth-order Runge-Kutta method for solving the equations [Press et al. 94], with a

fixed time step of 5 ms (Ekeberg uses the first order Euler method with a step size of
10 ms). The code is written in C, and Matlab is used for visualising the results.

time [ms]

Figure 3.3: Activity of the segmental network with an excitation level of 0.4.

When a segmental network with asymmetric initial conditions2 receives adequate excit¬
ation from the brainstem (i.e. the activity of the brainstem is set to some value, which
therefore leads to an excitation of the neurons through the brainstem-neurons connec¬

tions), it oscillates regularly with the left and right neurons out of phase (Figure 3.3).
Burst termination is provided by the LIN neurons which become active late in the cycle
because of their high threshold and the high time delay. Once active, the LIN neurons

inhibit the ispilateral CIN neurons which allows activity on the contralateral side to

start. Increasing the external excitation has the effect of increasing the frequency of
oscillation and the amplitude of the motoneurons (Figure 3.4). The frequency varies

nearly linearly with the excitation, and ranges from 1.7 to 5.6 Hz.

The complete controller is formed by interconnecting 100 copies of this segmental net¬
work. An interconnection consists of extending the connection from one neuron to an¬

other in one segment to the corresponding neuron in neighbouring segments (Table 3.1).
2 For instance, £+(0) = 1 and £-(0) = 0 for all the left neurons and £+(0) = £-(0) = 0 for all the
right neurons.
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Figure 3.4: Effect of the external excitation on the frequency of oscillation (left) and the
amplitude of the motoneurons (right).

As the projections between segments in the lamprey are not well known, Ekeberg has
chosen a simplified coupling in which each segmental connection extends symmetrically

in the caudal and rostral direction, except the connections from CIN neurons which

have longer projections in the caudal direction. In order to limit the input of each

neuron and to compensate neurons located in segments close to the extremities of

the spinal cord, synaptic weights are rescaled and the weights of the connections to a

neuron are divided by the number of segments it receives input from.

Figure 3.5: Effect of the global excitation and the extra excitation on the frequency of oscil¬
lation (left) and on the lag between segment relative to the cycle duration(n<?/it).

When external excitation is applied to the complete network through the connections

from the brainstem, all segments start to oscillate in synchrony, with the same fre¬

quency. Similarly to the single segment, the frequency of oscillation increases mono-

tonically with the excitation. Applying extra excitation to the 5 most rostral segments
leads to small phase lags between segments, and therefore to a wave of neural activity
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that travels from head to tail. The lag between segments relative to the period of
oscillation is then constant over the whole spinal cord, except for the first and last ten

segments at the extremities where it decreases towards zero. The value of the lag can

be varied with the amount of extra excitation, and the higher the extra excitation,
the larger the lag (or the shorter the wavelength). Interestingly, the frequency of os¬
cillation and the wavelength of the undulation can be changed nearly independently

(Figure 3.5). The model can therefore reproduce the capacity of the real lamprey to

cover a whole range of different frequencies of oscillations while keeping the wavelength
of the undulation constant. The simulations show that frequencies between 1.6 and
5.5 Hz and phase lags per segment between 0.0% (no travelling wave) and 2.4% of the

period can be obtained (as the wavelength corresponds to the inverse of the total phase

lag between the first and the last segment, the wavelength is then smaller than 50% of
the 100-segment body).

3.2 Mechanical simulation

I have also reproduced Ekeberg's mechanical model of the lamprey's body interacting
with water [Ekeberg 93]. The body is made of 10 rigid links connected through one-

degree of freedom joints, with each mechanical link corresponding therefore to 10 neural

segments. Muscles are connected to each link (Figure 3.6) and are modeled as a

combination of springs and dampers. Each link of the body is assumed to be 30 mm

long, with an elliptical cross section of constant height (30 mm) and variable width (see
Table 3.3). The masses and moments of inertia of the links are calculated by assuming
the density of the lamprey to be constant and equal to that of water.

Figure 3.6: Biomechanical simulation of the lamprey. A two dimensional body of a lamprey
is modeled as a set of rigid links connected through one-degree of freedom joints. The muscles
are simulated as a combination of dampers and springs. Neural activity is transformed into
muscular activity by the motoneurons changing the spring constants of the muscles.

Joints Muscles
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The acceleration of each link i depends on the torques due to the muscles T, the forces

exerted by the water Fwat, and the inner forces due to the constraints Fin:

TiljXj FwatjtX -(- ^ Fjn,i,x (3-5)

Tfi-iyi — Fwattity + ^ ] Fjn i y (3-6)

li'Pi ^ ^ ^ Fjn j xsincpi -f- ^ ] Fin,j^y77 cos ipi (3-7)

where m, and I% are the mass and the moment of inertia of a link, X{ and iji are the

position of the middle of the link and ipi is its angle.

link Wi [mm] mi [g] Ii [g mm2] Aj. [Ns2/m2] A,, [Ns2/m2]
1 20.0 14.1 1414 0.45 0.3
2 20.0 14.1 1414 0.45 0.2
3 20.0 14.1 1414 0.45 0.1
4 20.0 14.1 1414 0.45 0.0
5 17.2 12.2 1137 0.45 0.0
6 15.0 10.6 944 0.45 0.0
7 11.7 8.3 691 0.45 0.0
8 8.3 5.9 465 0.45 0.0
9 5.0 3.5 271 0.45 0.0
10 1.7 1.2 90 0.45 0.0

Table 3.3: Corrected parameters for the mechanical simulation (see [Ekeberg 93]).

The motoneurons can 'contract' muscles by increasing their spring constant, thus re¬

ducing their resting length. The motoneuron signals for determining the torques on

the 9 joints of the body come from 9 equally spaced neural segments (from neural

segment 5 close to the head, to neural segment 95). The torque acting at a particular

joint is therefore determined by the left/right motoneuron activities (M/ and Mr) of
the corresponding parallel muscles:

T = a(Mi - Mr) + P(Mi + Mr + 7)Aip + SA(p (3.8)

where Aip is the difference between the actual angle of the joint and the default angle.
The different coefficients a, (3, 7, and 5 determine, respectively, the gain, the stiffness

gain, the tonic stiffness, and the damping coefficient of the muscles. I have used larger

values for these parameters than Ekeberg (see below), and in my simulations a = 9.4

[N mm], p = 0.94 [N mm], 7 = 10.0 and S = 94.0 [N mm ms].

It is assumed that the speed of the water relative to the body is sufficiently high for

the forces exerted by the water to be mainly inertial forces (high Reynolds number).
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It is also assumed that the water is stationary and that the parallel and perpendicular

components of that force on each segment can be calculated separately. The com¬

ponents of the force can therefore be calculated as: Fenvy = Ayujj and Fenv± = Aj_u^
where wy and v±_ are the components of the speed of the link relative to the water and
Ay = TfC\\Sp and Ax = \C_\_Sp are coefficients which depend on the density of the fluid
p, the area perpendicular to the movement S and the drag coefficient C dependent on
the shape of the link (here C± — 1 and Cy = 0 for all links except those close to the
head. See Table 3.3).

The inner forces are forces which correspond to the constraints due to the joints and
which ensure that segments stay connected at all times. These constraints are:

Xi + rrcos<pi — Xi+1 - |cos<pi+i and y; + 5sin:pi = yj+i - ^suKpi+i for i G

{1,9}. These constraints can be rewritten in compact form as g(p) = 0, where

p is a column vector composed of the position coordinates of all the links (p =

{xi, ...,xg,yi, ...,ipq}). Based on the jacobian of g(p), a system of linear
equations can be derived for calculating the forces necessary for keeping the constraint

equations true (see [Ekeberg 93] for the details of the calculation).

The equations for the mechanical simulation are solved with the fourth order Runge-

Kutta method with a fixed time step of 0.5 ms. This means that, between each neural

step, 10 mechanical integration steps are realised, similarly to Ekeberg's simulation.

My simulation is identical to Ekeberg's, except for some mechanical parameter values

(and for the integration method: I use the fourth order Runge-Kutta method, instead
of the first order Euler method). It appeared that, given the geometry of the body
assumed by Ekeberg [ibid], the masses of the links m, should be increased by a factor
of 7r in order to satisfy the assumption that the density of the body is the same as

that of the water. Also, the coefficients of the drag forces (Ax,Ay) seem to be a factor
10 too small compared to the assumptions of a near cylindrical body (drag coefficient
C close to 1). Table 3.3 gives the mechanical values I used in my simulations. Note

that I increased the muscles' coefficients by a factor of 7r to compensate for the larger
masses and the stronger water forces. Because of these new values, I obtain speeds
of swimming which are approximately 40% smaller for the two quantitative examples

given in [Ekeberg 93]. However, the qualitative behaviours of the two simulations are
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identical with, namely, identical influence on the speed of swimming of the global
excitation and the extra excitation on the first segments.

3.2.1 Characterisation of the mechanical simulation with a sinusoidal
wave

Propulsion through water is obtained when a traveling wave of neural activity is trans¬

formed into a traveling undulation of the body. The head to tail propagation of the

undulation leads to forces from the surrounding water which propel the fish forward.

In order to test the swimming capacities of the mechanical simulation, I carried out a

few simple swimming tests with a sinusoidal controller (instead of the neural controller).
The output of the left and right motoneurons along the spinal cord is then determined

by the following sinusoidal wave:

MNi (t, seg)

MNr(t, seg)

where MN[(t, seg) and MNr(t, seg) are, respectively, the outputs of left and right mo¬
toneurons in segment seg at time t (seg € [1,100]). The maximal amplitude of the

signal is given by a; and oj and At correspond to the frequency of oscillation and the
relative lag per segment, respectively.

With this simple function, it is possible to investigate how the speed of swimming
is affected by muscular signals with different frequencies of oscillation, relative phase

lags and amplitudes. Figure 3.7 shows the dependency of the speed of swimming on

the frequency and relative lag (maximum amplitude a = 0.8). The maximum speed

of swimming is obtained with a frequency of approximately 10.0Hz and a relative lag

per segment of 2.0%. The swimming speed decreases with higher frequencies and lags
because the elasticy and the damping of the muscles prevent them to make large con¬

tractions at higher frequencies and because the nine-segment body can not propagate

an undulation with too short a wavelength.

Increasing the amplitude a leads to an increase of speed, without significantly influ¬

encing the speed(frequency,lag) relation showed in Figure 3.7. The maximum speed of

asin(wf — wAr(se^ — 1)) if positive , .

0 otherwise

asin(7r + uit — ujAr(seg — 1)) if positive , ,

0 otherwise
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0 0.5 1 1.5 2 2.5 3
Relative lag [%]

Figure 3.7: Effect of different frequencies and relative lags on the speed of swimming (contour
plot), in swimming controlled by a sinusoidal function (maximum amplitude a = 0.8).

swimming in all the tests I realised was of approximately 0.60m/s.

3.3 Neuromechanical simulation: simulated swimming

Figure 3.8 shows a simulation of both the neural controller and the mechanical model of
the body. The traveling wave ofmotoneuron activity leads to an anguiliform swimming
similar to that obtained with the simple sinusoidal controller. The speed of swimming
can be modulated by varying the frequency and the relative phase lag of the oscillations

depending on the how excitation is applied through the connections from the brainstem:
the frequency of oscillations can be modulated by the global excitation applied to the
whole CPG, and the phase lag between segments can be varied with the extra excitation

applied to the most rostral segments. I have simulated the biological model over the
whole range of frequencies and phase lags it can produce, and the highest speed it can
reach is 0.50 m/s (global excitation of 0.65 with 70% extra excitation on first segments

producing oscillations at 5.5 Hz and relative lags between segments of 1.2%). Figure 3.9
shows how the speed depends on the global and local excitation applied to the CPG.



Figure 3.8: Simulated swimming of the lamprey. The level of excitation is 0.4 (arbitrary
value) over the spinal cord, with 70% extra on the 5 first segments. The segments oscillate at
4.0 Hz and the speed of swimming is 0.40 m/s. A) Neural activity of the 800 neurons along the
spinal cord. B) Mechanical simulation. There is 50ms between each snapshot, and the doted
vertical lines are separated by 100mm.

Note that the speed of swimming abruptly drops when both the global and the extra

excitations are large because the CPG saturates and does not oscillate for those levels

of excitation.

The direction of swimming can be changed when asymmetrical excitation is applied

to the left and right sides of the spinal cord. Exciting more one side leads to an

increase of the amplitudes of the motoneurons and therefore to an increased curvature

on that side. If the asymmetry is brief, this leads to a turn in the direction of the

extra excitation followed by straight swimming. If the asymmetry is maintained, the

lamprey will continue to swim in a circle.

The mechanical simulation allows a direct evaluation of the efficiency of the CPG for

controlling swimming (in terms of speed of swimming, for instance). It also allows

study of the effect of sensory feedback from edge cells, which are stretch sensitive

cells located on both sides of the spinal cord [Viana Di Prisco et al. 90]. These cells
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Excitation

Figure 3.9: Effect of the global excitation and the extra excitation on the speed of swimming.

can be modeled as outputing a signal proportional to the local curvature of the body.
While in [Ekeberg 93] the effects of the edge cells on the controller are negligible (very
low synaptic weight), in [Ekeberg et al. 95] it is shown that feedback can help the

lamprey to cross a speed barrier (water with local speed opposite to the direction of

swimming) by coordinating the neural activity with the actual movements of the body
and preventing a change of direction.

3.4 Summary

This chapter presented my reproduction of Ekeberg's neuronal and mechanical sim¬
ulation of the lamprey. The model is based on the connectivity observed in the

lamprey, with a segmental connectivity similar to Buchanan and Grillner's model

[Buchanan k Grillner 87], and a simple intersegmental coupling in which segmental
connections project symmetrically to several neighbouring segments caudally and

rostrally, except for the connections from the CIN neurons which project asymmetric¬

ally and have longer extensions in the caudal direction. The model is able to reproduce
several features observed in the real lamprey: 1) segmental networks can be made to

oscillate independently when isolated, 2) the frequency of oscillation increases with the
level of external excitation, 3) phase lags between segments can be obtained which are

almost constant over the spinal cord, and which do not depend on the global level of
excitation. Unlike the real lamprey, however, all segments oscillate in phase when no
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extra excitation is applied to the most rostral segments, while caudally directed waves

are usually observed in the real lamprey [Grillner et al. 91].

When the neural simulation is used to control the mechanical simulation, an anguili-

form swimming is obtained which is very similar to that observed in the real lamprey.

By playing with the levels of global and local excitation of the spinal cord, swimming

with different frequencies of oscillation and wavelengths can be obtained, which allows

modulation of the speed of swimming. The direction of swimming can also be changed

when asymmetrical excitation is applied.
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Chapter 4

Evolving swimming CPGs using
a direct encoding scheme

In this chapter, I present how swimming controllers based on similar neurons to those

of Ekeberg's model can be evolved with a genetic algorithm. Swimming controllers are

developed in three evolutionary stages, with a simple direct encoding scheme.

The motivations are to show how a genetic algorithm can be used as a tool for designing
neural controllers and to visit the space of possible controllers for undulatory swimming.

Having the biological controller as an example possible controller gives us the assurance

that at least one interesting solution exists in the search space, and also gives us an

example with which evolved controllers can be compared.

By visiting the space of possible solutions and generating alternative controllers, my

purpose is not only to evaluate the GA as a design method, but also to gain some

insight into the general characteristics of the control of undulatory swimming and to

investigate how unique the lamprey's neural configuration is. In this chapter, the search

space will however be limited to solutions which possess several similarities with the

biological configuration. A larger space will be visited in chapter 6.

The next sections describe the three stages of the evolution, namely the evolution

of segmental oscillators in a first stage, followed by the evolution of the coupling

between 100 copies of a segmental oscillator, and finally the evolution of sensory feed¬
back connections from stretch-sensitive cells. The research presented here has been

published in [Ijspeert et al. 98b], and follows preliminary experiments published in

[Ijspeert et al. 97].

73
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4.1 Methods

I develop alternative swimming controllers by using a real number GA to define suitable
connections and synaptic weights between neurons similar to those of Ekeberg's model.
The similarity of the neuron models will enable a direct comparison of the performances
of the evolved solutions with those of the biological model. In this chapter, a direct

encoding scheme is used in which each gene corresponds to one parameter of the neural

configuration. The controllers are evolved in three stages. First, segmental oscillators
are evolved; then multi-segmental controllers are generated by evolving the couplings
between copies of a chosen segmental oscillator; and, finally, connections providing

sensory feedback from stretch sensitive cells are added. The first stage requires only
the simulation of the neural activity within a segment, while the two last are realised
with a simulation of the whole controller together with the mechanical simulation of
the body interacting with water.

This decomposition into stages reduces the search space of possible solutions and is
motivated by properties of the biological controller I would like to reproduce: 1) the
capacity of a segment to oscillate independently from the other segments and from

sensory feedback, 2) the capacity of the whole (multi-segmental) controller to produce

traveling waves of oscillations without the need for sensory feedback for intersegmental

coordination, and 3) the capacity to integrate sensory feedback for coordinating the
neural activity with the actual movements of the body when these are disturbed by
the environment. The third stage therefore includes the simulation of a speed barrier

which can only be crossed when sensory feedback is provided to the CPG.

The controllers are evaluated depending on their ability to control swimming. In order
to obtain similar performance to the biological controller, I define the following goals

for the evolved controllers:

• production of stable oscillations over the spinal cord,

• generation of phase lags between segments,

• frequency of oscillation dependent on global excitation,

• lag between segments dependent on the proportion of extra excitation of the most
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rostral segments,
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• independence of lag and frequency,

• large ranges of frequencies, lags and speeds of swimming,

• capacity to incorporate sensory feedback from stretch sensitive cells for crossing
a speed barrier.

4.1.1 Genetic Algorithm

I present here the basic real number genetic algorithm which is used throughout this
thesis. The algorithm is a variation of the standard GA (see for instance [Goldberg 89])
with the usual binary encoding being replaced by a real number encoding. Potential

solutions are encoded into chromosomes made of fixed-length strings of genes which

are real numbers G [0,1]. Starting with a randomly generated initial population, the

GA is a loop through the selection, variation and rejection operations (Figure 4.1).

Selection At each generation, a fixed number of parent chromosomes are chosen

with a rank-based, probability. The selection consists of choosing chromosomes with a

probability linearly proportional to their position in the fitness rank. For instance, the
fittest of a population of N chromosomes has a probability P(l) = i+2+ +n

chosen, while the jth fittest has a probability P(j) = ^2+^+n • Pairs made of
different chromosomes are taken, but the same chromosome can be chosen in several

pairs.

Variation New chromosomes (children) are created by a crossover and a mutation

operator. The crossover operator creates pairs of children from pairs of parents, by
either applying a two-point crossover (probability Prob-Xover) or by simply copying the
two parents. The two-point crossover consists of randomly choosing two locations in the

string of genes and creating children by swapping substrings of the parent chromosomes
(Figure 4.2). If the two locations happen to be the same, a single-point crossover is

applied.
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Initial populatior.

with ranked-based probability

2-point crossover, with prob. PXover

rtew_gene = old_gene +/- small random number

Simulation of the neural configuration

—h ;
aS'X'-'CjTtJS5

Worst solutions ofwhole population rejected

Figure 4.1: Schematic view of the genetic algorithm used throughout this thesis.

The mutation operator mutates each gene of the children with a probability Prob-mut
and the mutation consists of adding or substracting a small random number within a

mutation range:

newjvalue = old-value + Mut.Range • rand

where rand is a random number G [—0.5,0.5]. If the new value falls outside the [0,1]
range, it is set to the closest boundary. In some applications, a pruning operator is

applied as an extra mutation. This operator is problem-specific and is used to randomly

prune synaptic connections by setting, with a probability Prob-prune, a gene to the
value corresponding to a null weight. The last step in the variation operation consists

of evaluating the newly created chromosomes and assigning to them a fitness value.

Rejection The size of the population is kept constant by rejecting, at each gener¬

ation, the worst solutions of the increased population (old population plus children).
This rejection procedure leads to a relatively "aggressive" search as it means that the
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Figure 4.2: Single- and two-point crossover.

mean fitness of the population can never decrease.

Ending of the algorithm The evolution of the fitness of the population is mon¬

itored and the algorithm is arbitrarily stopped when a satisfactory level of fitness is

obtained. As my experiments always consist of several evolutions with different initial

populations, all evolutions are stopped after the same number of generations, unless

stated otherwise.

Note that this implementation of an evolutionary algorithm involves several arbitrary
choices concerning the selection, variation and rejection operations and their paramet¬

ers. These choices were partly motivated by observations found in the evolutionary al¬

gorithms literature and by a few initial tests. As will be further discussed in Chapter 9,

the search performed by the algorithm is therefore not necessary optimal.

4.2 First stage: Evolution of segmental oscillators

The first stage consists of the evolution of segmental oscillators. Segmental networks
are developed by evolving the synaptic weights of all possible connections between

8 neurons similar to those of Ekeberg. The same neuron models are used, with the

same 4 types of neurons, but without specifying in advance the sign of the neuron, i.e.

whether it is inhibitory or excitatory. The quality of a solution is evaluated depending
on its ability to produce regular oscillations whose frequency can be varied with the

level of external excitation.
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4.2.1 Encoding

A chromosome represents the connectivity between the 8 neurons of the biological
model. The number of neurons and their dynamics (defined by the 5 parameters of

equations 3.1-3.4, pp61) are fixed and only the sign of the neurons and the synaptic

weights of the connections are evolved. I impose a left-right symmetry. A chromosome
is thus a string of 31 genes which are real numbers between 0 and 1 (Figure 4.3).
There are three sign genes which define whether the interneurons are inhibitory or

excitatory.1 The motoneurons are excitatory. The other genes directly encode the

synaptic weights and correspond (via a linear transformation) to a real value between
-5 and 0 or between 0 and 15, depending on the value of the sign gene (the interneuron
is inhibitory if the sign gene is smaller than 0.5 and excitatory otherwise). Finally
the four last genes of a chromosome determine the synaptic weights of the connections

coming from the brain stem and correspond to a real value between -5 and 15. The

weight boundaries (-5 and 15) have been defined so that they include the range of
weights of the biological model (-2 and 13). Note that, although the denominations

EIN, CIN and LIN are kept to distinguish between the different types of interneurons

(the different neuron dynamics given by equations 1-4), they lose their meaning as a

description of the function or even the sign these neurons had in the biological model.

From: EINleft CINleft LINleft

EINll
CIN1 I

LIN1

einJ
CINrl
LINr

I]

- Sign genes

EIN I
CIN I

LIN
MN

EIN1 CIN1 UNI EINr CINr UNr Brain Stem

CIN1

LIN1

MN1

EINr

CINr

LINr

MNr

Figure 4.3: Encoding of a segmental network.

4.2.2 Genetic Algorithm

The GA described in section 4.1.1 is used, with the pruning operator. The parameters

used for the evolution of segmental oscillators are given in Table 4.1.

1 I chose to have neurons which are either inhibitory or excitatory (rather than neurons which could
both inhibit and excite other neurons) in order to develop networks under the same constraints as
the biological model, in the sense that biological neurons do not usually emit both excitatory and
inhibitory neurotransmitters.
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Population size 100
Number of children 30
Crossover probability 0.5
Mutation probability 0.4
Mutation range 0.2

Pruning probability 0.1

Table 4.1: GA parameters for evolving segmental oscillators

4.2.3 Evaluation

I define a fitness function that rewards three desired characteristics for segmental os¬

cillators:

1. The production of regular oscillations of the motoneurons, with one peak of

activity per period and with the left and right neurons out of phase.

2. A frequency of oscillation which can be varied and which increases monotonically

with the level of external excitation.

3. A minimal set of connections. In [Ijspeert et al. 97], I evolved fully connected

solutions, the weakest connections of which proved unnecessary for the creation

of oscillations and could be removed without affecting the neural activity.

Note that the evaluation of the fitness of a segmental oscillator is only based on the

neural activity of the motoneurons because they are the only neurons influencing the

muscular activity. This means that the interneurons can have any activity and that

solutions with fewer than 8 active neurons can be developed.

Solutions are evaluated by fixed-duration simulations (simulated time of 3000 ms) with

asymmetric initial conditions (all left neurons excited). Several simulations are carried

out with different levels of excitation (starting from 1.0 and making steps of ±0.1), in
order to determine, for the networks which oscillate, the range of frequencies they can

cover.

The mathematical definition of the fitness function is the following:

FitnessA = fit-var ■ fit-reg ■ fiLantLphase ■fit-freq ■ fit-connectivity G [(0.05)5,1]
V

Sr J

fit-oscil
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Figure 4.4: Transformation function used for calculating the different fitness factors. Note
that the good boundary need not necessarily be greater than the bad boundary.

where

fi + H
fit-var =

fit-reg =

2

/3 + fi + /s + fa

Each fitness factor is limited between 0.05 and 1.00. The factors fiLantLphase, fttjreq,

fit-connectivity, and fi vary linearly between 0.05 and 1.00 when their correspond¬

ing variables vary between two boundaries, a bad and a good boundary, respectively

(Figure 4.4). This transformation is obtained by the following function:

F(x) = 0.95 • + 1

where B and G are the bad and good boundaries. Note that the good boundary need
not necessarily be greater than the bad boundary. The variables of these factors and
their boundaries are given in Table 4.2.

The function fit-oscil is made of three factors which reward activity of the motoneurons

which is varying (fit-var), regular (fit-reg) and out of phase between left and right
motoneurons (fit-antLphase). These factors are functions of statistical measures of the
motoneuron signals (Tables 4.2 and 4.3), and the boundaries for the transformation
function for each variable have been determined by hand on 40 examples of different

behaviours from initial experiments. It is possible to fix these boundaries such that

fit-oscil clearly makes the difference between interesting solutions and the others: a

limit of 0.45 is determined above which a solution is certain to oscillate regularly with
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Function Variable [bad,good] Boundaries
h Mean number of zeros [3,8]
h Mean standart deviation [0.1,0.5]
h Left-right period difference [0.15, 0.00]
h Consecutive period difference [0.15, 0.00]
/5 Signal difference in consecutive cycles [0.40, 0.05]
h Signal difference between left and right bursts [0.40, 0.05]
fit-anti-phase Left-right difference [0.0,0.8]
fiLfreq Oscillation frequency [1.0,12.0] Hz
fit-connectivity Connectivity ratio [1.0,0.3]

Table 4.2: Variables and boundaries for the fitness function. See Table 4.3 for the mathemat¬
ical definition of some of these variables.

Variable mathematical definition

Mean standart deviation

Left-right period difference

Consecutive period difference

Signal difference in consecutive cycles

Signal difference between left and right bursts

Left-right signal difference

Connectivity ratio

EtdViD-Ui? , Ef-1mt)-uT)*
2N 1 2N

EcCvc/e=lPi(c2'de) , El^iWe)
2C 1 2C

TdO-PdC-l)] \Pr(C)—PT(C—l)
2P 1 2P

Eielast_cycle W(f)-Ui(t—P)\
Etelast-cycle^' (0+^i (t—P))

Etglast.cycle WR)—UT{t—P/2)\
1-]itela.st-cyc\e(Ui(,t)+Ur(,t—P/2))

EL \Ul{t)-UT(t)\
ELI^W+^WI
N.Connections

N_Max_Connections

Table 4.3: Mathematical definition of variables. N and C are the numbers of integration steps
and simulated cycles, respectively. Ui and Ur are the outputs of left and right motoneurons.
Pi(j) is the period of cycle j for the left motoneuron (cycles start at the onsets of the burst).
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opposite behaviour between left and right motoneurons.2 The value of fit..oscil of the
fitness function is measured at the default excitation level 1.0.

The factor fit-freq rewards solutions which can oscillate over a large range of frequencies
when the excitation from the brain stem is varied. The range of frequencies is only
measured if the solution oscillates regularly and with opposite behaviour between left
and right at the default level of excitation (1.0), i.e. if fit.oscil > 0.45. The frequency

range, the ratio between maximum and minimum frequencies, is measured by making a

set of simulations at different levels of excitation (steps of ±0.1). Only ranges in which
the frequency and the amplitude of the motoneuron signals increase monotonically
with the excitation level are rewarded.3 A function similar to that used to calculate

fiLoscil is then used to check whether the oscillations are regular at these different
excitation levels. Note that because the duration of a simulation is fixed and that a

minimum number of oscillations is required for verifying the stability of the signals,
the lowest measurable frequency is approximately 1.0 Hz.

The function fit-connectivity rewards solutions with reduced connectivity. It depends
on the connectivity ratio (con-ratio), the ratio between the number of connections and
the maximum number of possible connections (56). The smaller the connectivity the

higher the reward, with a maximum reward of 1 for solutions with a connectivity ratio
smaller than 0.3 (fewer than 18 connections).

Note that this fitness function is the result of an incremental design of the fitness
function with new terms and factors being added for correcting small flaws of initial
evolutions (see [Ijspeert 96] for a description of that incremental design). This has led
to a complexity of the fitness function which is partly unnecessary and initial tests

show that simpler, more compact, fitness functions could be designed yielding similar
results. The overcomplex fitness function is here described because it was used to

develop the oscillators on which the next evolutionary stages are based.

2 Of the 40 examples of neural activities, 17 correspond to interesting behaviours. With the chosen
fixed bounds of fit-.var, fit-reg and fit-anti.phase, all the good behaviours have a fit-oscil value higher
than 0.6 and all the others have a value lower than 0.25, with most lower than 0.1.

3 The condition that the amplitude of the neural activity should not decrease when the frequency
increases is added to prevent an antagonistic effect on the speed of swimming, as tests with the
mechanical simulation showed that, in general, increases of the frequency or the amplitude of the
motoneuron signals increase the speed of swimming.



CHAPTER 4. EVOLVING SWIMMING CONTROLLERS 83

Figure 4.5: Typical evolution of a segmental oscillator (run7).

4.2.4 Results

I carried out 10 evolutions with populations of 100 chromosomes. The evolutions were

stopped after 500 generations, an arbitrarily chosen limit which was sufficient for all

the runs to produce interesting oscillators (see Figure 4.5 for an example of evolution).
Each evolution started with a different randomly generated initial population. When

the neurons are randomly connected, there is little chance of the resulting network

oscillating. In my case, only 3 solutions within the 1000 initially generated solutions

produced regular oscillations, and this only at a fixed frequency. Within 500 gener¬

ations, all evolutions converged to final populations composed of networks producing

regular oscillations with variable frequency. Similarly to the biological model, the fre¬

quency of oscillations and the amplitude of the motoneuron signals increase with the

level of tonic excitation (applied through the connections from the brainstem). When
the oscillator receives too little excitation, the motoneurons stay inactive, and when

the excitation level is too high they stabilize, after a few oscillations, in an asymmet¬

rical state with one active and one inactive motoneuron. The fittest solutions of all

runs cover a larger range of frequencies than the biological model, reaching lower and

higher frequencies. The results are summarized in Table 4.4.
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Fitness Frequency range Oscillating Number of
value in [Hz neurons connections

Biol, model 0.18 [1.7, 5.6] EIN+,CIN—TIN- 26
runl 0.44 [1.0, 8.4] EM—,CIN+,LIN— 32
run2 0.39 [1.0, 6.8] EIN—,LIN- 34 24
run3 0.43 [1.1, 7.7] EM—,CIN— 34 26
run4 0.47 [1.2, 9.9] EIN+,CIN—,LIN- 38
run5 0.40 [1.1, 7.9] EM-,CIN-,LIN- 34
run6 0.51 [1.1, 11.3] EM—,CIN— 40 -> 24
run7 0.54 [1.2, 8.0] EIN—,CIN— 32 ->• 24
run8 0.31 [1.1, 5.8] EIN—,CIN— 36 ->• 22
run9 0.60 [1.0, 10.4] EIN—,CIN+,LIN- 32
run10 0.44 [1.3, 8.6] EM—,CIN— 28 -> 22

Table 4.4: Summary of results for the evolved segmental networks. The table gives, for the
best solution of each population, the lowest and the highest frequency at which the segmental
network can oscillate, the interneurons active in the oscillator with the sign of their influence,
and the number of connections of the oscillator. When fewer than 6 interneurons are active,
the number of connections after complete removal of the inactive neurons are given.

The ten runs did not all converge to the same network configuration, but rather to
several different solutions with similar fitness values (see Appendix A for a description
of the evolved configurations). These best solutions differ not only in their connectiv¬

ity, but also in the sign of the interneurons and in the number of neurons active in
the creation of oscillations. Six evolutions converged to networks with only 6 rather
than 8 active neurons. These solutions are composed of the two motoneurons and
four inhibitory interneurons of two different types which create the oscillations. This

demonstrates that excitatory interneurons are not necessary (at least in a connection-
ist model) for the production of oscillations over a large frequency range. Most often
the inactive neurons are the LINs, which is probably due to their high threshold: they
have more chance to be inactive unless they receive some strong excitatory input.

Amongst these six runs, four (runs 3,6,8 and 10) converged to similar configurations
based on an identical oscillator structure (when the possible permutations due to the

left-right symmetry are taken into account) composed of inhibitory EIN and CIN and
the motoneurons (Figure 4.6). Although there are some variations of the values of the
connection weights, the solutions have all the same connections with similar strengths
and present the same behaviour. Figure 4.7 shows the simulation and the configuration

of one of them.

Although most of the evolved oscillators differ significantly from the biological seg¬

mental network, one controller (the best solution of run4) presents strong similarities
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Figure 4.6: Segmental network configuration to which four out of ten runs converged (runs
3,6,8 and 10).

from:
in-

EIN1 CINI LIN1 EINr CINr LINr BS

EIN1 -1.9 -5.0 -4.2 -0.1 12.1

CCIN1 -2.8 -1.7 -5.0 -2.1 4.7
LIN1 - - - - -

MN1 -5.0 - - - 4.8
EINr -4.2 -0.1 -1.9 -5.0 12.1

CCINr -5.0 -2.1 -2.8 -1.7 4.7
LINr - - - - -

MN1 - - -5.0 - 4.8

Figure 4.7: Evolved segmental network (run 6). Top: Neural activity, bottom: Neural config¬
uration.
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with it. That solution is composed of the same interneurons — same number and with
the same sign — as the biological model. Furthermore, although it has more connec¬

tions than the biological model, it has a similar structure with inhibitory connections
from the CIN to all the neurons on the contralateral side and a strong inhibitory con¬

nection from the LIN neurons to the CIN neurons on the same side acting as a burst

terminator (as with the biological model, the LIN becomes active later in the cycle and
inhibits the ispilateral CIN allowing the activity on the other side to start).

The pruning operator of the GA has led to solutions using significantly fewer than the
56 possible connections. The solutions have therefore few weak (low weight) connec¬

tions which do not play an important role in the creation of oscillations. In the case of
solutions which use fewer than 8 neurons, the majority of the connections to and from
the inactive neurons have been cut; for these solutions Table 4.4 gives the number of
connections before and after the removal of the inactive neurons.4

4.3 Evolution of intersegmental coupling

I generate complete CPGs by evolving the interconnections between 100 copies of a
fixed segmental network. The best segmental oscillators of the previous evolutionary

stage are chosen as templates, and ten evolutions are realised, each being the evolution
of the couplings betweeir copies of the segmental network evolved in the corresponding
ten runs of the first stage. The evaluation of complete CPGs is based on simulations
of both the neural activity and the mechanical movements of the body. The quality
of the solutions will depend on their capacity to control swimming at different speeds,

frequencies of oscillation, and lags between segments.

4.3.1 Encoding and GA

A chromosome encodes how the segments are interconnected. Similarly to the biological

model, interconnections are extensions of segmental connections to the corresponding

4 The fact that there are still some weak connections which could be removed without affecting the
oscillation is probably due to the fact that the mutation operator can at any time give a non-zero
value to a weight which had previously been set to zero. The mutation operator therefore slows
down convergence to the minimal set of connections.
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post-synaptic neurons in neighbouring segments. For each segmental connection, the
extensions in each direction are encoded into a chromosome with values between 0

(no extension to neighbour segments) and a maximal extension of 12 (this value has
been chosen to include the maximal extension of the biological model which is 10). The
number of genes is therefore twice the number of segmental connections. As previously,

a left-right symmetry is assumed. The connection weights of the segmental networks
are fixed except for a rescaling depending on the extension of the interconnection: the

weight of a connection to a neuron is divided by the number of segments it receives

input from.

The GA described in Section 4.1.1 is used, without the pruning operator. Although

the genes are transformed into integers when the chromosome is decoded, they are real

numbers in the GA. The GA parameters for the evolutions are given in Table 4.5.

Population size 40
Number of children 12
Crossover probability 0.5
Mutation probability 0.4
Mutation range 0.2

Table 4.5: GA parameters for evolving multi-segmental controllers.

4.3.2 Evaluation

Multi-segmental controllers are evaluated for their capacity to control swimming in the
mechanical simulation. The required features for the controllers are:

1. generation of stable oscillations in the 100 segments with coordinated phase dif¬
ferences for the creation of traveling undulations of the body,

2. ability to change the speed of swimming by changing either the frequency of
oscillation or the wavelength of the undulation,

3. ability to change the frequency and the wavelength independently, by changing,

respectively, the global excitation level and the amount of extra excitation on the
most rostral segments.
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In order to allow comparisons with the biological controller, special emphasis is given
to the capacity to swim with a wavelength corresponding to the length of the body

(phase lag per segment of 1%), and therefore the capacity to change the frequency over

a large range is only measured for lags close to 1%.

The mathematical definition of the fitness function is the following:

• min.fit.oscil is the minimum fit-oscil value (see section 4.2.3) between segments

1,10,20,..,100 when the controller is simulated (simulations of 3000 ms) with an

excitation level of excitO, corresponding to the middle of the range of excitations
with which the segmental oscillator can oscillate, and without extra excitation
on the first segments.

Lagjrangel and freq.rangel are measured by making several simulations at a fixed
level of excitation (excitO) and with an increasing amount of extra excitation.
The lag range is non-zero only if the oscillations are regular in all segments

(min-.fiLoscil>0Ab) and if the lag increases monotonically with the amount of
extra excitation. The lag range is divided by the frequency range in order to
reward solutions which can change the lag between segments independently of
the frequency.

Freq-range2 and lag.range2 are measured by making several simulations with
excitation levels varying around excitO and with a fixed amount of extra excitation
extraO. The value extraO is calculated from the previous lag measurement if

lag-rangel includes a lag of 1%. ExtraO is then defined by taking the value of extra
excitation corresponding to the lag closest to 1%. The frequency range is non¬

zero only if the value extraO exists, and if the frequency increases monotonically
with the level of excitation.

Fitness-2 = miri-fit-oscil ■ fitJagcontrol ■ fiLfreqcontrol ■ fitspeed,

where
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• fit speed — { sPeed-ran9e if < 1
[ 1 otherwise

Speed-range corresponds to the range of speeds covered by all the simulations
made for the definition of lag-freqcontrol and fitjreqcontrol.

The different value ranges are measured as the difference between the maximum and

the minimum value and are normalised by a value corresponding to a target value. The

targets have been fixed to 2.5% for the lag ranges, 10.0 Hz for the frequency ranges

and 0.8 m/s for the speed range.

4.3.3 Results

I carried out 10 evolutions based on the best evolved segmental oscillators of the

previous evolutionary stage (i.e. run 1 in this stage evolves the couplings between

copies of the best segmental oscillator of run 1 of the previous stage). Each population is

made of 40 chromosomes and starts with randomly created chromosomes (i.e. random

couplings between the fixed oscillators). Evolutions are stopped when the fitness of

the fittest solution of the population ceases to increase significantly (between 75 and
300 generations depending on the run).

The random coupling of the initial populations has a different effect depending on the

segmental network. Some segmental networks are quite robust and produce stable

oscillations despite the random couplings, but most of them fail to produce stable

oscillations. A general observation is that, among the randomly connected segmental

oscillators which can produce stable oscillations, very few can have the phase between

segments varied by the extra excitation on the first segments.

All runs successfully converged to controllers capable of generating stable oscillations

with phase lags between segments for relatively large ranges of frequency and phase

lags. Similarly to the biological model, the evolved CPGs produce lags between seg¬

ments which are constant over the whole spinal cord, except for the extremities (be¬
cause of the lack of extensions from the boundaries, the segments at the extremities

tend to oscillate in phase). The lags increase when extra excitation is applied to the

most rostral segments. After the evolutions, I tested the best solutions of each run

over a whole range of levels of excitation and extra excitation in order to determine
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Fitness Frequency range Relative lag Speed range
value in [Hz] range in [%] in [m/s]

Biol, model 0.08 [1.6, 5.6] [0.0, 2.4] [-0.03, 0.50]
runl 0.07 [1.9, 8.5] [0.0, 1.9] [-0.04, 0.59]
run2 0.09 [1.0, 6.8] [0.1, 3.1] [ 0.06, 0.58]
run3 0.07 [1.1, 7.8] [0.0, 2.0] [ 0.08, 0.49]
run4 0.13 [0.8, 10.1] [0.0, 3.8] [-0.03, 0.53]
run5 0.26 [1.1, 8.4] [0.0, 3.6] [—0.10, 0.55]
run6 0.02 [1.1, 7.0] [0.0, 1.3] [ 0.07, 0.51]
run7 0.02 [1.2, 7.5] [0.0, 2.0] [—0.03, 0.52]
run8 0.10 [1.1, 5.8] [0.0, 3.0] [—0.03, 0.56]
run9 0.13 [2.0, 11.0] [-1.7 3.5] [-0.07, 0.50]
runlO 0.18 [3.3, 8.7] [0.3, 2.2] [ 0.18, 0.60]

Table 4.6: Summary of results for the evolved multi-segmental controllers. The table gives,
for the best solution of each population, the ranges of frequency, phase lag and speed it can
produce.

their exact ranges of speed, frequency and phase lag. The results are summarized in
Table 4.6. Figure 4.8 shows the effect of different levels of global and extra excitation
on the frequency, phase lag and speed for one of them (best of run9).

The multisegmental controllers cover approximately the same range of frequency as

the corresponding isolated segmental networks. Five evolved controllers cover a larger

range of phase lags than Ekeberg's solution, with a maximum lag of 3.8% for the
solution of run4. The speed range covered by the evolved solutions is also generally

larger than the range of Ekeberg's model (8 solutions reach higher speeds). Note that
some solutions swim slowly backwards when all segments oscillate in phase (no extra

excitation on the first segments), because of the kind of wriggling they then perform.

Also, some solutions produce lags even without extra excitation of the first segments.

Although most solutions cover larger ranges of frequencies and phase lags than the

biological model, the independence of control of these variables is usually less good.
For several solutions, for instance, increasing the global level of excitation not only
increases the frequency of oscillations but also influences the relative lag between seg¬

ments (usually decreasing it). This problem is illustrated by the best solution of run9

(see Figure 4.8) which can reach high frequencies and high lags, but not both together,
which explains why its maximum speed is relatively low (a combination of high fre¬

quency and high lag is necessary for high speeds in my mechanical simulation).5 My

5 Note that the best solution of run9 also has the idiosyncrasy of producing, for some levels of global
excitation, a caudal to rostral traveling wave when it receives no extra excitation. As soon as some
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Figure 4.8: Effect of the excitation on the controller evolved in run9. Top: Effect of the global
and extra excitations on the frequency and the relative phase lag, Bottom: idem on the speed.

fitness function has not prevented this relative lack of independence because, although
it rewards independence, it does it only for the small area of the global excitation

versus extra excitation space that is visited for the evaluation. The dependence occurs

mainly at high levels of global excitation and extra excitation which are not visited

for the evaluation. This relative problem could probably be solved by sampling more

combinations of both types of excitation.

There are no clear conclusions to make from the way the segmental networks are

coupled (see Appendix B for a description of the evolved configurations). The extents

of the interconnections vary considerably from one solution to another, and there is,

for instance, no systematic coupling favouring one direction. The extents of the coup¬

ling and the asymmetries vary depending on the types of the connected neurons, the

influence of the connection, the phase differences between the activities of the neur¬

ons within the segmental oscillator, etc. A few general observations can, however, be

made. On average, the ipsilateral connections between neurons of the same type (the

self-connections) extend more rostrally than caudally while the contralateral connec¬
tions between neurons of the same type extend more caudally. Also a large majority

of the inhibitory connections sent to the motoneurons extend more caudally. Finally

extra excitation is given, the undulation travels again from head to tail.
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the CPGs based on similar segmental oscillators have also similar couplings, with the
same asymmetries of coupling for most segmental connections.
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Figure 4.9: Simulation of one of the evolved swimming controllers (best of run7). The fre¬
quency of oscillations is 4.0 Hz, the phase lag between segments is 1.1% of a cycle duration and
the speed of swimming is 0.41 m/s. Left: Neural simulation, the continuous line correspond
to the MN, the dashed line corresponds to the CIN and dotted-dashed line to the EIN. Right:
Mechanical simulation, there are 60 ms between each snapshot, and the dotted vertical lines
are separated by 100 mm.

Figure 4.9 shows a simulation of one of the evolved multi-segmental controllers. Inter¬

estingly, the evolved CPGs can also perform turning although this aspect has not been
taken into account in the evaluation functions. Similarly to the biological controller,

giving a higher excitation level to one side of the spinal cord leads to a difference of
the motoneuron amplitude and, because of stronger muscle contractions on one side,
to a change in the direction of swimming. In the case of the evolved controllers, some

left-right permutations of the interneurons may be necessary for optimising the turn¬

ing ability (because of the left-right symmetry, these permutations have no effect on

straight swimming). For instance, for avoiding antagonistic effects on the motoneuron

amplitude when extra excitation is applied, the neurons sending inhibitory connections
to a motoneuron should be on the contralateral side. Finally, initial tests on some of
the evolved controllers show that it is possible to produce backwards swimming by

giving more excitation to the most caudal segments and therefore inducing a tail to
head undulation, but only very limited lags and speeds can then be obtained.
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4.4 Evolution of sensory feedback from stretch sensitive
cells

The CPGs evolved so far receive no feedback from the mechanical simulation. In

the real lamprey, sensory feedback is provided to the CPG by stretch sensitive cells

(the edge cells) situated on both side of the spinal cord. There are both inhib¬

itory and excitatory edge cells and they emit signals proportional to their elonga¬
tion [Viana Di Prisco et al. 90]. Ekeberg showed [Ekeberg et al. 95] that this sensory

feedback is necessary for swimming in unstationary water and, in particular, for cross¬

ing a barrier of water with local speed opposite to the direction of swimming. I show
here a preliminary experiment on how to evolve this sensory feedback for the artificial

controllers in order to allow them to cross a similar speed barrier.

4.4.1 Encoding and GA

A chromosome encodes how each segmental oscillator receives sensory feedback from

two stretch sensitive cells situated at the sides of the corresponding part of the spinal

cord. It encodes the synaptic weights of the connections from one edge cell to the 8

(or 6) neurons of the corresponding segmental network. I impose symmetry between

both sides of the segmental network as well as over the whole spinal cord (the 100

segments). Each connection can be either excitatory or inhibitory (this is to represent

the fact that there are both inhibitory and excitatory edge cells) and genes are decoded

into synaptic weights between -2 and 5. Note that I have fixed these boundaries to

be relatively small in order to prevent the sensory feedback disturbing the production

of oscillations. The same GA with the same parameters as for the first evolutionary

stage is used (Table 4.1), but without the pruning operator.

4.4.2 Evaluation

Solutions are rewarded depending on their ability to cross a speed barrier, that is,

an area with an increase of the speed of the water. Such a situation could, for in¬

stance, correspond to a lamprey swimming up a river and crossing an shallow area

(Figure 4.10). The barrier is 150 mm wide (half the length of the simulated lamprey)
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and the speed of the water flow opposite to the direction of swimming is set to be 40%

higher than the speed of swimming of the lamprey.

Figure 4.10: Speed barrier due to a shallow passage in a river. Following Bernouilli's equation,
a reduction of the cross section of the water flow leads to an increase of the water speed for
keeping the flow constant.

The fitness function is defined to reward:

1. progression through the barrier in the direction of swimming,

2. minimal deviation in the direction,

3. minimal difference of speed between swimming with and without sensory feed¬
back.

This last point was added to prevent important changes in the swimming patterns

when sensory feedback is given to the controller. Evaluations are realised at a chosen
combination of frequency of oscillations and phase lag between the segments (approx¬

imately in the middle of their respective ranges).

The mathematical definition of the fitness function is:

FitnessS = fit-progression ■ fit-deviation ■ fitspeed-constancy

where

• fit-progression varies linearly between (and is limited to) 0.05 and 1 when the
maximum progression of the head of the lamprey varies between 0 and 450 mm

(width of the speed barrier plus the body length). The progression is measured
as the distance (in the initial direction of swimming) between the head of the

lamprey and the entry point to the barrier,
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• fit-deviation varies linearly between 0.05 and 1 as the cosine of the deviation angle

(measured between the initial direction of swimming and the direction after entry
into the barrier) varies between 0 and 1,

• fitspeed-constancy varies linearly between 0.05 and 1 when the relative differ¬

ence between the speeds with and without sensory feedback (\speed-with —

speed-without]/speed-without) varies between 50% and 0%.

4.4.3 Results

I carried out two sets of 5 runs (populations of 40 chromosomes) using the best con¬

troller of run7 of the previous evolutionary stage6. In the first set of runs, sensory

feedback is evolved to all 6 neurons forming the segmental oscillator (2 EINs, 2 CCINs
and 2 MNs), while in the second set sensory feedback is only provided to the interneur-

ons. The chosen levels of excitation produce swimming (without sensory feedback) at
a frequency of oscillation of 4.0Hz, a relative lag of 1.1% and a corresponding speed
of 0.41 m/s. The speed of the barrier was set to 0.57 m/s (40% higher than the speed
of swimming). Without sensory feedback, the lamprey is not able to cross the speed

barrier (Figure 4.11, top). The increase in local forces at the entrance to the barrier

leads to extra bending of the rostral part of the body and forces the lamprey to change
its direction of swimming. The lamprey eventually swims perpendicularly to its initial

direction.

In the first set of runs (sensory feedback to both interneurons and motoneurons), all
runs converged within 80 generations to controllers able to cross the speed barrier (see

Appendix C for a description of the evolved configurations). The connections from

the stretch sensitive cells are not identical in all the evolved controllers. All solutions

have, however, evolved excitatory connections from the stretch sensitive cells to the

interneurons inhibiting the motoneurons on the contralateral side, therefore preventing
excessive bending. The solutions have also developed strong excitatory connections

from the stretch sensitive cells to the motoneurons. Interestingly, these connections

are not only ipsilateral (to prevent excessive bending) but also contralateral. The

6 This controller was chosen because it combines relative large ranges of frequencies, lags and speeds
with an independence of control of the frequency and the lag similar to the biological model.
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Figure 4.11: Effect of a speed barrier on swimming without (top) and with (bottom) evolved
sensory feedback.

overall effect is that the amplitudes of the motoneuron signals are approximately 20%

larger than without sensory feedback. The excitatory feedback to the motoneurons

leads thus to a stiffer body of the lamprey, which is therefore less sensitive to the extra

forces due to the barrier.7

In the second set of runs, this direct feedback from the stretch sensitive cells to the

motoneuron is not allowed. In a first try with the speed barrier of 0.57m/s, none

of the runs converged (within 50 generations) to controllers capable of crossing the
barrier. The speed was therefore reduced to 0.53m/s (30% larger than the speed of

swimming without sensory feedback). After 50 generations, 2 of the 5 runs converged to
solutions capable of crossing the barrier8. The controllers of the two successful runs are

able to cross the speed barrier without increase of the amplitude of the motoneurons.

These controllers therefore manage to cross the barrier without increasing the stiffness

7 Note that the lamprey is able to cross a barrier with a higher speed than its swimming speed, firstly
because the barrier's width is only half the length of the lamprey, and secondly because the increase
of inertial forces due to the water (i.e. the negative acceleration) needs some time to "brake" and
invert the speed of the lamprey.

8 The three unsuccessful runs had a premature convergence to controllers which, although they crossed
most of the barrier, were unable to cross it completely. The loss of diversity in the chromosomes
meant that the GA could not improve those local maxima.
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of the body but only by correcting the phases of the motoneuron oscillations. The

best controllers of both runs have, for instance, stretch sensitive cells which inhibit

the inhibitory interneuron connected to the motoneuron on the same side, and which
excite the inhibitory neuron connected to the motoneuron on the contralateral side.

The stretch senstive cells therefore act as burst terminators which tend to switch the

motoneuron activity from one side to the other when the latter is too much extended.

4.5 Discussion of the results

By developing efficient CPGs which can produce coordinated oscillations for the swim¬

ming of a simulated lamprey, the GA has proved to be an interesting design technique.
I will here review the method and discuss the evolved controllers.

4.5.1 Discussion of the Method

Controllers were evolved in different stages in order to simplify the problem by de¬

composing it into subproblems. The decomposition was motivated by similar decom¬

positions in the real lamprey and gave the possibility of direct comparison between

evolved solutions and the biological model. One advantage of such a decomposition

is to reduce the time needed to evolve a complete controller by avoiding evaluation of

a whole controller made of segmental oscillators which do not oscillate correctly even

when isolated. Decomposition presents the risk, however, of misleading the evolution

as the fittest solutions of one stage may not necessarily be the best starting elements

for the next stage. The segmental oscillators evolved in the first stage, for instance,
were not rewarded for their capacity to be interconnected, which may have constituted

a handicap for the next stages. The pros and cons of staged evolution will be further
discussed in chapter 9.

The simple encoding scheme which directly encodes synaptic weights and extents of
interconnections into a chromosome meant that search was performed in a well defined

and limited space of possible solutions (fixed neuron models, fixed maximum number
of neurons and left-right symmetry). Despite these limitations, the multidimensional

search space was still large enough to generate a variety of interesting central pattern
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generators. One way to enlarge the search space could be to include the parameters of
the neuron dynamics into the encoding. Initial tests show that the GA is able to evolve
both these neuron parameters and the connectivity and generate working CPGs. A

larger search space will also be visited in chapter 6, where swimming controllers will
be evolved with a developmental encoding.

Defining the fitness functions probably constitutes the most important part of the
method. My objectives were to develop CPGs capable of producing stable oscillations
and of modulating the speed of swimming by varying, through a few external signals,
the frequency and the phase lag of the oscillations. Once the objectives were defined,

relatively little iteration was needed to define a suitable set of fitness functions. The
functions are products of factors between 0.05 and 1.0 rewarding qualitative and quant¬

itative aspects, which means that solutions which perform evenly in all aspects receive

the highest fitness value. Both neural (e.g. the motoneuron frequency) and mechanical

(e.g. the speed of swimming) variables are rewarded, with the importance of neural

aspects decreasing and that of mechanical aspects increasing over the evolutionary

stages (in the first stage only neural aspects are rewarded, in the second stage, both
neural and mechanical aspects are considered and in the third stage only mechanical

aspects are taken in account). Ideally, only mechanical aspects should be examined as

they alone effectively determine the quality of a swimming controller; rewarding neural
activities presents the risk of biasing the search to particular network architectures.

However, in this case, taking in account neural variables was necessary for allowing the

staged evolutionary approach discussed above.

The interesting properties of using evolutionary algorithms for designing neural con¬
trollers compared to more traditional learning algorithms will be discussed in chapter 9.

4.5.2 Discussion of the evolved controllers

Several interesting CPGs have been successfully evolved. A first observation is thus
that there exists a variety of possible connectivities which produce the neural activities

necessary for swimming.9 I have demonstrated that there exist solutions alternative

9 A similar observation was made by Lockery for the leech bending reflex, where many dif¬
ferent networks could produce a physiologically accurate local bending input-output function
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to the biological CPG which can control swimming with the same efficiency. These
solutions differ from Ekeberg's biological model in terms of which neurons are inter¬

connected, of the excitatory or inhibitory influence of the interneurons and even of the

number of neurons involved in the rhythmogenesis.

A diversity of artificial segmental oscillators were evolved with significantly larger

ranges of frequencies than Ekeberg's segmental oscillator. Although one oscillator

has a similar structure to the biological one, most evolved networks have interneurons

that play other roles than in the biological network and have other signs. There is
therefore no preferred role and sign for each dynamics of the different neuron models.

A majority of oscillators are based on only four inhibitory interneurons, showing that,
at least at the connectionist level, excitatory interneurons are not necessary for the

production of oscillations over large frequency ranges.

The evolution of multi-segmental oscillators showed that segmental networks could be

interconnected in several ways and produce stable oscillations with the necessary phase

lags for swimming. Similary to the biological model, swimming at different speeds and

with different wavelengths of undulations can be produced by varying simple external

signals (the excitation applied to the CPG). Turning can also be induced when one side

of the controller receives more excitation than the other. The evolved controllers can

generally cover larger ranges of frequency, phase and speed than Ekeberg's model but

with less independence in the control of the frequency and the phase between segments.

A general observation on the coupling between segments is that there is no systematic

asymmetry of interconnection favouring one direction but rather asymmetries in both

directions which depend on the segmental connection. Note that the coupling of both

Ekeberg's and the evolved controllers is a little bit crude in the sense that, except for
the segments at the extremities, the synaptic weights of the extensions of a segmental

connection are the same for all connected segments. It could be interesting to evolve,

for each coupling, a normalising function which would determine the synaptic strengths

depending on the length of the projection, in order to allow, for instance, a decrease
of the influence of a segment on another with the distance separating them.

The evolutions of connections from stretch sensitive cells illustrates how sensory feed-

[Lockery & Sejnowski 93a].
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back can be used by the evolved CPGs for coordinating the neural activity with the
actual movements of the body and allowing the lamprey to cross a speed barrier.
The feedback increases the stiffness of the body and acts as a burst terminator which
switches the neural activity to the side which is excessively bent. These prelimin¬

ary experiments were realised with fixed external commands to the CPG (swimming

straight) and the crossing of the barrier was therefore due to the passive properties of
the CPG with sensory feedback. As active corrections in the commands may also help
the lamprey to cross the barrier, further experiments should include these in order to
determine the respective importance of sensory feedback and higher commands from
the brain for crossing a barrier. This is an aspect which Ekeberg did not consider, and
which I will address with a preliminary experiment in chapter 8.

The variety of different evolved controllers could be studied in more detail and, for

instance, it would be interesting to study how robust the evolved controllers are against

lesions (destruction of connections and/or of neurons). The fact that a variety of
different controllers with similar fitness values have been evolved also rises the question

of why the biological configuration is as it is, i.e. if it is just due to the randomness of
natural evolution and the little changes compared to previously existing CPGs, or if
it is the result of an optimisation of criteria which have not been taken in account in

my very simple fitness functions, such as robustness against lesions, stability, energy

efficiency, ability to incorporate sensory feedback,... Further evolutions with more

elaborate fitness functions may be an interesting way to investigate these questions.

4.6 Summary

This chapter presented how swimming controllers alternative to Ekeberg's biological
model of the lamprey, can be evolved using a staged evolution approach and a simple
direct encoding scheme. The space of possible solutions was designed to include the

biological configuration. It was restricted to alternative solutions which, similarly to

the biological model, are made of segmental oscillators which can be made to oscillate

when isolated and consist of 100 segmental networks coupling in a way which allows
the production of traveling waves of neural activity without needing sensory feedback
for intersegmental coupling.
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The genetic algorithm could successfully generate a variety of different controllers for

producing an anguiliform swimming very similar to that of the lamprey. The controllers

differ from the biological configuration and from each other in terms of which neurons

are interconnected, of the excitatory ot inhibitory influence of the interneurons and of
the number of neurons involved in the rhythmogenesis.

Similarly to the biological controller, the frequency and the wavelength of the travel¬

ing undulations, and therefore the speed of swimming, can be modulated by varying
the tonic input applied to the network. Turning can also be induced when left-right

asymmetrical input is applied. Finally sensory feedback from stretch sensitive cells is

evolved which enables the lamprey to cross a speed barrier it would not have crossed

without.
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Chapter 5

Using a GA for neurobiological
modelling

Modeling a biological neural system requires the setting of many parameters linked

with the cellular and synaptic properties of the system. With current recording tech¬

niques, many of these parameters are difficult or impossible to measure. One important

difficulty of modeling is therefore to instantiate all these parameters of the simulation

to fit cellular and network properties of the system. This is a hard problem to tackle

by hand due to the typical non-linearity of the system and to the fact that the effect

of a parameter generally depends significantly on the values of the others. There is

therefore a strong motivation for having methods which could instantiate the paramet¬

ers automatically, given a quantitative or qualitative desired behaviour. I believe that

evolutionary algorithms can be powerful tools for solving these kinds of problems, and
I demonstrate in this chapter how a GA can used for developing a biologically plausible

connectionist model of the swimming CPG of the lamprey.

The same staged approach and direct encoding scheme of the previous chapter are

employed with a focus on how they can be used for automatically generating a part of

the biological model Ekeberg has designed by hand. Ekeberg spent significant time in

setting the different synaptic weights and intersegmental couplings in order to develop
a controller which could produce the patterns of oscillation observed in the lamprey

(Ekeberg, personal communication). Here the GA is used to automatically instantiate
these variables for obtaining a similar behaviour.

Biologically plausible solutions are generated by reducing the search space to solutions

103
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which have the biological segmental connectivity observed in the lamprey, and which
are made of the same neurons as Ekeberg's model (i.e. the same dynamics and the same

sign). The same three stages are used as in the previous chapter. The evolutionary

process is used to set the synaptic weights of the segmental network, to visit the

space of possible intersegmental coupling between biological segmental networks, and to

investigate possible sensory feedback connections to the biological CPG. The research

presented here has been partially published in [Ijspeert et al. 98b].

The GA is therefore used as a synthetic tool for generating a part of a neurobiological
model for fitting physiological observations, and as an analytical tool for investigating

possible configurations (e.g. possible intersegmental couplings) which optimise some

specified criteria.

5.1 Methods

In this chapter, the same staged evolution and the same fitness functions are used as

in the previous chapter. The evolutions are also based on the same genetic algorithm.

Compared to the previous chapter, the search space is reduced such that the evolved
controllers are composed of interneurons with the same sign (inhibitory or excitatory)
as the biological neurons, and present the same segmental connectivity as the one

observed in the real lamprey.

In the first stage, only synaptic weights are evolved, and the connectivity and neuron

signs are fixed to correspond to those of the lamprey. In the second evolutionary stage,

the coupling between 100 copies of Ekeberg's segmental network (not one of the evolved

segmental oscillators of the previous stage) are evolved and rewarded for their capacity
to produce swimming gaits with variable frequency and phase lags. Finally, in the
last stage, the synaptic weights of sensory feedback connections from simulated stretch
sensitive cells are evolved for Ekeberg's CPG of the lamprey.

I chose, in the second and third stage, to use elements of Ekeberg's model instead of the

corresponding evolved elements in order to allow an easier comparison of the evolved
controllers with Ekeberg's model.
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5.2 Evolution of segmental oscillators

105

5.2.1 Encoding, GA, and evaluation

Segmental oscillators with the biological connectivity are evolved. The fitness function

(Fitness-1) and the GA (with the same parameters, as given in Table 4.1) used for

evolving artificial segmental oscillators are reused here with the exception that the

chromosome only encodes the connections observed in the real lamprey, i.e. the 26

connections of Ekeberg's model, and that no pruning operator is used. The type of each
connection (excitatory or inhibitory) is also fixed and corresponds to the physiological
observation. Ten evolutions with populations of 100 chromosomes were carried out for

500 generations.

Fitness

value
Frequency range
in [Hz]

Biol, model 0.18 [1.7, 5.6]
runl 0.58 [1.0, 8.6]
run2 0.70 [0.9, 10.5]
run3 0.63 [0.9, 9.5]
run4 0.56 [1.0, 8.3]
run5 0.71 [0.9, 10.8]
run6 0.71 [1.0, 10.3]
run7 0.54 [1.4, 11.6]
run8 0.71 [0.9, 11.0]
run9 0.67 [0.9, 9.8]
run10 0.70 [1.0, 10.6]

Table 5.1: Summary of results for the evolved segmental oscillators with biological connectiv¬
ity.

5.2.2 Results

All populations converged to best solutions covering larger ranges of frequency than
the segmental oscillator with Ekeberg's values (Table 5.1). These evolved segmental
oscillators cover most of the observed frequencies of the real lamprey (between 0.25 and

10 Hz), with, for instance, the solution with highest fitness oscillating at frequencies
between 0.9 and 11.0 Hz. Figure 5.1 shows the simulation and the configuration of that

best oscillator. None converged to the same set of connection weights as Ekeberg's

segmental oscillator. Interestingly, five other runs converged to a network similar to
that of the best run, with very similar weights (almost identical inhibitory weights)
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time [ms]

from:
tn:

EIN1 CIN1 LIN1 EINr CINr LINr BS

EIN1 2.4 - - - -2.3 - 9.6
CIN1 10.0 - -4.1 - -1.3 - 10.3
LIN1 4.2 - - - -4.1 - 6.6
MN1 0.0 - - - -1.8 - 3.4
EINr - -2.3 - 2.4 - - 9.6
CINr - -1.3 - 10.0 - -4.1 10.3
LINr - -4.1 - 4.2 - - 6.6
MNr - -1.8 - 0.0 - - 3.4

Figure 5.1: Simulation (top) and configuration (bottom) of the best evolved oscillator with
biological connectivity (to be compared with Ekeberg's values Table 3.1 pp60). This oscillator
can oscillate at frequencies between 0.9 and 11.0 Hz. Five (out of ten) other runs converged to
very similar configurations.

and similar fitness values. The corresponding segmental network seems thus to be an

important local fitness maximum.

A general observation from these runs is that the increase of the frequency range com¬

pared to the original segmental oscillator is due to stronger inhibitory links, especially
the inhibitory connections from CIN to contralateral LIN and from LIN to ipsilateral
CIN (see Appendix D for the configurations of all evolved oscillators). In many cases

(7 out of 10 runs), the excitatory connection from EIN to ipsilateral MN evolved to

a zero weight, indicating that that connection can be removed without disturbing the

oscillatory capacities of the network (see the configuration of Figure 5.1, for instance).

Interestingly, one of the evolved segmental networks had non-oscillating EINs showing

that, even with the biological connectivity, it is possible to remove the excitatory
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interneurons and still produce oscillations over a large range of frequency. A similar
observation was made by Jung [Jung et al. 96], who observed that, in a connectionist
model similar to this one, stable oscillatory output without EIN neurons could be
obtained with appropriate changes in the tonic drives to the LIN and CIN neurons.

Also in a biophysical simulation of the segmental network with populations of neurons
rather than single neuron units [Hellgren et al. 92], it was found that oscillations could
be obtained without EIN but which were less regular than when the EINs were included.
EINs therefore appear not to be necessary for the rhythmogenesis, but to play a role

in stabilizing the oscillatory behaviour of the network.

5.3 Evolution of intersegmental coupling

5.3.1 Encoding, GA, and evaluation

I also evolved the interconnectivity between fixed segmental oscillators corresponding

to the segmental network of Ekeberg's biological model. As mentioned in chapter 2,

the existing interconnections between segments in the real lamprey are not perfectly
known yet and there is some controversy in the mechanisms which lead to phase lags

which are constant over the spinal cord and independent of the frequency of oscillations

(see discussion). Evolving the couplings between the biological segmental network may
therefore give some insight into which kind of interconnections can produce this type

of phase lag.

I use the same methods (same GA and same fitness function) as for the second evol¬

utionary stage of the previous chapter. The fixed segmental oscillator corresponds to

Ekeberg's segmental network and a chromosome encodes the extensions to neighbour¬

ing segments of the segmental connections.

5.3.2 Results

I realised 5 runs with populations of 40 chromosomes. All five runs converged, in fewer

than 75 generations, to complete controllers with similar performances to Ekeberg's

biological model (see Table 5.2). The solutions cover larger ranges of lags and can

reach slightly higher speeds. The best solution, for instance, can have its lag per
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Fitness Frequency range Relative lag Speed range
value in [Hz] range in [%] in [m/s]

Biol, model 0.08 [1,6, 5.6] [0.0, 2.4] [-0.03, 0.50]
runl 0.22 [1.7, 5.5] [0.0, 3.5] [0.06, 0.53]
run2 0.21 [1.7, 5.6] [0.0, 3.5] [0.07, 0.53]
run3 0.22 [1.7, 5.5] [0.0, 3.4] [0.07, 0.53]
run4 0.21 [1.7, 5.6] [0.2, 3.5] [0.06, 0.53]
run5 0.22 [1.7, 5.5] [0.0, 2.6] [0.09, 0.52]

Table 5.2: Summary of results for the evolution of multi-segmental controllers with Ekeberg's
segmental network.

segment varied between 0.0 and 3.5% of the oscillation period and reach a speed of
0.53 m/s. This range of positive phase lags corresponds approximately to the phase

lags up to +3.0% obtained, by varying local concentration of excitatory bathes, in the

spinal cord of the real lamprey [Matsushima & Grillner 92], Similarly to Ekeberg's
model, the frequency of oscillation depends mainly on the global level of excitation
and the lag between segments is mainly controlled by the extra excitation on the five
first segments. Finally, Ekeberg's model and these five solutions all have a very similar
relation between the speed of swimming and the levels of global excitation and extra

excitation.

These solutions have all similar intersegmental couplings and are significantly differ¬
ent from that of Ekeberg's model in which only the CIN have asymmetric projections

(favouring the caudal direction, cf. Table 3.1, pp 60). Table 5.3 gives the interconnec¬
tions of one of them (see Appendix E for the configurations of all evolved controllers).

Although the exact extents of the interconnections vary from one solution to another,

they present strong similarities in the rostral/caudal asymmetries of interconnections.
For instance, all solutions have asymmetries favouring the caudal direction for the

ipsilateral LIN to CIN and contralateral CIN to CIN connections. They also have

asymmetries favouring the rostral direction for the ipsilateral EIN to EIN, ipsilateral

EIN to CIN and contralateral CIN to EIN connections. The fact observed with the

artificial controllers that connections between neurons of the same type extend more

caudally if the connection is contralateral and more rostrally if the connection is ip¬

silateral (self-connection) is thus also true here. Similarly to Ekeberg's model, it is

possible, for some of the controllers, to produce backwards propagating waves when
the most caudal segments receive more excitation, but the phase difference between
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from:
in-

EIN1 CIN1 LIN1 EINr CINr LINr BS

EIN1 0.4 [5, 3] - - - -2.0 [1, 0] - 2.0
CIN1 3.0 [11, 2] - -1.0 [3, 9] - -2.0 [0, 5] - 7.0
LIN1 13.0 [4, 1] - - - -1.0 [9, 4] - 5.0
MN1 1.0 [4, 1] - - - -2.0 [11, 11] - 5.0
EINr - -2.0 [1, 0] - 0.4 [5, 3] - - 2.0
CINr - -2.0 [0, 5] - 3.0 [11, 2] - -1.0 [3, 9] 7.0
LINr - -1.0 [9, 4] - 13.0 [4, 1] - - 5.0

MNr - -2.0 [11, 11] - 1.0 [4, 1] - - 5.0

Table 5.3: Evolved interconnections between biological segmental network (best of run2). The
table gives the weights of the segmental network (identical to Ekeberg's) and, between brackets,
the extensions of the evolved interconnections in the rostral and caudal direction respectively
(to be compared with Ekeberg's values Table 3.1 pp60).

segments is then very small, showing that these controllers preferentially propagate

traveling waves from head to tail.

One solution, the controller evolved in run 4, propagates a traveling wave from head

to tail even without extra excitation on the most rostral segments. This controller

therefore presents an aspect of the real lamprey which Ekeberg's controller does not

reproduce which is the fact that isolated spinal cords of the lamprey spontaneously

propagate a traveling wave of neural activity even in a uniform excitatory bath.

It is interesting to compare the evolved interconnections with the couplings observed
so far in the real lamprey. As summarized in [Wadden et al. 97], it has been observed

that LINs have long caudal projections (up to 50 segments), CINs project mainly

caudally (at least 14 segments) with some rostral extensions, and EINs have relatively
short projections (between 5 and 7 segments) in both directions. The details of how
different types of neurons in different segments are targeted by these projections are,

however, not known. The evolved controllers have interconnections which respect

these observations to some extent. For the solution given in Table 5.3, for instance,

only the long rostral projections of the EIN to CIN, the CIN to LIN and CIN to
MN strongly disagree with the biological observations. The others correspond to the
observed biological interconnections if I hypothesize that the projections observed in
the real lamprey from one type of neuron not necessarily target all neuron types in
other segments in an identical way. For instance, although CIN neurons have globally
long caudal projections and short rostral projections, it may be that their projections
to EINs are mainly rostral and that the existing caudal projections do not target EINs.
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5.4 Evolution of sensory feedback from stretch sensitive
cells

5.4.1 Encoding, GA, and evaluation

Similarly to the artificial controllers, it is possible to evolve sensory feedback from
stretch sensitive cells to the segmental oscillators. I realised a set of 5 runs (popu¬
lations of 40 chromosomes, 100 generations) which evolved sensory feedback to the 6
interneurons and the 2 motoneurons of Ekeberg's segmental network. The speed of the

speed barrier was fixed to be 40% higher than the speed of swimming without sensory
feedback. The same fitness function and GA as for the corresponding stage in the

previous chapter are used.

5.4.2 Results

All runs converged to controllers capable of crossing the speed barrier. The solutions

vary in the exact value of the weights but are almost identical in the respective signs
of the connections (of the 8 possible connections, 5 connections have the same sign
in all runs and the 3 others have the same sign in all runs except one — see Ap¬

pendix F for a description of the evolved configurations). Similarly to the correspond¬

ing runs with an artificial controller, they all developed strong excitatory connections
from the stretch sensitive cells to the motoneurons. It is interesting to note that the
evolved sensory feedback pathways correspond very closely to those observed in the
real lamprey. It has been shown that there exist both inhibitory and excitatory edge
cells in the lamprey with the inhibitory edge cells projecting contralaterally and the

excitatory cells projecting ipsilaterally [Viana Di Prisco et al. 90]. Table 5.4 compares

the evolved connections of the best run with the connections established sofar with

paired intracellular recordings and morphological observations. For all the established

biological connections, the evolved controllers have developed sensory feedback con¬

nections with the same sign. Note that signs of the evolved connections from the edge

cells to the EINs and LINs are somewhat counterintuitive because these connections

counteract the effect of the other connections which tend to switch the neural activity

to the side which is excessively extended.
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Evolved Biological
EC1 ECr EC1 ECr

EIN1 -1.0 5.0
CIN1 CT>o1c4 +
LIN1 0.8 -1.0 +
MN1 3.9 3.4 +

Table 5.4: Comparison between the established biological sensory feed¬
back [Viana Di Prisco et al. 90] and that evolved by the best run. EC stands for Edge
Cell, and I and r indicate the left and right side of the spinal cord. The biological feedback
comes from both inhibitory and excitatory edge cells. The signs of the empirically established
connections are given by + and —.

As the relative strengths of the biological sensory feedback connections are not known

for the moment, it would be interesting to test whether the biological circuitry has
similar relative strengths to the weights of the connections evolved here; and, similarly,

to test whether there exist unobserved biological connections similar to those evolved

(those projecting to the EINs, for instance).

Ekeberg studied two types of connections separately, the excitatory connections to ipsi-

lateral CIN and LIN, and found that each connection was sufficient to cross a speed bar¬

rier which would not have been crossed without sensory feedback [Ekeberg et al. 95].
The connection to LIN provided the best performance with the crossing of a barrier

whose speed was 40% larger than the lamprey's swimming speed. He did unfortu¬

nately not provide the synaptic weights of the connections for a comparison with those

evolved here.

5.5 Discussion of the results

The fact that the GA was able to find sets of synaptic weights and interconnections

for CPGs under the constraints of the biological observations showed that it has the

potential to be a useful tool for developing neurobiological models.

The GA can be used as a synthetic tool, but also indirectly as a kind of analytical

tool. The synthetic aspect is illustrated in the evolution of segmental oscillators, in
which case the circuitry and its behaviour are well known and the GA is simply used to

automatically generate the synaptic weights such that the simulated circuitry produces
the desired behaviour. Although it is possible, in this case, to define satisfactory values
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by hand (as Ekeberg did), the GA proved useful for doing that work automatically
and for optimizing the variable values for better fitting biological observations (e.g.

producing a larger range of frequencies). When the circuitry is less well known (e.g. the
intersegmental coupling), the GA can be used for searching different possibilities and
for generating potential neural configurations which optimize some criteria, therefore

enabling an indirect analysis of how a behaviour arises from a neural configuration. The

hope is then that the evolved potential solutions give some insights for new experiments
for determining the configuration and function of the actual biological circuitry.

From a general point of view, note that, although the GA can be very useful for

demonstrating that a model can produce a specific behaviour (by finding efficient sets
of unknown variables), it is less useful for invalidating a hypothetical model as an

inability to find successful variable instantiations may be due to failings of the model
or to problems with the GA set up, or both. The use of evolutionary algorithms for

designing neural networks will be further discussed in chapter 9.

The development of controllers which preserve the biological segmental connectivity has
led to several observations which may interest neurobiologists. Firstly, the generation
of segmental oscillators with the biological connectivity shows that Ekeberg's set of

synaptic weights can be modified in order to optimize the frequency range. Frequency

ranges much closer to those observed in the real lamprey (between 0.25 and 10 Hz)
can be obtained. The main observation is that the increase of the frequency range

is obtained through an increase of the strength of some inhibitory connections (the
contralateral CIN to LIN and ispilateral LIN to CIN connections). I also find, in

agreement with [Hellgren et al. 92, Jung et al. 96], that the biological connectivity can

produce oscillations without the excitatory neurons (provided that the other synaptic

weights are readjusted). Moreover, I demonstrate here that removing the excitatory
neurons does not prevent the biological connectivity from being able to cover a large

frequency range of oscillations.

Couplings between the biological segmental networks are also evolved which can pro¬

duce phase lags which are constant over the spinal cord and independent of the fre¬

quency of oscillations, as observed in the real lamprey. As mentioned in chapter 2, there
are opposing views on the origin on these phase lags in the real lamprey, in particular
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whether they are due to differences in the intrinsic frequencies of the oscillators or to

the nature of the coupling, and, in the latter case, whether the dominant coupling is as¬

cending or descending (see for instance [Matsushima & Grillner 92, Wadden et al. 97,

Kopell 95, Williams & Sigvardt 95]). Here, at a connectionist level, I have developed

CPGs which rely both on asymmetries of the couplings and on differences of intrinsic

frequencies for creating travelling waves. The coupling is optimized for waves to travel
from head to tail while the extra excitation of the most rostral segments determines
the exact phase lag. Extra excitation of the first segments amounts to an increase of

the intrinsic frequency of those segments which therefore tend to lead the others. As

predicted theoretically for abstract oscillators [Rand et al. 88], the higher the intrinsic

frequency difference, the larger the phase difference between all segments. The optim¬

ization of the intersegmental coupling for head to tail propagation is illustrated, firstly,

by the difficulty of inducing backwards propagation when the most caudal segments

receive extra excitation, and secondly, by the fact that some controllers spontaneously

propagate waves from head to tail even without extra excitation. The evolved CPGs
have no dominant coupling (for instance, no systematic asymmetry) and the intercon¬

nections between segments combine both caudal and rostral asymmetries of couplings.

Finally, the evolved couplings are, to some extent, similar to those observed sofar in
the real lamprey, if we hypothesize that the observed projections from one neuron type

in one segment to neurons in other segments represent the total of all projections from
that neuron and do not necessarily mean that the projections to different types of

neurons must be identical.

Interestingly, the evolution of sensory feedback to Ekeberg's controller led to connec¬

tions which correspond very closely to those observed in the real lamprey, with all

connections from excitatory and inhibitory stretch sensitive cells established in the

real lamprey being also present with the same sign in the evolved controllers. Crossing
a speed barrier may therefore be a good example of the situation for which sensory

feedback has been developed through natural evolution for the real lamprey.
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5.6 Summary

Evolutionary algorithms have the potential to be powerful tools for developing neurobi-

ological models because of their optimisation capacity and their flexibility. This chapter

presented a simple example of how a GA can be used to automatically generate some

parts of a biological model similar to Ekeberg's.

The GA was used to determine synaptic weights for segmental networks with the

biological connectivity and generated sets of weights which lead to a significantly larger

range of frequencies than Ekeberg's segmental network, much closer to that observed
in the real lamprey.

The GA was also used to investigate the space of possible intersegmental couplings
between the biological segmental networks, as the details of the coupling have not

been decoded yet. Couplings have been evolved which can produce the anguiliform

swimming of the lamprey with a similar performance in terms of frequency and speed

ranges as Ekeberg's model, while being able to reach higher phase lags. The different
evolved couplings present several common features which would be interesting to study
in further detail and compare with future anatomical findings on the intersegmental

coupling of the real lamprey.

Finally, sensory feedback connections from stretch sensitive cells have been evolved for

allowing the lamprey to cross a local speed barrier. Interestingly, the evolved connec¬

tions present several similarities with those observed sofar in the lamprey, suggesting

that swimming through water with variations of flow speed may be a good example of
the situation for which sensory feedback has been developed through natural evolution
for the real lamprey.



Chapter 6

Evolving swimming CPGs using
a developmental encoding scheme

In addition to evolution (i.e. the process of how replicating genetic structures mutate

and succeed in reproducing themselves), animals (and plants) are the result of a fur¬

ther adaptive mechanism: development. Development is the process of how genetic

structures are decoded for the "building" of the body. Biological genetic encoding is

remarkably compact; rather than encoding all the details of a complete body plan,

genes encode rules of how the body should be constructed. The genetic instructions

then rely on the physics of the environment for the development of the complete body.

As mentioned in chapter 2, biological development has inspired researchers to de¬

velop indirect encodings for the artifical evolution of neural networks, which are

more compact and modular than direct encodings of network parameters. This

chapter presents the results of a collaboration with Jerome Kodjabachian from the

Animat Lab (Ecole Normale Superieure, Paris1), in which we investigated the evolu¬

tion of swimming controllers using the developmental encoding scheme he designed,
SGOCE (Simple Geometry Oriented Cellular Encoding) [Kodjabachian & Meyer 98a,

Kodjabachian & Meyer 98b]. In the scheme, developmental programs are evolved which
determine how neurons located on a geometric 2D substrate produce new cells through
cellular division and how they form efferent or afferent interconnections.

This chapter presents how, using this encoding scheme, swimming central pattern

1 Now at OASIS-LIP6, Universite Pierre et Marie Curie, Paris.
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generators can be developed in only one evolutionary stage instead of the two used

previously (the work presented here does not include sensory feedback). Using simpler
neurons and fewer neural segments, the controllers are generated based on a fitness
function which only considers mechanical aspects such as the control of speed and of
direction of swimming.

The next sections present the developmental encoding, the geometric substrate for the

development and the evolutionary algorithm used. The results of 10 evolutions with
a fitness function rewarding the capacity to control the speed and the direction of

swimming of the simulated lamprey are then presented. The results presented here
can also be found in [Ijspeert & Kodjabachian 98a].

Note: The design of the developmental encoding and the evolutionary algorithm
were realised by Jerome Kodjabachian, while I developed the neural simulation and the
mechanical simulation (which is a reproduction of Ekeberg's mechanical simulation).
In particular, both the concept and the software of the SGOCE encoding scheme used

in this chapter were developed by Jerome Kodjabachian.

6.1 Methods

We use the SGOCE (Simple Geometry Oriented Cellular Encoding) evolution¬

ary algorithm for designing the swimming controllers [Kodjabachian & Meyer 98a,

Kodjabachian & Meyer 98b]. The algorithm uses an encoding scheme that relates the
animat's genotype — the developmental program — and phenotype — a dynamical
neural network; and an evolutionary algorithm that generates the developmental pro¬

grams within some syntactic constraints.

The encoding scheme is a geometry-oriented variation of Gruau's cellular encod¬

ing [Gruau 95]. In the scheme, developmental programs are evolved which determine
how neurons divide and become connected to each other on a two-dimensional met¬

ric substrate. The substrate contains precursor cells which will develop into sets of

neurons, and nodes which corresponds to inputs (the control signals) and outputs (the
signals sent to the muscles).
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The task here is to generate neural controllers for swimming given a fixed body struc¬

ture of the lamprey and given a high level characterisation of the desired behaviour

defined by the fitness function. Through two input signals applied to the network we

want to be able to initiate swimming and to modulate the speed and the direction of
motion by simply varying the amplitude of these signals. Compared to the two previ¬

ous chapters, the method used here presents the following similarities and differences.
The similarities are that:

• the same mechanical simulation of the lamprey is used,

• the controllers receive tonic signals as input for modulating the speed and direc¬

tion of swimming,

• a similar fitness function is used consisting of a product of factors between 0.05

and 1.00.

• an evaluation consists of several simulations with different commands settings.

The differences are that:

• controllers are composed of simpler neurons and fewer neural segments,

• controllers are encoded with the developmental scheme, and evolve with an evol¬

utionary algorithm whose genetic operators are adapted to the tree-structure of

the developmental programs,

• neuron parameters such as neuron biases and time constants are evolved as well

as the connectivity (connections and synaptic weights) of the controllers,

• stretch sensitive cells are not included,

• controllers are evolved in one stage only, with a fitness function only based on

mechanical aspects, namely the control of speed and direction, instead of both

neural and mechanical aspects.

One of the main differences from the previous evolutions is that the general organ¬

isation of the evolved controllers is not limited to be composed of identical segmental
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oscillators which are interconnected to make the complete central pattern generator.

Complete controllers are here evolved in only one stage and their structure is less

strictly specified (although user-specified geometrical considerations limit the type of
controllers which can be generated, see next sections). This aspect, and the fact that
neuron parameters are evolved as well as the connectivity, means that a larger variety

of neural configurations can be developed and that the search space is less restriced
than in chapter 4.

6.1.1 Neuron model

We use here a simpler neuron model than that developed by Ekeberg. The model is
also a leaky-integrator, but with only one state variable, the mean membrane potential.
The motivations behind this choice of neuron model were primarily to have an easier

adaptation to Jerome Kodjabachian's earlier work, but also to test whether simpler
neuron models than Ekeberg's are sufficient for producing swimming patterns.

The membrane potential mi of a neuron i is calculated by the equation:

r ■ drrii/dt = —rrii +^Wi,jXj

where xj = (l-|-e(m-»+b-'))~1 represents the neuron's short-term average firing frequency,

bj is the neuron's bias, r is a time constant associated with the passive properties of
the neuron's membrane, and Wij is the synaptic weight of a connection from neuron

Nj to neuron Nt. Each neuron exhibits an internal dynamics and even small networks
of these neurons have proven able to produce rich dynamics [Beer 95].

Conversely to the previous chapters, in which the neuron parameters were fixed, in the

present chapter the neurons' biasses and time constants will be evolved together with
the connectivity of the network.

6.1.2 Developmental encoding scheme

Neural controllers are developed from several precursor cells located on a 2D substrate

(see next section). The development is determined by a developmental program which
determines how neurons divide and get connected to each other. Each cell within the
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DIVIDE a r create a new cell
GROW a r w create a connection to another cell
DRAW a r w create a connection from another cell
SETBIAS b modify the bias parameter
SETTAU r modify the time constant parameter
SETINPUTW w modify the input weight
DIE trigger cellular death

Table 6.1: Set of instructions used in the developmental programs

control architecture is assumed to hold a copy of the developmental program. The

program has a tree-like structure similar to that of encodings used in genetic program¬

ming. The nodes in the tree belong to a small set of developmental instructions (see
Table 6.1), or are structural instructions added to help define the grammar (see below).
A local coordinate frame is attached to each precursor cell. A cell division instruction

(DIVIDE) makes it possible for a given cell to generate a copy of itself. A direction

parameter (a) and a distance parameter (r) associated with that instruction specify the

position of the daughter cell to be created in the coordinates of the local frame attached
to the mother cell. Then, the local frame associated to the daughter cell is centered

on that cell's position and is oriented as the mother cell's frame. Each time a cell

divides, its daughter cell receives a copy of its afferent and efferent connections. Two

instructions (GROW and DRAW) respectively create one new efferent and one new

afferent connection. The cell or the input-output node to be connected to the current

one is the closest to a target position that is specified by the instruction parameters,

provided that the target position lies on the substrate. No connection is created if the

target is outside the substrate's limits. The synaptic weight of the connection is given

by the parameter w. Two additional instructions (SETTAU and SETBIAS) specify
the values of a neuron's time constant r and bias b. Finally the instruction DIE causes

a cell to die. In addition to the connections created by the developmental program,

we cause each created neuron to automatically draw an afferent connection from the

input node of their side. The synaptic weight of that connection is determined by the
SETINPUTW instructions. An example of how a developmental program is decoded

into the corresponding set of neurons is given in Figure 6.1.
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Figure 6.1: Example of the decoding of a developmental program into a set of neurons.
Firstly, a connection is grown by the precursor cell to an output cell (Step 1). Secondly,
another connection is drawn by this precursor cell from the input cell (Step 2). In both cases,
the cell with which the connection is made is the closest one to a target point whose polar
coordinates are given in the local frame of the cell by the instruction's parameters. At the
next develomental step (Step 3), the precursor cell creates a daughter cell that reads the right
sub-node of the DIVIDE instruction while the mother cell reads the left sub-node and is killed,
because the corresponding instruction is a DIE instruction. Note that the DIVIDE instruction
has duplicated the connections of the initial cell. Finally, the daughter cell grows a new
connection to another output cell (Step 4) and modifies the value of its time constant parameter.
After the development, this cell is considered as a neuron with its specific connections and
parameters.

6.1.3 Substrate

We use a substrate which corresponds to the body of the lamprey (Figure 6.2). Nine

output nodes are fixed on each side of the body. These nodes are connected to the
muscles such that the signals sent to them determine the contraction of the muscles.
We also fix the position of 18 precursor cells, located symmetrically on both sides of
the body. The substrate can therefore be seen as made of 9 segments, with 2 output
nodes and 2 precursor cells each, corresponding to the 9 joints of the mechanical simu¬
lation. Each of the 18 precursor cells holds a copy of the same developmental program.

However the local frame attached to each cell need not have the same orientation, and

in particular we make the precursor cells on each side (left and right) of the body have

opposite orientations, which forces the developed controllers to be symmetrical. The
two input nodes are also included in the substrate, but as each neuron automatically
has an afferent connection from them, their exact position is not important. Note that
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HEAD

Tonic Input Output Node Precursor Cell

TAIL

Figure 6.2: Substrate of the developmental process. The rectangular substrate extends over
the length of the mechanical body. It contains 18 output nodes located symmetrically on
both sides of the substrate which determine the contraction state of the muscles (Figure 3.6,
chapter 3). It contains also two input nodes which provide the left and right tonic input of the
CPG. 18 precursor cells are spread over the substrate. Left and right precursor cells have local
frames which are oriented with a left-right symmetry. As all precursor cells develop using the
same developmental code, this means that a left-right symmetry of the developed network is
automatically created.

connections created by the GROW and DRAW instructions are not limited to neurons

issued from the same precursor cell but these instructions can potentially connect any

cell on the substrate within a fixed range that corresponds to the maximal value of the

parameter r of the GROW and DRAW instructions. This means that networks can in

principle be evolved with paths of connections between all neurons of the substrate.

In the present paper, the range of connection is limited such that only connections

between neurons of neighbouring segments can be developed.

6.1.4 Grammar

In order to reduce the size of the genetic search-space and the complexity of the gener¬

ated networks, a context-free tree-grammar is used to force each evolvable program to

have the structure of a well-formed tree (Table 6.2). The set of terminal symbols con¬

sists of the developmental instructions listed in Table 6.1 and of additional structural

instructions that have no side-effect on the developmental substrate. The grammar

of Table 6.2 permits the scheduling of the development to be organized into several

marked stages. Firstly, cell divisions will occur and the connections from the command

nodes to the precursor cells will be copied. Secondly, the different cells created will

either die or modify their time constant, bias and input weight parameters. Finally,
each surviving cell will create connections with its surrounding cells. As no more than
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two successive cell divisions can occur, this grammar limits the total number of neurons
in a controller to 72 neurons.

Terminal symbols
DIVIDE, GROW, DRAW, SETBIAS, SETTAU, SETINPUTW, DIE,
NOLINK, DEFBIAS, DEFTAU, DEFINPUTW, SIMULT4.

Variables

Startl, Level2, Neuron, Bias, Tau, InputW, Connex, Link.
Production rules

Startl—»DIVIDE(Level2, Level2)
Level2—^DIVIDE(Neuron, Neuron)
Neuron—>-SIMULT4(Bias, Tau, InputW, Connex) | DIE
Bias—»SETBIAS | DEFBIAS
Tau—>SETTAU | DEFTAU
InputW—>SETINPUTW | DEFINPUTW
Connex—»SIMULT4 (Link, Link, Link, Link)
Link—>GROW | DRAW | NOLINK

Starting symbol
Startl.

Table 6.2: Grammar used to restrict the trees which can be evolved. The production rules
organize the development into several stages which schedule the development and which restrict
the maximum number of neurons.

6.1.5 Evolutionary algorithm

The SGOCE evolutionary algorithm is a steady state genetic algorithm that involves a

population of N randomly generated well-formed developmental programs distributed
over a circle and whose functioning is sketched in Figure 6.3.

Population of Programs
Random I

Figure 6.3: The evolutionary algorithm.
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The following procedure is repeated until a given number of individuals have been

generated and tested:

1. A position P is chosen on the circle.

2. A two-tournament selection scheme is applied, in which the best of two programs

randomly selected from the neighbourhood ofP is kept (more details can be found
in [Kodjabachian & Meyer 98a]).

3. The selected program is allowed to reproduce and three genetic operators pos¬

sibly modify it. The first operator, the recombination operator, is applied with

probability pc. It exchanges two compatible sub-trees, i.e. sub-trees which can

be derived from the same grammatical rule, between the program to be modified

and another program selected from the neighbourhood of P. Two types of muta¬

tion are used. The first mutation operator is applied with probability pm. It

changes a randomly selected sub-tree into another compatible, randomly gener¬

ated one. The second mutation operator is applied with probability 1. It modifies

the values of a random number of parameters, implementing a constant perturb¬

ation strategy [Spencer 94]. The number of parameters to be modified Nmut is

drawn from a binomial distribution B(n,p), and Nmut parameters among all the

parameters are then modified by a small random quantity.

4. The fitness of the new program is assessed by collecting statistics while the swim¬

ming of the lamprey mechanical model, controlled by the corresponding artificial

neural network, is simulated over a given period of time (see below).

5. A two-tournament anti-selection scheme, in which the worse of two randomly

chosen programs is selected, is used to decide which individual (in the neighbor¬
hood of P) will be replaced by the modified program.

In all the experiments reported here pc = 0.6, pm = 0.2, n = 6 amd p = 0.5.

6.1.6 Fitness function

A developmental program is given a fitness value which depends on the capacity of its

corresponding network to control swimming efficiently. Our aim is to develop control-
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lers which can produce patterns of oscillations necessary for swimming when receiving
tonic (i.e. non-oscillating) input, and which can modulate the speed and the direction
of swimming when the amplitude of the left and right control signals are varied.

We therefore define a fitness function, based on the analysis of the mechanical simula¬

tion, rewarding controllers which:

1. produce contorsions, where a contorsion is defined as the passage of the centre

of the body from one side to the other of the line between head and tail,

2. reach high swimming speeds,

3. can modulate the speed of swimming when the tonic input is varied, with the

speed increasing monotonically with the level of input,

4. can change the direction of swimming when an asymmetrical tonic input (between
the two sides of the body) is applied.

The evaluation of a developmental program consists of a series of simulations of the

corresponding developed controller with different commands settings. Fixed-time sim¬
ulations (6000 ms) are carried out with different levels of tonic input in order to de¬
termine the range of speeds the controller can produce. Asymmetrical initial states for
the neurons are created by applying an asymmetrical input during the first 50 ms of
the simulation. Starting from a fixed level of input (1.0), the input is varied by increas¬

ing and decreasing steps of 0.1 and the range of speed in which the speed increases

monotonically with the tonic input is measured.2 If the range of speeds includes a

chosen3 speed (0.15 m/s), a simulation is performed (at the tonic level corresponding
to that speed) with a short period of asymmetric tonic input in order to evaluate the

capacity of the controller to induce turning.4 Turning is evaluated by measuring the
deviation angle between the directions of swimming before and after the asymmetric

input.

The mathematical definition of the fitness function is the following:
2 The speed of swimming is measured as the average speed during the second half of the simulation.
3 This value corresponds to approximately half the maximum speed reached by the best solutions.
4 The sequence of control signals for the turning evaluation is: symmetric left and right signals for
3000 ms, asymmetric (±10% between left and right) for 1000 ms, and symmetric for the last 2000 ms.
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fitness = fit-contorsion ■ fit.maxspeed ■ fitspeed-range ■ fit-turning £ [(0.05)4,1.0]

where fit-contorsion, fit-maxspeed, fitspeed-range and fit-turning are functions which

are limited between 0.05 and 1.0 and which vary linearly between these values when

their corresponding variables vary between two boundaries, a bad and a good boundary

(same transformation function as that used in chapter 4). The variables for each
functions and their corresponding boundaries are given in Table 6.3. If the speed

range does not include the chosen speed of 0.15 m/s, the turning ability is not measured
and fit-turning=0.05. The fact that the fitness function is a product rather than a sum

ensures that controllers which perform equally in all four aspects will be more favoured

compared to controllers performing well in some aspects but not in others.

Function Variable [bad,good] Boundaries
fit-contorsion
fit-max-speed
fitspeed-range
fit-turning

Number of contorsions
Maximum speed
Relative speed range
Deviation angle

[0,10] contorsions
[0.0,1.0] m/s
[0.0,1.0]
[0.0,0.75tt]

Table 6.3: Variables and boundaries for the fitness function. A contorsion is measured as the

passage of the center of the body from one side to the other of the line between head and tail.
The speed range is measured relative to the maximum speed.

6.2 Results

6.2.1 Evolutions

We carried out ten evolutions with populations of 50 controllers. Each run started with

a different random population. A run was allowed to evolve for 100 generations (5,000

tournaments), taking approximately 450 CPU hours on an Ultra 1 Model 140s SUN
station. The evolutions were mainly stopped for time reasons, but 100 generations

also approximately correspond to the time when the different chromosomes converge

to an identical solution and cease to improve their fitness value significantly (e.g. see

Figure 6.4). Table 6.4 gives the performances of the best evolved controllers of each
run (controllers 1 to 10 respectively) and Figures 6.5 and 6.6 show the swimming
behaviour they induce. The evolved controllers can be classified into three categories:

those which do not produce oscillations (controllers 1,2,3, and 4), those which produce

chaotic behaviour (controllers 5 and 6) and those which produce stable oscillations
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(controllers 7,8,9, and 10). We describe next the main characteristics of the evolved

controllers, for a more detailed analysis see [Ijspeert & Kodjabachian 98b].

6.2.2 Non-oscillating networks

Four evolutions converged to non-oscillating solutions (controllers 1,2,3, and 4). These
controllers do not have the circuitry to sustain oscillations, but still manage to propel
the body forward by creating a few contorsions which give the body an initial thrust.
These contorsions are due to the delayed transitions of the neurons from their initial
state to their equilibrium state (see Appendix G). The delays in the transitions lead
to delays in the contraction of the muscles, which happen to propel the body forward.
Once the equilibrium states are reached, the contorsions of the body cease and the

lamprey eventually comes to stand still. As the duration of the simulations was limited,
these controllers were rewarded for their remaining speed at the end of the simulation.

6.2.3 Chaotic networks

Two evolutions converged to solutions producing chaotic oscillations with variable cycle
duration and variable signal shapes (controllers 5 and 6). As the phase lag between

segments is on average positive (i.e. the neural activity travels from head to tail),
these solutions still manage to propel the lamprey forward but with a speed and a

direction of swimming which are not constant. Because of these variations of speed,
these solutions do not present a monotonic relation between the tonic excitation and

the speed. However they received a high fitness value because the speeds measured
in the evaluation function happened to increase monotonically for the excitation steps

tested. The non-monotonicity is revealed when the control of speed is analysed with
smaller excitation steps than those used for the evaluation.

Note that it is not surprising that chaotic oscillators have been evolved, as systems

made of as few as three interconnected neurons can already present chaotic dynamics

with this mathematical model of a neuron [Beer 95].
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Figure 6.4: Evolution of the best run (runlO). The best and average fitness of the population
are represented by a continuous and a dotted line, respectively.

Run Fitness Speed [m/s] Frequency [Hz] Relative Lag [%]
1 0.00 [0.00, 0.08] - -

2 0.00 [0.00, 0.11] - -

3 0.01 [0.00, 0.11] - -

4 0.14 [0.00, 0.15] - -

5 0.24 [0.00, 0.16] [1.16, 1.60] -

6 0.27 [0.06, 0.27] [0.46, 2.50] -

7 0.01 [0.00, 0.12] [0.69, 1.75] [0.0, 0.0]
8 0.05 [0.02, 0.16] [0.94, 0.95] [0.0, 8.2]
9 0.24 [0.00, 0.27] [0.57, 2.31] [1.5, 11.2]

10 0.49 [0.09, 0.47] [1.24, 5.38] [16.0, 20.7]

Table 6.4: Results of the evolutions of central pattern generators. Controllers 1,2,3, and
4 do not produce oscillations. For these controllers, the given speeds indicate the range of
speeds which can be reached through the initial thrust after 6000ms. Controllers 5 and 6
produce unstable oscillations, i.e. oscillations without a constant period. The given frequencies
correspond therefore to the average (minimal and maximal) frequencies and the given speeds
correspond to minimal and maximal speeds, although the speeds does not depend monotonically
on the excitation. Also, because the shape of the signals is too variable, the relative lag is
not given. The controllers 7,8,9, and 10 produce stable oscillations. For these controllers,
the speed, frequency and lag values correspond to the minimal and maximal values obtained
within the range of excitations for which the speed depends monotonically on the excitation.
The relative phase lag is the average of the phase lags measured over the spinal cord (see text
for the variations of the lag along the spinal cord). Note that, because there are only 9 neural
segments, a relative lag of 11.1% per segment corresponds to a wavelength equal to the length
of the lamprey.
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Controller 1:

Controller 2:

Figure 6.5:
200mm.

Swimming produced by controllers 1 to 5. The horizontal lines are separated by
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Controller 6:

129

Controller 7:

Controller 8:

Controller 9:

Controller 10:

Figure 6.6: Swimming produced by controllers 6 to 10. The horizontal lines are separated by
200mm.
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6.2.4 Oscillating networks

Four evolutions converged to solutions producing permanent and stable oscillations,
with all segments being phase-locked and oscillating at the same frequency (control¬
lers 7,8,9, and 10). The phase relation between segments varies, however, from one

controller to the other, as do their configurations, which vary in the number of oscil¬
lators for producing the oscillatory activity. By oscillator, we mean the circuits which
could potentially oscillate by themselves when isolated from the rest of the network

(provided that the simulated neurons receive adequate tonic input). It can be shown
that the smallest oscillator with this model of neurons is composed of 2 neurons with

self connections [Beer 95].

Controller 7 has the peculiarity of being made of two separate chains of oscillators on

both sides of the body which are connected through excitatory contralateral connec¬
tions (see Appendix G). Neurons on the same side oscillate in synchrony, and, because
neurons on contralateral sides belong to different oscillators, the contralateral phase
relation depends on the initial conditions. With the asymmetrical initial conditions
of the evaluation function, the body produces a "C" bending, but with a contralat¬
eral phase relation which is not perfectly out of phase. Because of the different inertial
forces between head and tail segments, this results in the body making an asymmetrical

traveling undulation with a large wavelength, which slowly propels the body forward

(see Figure 6.6). If the simulation is started with nearly symmetrical initial conditions,
left and right muscles contract in phase and the lamprey does not progress.

Controller 8 is composed of one oscillator per segment interconnected over the spinal
cord (see Appendix G). Each oscillator is distributed over both sides through inhib¬

itory contralateral connections, and the left and right neurons of each segment are

therefore perfectly out of phase. The phase relation between segments is slightly neg¬

ative between segments closest to the head and gradually increases to become positive

towards the tail. This means that the muscle activity travels forwards to the head
and backwards to the tail from a segment in the middle of the trunk. As the negative

phase difference between the first segments is small, the corresponding swimming is
not unlike carangiform swimming in which most of the body is rigid except the tail
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which moves back and forth (Figure 6.6).

The two controllers which produce regular oscillations and reach the highest speeds

(controllers 9 and 10), exhibit an anguiliform swimming which is very similar to that of
the real lamprey. Similarly to the lamprey, they have left and right neurons oscillating

out of phase, and phase lags between segments which are almost constant over the

spinal cord (although, for controller 10, the signal shapes slightly vary from head to

tail), leading to caudally directed traveling waves (Figures 6.8 and 6.10).

Controller 9 has the peculiarity of including only one oscillator. It is also the controller

with the smallest number of neurons, with one oscillatory circuit in the first segment

(closest to the head) and two neurons per segment in the other segments (Figure 6.7).
That rostral oscillator entrains the neurons in the other segments through a chain

of caudally directed excitatory connections. Because of the synaptic time constants,

these neurons oscillate with a lag compared to their rostral neighbours, which leads to

the observed anguiliform swimming. The fact that only the first segment contains an

oscillator is due to the border effect of the substrate. The same DRAW instruction is

responsible both for the creation of a connection completing an oscillator circuit in the
first segment, and for the creation of intersegmental links connecting each of the other

segments to the preceding one (Figure 6.11). Before evaluating this controller, the
neurons labelled A and B in the figure are pruned in all but the first segment because

they have no efferent connections towards the muscles or the C neurons, which implies
that these cells cannot influence the behavior of the simulated lamprey and thus need

not be simulated.

Controller 10 has a similar organisation to controller 8, with one oscillator per segment

being distributed over both sides of the spinal cord through inhibitory contralateral
connections (Figure 6.9). The segments are interconnected over the spinal cord by
closest neightbour coupling (because of the limitation of the length of a connection,

parameter r of the GROW and DRAW instructions, no longer coupling was developed).
Note that of the two controllers producing anguiliform swimming, controller 10 is

more robust against "lesions" than controller 9 in the sense that destroying neurons or

connections in the head oscillator or in the coupling between segments of the controller 9

has a significantly larger impact on the swimming pattern than for controller 10.
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Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9
A: 56.9 CL1 -» ML1 22.40 CL5 -> ML5 22.40 CL9 -> ML9 22.40

B: 50.0 XL -> AL1 1.00 XL -♦ CL5 1.00 XL -♦ CL9 1.00

C: 50.0 CR1 -»AL1 19.95 CR5 -> CL5 -11.90 CR9 -» CL9 -11.90

XL -> BL1 1.00 CL5 -» CL5 7.30 CL9 -» CL9 7.30

Bias: AR1 -» BL1 -11.80 CL4 -» CL5 26.65 CL8 -» CL9 26.65

A: -11.90 XL ->CL1 1.00

B: -2.10 CR1 -»CL1 -11.90

C: -8.45 CL1 -»CL1 7.30

BL1 -* CL1 26.65

Figure 6.7: Architecture of controller 9, one of the two controllers producing anguiliform
swimming. Left: Neurons on the substrate. For reasons of clarity, the lateral axis of the
substrate has been mutliplied by ten. Mk and Mri represent the left and right muscle nodes of
segment i, XI and Xr are the input nodes. A,B and C are three types of neurons. Excitatory
and inhibitory connections are represented through continuous and dashed lines respectively.
Each neuron also receives a connection from the input nodes, which is not shown here. Right:
Parameters and connection weights. Only the weights of the connections to the left neurons
are given, the others are symmetric.

Figure 6.8: Neural activity in controller 9. Left: Neural activity of left and right neurons and
the signals sent to the muscles in segment 1 (the oscillator segment, see text). Right: Signals
sent to the left muscles along the nine segments.
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Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9
A 1600.0 AL1 -> ML1 27.00 CL4 -» ML5 31.80 CL8 -♦ ML9 31.80

B 29.2 XL -»AL1 28.45 AL5 -» ML5 27.00 AL9 -> ML9 27.00

C 16.5 BL1 -»AL1 -6.10 XL -» AL5 28.45 CL9 -» ML9 31.80

CL2 -> AL1 -24.75 BL5 -> AL5 -6.10 XL -» AL9 28.45

Bias: AL1 -»AL1 -23.95 CL6 -» AL5 -24.75 CL9 -» AL9 -6.10

A -16.00 XL -» BL1 1.00 AL5 -> AL5 -23.95 CL9 -» AL9 -24.75

B -16.00 BL1 -> BL1 -16.20 XL -> BL5 1.00 AL9 -♦ AL9 -23.95

C 2.00 AL1 -♦ BL1 24.70 BL5 -> BL5 -16.20 XL -» CL9 1.00

XL -»CL1 1.00 AL5 -» BL5 24.70 CR9 —» CL9 -6.95

CR1 -»CL1 -6.95 XL -♦ CL5 1.00 AR9 -> CL9 -27.90

AR1 -»CL1 -27.90 CR5 -» CL5 -6.95 AL8 -» CL9 30.70

AL1 -* CL1 30.70 AR5

AL4

-> CL5

-* CL5

-27.90

30.70

Figure 6.9: Architecture of controller 10, one of the two controllers producing anguiliform
swimming. Left: Neurons on the substrate. For reasons of clarity, the lateral axis of the
substrate has been mutliplied by ten. Mj and Mr; represent the left and right muscle nodes of
segment i, XI and Xr are the input nodes. A,B and C are three types of neurons. Excitatory
and inhibitory connections are represented through continuous and dashed lines respectively.
Each neuron also receives a connection from the input nodes, which is not shown here. Right:
Parameters and connection weights. Only the weights of the connections to the left neurons
are given, the others are symmetric.
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Figure 6.10: Neural activity in controller 10. Left: Neural activity of left and right neurons
and the signals sent to the muscles in segment 5. Right: Signals sent to the left muscles along
the nine segments.
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Head

tx-

Tail

first segment other segments

Figure 6.11: Side-effect during the development of Controller 9: During the development, a
DRAW instruction was read by all cells C and looked for the closest cell to a target point
(represented as a cross on the figure) whose position in the local frame of the corresponding
cell C was given by the DRAW instruction's parameters. In all but the first segment, this led
to the creation of an inter-segment connection with the homologous cell C in the preceding
segment. In the first segment, however, as there was no preceding segment, the closest cell
to the target point was cell B in the first segment itself. Therefore, a connection from cell B
to cell C was created in the first segment. That connection complements a recurrent circuit
implementing an oscillator whose periodic activity is propagated into the other segments of the
animat by the inter-segment connections. Note that for reasons of clarity, we have reversed left
and right cells A compared to Figure 6.7.

These four swimming controllers (controllers 7,8,9, and 10) modulate the speed of

swimming when the level of tonic input is varied. They need the tonic input to produce

oscillations; they converge to an equilibrium state, and hence a motionless body, when
no input is given. Once sufficient input is applied, the speed of swimming increases with
the level of input, and these controllers have a range of excitations in which the speed
increase is monotonic with the excitation (even with smaller excitation steps than those
used in the evaluation of the fitness value). Table 6.4 gives the speed ranges which can

be obtained within that monotonic region. This monotonic relation is important, from
a control point of view, in order to ensure that an increase of excitation amounts to

an increase of speed.

Controllers 9 and 10 also offer good control of the direction of swimming. When, during

swimming, an asymmetrical excitation is applied to these networks for a fixed duration,
the lamprey turns proportionately to the asymmetry of excitation. The effect of the

asymmetry is to change the duration of bursts between left and right muscles leading
to a change of direction towards the side with the longest bursts. If the asymmetry
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Figure 6.12: Top: slow turning induced by controller 10, bottom: Sharp turning induced by
controller 9.

is small (for instance ±10% of the excitation level), the lamprey goes on propagating
a traveling undulation and therefore swims in a circle until the asymmetry is stopped

(Figure 6.12, top). If the asymmetry is large (for instance ±30% of the excitation level),
the undulations almost stop as one side becomes completely contracted. This bending

leads the lamprey to turn very sharply, and allows important changes of direction when

the duration of the asymmetry is short (Figure 6.12, bottom).

6.3 Discussion

6.3.1 Method

We have presented how an evolutionary algorithm with a developmental encoding
scheme could be used to develop interesting swimming controllers. This demonstrated

that the method has the potential to develop, given a fixed body structure, efficient

controllers which fulfill desired characteristics defined by the fitness function.

Evolution and search space The fact that the evolutionary process determines

both the number of neurons, the number of connections and the parameters (synaptic
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weights, time constants and biases) of the neurons leads to a search space with, in
principle, an infinite number of dimensions.5 We therefore constrained the search in
several ways to make the work of the evolutionary algorithm easier.

Firstly, we chose the initial positions and orientations of the precursor cells and output
nodes in the substrate, which allowed us to force the developed controllers to be sym¬

metrical and organized in segments, thus reducing the overall number of parameters
to be evolved. Secondly, the choice of a specific grammar made it possible to further
reduce the size of the search space by considering only a sub-space of the develop¬
mental program space. In particular, the grammar limited the numbers of neurons
in the evolved controllers, therefore restricting the search space to a finite number of
dimensions. The limited numbers of neurons also helped to keep the evaluation time
of the corresponding neural networks within reasonable bounds.

As mentioned, the evolved controllers depend on several geometrical parameters fixed

by the experimenter such as the number and the position of the precursor cells, the

position of the muscle nodes, the maximum length of a connection, etc. which have

partly determined the architecture of the evolved solutions. An interesting extension
of this work would be to analyse the effect of these parameters, and potentially have
them evolving as well.

Comparison with the previous evolutions of swimming controller In contrast

to the staged evolution and direct encoding of the previous chapters, in the experiment

reported here, we use a more compact encoding, the developmental encoding, and
we evolve swimming controllers in one stage only. This new approach brings several

interesting features.

Firstly, an interesting aspect of the developmental encoding is the fact that the number
of neurons and of connections is not fixed a priori but is determined by the evolutionary

process. In chapter 4, we evolved the number of neurons and connections indirectly by

fixing a maximum number of neurons and evolving the weights of all possible connec-

5 When no grammar is used, the size of the developmental program, and therefore the number of
neurons, is, in principle, not limited, and the addition of a neuron means the addition of new
variables (synaptic weights, time constants and biases) which each adds a new dimension to the
search space.
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tions while using a random pruning operator which little by little led to circuits with

fewer connections and potentially fewer neurons.

Secondly, another interesting aspect of the developmental encoding is that the develop¬
mental instructions can participate in the construction of different neural mechanisms

depending on the local context, as illustrated in the development of controller 9, when

the same DRAW instruction was used to either complete an oscillatory circuit in the

first segment, or create intersegmental connections in the other segments. Such a prop¬

erty is due to the side-effects that occur at the extremities of the segment chain and to

the fact that the instructions for developing connections are context dependent. The

evolutionary algorithm was opportunistic enough to take advantage of that property.

One idea to make such opportunistic solutions appear more frequently would be to

define more context dependent developmental mechanisms. This point will be further

discussed in chapter 9.

Finally, swimming controllers have been developed in one stage only, with a fitness

function which only specifies desired characteristics for the mechanical simulation,

without considering neural aspects. Having a fitness evaluation only based on mech¬

anical aspects is especially interesting for control problems where neural requirements

are not known and where only the desired behaviour of the mechanical system can be

characterized. An interesting application of the technique could be the generation of

a locomotion controller for a swimming or walking robot, for instance.

The drawbacks compared to the previous evolutions are that the evolutions are signi¬

ficantly slower than with the staged approach. The performances in terms of frequency

and speed range of the evolved solutions are also not as good, although this may be

due to the different neuron type used: because Ekeberg's neurons have independent

state variables for the excitatory and inhibitory inputs, they provide a better basis for

oscillation as they have a more complex dynamics (see, for instance, Figure3.2 where

constant inputs lead to an increase followed by a decrease of the neuron's output).

Finally, because there were less constraints on the evolution, the evolutionary process

took an opportunist advantage of small flaws of the fitness function which led to a lower
success rate of the different evolutions to produce interesting swimming controllers. In

the previous evolutions, first evolving segmental oscillators ensured that swimming
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controllers were able to produce regular oscillations and satisfactory swimming in all
runs. The two methods will further be compared in chapter 9.

Comparison with previous applications of SGOCE In

[Kodjabachian & Meyer 98a], walking controllers for a six-legged animat were

evolved and several similarities can be noticed between the corresponding experiments

and the ones described here.

Firstly, the same models of neurons and muscles were used in both cases. Moreover,

a left-right symmetry and a segmental organization of the body and nervous system

were hypothesized. Secondly, the set of developmental instructions and the syntactical
constraints used were nearly identical, the only difference being the addition of the in¬
struction SETINPUTW in the current work. Furthermore, the evolutionary algorithm
was run with the same parameter values for solving both tasks. Only the popula¬
tion size was reduced in the current work, because of the longer time required by the
evaluations. Finally, in both cases, locomotion controllers involving central pattern

generators were successfully evolved.

The main differences between the experiments described here and those of

[Kodjabachian & Meyer 98a] lay in the evaluation strategies and in the inclusion of
command cells. While the experiments involving the six-legged animat used a global
fitness criterion involving measures of body speed and leg movements, the current work
uses a more elaborate fitness function that combines four criteria and calls for several

evaluations of a given individual with different command settings.

Also, command cells were explicitly included in the current work, which allowed neural
circuitries to be developed whose swimming patterns could be initiated and modulated

by simple input signals. Note that, while no command input was used in the first stage

of the evolution of six-legged locomotion controllers — which led to the evolution of

constant-speed, straight-walking controllers — those controllers were however found to
be able to stop [Kodjabachian & Meyer 98a] or to turn [Kodjabachian & Meyer 98b]
when connected to a second, higher level neural network.
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6.3.2 Evolved CPGs
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A variety of different controllers have been evolved. The controllers differ both in their

behaviours and their configurations. The evolved controllers present three kinds of

neural activity: non-oscillating signals which propel the lamprey forward through an

initial thrust, chaotic oscillations and stable oscillations. The corresponding configur¬
ations differ in the number of neurons, their parameters, and their connectivity. In

particular the solutions can be classified depending on their numbers of oscillators: no

oscillators, only one oscillator, and one or more oscillators per segment.

Evolved swimming patterns The controllers without oscillators, which propel the

body forward by an initial thrust, are not very interesting from a control point of view as

they can not sustain the speed ofmotion. These controllers have taken advantage of the
limited time of simulation. To prevent the emergence of this kind of solution, further

evolutions should be carried out with longer simulations which would significantly

reduce their fitness value. The controllers producing unstable oscillations are also of

limited interest because their speed and direction of swimming are not constant. These

controllers would therefore be difficult to use by higher control centers. A simple way to

prevent these solutions being generated could be to add a factor in the fitness function

rewarding regularity of both the speed and the direction.

Four controllers have been developed which can be described as central pattern gen¬

erators. They generate stable and permanent oscillations when receiving a tonic (i.e.

non-oscillating) input. Of these controllers, the two which reach the highest speeds

produce an anguiliform swimming very similar to that of the lamprey. Segments oscil¬

late with left and right neurons out of phase, and there is a constant phase lag between

segments which leads to a wave of neural activity traveling from head to tail. These
two controllers offer good control of the speed and the direction. Increasing the amp¬

litude of both tonic inputs amounts to increase the speed of swimming. One of our

requirements was that this increase be monotonic, in order to facilitate control and
to be certain that an increase of excitation amounts to an increase of speed. We can

therefore define for both controllers a range of excitations in which that condition is

respected. When asymmetrical levels of inputs are applied, turning is induced because
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of a difference of the duration of the muscular bursts between both sides. Although we

have not required a monotonic relation between the turning capacity and the asym¬

metry of excitation (turning was tested at only one asymmetry), the turning angle
increases with the amount of asymmetry. For both controllers, two kinds of turning
can be obtained: a small asymmetry leads to slow turning in which the undulations
continue to travel, and a large asymmetry leads to sharp turning with a strong bend¬

ing of the body. Although this means that the body loses speed, it allows turning on

the spot. For both types of turning, straight swimming resumes when the asymmetry

ceases.

Comparison of the best controllers with the lamprey's CPG Controller 9 has
a very simple neural configuration for creating the traveling wave of neural activity. It
is made of an oscillator in the first segment (the segment closest to the head) which
entrains, through closest neighbour excitatory connections, a chain of single neurons

on both sides of the spinal cord. Controller 10 has a more complex configuration

with oscillators in each segment. This controller is therefore closer to the biological

connectivity found in the lamprey, with an interconnection of segmental oscillators
which can be made to oscillate independently when isolated [Buchanan & Grillner 87,
Grillner et al. 88, Grillner et al. 91, Grillner et al. 95] (see also section 2.3). Both
evolved controllers share the property of the lamprey that the frequency of oscilla¬
tion increases with the level of excitation. In the lamprey, this has been shown in vitro

by measuring the frequency of oscillations in excitatory baths with different concen¬

trations. Another interesting property of the lamprey is that the phase lag between

segments relative to the cycle duration remains constant for different frequencies of

oscillations. This means that the lamprey maintains a constant wavelength of the un¬

dulation (corresponding to approximately the length of the body) for any frequency
of oscillations. In controller 9 this is not the case, as the relative lag between seg¬

ments changes significantly with the frequency; in controller 10, however, the change

of relative phase lag changes only slightly for important changes of the frequency (see
Appendix G). Controller 10 therefore shares the most properties with the biological
CPG of the lamprey.

By contrast with the previous chapters in which I developed swimming controllers with
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some predefined similarities with the biological configuration and with some require¬

ments on the neural activity, we generated here controllers with only a characterisation

of the desired behaviour in terms of the control of the speed and the direction of swim¬

ming. It is therefore interesting to see that the best evolutions converged to controllers

sharing several similarities with the lamprey, the main one being the anguiliform swim¬

ming.

6.4 Summary

This chapter presented how swimming controllers for a mechanical simulation of a

lamprey can be designed using an evolutionary algorithm with a developmental en¬

coding scheme. Developmental programs determine how neurons on a 2D substrate

divide and get connected to each other. The swimming controllers were evolved in

one stage only, and with a fitness function based on the performance of the swimming,

namely the control of speed and direction by two input tonic signals. The desired be¬
haviour of a controller is therefore characterized at a higher level than in the previous

chapters where neural aspects were also taken in account. Such a design method can

potentially be applied to the evolution of controllers for a real swimming robot without

major changes in the design technique.

A variety of different controllers were evolved. Some of the controllers have taken

advantages of "flaws" of the fitness function and produce swimming which is either
not permanent but based on an initial thrust, or not regular because of chaotic neural

activity. The best controllers exhibit stable neural oscillations which can be varied by
two input signals to modulate the speed and direction of swimming. The two best
controllers produce swimming gaits which are very similar to that of the real lamprey

with an undulation of almost constant wavelength traveling from head to tail. Because

of the context-dependency of the developmental program, one of these two controllers

has a suprisingly compact neural configuration.
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Chapter 7

From lamprey to salamanders:
evolving CPGs for swimming and
walking

I present next how swimming controllers can be extended to control the walking of
a salamander-like animat. Keeping the idea of staged evolution in which increasingly-

complex control systems are incrementally built using elements of the previous stage,

this can be seen as a fourth evolutionary stage following the evolution of the swimming

controllers.

Salamanders propel themselves in water by undulation of the body while holding their

limbs against their body. Similarly to lampreys, the undulation is a traveling wave

propagating from head to tail. When the salamander switches from swimming to

trotting, its body ceases to propagate an undulation and, instead, performs an S-shaped

standing wave with the nodes at the level of the girdles [Frolich & Biewener 92]. The

bending of the body helps the salamander to increase the reach of its limbs which are

attached laterally to the body. Electromyographic recordings along the salamander's

trunk and tail have shown that these two gaits are produced by two distinct axial

motor programs, with a traveling neural wave for swimming and a standing wave for

trotting [Frolich & Biewener 92, Delvolve et al. 97].

As discussed in chapter 2, little is known about the neural circuitry controlling the lo¬

comotion of the salamander, but it has been hypothesised that it is based on a similar

organisation to that of the lamprey [Cohen 88, Delvolve et al. 97], Studying the evol-

143
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ution of central pattern generators among vertebrates, Cohen, for instance, suggests
that CPGs of higher vertebrates may have evolved from chains of coupled segmental

oscillators, as observed in the lamprey, with some segmental oscillators having special¬
ised to control fins and limbs. Furthermore, the possibility of a chain of oscillators

producing the S-wave observed in the trotting salamander has been demonstrated us¬

ing chains of mathematical oscillators with a coupling between the extremities and the
middle of the chain [Ermentrout & Kopell 94a].

Following these ideas, I develop CPGs which can exhibit both the swimming and

trotting gaits of the salamander and which are based on limb oscillators projecting
to lamprey-like swimming circuits for the body (i.e. the trunk and the tail). The

body circuitry is based on Ekeberg's model of the lamprey's CPG and on the con¬

trollers developed in chapter 4. The research presented here has been published in

[Ijspeert et al. 98c] and [Ijspeert et al. 98a].

7.1 Methods

For investigating salamander-like locomotion, I developed a salamander-like animat by

transforming the mechanical simulation of the lamprey. Taking the same approach as

in chapter 4, neural controllers able to produce the swimming and trotting gaits are

developed with a direct encoding. The neural controllers are based on the swimming
controllers for the lamprey (both Ekeberg's model and evolved controllers), and are

composed of two interconnected oscillators which control the limb muscles and which

project to a lamprey-like body CPG.1 The limb oscillators are copies of the body

segmental oscillators (only the interneurons). The evolutionary process is used to define
the synaptic weights of the connections between limb oscillators and the connections
from the limb oscillators to the body CPG. A fitness function is defined which rewards
the capacity of the controllers to modulate the speed and the direction of the mechanical
simulation.

Two different experiments are reported, which correspond to evolutions with the same

fitness function but with different constraints on the neural configuration. In experi-
1 The experiments presented in this chapter are realised without sensory feedback, and the neural
simulations therefore do not include edge cells or other proprioceptive neurons.



CHAPTER 7. FROM LAMPREY TO SALAMANDERS 145

ment A, the limb oscillators project to the body motoneurons, while in experiment B,

they project to the body interneurons (see below). In the next sections, I present the

mechanical simulation of the salamander, the details of the neural configurations and
their encoding for each experiment, and the fitness function used for the experiments.

7.1.1 Mechanical model of the salamander

The 2D mechanical simulation of the salamander is an extension of Ekeberg's simu¬

lation of the body of the lamprey. Rigid links representing the limbs are attached to

the first and the fifth joints (Figure 7.1), therefore spliting the lamprey-like body into

a five-segment trunk part and a five-segment tail part.2 This kind of anatomy corres¬

ponds approximately to that of a metamorphosed3 Ambystoma Tigrinum salamander

[Frolich & Biewener 92]. In order to also approximate the variations of the body dia¬
meter from head to tail, the geometry of the body is changed compared to that used

for the lamprey simulation, and the width of the links of the middle of the trunk are

increased compared to those of the rest of the trunk. The new geometrical parameters

are given in Table 7.1. Similarly to the lamprey, each link of the body is assumed to be

30 mm long, with an elliptical cross section of constant height (30 mm) and variable

width. Limbs are simulated as 50 mm long cylinders, with a diameter of 12 mm. The

masses and moments of inertia of the links are calculated by assuming the density of

the salamander to be constant and equal to that of water.

Similarly to the lamprey, the accelerations of the links are due to three forces: the

torques due to the muscles, inner forces linked with the mechanical constraints and the

forces due to the environment.

Muscles are simulated as springs and dampers as for the lamprey's simulation (see

Equations 3.8, chapter 3), but the parameters of the muscles of the tail and the trunk

are changed in order to increase the torques they can create and to compensate for the

2 In [Ijspeert et al. 98c], I used, similarly to [Delvolve et al. 97], the term trunk for the whole body,
with the anterior trunk corresponding to the intergirdle part of the body and posterior trunk cor¬

responding to the tail. However, in other papers such as [Frolich & Biewener 92], the term trunk is
only used to refer to the intergirdle part of the body, with the anterior and posterior trunk being
different areas of that body part. To avoid any confusion, the terms trunk and tail are used in this
chapter.

3 This species has an alternative life cycle, the neotenic cycle, in which individuals reach adulthood
in a fully aquatic larvaform [Frolich k Biewener 92].
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Trunk Tail

X W N

Figure 7.1: Mechanical configuration of the salamander-like animat.

link Wi [mm] mi [g] Ii [g mm2] Ax [Ns2/m2] A|| [Ns2/m2]
1 22.0 15.6 1637 0.45 0.3
2 25.0 17.7 2016 0.45 0.2
3 28.0 19.8 2454 0.45 0.1
4 23.0 15.6 1637 0.45 0.0
5 18.6 13.2 1272 0.45 0.0
6 15.2 10.8 964 0.45 0.0

7 11.8 8.4 701 0.45 0.0

8 8.5 6.0 475 0.45 0.0
9 5.1 3.6 275 0.45 0.0
10 1.7 1.2 90 0.45 0.0

limbs 12.0 5.7 1229 0.30 0.1

Table 7.1: Parameters for the mechanical simulation of the salamander-like animat.

larger masses and moments of inertia of the body. In the simulations presented here
the parameters for the trunk and tail muscles are: a = 20.0 [N mm], j3 = 2.0 [N mm],
7 = 20.0 and 6 = 200.0 [N mm ms]; and those of the limb muscles: a = 20.0 [N mm],
/3 = 2.0 [N mm], 7 = 4.0 and 5 — 200.0 [N mm ms]. To compensate for the differences
in torques required for the swing and stance phases, the flexor motoneuron signals are

amplified by 30% while the extensor motoneuron signals are reduced by 40% when the

torques are calculated.

The inner forces ensure that all links stay connected, and correspond to those of the

lamprey's simulation with new constraints for the attachment of the limbs. When the

limbs enter into contact with the trunk or the tail links, elastic and damping forces are

also temporary added to prevent the limbs penetrating those links: Fcontact = Ax+Bx,
where A = 0.1 [N/mm], B = 2.0 [N ms/mm] and x represents the distance that the
end of the limb penetrates the body link.
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The forces due to the environment depend on whether the salamander is in water or

on land. In water, it is assumed that each link (limbs included) is subjected to inertial

forces due to the water, and these forces are calculated as in the lamprey's simulation.

On land, all trunk and tail links are subjected to a friction force, representing the fact
that the body of the salamander slides on the ground when the salamander is trotting.

The friction force is opposite to the motion of the links and proportional to their weight

(gm): Fenv = g,gm. In the simulations presented here, g has been fixed at 0.4.

As only the accelerations in the horizontal plane are calculated, vertical movements

of the limbs are not calculated, and instead, the position of the extremity of the limb

(the foot), in the air or on the ground, is assumed to be determined by the signals
sent to the limb muscles. The limb is assumed to be in the air when the signal of the

extensor is larger than that of the flexor, and on the ground otherwise. The contact of

a limb with the ground is then represented as a constant friction force applied to the

extremity of the limb link (Ffoot-ground = 1.0[N]). The motoneurons for the flexor and
extensor therefore not only determine the torque of the limb, but also its stance and

swing phase.

The same integration method as for the lamprey's simulation is used, namely the fourth
order Runge-Kutta method, with integration steps of 5 ms for the neural simulation
and integration steps of 0.5 ms for the mechanical simulation.

Note that this simulation is only a first approximation of a salamander, and does not

claim to be a realistic biomechanical simulation of any existing real salamander. In

particular, the different parameters of the simulation, such as the geometrical para¬
meters and the muscle parameters, have not been tuned to correspond to biological

data.

7.1.2 Neural configuration in experiment A

The neural configurations in experiment A are made of a limb CPG and a body (trunk
and tail) CPG (Figure 7.2). The body CPG corresponds to the swimming controller
for the lamprey. Two sets of evolutions are carried out: in the first one the body

CPG corresponds to Ekeberg's biological model; and, in the second one, the controller



148 CHAPTER 7. FROM LAMPREY TO SALAMANDERS
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Figure 7.2: Neural configuration in experiment A. Arrows represent bundles of connections
whose weights are evolved.

corresponds to one of the evolved swimming controllers of chapter 4 (controller 1

which, similarly to Ekeberg's model, has 6 interneurons per segmental network). The
limb CPG is made of two oscillators which are copies of the 6-interneuron segmental
oscillators of the body CPG.

In this experiment, I choose the limb oscillators to be interconnected, and to project

to the motoneurons of the corresponding limbs and to the motoneurons of the body

muscles, with the anterior limb oscillator projecting to the trunk motoneurons (joints
1 to 4), and the posterior limb oscillator projecting to the tail motoneurons (joints
5 to 9, see Figure 7.2). The evolutionary process is used to determine the synaptic

weights of all the possible connections. In order to take into account the symmetry of

the body and to reduce the search space, a left-right symmetry is imposed. The limb
oscillators are also assumed to project identically to the corresponding trunk and tail

motoneurons, i.e. joints 1 to 4 receive the same connections from the anterior limb

oscillator and similarly for joints 5 to 9 and the posterior limb oscillator.

A direct encoding similar to that used in chapters 4 and 5 is used. A chromosome
consists of 84 genes (real numbers E [0,1]) which encode the synaptic weights of the
connections described above (Figure 7.3). For the connections to the muscle motoneur¬

ons, the genes are transformed into synaptic weights in the range [—5.0,0.0] or [0.0,15.0]
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Figure 7.3: Encoding of genes 1 to 42 in experiment A. Genes 43 to 84 similarly encode the
projections from the posterior oscillator.

if the presynaptic neuron is, respectively, inhibitory or excitatory, and for the connec¬

tions between oscillators, the synaptic weights are in the range [—2.0,0.0] or [0.0,6.0].
These connections between oscillators are chosen to have smaller synaptic weights in

order to reduce the effect of inter-oscillator coupling on the oscillator activity.

The aim is to develop controllers which produce either the swimming gait or the trotting

gait depending on which CPG receives most excitation. The whole CPG can be seen

to be made of two CPGs in parallel which "compete" for the same motoneurons.

7.1.3 Neural configuration in experiment B

In experiment B, neural configurations have the same organisation as for experiment A,

except that the limb oscillators project to the interneurons of the body CPG rather

than the body motoneurons (Figure 7.4). Conversely to experiment A, in which the

limb and body CPGs are not coupled, there is here a one-directional coupling between

the two CPGs, which is similar to the control circuitry hypothesised by neurobiologists
in [Delvolve et al. 97].

Only one set of evolutions is carried out, with body circuitry corresponding to Ekeberg's

model of the lamprey CPG. Similarly to the experiment A, the two oscillators of the
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Figure 7.4: Neural configuration in experiment B. Arrows represent bundles of connections
whose weights are evolved.
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limb CPG are copies of the 6-interneuron segmental networks of the body circuitry.
The oscillators project to the interneurons of the body segmental oscillators, with the
anterior oscillator projecting to the anterior (trunk) segments, i.e. the first 50 segments

between the head and the hindlimbs, and the posterior oscillator projecting to the last
50 segments of the tail. In order to reduce the search space, I fix a left-right symmetry
and a symmetry of the projections to the body segments, i.e. all segments from the
trunk receive the same connections from the anterior limb oscillator and similarly for
the tail segments and the posterior limb oscillator.

The synaptic weights of the connections are encoded into chromosomes consisting of
104 genes (Figure 7.5). The weights of the connections between the limb oscillators are

in the range [—2.0, 0.0] or [0.0, 6.0] depending on the sign of the presynaptic neuron,

and the weights of the connections to the limb motoneurons and the body interneurons

are in the range [—5.0,0.0] or [0.0,15.0].

In this experiment, the aim is to develop controllers which can produce the swimming

gait when only the body CPG receives tonic excitation, and the trotting gait when
both the body and the limb CPGs receive excitation. As the limb oscillators and

the segmental oscillators of the body are identical networks with the same connections

from the brain stem, they have the same intrinsic frequency when they receive the same
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Figure 7.5: Encoding of genes 1 to 52 in experiment B. Genes 53 to 104 similarly encode the
projections from the posterior oscillator.

excitation. The connections between limb oscillators and from the limb oscillators to

the body oscillators will then determine the phase relation between all the oscillators.

7.1.4 Genetic Algorithm

For these experiments, a similar genetic algorithm to the one described in chapters 4

and 5 is used. The 2-point crossover and mutation operators are used, together with a

pruning operator. The pruning operator is only applied to the connections between the

limb oscillators. The GA parameters used in both experiments are given in Table 7.2.

Population size 200 (exp. A) 100 (exp. B)
Number of children 60 (exp. A) 30 (exp. B)
Crossover probability 0.5

Mutation probability 0.4

Mutation range 0.2

Pruning probability 0.05

Table 7.2: GA parameters for experiments A and B
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7.1.5 Fitness function

The fitness of a controller depends on its capacity to control the motion of the mech¬
anical simulation. The fitness function is defined to reward solutions which:

1. trot as fast as possible,

2. can change the speed of the trot when the excitatory drive is varied (excitation of
the limb CPG in experiment A, and excitation of both the limb and body CPGs
in experiment B), with a monotonic relation between the level of excitation and
the speed,

3. can change direction when left-right asymmetrical drive is applied,

4. maintain, most of the time, one foot on the ground on each side of the body (this
factor was added to prevent the emergence of gaits which would tend to roll in a

3D simulation).

The mathematical definition of the fitness function is the following:

fitness = fit-maxspeed ■ fit.speed-range ■ fit-turning.slow ■ fit-turning-fast ■

fit-feet-ground G [(0.05)5,1.0]

where fit-maxspeed, fitspeed-range, fit-turningslow, fit-turning-fast and fit-feet-ground
are functions which are limited between 0.05 and 1.0 and which vary linearly between

these values when their corresponding variables vary between two boundaries, a bad
and a good boundary (same transformation function as in chapter 4). The variables
for each function and their corresponding boundaries are given in Table 7.3. An eval¬
uation consists of several simulations (1000ms) with different levels of excitatory drive
for determining the range of speeds which can be obtained. If the speed range includes
the chosen speeds of 0.15 and/or 0.30 m/s, the capacity to induce turning is measured
at the corresponding level of excitation and fit-turningslow and/or fit-turning-fast
is measured. Turning is induced by applying a symmetrical excitation for 1200ms

(straight motion), followed by a left-right asymmetrical excitation (±20%) for 600ms,
followed by 1200ms of symmetrical excitation. The angle of deviation corresponds to
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the difference of headings before and after the asymmetrical excitation. The factor

fit-feet-ground depends on the minimal time left or right feet have spent on the ground
in all the simulations of the evaluations.4 The lower this variable is, the more likely it is

that the corresponding simulation would tend to roll in a 3D simulation, as it indicates

that the body is insufficiently supported on one side during a part of the cycle. A value

of 1.0 means that, in all simulations, a leg (either the fore- or the hindlimb) was kept
on the ground on each side of the body at all times.

Function Variable [bad,good] Boundaries
fit-maxspeed
fitspeed-range
fit-turningslow
fit-turning-fast
fit-feet-ground

Maximum speed
Relative speed range
Deviation angle
Deviation angle
Minimum time on ground

[0.0, 0.6] m/s
[0.0, 1.0]
[0.0, pi]
[0.0, pi]
[0.5, 0.9]

Table 7.3: Variables and boundaries for the fitness function. The speed range is measured
relative to the maximum speed.

7.2 Results of experiment A

I carried out two sets of 10 evolutions of 40 generations starting with different random

populations of 200 chromosomes each. The first set of evolutions develops control¬
lers based on Ekeberg's model as body CPG, while the second set is based on one of

the evolved swimming controllers of chapter 4 (controller 1). The fitness and max¬

imum speed of the best evolved controllers of each run are given in Table 7.4. The

corresponding controllers and graphs showing their performance can be found in Ap¬

pendixes H and I. Note that some animated gifs illustrating the results can also be
found at http://www.dai.ed.ac.uk/students/aukei .

Performance of the controllers All evolutions converged to controllers which use

the four legs for locomotion (see Appendixes H and I). The controllers all exhibit a

gait which is very close to the trot with contralateral limbs oscillating out of phase and

4 For each simulation i, the time (and ti_right) an anterior or posterior foot has been in contact
with the ground on the left (and right) side of the body is calculated (as a ratio of the duration
of the simulation). The variable minimum time on ground is then the minimum of all and
ti_right•
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Table 7.4: Fitness and maximum speed of the trotting controllers based on Ekeberg's swim¬
ming controller for the body CPG in runs A1 to A10, and on one of the evolved swimming
controllers in runs All to A20.

Run A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
Fit

Spd
m/s

0.09 0.11 0.06 0.06 0.08 0.12 0.19 0.09 0.15 0.10

0.52 0.60 0.52 0.45 0.48 0.70 0.55 0.52 0.78 0.70

Run All A12 A13 A14 A15 A16 A17 A18 A19 A20
Fit
Spd
m/s

0.25 0.02 0.05 0.07 0.07 0.05 0.03 0.04 0.04 0.05

0.59 0.46 0.33 0.52 0.73 0.40 0.38 0.37 0.40 0.47

diagonally opposed limbs almost in synchrony. This type of gait was favoured by the

fit-feet-ground factor of the fitness function and by the constraints of the mechanical
simulation. The fit-feet-ground factor has penalized solutions which use only two limbs,
and the mechanical constraints due to the joint-less rigid limbs have penalized gaits in
which contralateral limbs are simultaneously on the ground during part of the cycle,

as, when two opposite feet are on the ground, the single degree of freedom between
the two limbs is fixed and the motion of the salamander is "braked" by the friction
forces representing the contact of the two feet on the ground. Because of the penaliz¬
ation of the coactivation of contralateral limbs, the trot is the only gait which satisfies

fit-feet-ground's equilibrium requirement of having one foot on the ground on each side
most of the time.

The fastest gaits are obtained when body movements are used and when these move¬

ments are appropriately coordinated with the limb movements. This is the case, for

instance, in all controllers reaching speeds of 0.55 m/s or higher (controllers A2, A6,
A7, A9, A10, All and A15). Similarly to the trotting gait used by the real salamander,
these fastest solutions synchronously bend one side of the trunk with the swing phases
of the contralateral forelimb and the ipsilateral hindlimb (see Figure 7.6), which there¬
fore leads to an increased reach of these limbs and allows higher speeds to be obtained.
As there is some time delay between the contraction of the body muscles and the

maximal bending of the body, the best coordination is obtained when the beginning

of the contraction of one side of the trunk slightly precedes (and covers most of) the
ispilateral contractions of the forelimb flexor and the hindlimb extensor (Figure 7.6).5
6 Because of the elasticity of the trunk, there is always a delay between the burst of motoneuron
activity of one side of the trunk and the maximal bending of that side. This is similar to what is
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Figure 7.6: Trotting controlled by controller A15. Ma and Mp correspond to the motoneuron
activity in the trunk and in the tail, respectively.
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Interestingly, the same pattern of activity of trunk muscles, compared to the ispilateral
limb muscles of the forelimb active during the stance phase and those of the hindlimb
active during the swing phase, is shown in the data presented in [Delvolve et al. 97].

For all the controllers presenting a trunk-limb coordination similar to that of the sala¬

mander, except controller A10, the tail is contracted out of phase compared to the

trunk, which means that the whole body makes, similarly to the real salamander, a

standing S-wave with the nodes at the girdles. Because the wave is a standing wave,

the body becomes straight during some part of the cycle. Note that, when the tail is
contracted without an out of phase relation with the trunk, as is the case in control¬
ler A10, the tail makes big sweeping movements which prevents the salamander from

trotting in a straight line (Appendix H, Figure H.10). The sweeping movements are

worsened by the pendulum effect induced by the swinging of the rigid hindlimbs.

The speed of trotting can be modulated by the level of tonic input applied to the
limb CPG (Appendixes H and I). Increasing the tonic input amounts to increasing
the frequency of oscillation of the limb oscillators,6 which therefore leads to higher

trotting speeds. This is similar to the real salamander which increases trotting speed

primarily by increasing the cycle frequency [Frolich & Biewener 92], In some control¬

lers, the increase of input also leads to an increase of the motoneuron amplitudes and
therefore larger limb movements. The controllers based on Ekeberg's CPG as body
CPG (controllers Al to A10) reach on average higher speeds than those based on the
evolved body controller (controllers All to A20). The reason for this is not very clear,
but I suspect it is linked to an intrinsic property of the two limb oscillators based on

the evolved body CPG which has led in many cases, when the oscillators are coupled,
to a coupled network whose frequency does not vary significantly with the excitation
level (see Appendix I). It was therefore difficult for the evolutionary process to develop
controllers which could cover a large range of speeds.

The direction of trotting can be varied by applying left-right asymmetrical tonic input
to the limb CPG (Figure 7.7). Turning is then induced because of a variation of the

observed in the real salamander where the cessation of EMG activity in one side of the trunk occurs
prior to maximal lateral displacement to the contralateral side [Frolich & Biewener 92].

6 This a characteristic of the segmental oscillators of the lamprey's CPG and of the evolved swimming
CPGs.
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Figure 7.7: Turning induced by controller A9.

amplitude of the limb motoneurons which leads the limbs on one side of the body to

make larger movements than the other. The controllers which have the best turning

capacity also use trunk movements for turning, by making larger contractions of one

side of the trunk in the direction of the turn. Note that two controllers, A7 and All,

had their turning capacity, and therefore their fitness value, overestimated because of

inaccuracies in the numerical integration.7

Finally, the swimming gait can be obtained when tonic input is applied only to the

body CPG, with some extra excitation to the five most rostral segmental networks.
Tonic input is then also applied to the flexor muscles in order to hold the limbs against

the body. The same traveling waves as for lamprey-like swimming are then produced,

leading to typical anguiliform swimming. Because of the differences in geometry, the

speeds of swimming are approximately 20% lower than with the lamprey simulation.

Configurations of the controllers Although the controllers of the different runs
exhibit a similar trotting gait, a variety of different limb CPG configurations have

been developed (both for the controllers based on Ekeberg's body CPG and those
based on the evolved body CPG), with the couplings between the two limb oscillators

7 Because of inaccuracies in the numerical integrations, these two controllers do not trot straight at
some levels of excitation and therefore received a high fitness value because ability to turn was
measured around those levels. For these controllers, an integration for the neural simulation with
steps of 5 ms leads to oscillations with a "double" period: a short period which corresponds to the
trotting steps and long period (for instance, 7 times the short period for controller All) in which the
amplitude of the neuron bursts vary, leading to a zigzag progression. The double period disappears
with only the short period remaining when smaller integration steps are taken (1 ms steps).



158 CHAPTER 7. FROM LAMPREY TO SALAMANDERS

and the projections to the motoneurons varying significantly from one run to another

(Appendix H and I).

The coupling of the two limb oscillators has the effect of significantly changing their
neural activity, such as the burst durations or the amplitude of the bursts, compared to
when the oscillators are isolated. In many cases, for instance, some types of interneuron
do not fire anymore in one of the segments because of the coupling. The variety of

couplings has also led the anterior and posterior segments to oscillate with a variety of

phase relations, from oscillators which are approximately in phase, such as in controller

A8, to oscillators which are approximately out of phase, such as in controller A3.
Note that, because the burst durations between neurons of the two oscillators are not

identical due to the coupling, the phase relation between the two oscillators can not be
measured accurately (one should measure the phase separately for the onset and the
offset of the burst, and this for each type of interneuron).

The fact that the phase relation between the oscillators varies significantly from one

run to another means that the connections from the oscillators to the limb and body

motoneurons also vary significantly in order to produce the trotting gait observed in

all solutions. In order words, the projections from the oscillators to the motoneurons

compensate the different phases between the two oscillators observed in the different

controllers in order to produce a similar motoneuron output for all controllers.

For the controllers exhibiting a coordination between body and limb movements similar
to that of the salamander, the coordination is sometimes reflected by strong similarities
of the projections to the motoneurons in the neural configurations. In controller A9, for

instance, the projections from the anterior oscillator to the trunk motoneurons and the

anterior flexor motoneuron on the same side are very similar, which leads to an almost

identical neural activity of the ispilateral trunk and anterior flexor motoneurons.

7.3 Results of experiment B

Experiment B is carried out with 10 evolutions of 50 generations starting with different
random populations of 100 chromosomes each. The body CPG corresponds to Eke-

berg's CPG model. The fitness and maximum speed of the best evolved controllers of
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each run are given in Table 7.5. These best controllers are analysed below.

Table 7.5: Fitness and max. speed of the walking controllers
Run B1 B2 B3 B4 B5 B6 B7 B8 B9 BIO
Fit

Spd
m/s

0.05 0.01 0.07 0.02 0.02 0.07 0.01 0.03 0.11 0.01

0.64 0.40 0.52 0.38 0.54 0.65 0.25 0.45 0.75 0.34

Performance of the controllers Similarly to the evolutions of experiment A, all

runs converged to solutions exhibiting a trotting gait. The trotting gait is here obtained

by applying excitatory drive not only to the limb CPG but also to the body CPG, which

means that the interneurons of the segments of the body are activated. As the same

excitatory drive is applied to the two segments of the limb CPG and to those of the

body CPG, all segments oscillate at the same frequency and are therefore phase-locked.

All evolved controllers, except three (runs B7, B8 and BIO), exhibit a body-limb co¬

ordination very similar to that of the salamander (Appendix J). The three exceptions

have the trunk and tail segments of the body oscillating in phase which leads to the

body making C-like undulations. The resulting movements are not well coordinated
with the limbs, and the maximal speed of these solutions is therefore relatively low.

For the other controllers, the trunk and the tail are approximately out of phase leading

to the typical standing S-wave undulation (see Figure 7.8, top). Similarly to the real

salamander and to the previous experiment, the body movements are coordinated with

the limb movements such as to increase their reach when they are in the swing phase.

The controller B9 presents, similarly to the best controllers of the previous experiment,

a body-limb motoneuron coordination very similar to data of the real salamander in

[Delvolve et al. 97].

Unlike experiment A, in which the activity of the body motoneurons is directly de¬

termined by the limb oscillators, the limb oscillators project here to the interneurons

of body segments and therefore influence the body motoneurons only indirectly. The

S-wave undulation is obtained because the limb oscillators force the trunk and tail

segments to oscillate out of phase. The neural activity within the body segments is

therefore the result of the interaction between the lamprey-like coupling between seg¬

ments which tends to make neighbouring segments oscillate with a similar phase, and
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Figure 7.8: Trotting (top) and swimming (bottom) salamander with the fittest controller
(run B9). Notice the typical standing wave of the body during trotting compared to the travel¬
ing wave during swimming. See also animated gifs at http://www.dai.ed.ac.uk/students/aukei/
, in particular the gifs illustrating the transition from swimming to trotting.
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Figure 7.9: Neural activity during trotting (run B9). Left: Neural activity in the limb oscillat¬
ors (Ma and Mp represent the motoneuron activity of body segments 5 and 95, respectively).
Right: Motoneuron activity along the left side of the body. Remember that interneurons of
segments 1 to 50, i.e. the trunk segments, receive projections from the anterior limb oscil¬
lator, while segments 51 to 100, the tail segments, receive projections from the posterior limb
oscillator.
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the projections from the limb oscillators which leads to a steep change of phase at the
level of segment 50. The effect of the coupling is, for instance, illustrated in Figure 7.9,

right.

A general observation about the activity of the body circuitry is that there is less

variability in the signal shapes and phases in the trunk segments than in the tail

segments. In all controllers, the first 40 segments (in the trunk) oscillate with identical

phases and signal shapes (see Appendix J).8 There is then an area between segment 40

and segment 60 (i.e. around the transition from anterior to posterior limb oscillator

influences) in which signal shapes and phases change significantly. The rest of the
tail segments then tend to oscillate with identical signal shapes, either in synchrony

(controllers Bl, B2, B3, B6, B7) or with caudally-directed phase lags (controllers B4,

B5, B8, BIO). In some controllers such as B4 and B9 (Figure 7.9), the signal shapes

also change along the tail segments. The fact that, for all controllers, trunk rather
than tail segments oscillate in synchrony is probably due to the caudal asymmetry of

Ekeberg's intersegmental coupling.

Figure 7.10: Turning induced by controller B9.

Similarly to the experiment A, the gaits produced by the evolved controllers can be

modulated by the excitatory drive, and the speed of trotting increases with the level of

excitation applied to the body and limb CPGs. Turning can also be induced by a left-

right asymmetry of input (to both the limb and the body CPGs), and controller B9,
in particular, can exhibit sharp turning movements because of large differences in the

8 Note that with Ekeberg's intersegmental coupling, there is no lag between segments as long as no
extra excitation is given to the first segments, and therefore both the intersegmental coupling and
the projections from the anterior oscillator tend to make segmental networks in the trunk oscillate
in phase.
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contraction between the left and right sides of the trunk, in addition to differences in
the amplitude of the limb motoneurons (Figure 7.10). Finally, when external excitatory
drive is applied only to the body CPG with some extra excitation of the most rostral

segments, the lamprey-like swimming gait can be produced (see Figure 7.8, bottom).
Tonic drive is then also applied to the flexor muscles in order to hold the limbs against
the body.

Configurations of the controllers There is, similarly to the previous experiment,
no identical neural structure between the different controllers, but rather a variety of

different neural configurations (Appendix J), which however produce relatively similar

gaits. The coupling between the two limb oscillators leads to several phase relations
between them, depending on the controllers. In controller B4, for instance, the two

oscillators are almost out of phase while, in controller B9, they are close to synchrony.

Similarly to experiment A, these different phase relations between oscillators means

that the projections from the oscillators to the limb motoneurons and to the body seg¬

ments also vary significantly from one controller to another for producing the trotting

gaits.

7.4 Discussion

7.4.1 Gaits

The best evolved CPGs produce a trotting gait similar to that of real salamanders
with the fore- and hindlimbs out of phase and the body making S-shaped standing
undulations which increase the reach of the limbs. Although the fitness function was

defined to reward trotting gaits and therefore the emergence of trotting gaits is not

surprising, it is interesting to see that optimizing the speed and the control of direction
has led to a limb-body coordination very similar to that of the salamander.

The gaits do not produce, however, an exact reproduction of a salamander gait and, for

instance, for many controllers, the body movements are significantly more accentuated
than during trotting in the real salamander. The tail, in particular, has a tendency
to make large sweeping movements while in the real salamander the tail stays much
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more rigid with only slight movements to compensate for the trunk movements. The

differences are mainly due to the fact that the mechanical simulation is only a first

approximation of a salamander's body (see below), and also probably because energy

efficiency was not taken into consideration by the fitness function. The evolved gaits

may therefore be near optimal for the speed of locomotion (and the control of direction),
but suboptimal for the speed versus mechanical energy consumption ratio, with a large

amount of mechanical energy being used for the body movements compared to the

forward progression. An interesting extension of this work would be to include a factor

in the fitness function rewarding such energy efficiency.

Another difference with the gait of the real salamander is that, for all controllers

making body undulations, the head makes big lateral movements during trotting. In

the real salamanders, muscles in the neck oscillate out of phase compared to the trunk

muscles and therefore compensate for the body movements by keeping the head oriented

towards the direction of progression [Frolich & Biewener 92, Delvolve et al. 97]. A
similar feature could be obtained in these simulations if the mechanical simulation was

extended to have more links for representing the whole body and if special projections

from the anterior oscillator were evolved for the neck muscles.

The speed of trotting of the evolved controllers can be modulated with the level of

excitation applied to the trotting CPG (i.e. to the limb CPG in experiment A and to

both the limb and the body CPG in experiment B). All these controllers have a range

of levels of excitation in which the speed increases monotonically with the excitation.

The increase of speed is mainly due to an increase of the frequency of oscillation,

and in some cases also to an increase in the step size. Similarly, in the Ambystoma

Tigrinum salamander, the speed of trotting is mainly due to an increase of the stepping

frequency [Frolich & Biewener 92], In other salamander species which also use walking

gaits, the increase of speed from walking to trotting is accompanied not only by an

increase of frequency, but also an increase in step size and a decrease of contact interval

[Ashley-Ross 94b].

Turning can be induced by the controllers when asymmetrical excitation is applied to

the trotting CPG. The asymmetrical excitation leads to larger limb movements on one

side of the body as long as the asymmetry lasts. The controllers which can induce
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the sharpest turning also use larger trunk contractions in the direction of turning,
as controller B9, for instance. Note that, unlike the experiment on the evolution of

swimming controllers for the lamprey where the turning capacity more or less emerged
without being rewarded by the fitness function, factors explicitly rewarding turning
were necessary for the evolution of locomotion controllers for the salamander. Initial

experiments showed that, without such factors, most evolved controllers could only
move in a straight direction even with asymmetries of input [Ijspeert et al. 98c]. I
have not found kinematic or EMG studies of turning in the real salamander with
which the evolved controllers could be compared.

7.4.2 Neural controllers

In both experiments, the locomotion controllers consist of two parts, a limb CPG and
a body CPG. The difference between the two experiments lies in the organisation of
the controllers, with experiment A having a "parallel" organisation in which the limb
and body CPGs do not interact directly but they project to the same motoneurons,

while in experiment B, there is a more "hierarchical" organisation, with the limb CPG

projecting to the body CPG, creating a unilateral coupling between them.

The limb CPGs are made of two oscillators which are copies of the segmental networks
of the body circuitry. This could be seen as segmental oscillators of the body CPG

having specialised to control the limbs. It seems reasonable to think that a similar spe¬
cialisation has occurred in vertebrates through natural evolution. It is well established
that evolution from swimming gaits to legged gaits has seen morphological changes of
the bones and the musculature of some segments of the body to become fins and then
limbs. It is therefore quite probable that the oscillators for the limbs have followed a

corresponding specialisation from the body segmental networks (see [Cohen 88] for a

discussion).

It is less clear, however, what kind of interconnections between the segments of the

body circuitry have evolved to allow both travelling waves for swimming and standing
waves for trotting in the salamander. Here, similarly to what has been hypothesized in

[Delvolve et al. 97], controllers are developed which are based on a lamprey organisa¬

tion, with limb oscillators providing phasic input to the body CPG for producing the
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standing wave. Of the two experiments, experiment B is the most biological plausible
in the sense that it is unlikely that the real salamander has two separate control cir¬

cuits for swimming and trotting which only interact at the level of the motoneurons

as in experiment A. That experiment was, however, useful for investigating whether
interconnected oscillators which are copies of the swimming segmental networks could
be used for producing trotting gaits whose speed and direction could be modulated by

simple input signals.

The neural configurations of experiment B have the following similarities with the

organisation proposed in [Delvolve et al. 97] (see Figure 2.5, chapter 2): they are made
of two coupled limb oscillators which project to a lamprey-like body CPG, and which,

during trotting, provide phasic inhibition and excitation to different parts of the body

segments, forcing the anterior and posterior parts of the lamprey-like body CPG to

oscillate in antiphase. The differences are that the neural configurations of experiment
B do not have body segments representing the neck of the salamander, and that the

posterior limb oscillator projects to all segments of the tail, while in [Delvolve et al. 97]

they project only to the most caudal segment.

In [Ermentrout & Kopell 94b], the production of S-shaped standing waves is invest¬

igated in a chain of coupled mathematical oscillators with both short range and long

range couplings. The oscillators are coupled with closest neighbour couplings which

tend to make oscillators oscillate in synchrony, and with long range couplings between
oscillators 1 and m + 1 and between oscillators m and 2m in a 2m-long chain which

tend to make these coupled oscillators oscillate in antiphase. It is found that for a

range of strengths of the long range inhibitory coupling, a S-shaped standing wave (i.e.
all segments in each half oscillating in synchrony and both halves oscillating out of

phase) is a stable solution. In particular, the S-wave is stabilized by large values of

inward (i.e. from the extremity to the middle of the chain) coupling. That type of

configuration is different from the neural configurations of experiment B in the sense

that it does not have distinct limb oscillators which project unilaterally to a chain of

oscillators and that only single oscillators of the chain receive long couplings instead of

all oscillators of the anterior and posterior parts in the controllers I evolve. The chain

of oscillators of [Ermentrout & Kopell 94b] and the evolved controllers are, however,
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similar in that, in both cases, a chain of oscillators, which would oscillate in synchrony
if undisturbed, is forced to oscillate in antiphase above and below its middle.

Note that one may ask why I have used two limb oscillators for the trotting gait while
one oscillator with antisymmetric projections to the hind- and forelimbs would in prin¬

ciple be enough for producing a trotting gait. There are three reasons for this: firstly,
I am interested in a controller which is biologically plausible (in nature, different limbs
are usually controlled by different oscillators); secondly, the two coupled oscillators

provide a richer dynamics than a single one; and, finally, having two oscillators makes
the control system more robust against lesions.

7.4.3 Neural activity

Producing the trotting gaits with an S-shaped undulation is easier with the controllers
in experiment A than B, because the limb oscillators of experiment A project directly
to the trunk motoneurons and the trotting pattern can be obtained without activating
the body CPG. In experiment B, both the body and the limb CPGs are active during

trotting and the limb CPGs have to force the trunk CPG to oscillate out of phase.

The neural activity produced by the evolved controllers of experiment B presents

several similarities with the EMG recordings reported in [Frolich & Biewener 92,
Delvolve et al. 97]. During trotting, most segments of the trunk (all segments from 1
to 40 in all controllers) oscillate in synchrony as observed in [Frolich & Biewener 92,
Delvolve et al. 97]. There is also a coordination between trunk motoneurons and limb
motoneurons very similar to that measured in [Delvolve et al. 97], with the trunk mo¬

toneurons being active just prior to and during the activation of the ipsilateral forelimb
flexor and the ipsilateral hindimb extensor. The evolved controllers do not, however,

produce the double burst pattern observed in the tail of the salamander, with the first
burst traveling in the rostral direction and the second burst traveling in the caudal dir¬
ection.9 Also, although the evolved controllers and the real salamander both produce

a traveling neural wave along the body during swimming, the evolved controllers pro-

9 Note, however, that in the area around segment 80 in controller B9 (Figure 7.9, right), the shape of
the motoneuron signals are more complex than signals with a clear single burst per cycle, with the
signals exhibiting two maxima at each cycle.
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duce a lamprey-like wave with a constant phase lag between segments while in the real
salamander three distinct waves with slightly different phase lags between segments

have been observed [Delvolve et al. 97].

7.4.4 Mechanical simulation

The mechanical simulation is only a crude description of the body of the salamander.

Firstly, limbs are simulated as rigid links attached to the body links by one-degree
of freedom joints, instead of the three-jointed limbs of the real salamander. This

simplification restricts the possible motions of the body — for instance, having two

opposite limbs on the ground means that the angle, and therefore the degree of freedom,
between the limbs is fixed and that any rotation of the limbs has to be executed

"against" the friction forces representing the contact on the ground. The rigid limbs

also lead to important tail and trunk movements as a limb in stance phase forces the

body links to which it is attached to move following a circular arc. Finally, having

rigid limbs also means that the control of the limb is greatly simplified as only two

muscles have to be controlled, compared to all the muscles actuating the three joints

of the real salamander's limb. A second important simplification of the simulation is

that only accelerations in the horizontal plane are calculated, which means that the

vertical motion of the limbs is not calculated and that equilibrium problems are not

considered. This simplification implied, in particular, that the contact of a limb on

the ground and the forces which result from that contact had to be abstracted in the

present simulation.

Despite these simplifications, the present mechanical simulation provided an interesting

model for evaluating the neural controllers. The main interest was to study the control

of body movements and the production of traveling and standing waves for the two

locomotion gaits of the salamander. Having a model of the body, in particular, forced
the limb oscillators and motoneurons to be well coordinated with the body segmental

networks and motoneurons, for the production of an efficient trotting gait. The inherent

dynamics of the body had to be taken into account in the coordination, and this, for

instance, led the evolved controllers to have a very similar timing of the motoneuron

signals of the trunk and the limbs to that observed in the real salamander. The
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mechanical simulation also allowed the study of how the speed and the direction of
the mechanical body could be modulated by the neural controllers, which would be
difficult to assess by only analysing neural activity. Finally, although the limbs are

simplified in the simulation and would need a much more complex control in a more

realistic 3D model, I could imagine that extending the controller to a more realistic
model could be done by coordinating oscillators for the different muscles of a limb with
the signals of the corresponding principal limb oscillators that I have evolved (see for
instance [Ashley-Ross 94a], for a detailed analysis of hindlimb kinematics).

Note that with this mechanical simulation which includes several joints to represent

the body of the salamander, I did not encounter the problem Lewis had with his robot
GEO with a one-joint spine that forward progression could only be obtained with a

traveling activity in the spine controller [Lewis 96].

7.5 Summary

This chapter presented how a CPG for the swimming and the trotting of a simulated
salamander could be developed from the swimming circuitry of the lamprey. The
evolution of the locomotion controllers for the salamander-like animat can be seen as a

fourth evolutionary stage following the evolution of swimming controllers in chapter 4.

Two experiments are carried out in which locomotion controllers are evolved which are

composed of two coupled limb oscillators and of a lamprey-like body CPG. In both

cases, the limb oscillators are copies of the segmental networks of the lamprey-like body
CPG. The experiments differ in the organisation of the controllers, with experiment A
in which the limb and body CPGs have a "parallel" organisation and experiment B in
which they have a "hierarchical" organisation with a unilateral coupling from the limb
CPG to the body CPG.

In both experiments, the best evolved controllers exhibit a trotting gait very similar
to that observed in the real salamander, with the body making an S-shaped standing
wave which is well coordinated with the limb movements. The controllers can switch

from the traveling swimming gait to the trotting gait depending on how the excitation
is applied to the different parts of the controllers. The speed of trotting can also be
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modulated with the level of excitation and turning can be induced when asymmetrical

inputs are applied.

The controllers and their neural activity are compared with EMG recordings of real
salamanders and with the neural organisation proposed by neurobiologists. It is found

that, although there are several features of the EMG recordings which are not displayed

by the evolved controllers, there are several similarities which suggest that the evolved

controllers, especially in experiment B, may not be too far from the neural organisation

of the real salamander.
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Chapter 8

Towards a complete animat

This chapter presents a preliminary experiment in which the capacity to sense their

environment is given to the simulated lamprey and salamander. This can be seen

as a first step towards the development of a complete animat capable of sensing and

behaving in an environment.

A very simple visual system is added on top of the locomotion CPGs of the simulated

lamprey and salamander enabling them to localise and to track a randomly moving

target. The visual system is composed of two retinae which compute the bearing of
the target and which determine the command signals sent to the locomotion CPGs.

The simple control mechanism is hand-coded to perform tracking behaviour, and no

evolution is therefore performed in this chapter.

Rather than aiming to simulate a realistic visual system, the main motivation of this

experiment is to investigate how the evolved CPGs cope with continuously changing
commands. The experiments presented so far were realised with very simple commands

signals sent to the CPGs: commands were either constant, or piecewise constant for the

turning sequences. Here, the tracking of a randomly moving object leads to continously

changing inputs to the CPGs. The experiment will therefore investigate how "usable"

the CPGs are by higher control centres for behaviours which require constant variations
of the motor output.

171
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8.1 Methods

8.1.1 Simple visual system

A very simple visual system is provided for the simulated lamprey and salamander,

enabling them to localise a target in their 2D environment (Figure 8.1). The visual

system computes the angle a between the position of the target and the direction of

heading of the simulated animat. Based on this bearing, the outputs of two "retinae",

Ri and Rr, are calculated as follows:

The output of a retina therefore varies linearly between 0.0 and 1.0 when the target

is on the corresponding side of the body and when the angle |a| varies between 0.0
and max-angle, a positive number determining the opening angle of the visual field.
If |a| is larger than max-angle, the output of the retina is nil, which means that the
simulated animats have a dead angle in which they can not see the target from either
retina. In the experiments presented here, max.angle was set to 150°. Note that, in
this very simple model, the output of the retinae does not depend on the distance of
the target.

The outputs of the retinae are used to determine the tonic excitation applied to the

locomotion CPG. Each retina projects to the input nodes of the CPG through a ispi-

lateral excitatory connection and through a contralateral inhibitory connection (Fig¬
ure 8.1). The excitatory and inhibitory connections have the same synaptic weights,
which are fixed by hand depending on the locomotor CPG. This leads to a simple

tracking behaviour similar to that exhibited by one of the vehicles Braitenberg ima¬

gined [Braitenberg 84], except that commands are here sent to CPGs for animal-like

locomotion, instead of the powered wheels of a robot.

Ri
Rr
Ri
Rr
Ri
Rr

(8.1)

otherwise
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Figure 8.1: Simple visual system for the simulated lamprey and salamander. The simulated
retinae have crossed inhibitory connections (filled circles) and ipsilateral excitatory connections
("V"s) to the locomotion CPG.

8.1.2 Target

The target is made to move randomly. At each integration step of the neural simula¬

tion, the target makes a step of random length, with a random variation of direction

compared to the previous step:

step-length = minJength + varJength ■ rand (8-2)

new-angle = old-angle + var-angle ■ (rand — 0.5) (8-3)

where rand is a uniformly distributed random number E [0.0,1.0].

The average step size is set in each experiment so that the average instantaneous speed
of the target corresponds approximately to that of the simulated animat.
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8.2 Results
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I carried out tracking experiments with several of the best controllers evolved in this

thesis, both with the lamprey's and with the salamander's simulation. The results

presented here are only preliminary and do not claim to be a quantitative study of the
effect of varying command signals.

8.2.1 Tracking lamprey

Controller evolved in run 7, chapter 4

Figure 8.2 shows a short sequence of tracking behaviour by the simulated lamprey, with
the controller evolved in run 7, chapter 4. The lamprey is able to follow the target,

keeping close to it most of the time. The only problems which some times arise are

when the target is allowed large variations of direction, which leads the lamprey to

be temporarily distanced from the target when the target makes a sharp turn. The

lamprey is then disadvantaged by the fact that it can not turn on the spot and because
of its inertia in the water.1

The commands sent by the simulated retinae are continuously changing over time

(Figure 8.3). A first cause of variation is the random movement of the target compared
to the lamprey which leads to important variations of the amplitude of the signals sent

to both sides of the CPG. Changes are especially important when the lamprey crosses

the path of the target and the target passes from one visual field to the other behind
the head of the lamprey. A second cause of variation is the periodic movements of the
head which lead to constant small periodic variations of the amplitudes of the signals.

Despite these important variations of command signals, the CPG maintains a quasi-

periodic activity in all segments, with phase lags between each segment leading to the

traveling wave necessary for progression (Figure 8.4). The main effect of the varying
commands is on the amplitude and burst duration of the interneurons, which leads to

variations of the amplitude and burst durations of the motoneurons (Figure 8.4, right).
When commands are sent to turn to one side, the amplitude and burst duration of the

1 The random movements of the target are not physically based, and therefore not subjected to any
forces by the water (unlike the simulated lamprey).
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Figure 8.2: Lamprey tracking the randomly moving target (controller evolved in run 7,
chapter 4).

motoneurons on that side increase, while they decrease on the other side.

Crossing the speed barrier with controller of run 7, chapter 4

In this section, I make a simple experiment to test whether vision and active correction

of commands can help crossing a speed barrier. In chapter 4, sensory feeback from

stretch sensitive cells was evolved which enabled the lamprey to cross a speed barrier

which could not be crossed without sensory feedback. That experiment was carried out

with fixed commands for swimming straight, and I mentioned in the discussion of that

chapter that further experiments should be carried out for determining the respective

importance of sensory feedback and active corrections from higher control centres for

crossing the barrier.

Here, I make a first step in that direction by having the lamprey tracking a fixed target
situated behind the speed barrier. The visual system provides commands for keeping
the direction of swimming towards the target, therefore correcting the effect of the

speed barrier which tends to force the lamprey to change direction.
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Figure 8.3: Varying commands (controller evolved in run 7, chapter 4).

Figure 8.4: Effect of the varying commands on the neural activity (controller evolved in run 7,
chapter 4). Left: Neural activity in segment 50, right: neural activity of the left motoneurons
over the spinal cord.
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Duration: 2800 ms

Figure 8.5: Crossing the speed barrier while tracking a fixed target.

The experiment is realised in the same way as that for the evolution of sensory feedback:
same controller, same average excitation level (there are now variations due to the

retinal signals) and same speed barrier. The speed barrier is half the length of the

lamprey and I carried out several tests with different speeds of water in the barrier.

Without sensory feedback and without corrections in the commands (i.e. straight

swimming commands), the lamprey can cross a speed barrier whose speed is up to

approximately 90% of the lamprey's swimming speed. With the tracking behaviour,

that limit is increased to 95%, and tracking can therefore help the lamprey to cross

speed barrier it would not have crossed without. The effect of the visual system is

to correct the direction of swimming at the critical stage when it starts to change

significantly because of the speed barrier. This is illustrated in Figure 8.5, where the

visual system leads to a change of direction in the middle of the sequence shown.

Without that correction, the lamprey would have been pushed to the right and finally

repelled by the barrier.

Note that with the evolved sensory feedback, it was found that barriers with speeds

up to 140% could be crossed (chapter 4). Sensory feedback from the stretch sensitive

cells therefore enables crossing speed barriers with significantly larger speeds, and this

simple experiment thus tends to show that sensory feedback plays a crucial role in the

capacity to swim in non-stationary water (see discussion). I also tested the combination
of sensory feedback and the visual system but did not manage to have the lamprey

cross barriers with speeds larger than 140% of the lamprey's swimming speed.
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Controller 10, chapter 6

I repeated the experiment of tracking a randomly moving target with the best controller
evolved with the developmental encoding (controller 10, chapter 6), and found a similar
result to the corresponding experiment with the other evolved controller. The visual

system emits very similar varying commands which do not affect the CPG's capacity
to produce swimming patterns.

This controller can perform sharp turns when it receives strong asymmetrical input

(see chapter 6). It then completely bends the body of the lamprey in the direction
of the turn, which leads to an important change of direction when the lamprey has

enough initial speed. However this can lead to problems when the strong asymmetry

lasts too long, as this leads the lamprey to come to a standstill. In some of the tests

carried out, the lamprey then stayed in "lethargy" for a short period until the target

moved sufficiently to reduce the strong asymmetry.

This problem is easily solved by reducing the maximum asymmetry that the commands

coming from the visual system can produce (i.e. by reducing the weights between the
retinae and the CPG input nodes). This means, however, that the capacity to turn
is reduced as well. Another possibility would be to use a more sophisticated control
mechanism which ensures that strong asymmetries of input applied to the CPG are

limited in time.

8.2.2 Tracking salamander

Controller B9, chapter 7

The CPGs evolved for the salamander are also able to sustain a tracking behaviour
when connected to the visual system. I tested the tracking behaviour during trotting
with the controller B9, the best controller of experiment B. In this case, the command

signals from the retinae are sent to both the limb and the body CPGs (as was the case

for the evaluation of the turning capacity).

The trotting gait produced by the controller B9 exhibits large head movements from
left to right due to the strong bending of the trunk. During tracking, this leads to
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Figure 8.6: Salamander tracking the randomly moving target (controller B9).

large periodic variations of the command signals in addition to the variations due to

the movements of the target (Figure 8.7). In comparison to the experiments with the

controllers for the lamprey, the amplitude of the variations due to the head movements

are significantly larger, therefore making the signal indicating the position of the target
less distinct. Note that for this controller, only small asymmetries of commands are

necessary for inducing turning, and the maximum amplitudes of variation are therefore

less important than those of Figure 8.3 for the lamprey experiment.

Despite these strongly variable commands, the salamander is able to track the target

relatively well (Figure 8.6). As movements by the target are partially masked by

movements of the head, the salamander changes direction only when the target makes

significant changes of direction. The tracking is therefore a little bit less accurate

than with the lamprey's controllers. Movements of the tail also lead to a progression

which is less smooth than for the lamprey. Important changes of direction are usually

accompanied by important tail movements which tend to continue for a while after

the turn, preventing the salamander from making a straight progression. This effect

is mainly due to the fact mentioned in chapter 7 that the limbs are rigid links which

therefore force the body to make circular movements.

Similarly to the previous experiments, varying commands do not significantly affect

the oscillations in the limb oscillators and in the body CPG (Figure8.8).
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Figure 8.7: Varying commands (controller B9).

Head -

Time [ms] Time [ms]

Figure 8.8: Effect of the varying commands on the neural activity (controller B9). Left:
Neural activity in the limb oscillators, right: neural activity of the left motoneurons over the
spinal cord.
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8.3 Discussion
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The results showed that all controllers tested were able to perform tracking behaviour
when provided with a very simple visual system. The visual system is made of two

retinae which compute the angle of a randomly moving object and which determine

the signals sent to the locomotion CPGs through four hand-coded connections.

No parameters are evolved in this preliminary experiment, as a satisfactory control
mechanism could easily be developed by hand. In future experiments the tracking
behaviour could probably be improved by optimising both the function which computes

the output of the retinae given the position of the target, and the connection parameters

from the retinae to the CPGs.

The main motivation of the experiment was to investigate the effect of continously

changing commands on the pattern generation of the CPGs evolved in the previous

chapters. Analysis of the turning capacities of the CPGs had already demonstrated

that they were able to cope with abrupt changes of commands followed by long periods

of constant commands. Here it is shown that the CPGs can perfectly well cope with

the constant variations of input due to the tracking task. These variations have a

periodic component which corresponds to the movements of the head and a random

component which corresponds to the random motion of the target. The effect of the

variable commands on the CPGs is mainly to change the amplitude and the burst

duration of the neurons, and in particular of the motoneurons. In all experiments, the

simulated lamprey and salamander never stopped completely — except when a too

large asymmetry of input is applied to the CPG, in which case the movements of the
simulated animat stop until the the asymmetry is reduced. These cases can easily be

avoided by either limiting the maximal asymmetry of input which can be applied to

the CPG or having a mechanism for ensuring that the strong asymmetry is short.

The visual system also allowed testing whether active commands could help the lamprey
to cross a speed barrier as discussed in chapter 4, when tracking a fixed target. It is

found that, while active corrections in the commands are not as powerful compared

to sensory feedback from stretch sensitive cells for enabling the crossing of a speed

barrier, they enable the crossing of barriers which would not be crossed with constant

straight swimming commands. Command corrections primarily solve the problem of
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change of direction induced by the barrier, while sensory feedback has a more local
effect (i.e. at the level of each segmental oscillator) which prevents excessive bending
and ensures good coordination between the neural activity and the actual movements
of the body. Active commands and sensory feedback from stretch-sensitive cells can

therefore be seen to have a complementary effect (although, in this simple experiment,
the addition of active commands to sensory feedback did not improve the crossing

capacity compared to sensory feedback alone).

The simulated salamander with controller B9 performed a less accurate tracking of
the randomly moving object than the lamprey because of important head movements.

As observed in chapter 7, the real salamander makes head movements of significantly
smaller amplitude, firstly because it has neck muscles which contract in antiphase

compared to the trunk muscles, therefore counteracting the movements of the trunk,
and secondly because its limbs are not rigid like those of the simulation and do not

force the body to follow circular arcs. Improvements of the mechanical simulation such

as simulating more links at the level of the neck and simulating the limbs as being
articulated by several joints should reduce the head movements in the simulation,

especially if the controllers are extended such that the neck muscles are contracted out

of phase compared to the trunk muscles. Improvements of the mechanical simulation
of the salamander will be further discussed in the next chapter.

The visual system in this experiment was very simple. In particular, it did not compute

the distance of the target and did not influence the speed of locomotion.2 Further

experiments should both improve the visual system and the control centre transforming
the sensory information into motor signals. Of particular interest for the first point are
the models of the visual system of the salamander developed by Eurich. In the first

model, Simulander /, a feedforward neural network is developed representing tectal

neurons, brainstem interneurons and neck motoneurons which is able to simulate the

orientation movements of the head toward a prey [Eurich et al. 95]. The second model,
Simulander //, simulates the control of the projectile tongue of some salamanders and

performs accurate depth perception using binocular neurons in the optic tectum (i.e.

2 While the excitation of the left and right sides of the CPGs varied, the total excitation level, i.e.
the sum of left and right excitations, was constant, leading therefore to a more or less constant
frequency of oscillations and speed of motion.



CHAPTER 8. TOWARDS A COMPLETE ANIMAT 183

neurons which receive direct input from both retinae) [Eurich et al. 97]. It would
be most interesting to combine these biological models with the locomotion CPGs

developed in this thesis.

8.4 Summary

This chapter presented a simple, preliminary, experiment in which several of the evolved

controllers for the lamprey and the salamander were connected to a simple visual

system for tracking a randomly moving target. The visual system is made of two

retinae which compute the angle between the target and the heading of the simulated

animat, and which determine the commands sent to the locomotion CPGs. The simple

system is hand-coded rather than evolved.

A successful tracking behaviour was obtained for the controllers tested, both for the

lamprey and for the (trotting) salamander. The tracking of the salamander was a little

bit less accurate because of the substantial head movements during trotting induced

by the controller tested.

The simple visual system also allowed a preliminary test to be made on the respective

importance of active commands and sensory feedback from stretch sensitive cells for

crossing a speed barrier. The first results tend to show that, while sensory feedback

plays a crucial role for crossing the barrier in keeping a good coordination between
neural activity and the movements of the body, active commands can also help, but to

a lesser extent, by preventing important changes of direction due to the barrier.

The main point demonstrated by this experiment is that the evolved CPGs can cope

with continuously changing command inputs. The commands vary both because of the

random movements of the target and because of the periodic movements of the head.

These variations do not affect significantly the pattern generation of the evolved CPGs,

their main effect being to change the amplitude and the burst durations of neurons on

opposite sides of the CPG.

This simple experiment illustrates how the evolved CPGs can be used by a higher
control centre for a simple behaviour. The fact that no problem was encountered

demonstrates that the locomotion CPGs are sufficiently robust to be integrated in
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more complex control systems, for the development of animats with more complex
behavionrs than simple tracking.



Chapter 9

Discussion

The following questions initiated this thesis:

• How can neural networks be used to control locomotion, and what can we learn

from the neural circuitry found in vertebrates?

• How efficient are evolutionary algorithms for the design of neural controllers?

• Can evolutionary algorithms be used as design tools in neurobiology?

• What kinds of neural circuitry can produce the undulatory swimming of lampreys?

In particular, are there alternative neural configurations to those found in Nature

which can control locomotion with at least the same efficiency?

• How can controllers for undulatory swimming be extended to control both the

swimming and the trotting of a salamander-like animat?

The next sections summarize the main findings of this thesis and how the thesis contrib¬

utes to answering these questions. The results are also placed in perspective compared

to related work.

9.1 Neural networks for the control of locomotion

Animal-like locomotion is characterised by a large number of actuators, a rhythmic

activity and the fact that locomotion is only obtained when the different actuators are

appropriately coordinated. The problem of controlling such locomotion is therefore

185
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to be able to transform simple commands concerning the direction and the speed of
motion into the multiple signals sent to all the actuators. In chapter 2, I reviewed

findings about biological control, with a special emphasis on the control of undulatory
locomotion.

9.1.1 Biological control

The review of neurobiological findings shows that animal locomotion is controlled by
networks of neurons organised in a distributed way. In most animals, the patterns of
neural activity underlying the motion are produced centrally, rather than peripher¬

ally; in other words, sensory feedback is not required for the production of the motor

sequences.

In vertebrates and in many invertebrates, the oscillatory signals are generated in cir¬
cuits called central pattern generators. These circuits can produce patterns of oscil¬
lations without oscillatory input, either from higher control centres or from sensory

feedback. The control of locomotion is distributed and signals sent to the different
muscles are not generated in the brain, but in lower centres of the central nervous

system; locomotion CPGs in vertebrates are, for instance, located in the spinal cord.

Signals traveling from the brain to the central pattern generators encode higher level
information (about the speed of motion, for example) rather than the multiple muscle

signals. In the lamprey, simple tonic drive applied to spinal cord is sufficient to initiate

swimming, and variation of the amplitude of the drive leads to variation of the speed
of motion.

The central pattern generators, themselves, are distributed and are systems of coupled
neural oscillators. In the lamprey, different body segments have neural oscillators
which can be made to oscillate independently of the others. Similarly, the control of
limbed locomotion is organised into different neural oscillators controlling the muscles
of different joints [Grillner et al. 88].

Finally, central pattern generators can produce significantly different gaits depending
on their input signals. The same neurons can then be involved in the generation of
the different neural patterns, which means that the patterns are a consequence of a
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distributed computation over the whole CPG.

Prom a control point of view, CPGs can be seen as providing templates for the rhythmic
movements necessary for locomotion which can be modulated, when necessary, by

signals from higher control centres or from sensory feedback.

9.1.2 Artificial neural control

In this thesis, the controllers evolved for the locomotion of two mechanically simulated
animats are strongly inspired by biological neural controllers: they are composed of
abstract neurons simulated at a connectionist level and they are organised similarly to

central pattern generators.

Other representations than neural networks could have been used to implement con¬

trollers, and locomotion controllers have for instance been implemented as explicit

algorithmic controllers [Raibert & Hodgins 93, Terzopoulos et al. 94], finite state ma¬

chines [Brooks 89] or classifiers [Bull et al. 95]. In particular, the anguiliform swim¬

ming of the lamprey could be generated by algorithmic controllers producing sinusoidal

waves, with a few parameters determining the frequency, the wavelength and the amp¬

litudes of the signals sent to the muscles, as illustrated for testing the mechanical sim¬

ulation of the lamprey (section 3.2.1). Algorithmic controllers for swimming have, for

instance, been evolved in [Ventrella 98, Usami et al. 98]. Compared to neural-based

controllers, algorithmic controllers present the advantages of being easier to design (at
least for simple control dynamics, see below), of providing an explicit control mechan¬

ism (parameters such as frequencies and wavelengths are explicitly represented), and,

depending on how the connectionist model is implemented, of being computationnaly

faster (there is no integration of a system of coupled differential equations, for instance).

The use, in this thesis, of connectionist models rather than algorithmic (or other) con¬

trollers, was motivated by several reasons. The main motivation was to gain better

insight into the functioning of biological controllers, by designing biologically plaus¬

ible controllers and therefore visiting the space of possible neural configurations for

animal-like locomotion. Other motivations are linked to properties of biological neural
networks that connectionist models reproduce and which may be useful in locomotion
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control. These properties include distributed control, rich dynamics, and robustness

against noise.

Distribution over a network of neurons organised into CPGs which are themselves or¬

ganised as systems of coupled oscillators is an interesting way to organise control. This
distributed control is characterized by fast parallel computation, input and outputs

at different levels with, for instance, integration of sensory feedback for fast reactions,

modularity (with limb CPGs, joint oscillators,...), and a good robustness against le¬
sions. Although my simulations were run on a single processor, and, therefore, there is
no physical parallel computation nor robustness against (physical) lesions, these prop¬

erties could potentially be reproduced in a hardware implementation. Central pattern

generators similar to that of the lamprey have, for instance, been implemented into

analog VLSI [DeWeerth et al. 97, Patel et al. 98].

Networks of neurons, both biological or simulated at a connectionist level, exhibit very
rich dynamics (continous-time recurrent networks are universal dynamics approxim¬
ators [Funahashi & Nakamura 93]). When the controller is built to take advantage of
this dynamics, it could prove to be well adapted for controlling a mechanical body
and producing the changes in the multiple signals sent to the muscles necessary for

changing speed, direction or even gait (similarly to biological CPGs). In this thesis,
for instance, neural controllers capable of such a modulation are successfully evolved.

Very rich dynamics may be difficult to produce with algorithmic controllers without
their becoming too complex.1

Similar motivations have led other researchers to develop neural control¬
lers for locomotion [Beer 90, Quinn & Espenschied 93, Cruse et al. 95, Gruau 95,

Kodjabachian & Meyer 98a], Most work has been done on the control of legged lo¬
comotion. To the best of my knowledge, Ekeberg's model was the first example of

swimming controlled by neural circuitry, and this thesis is the first example of the
artifical evolution of neural controllers for swimming.2 It is also the first example of

1 Note that a genetic programming approach may be a potential method for evolving complex dynam¬
ics at an algorithmic level. Spencer, for instance, used genetic programming for evolving locomotion
controllers for a simulated hexapod insect [Spencer 94] (see also section 2.6.2).

2 Sims also evolved controllers for swimming, with controllers made of so-called neurons [Sims 94b],
but his neurons have little in common with biological neurons and compute functions such as sum,
product, min, max, sinus, cosinus,...
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development of neural controllers for both an aquatic and a terrestrial gait.

Note that this thesis does not claim that artificial locomotion control should be neural

based, as such a claim would require a detailed quantitative comparison between neural-

based and other types of controllers. My primary aim is to investigate the neural control

of locomotion and to illustrate how neural controllers can be used for controlling the

locomotion of two simple animats. The results demonstrate that effective neural-based

control can be achieved.

9.2 Evolutionary algorithms for designing neural controllers

Evolutionary algorithms present several interesting features for the design of connec-
tionist models compared to traditional learning algorithms. Learning algorithms for

dynamical neural networks such as variations of the backpropagation algorithm, (see

[Pearlmutter 95], for instance), iteratively update synaptic weights given an error func¬
tion which calculates the difference between the current and the desired state traject¬

ories of the network. These algorithms compute the gradient of the error function in

terms of the synaptic weights and update the weights accordingly (gradient search —

see section 2.5.1).

Evolutionary algorithms have in comparison several advantages, at the only cost of

being significantly slower — being a stochastic population-based search method, they

require many evaluations. Firstly, the fitness function does not need to be differentiable
or even continuous. Secondly, there is no need to provide a specific oscillation (limit

cycle) that the network should learn. Learning algorithms are restricted to problems in
which the desired state trajectory is known in advance, which is not the case for many

control problems, especially in controlling the locomotion of a mechanical system. As
the mechanical system — the body — typically has its own complex and non-linear

dynamics, there is no (simple) way to determine in advance which command signals

leads to the desired mechanical behaviour. In our case, using evolutionary algorithms

has allowed us to characterise the desired behaviour of the network at a "higher" level

than a specific limit cycle, for instance, in terms of the range of frequencies which can

be produced or in terms of the speed of swimming of the mechanical simulation. Also,
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the parallel and stochastic nature of evolutionary algorithms makes them less likely to

be trapped in a local optimum than the gradient search of learning algorithms. Finally,

evolutionary algorithms are particularly flexible and the type of evolved controllers can

be modified at three levels: the encoding (e.g. by adding or removing constraints on

the connectivity), the genetic operators (e.g. adding a pruning operator) or the fitness
function (e.g. adding or removing factors). These properties have made evolutionary

algorithms a popular method for designing neural controllers for animats [deGaris 90,
Beer & Gallagher 92, Gruau 95, Kodjabachian & Meyer 98b, Floreano 98].

9.2.1 Considerations on the evolutionary process

When using evolutionary algorithms for designing neural controllers, several aspects
have to be considered:

• whether to use a staged approach,

• the type of encoding (for instance, direct or indirect),

• the definition of the fitness function.

• the type of evolutionary algorithm (GA, ES or GP), and the setting of its search

parameters,

Staged or non-staged approach

In this thesis, both staged and non-staged approaches were taken for the evolution
of locomotion controllers. Swimming controllers for the lamprey simulation have, for

instance, been evolved with a staged approach in chapter 4 and with a non-staged tech¬

nique (although without sensory feedback) with a developmental encoding in chapter 6.

In the experiment with the staged approach, three stages were used in order to define a

neural organisation similar to that of the biological controller. In this case, the fitness
functions of the different stages were relatively easy to determine as they rewarded
several properties observed in the real lamprey which I wanted the artificial solutions
to display as well. The staged approach enabled the relative easy and rapid evolution
of efficient swimming controllers composed of between 600 and 800 neurons.



CHAPTER 9. DISCUSSION 191

In the experiment in which swimming controllers were evolved in one stage only, the
evolutions were in comparison significantly slower, for the generation of controllers with
10 times fewer neurons (although in this case the time constants and the biasses were

evolved as well). The task for the evolutionary process was more difficult here as it had

to develop neural oscillators and their couplings at the same time. This and small flaws

in the fitness function also lead to a lower success rate of the evolutions of controllers

capable of producing stable oscillations. Another difference with the previous evolution

is that the neurons used here have a less rich inherent dynamics than those developed by

Ekeberg (which have properties such as frequency adaptation), which may have made
the creation of oscillators with variable frequency more difficult. On the other hand,

because there were fewer constraints on the neural organisation, a larger diversity of
controllers were evolved (see next sections). An interesting aspect of these evolutions is

that there was a single fitness function, based only on mechanical aspects of behaviour.

The evolutionary search was therefore not biased by prerequisites on the neural activity

of preliminary stages.

Prom these experiments, the following observations can be made. The advantages of

a staged approach are that: 1) it enables incremental design, 2) it reduces the search

space when elements of the previous stage are frozen3 (therefore potentially reducing

the evolution time, with the risk, however, of producing sub-optimal solutions, see

below), 3) it allows specification of the modular structures of the control systems. The

disadvantages are that: 1) elements of one stage are not rewarded for their capacity to
be used by the next stage, which may therefore lead to sub-optimal control systems,

2) it requires fitness functions for each evolutionary stage and 3) it requires knowledge
of how to divide the evolutionary process into the different stages and how to divide

the control system into submodules.

The choice of a staged or non-staged evolution therefore significantly depends on the

approach of the experimenter and on the task. Staged evolutions correspond more

to an engineering approach, while non-staged evolutions are closer to the Artificial

3 Note that elements of the previous stage need not necessarily be frozen. For instance, in the evolution
of swimming controller with the direct encoding (chapter 4), it would have been possible to continue
to evolve the segmental connectivity, rather than freezing it, in the second evolutionary stage where
the intersegmental couplings are evolved. This would have increased the search space of the second
stage, but with an initial population which is not random.
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Life philosophy which studies life-as-it-could-be and which tries to keep evolution as

open as possible, typically using "minimal" (or high level) fitness functions such as the

capacity of the controlled agent to survive in an environment.

The task is also influential for this choice. Firstly, some problems may be too hard to

be tackled monolithically with current computational power. The controllers evolved
for the salamander, for instance, which can exhibit both swimming and trotting gaits
and can modulate the speed and direction, would be very hard to evolve from scratch
in one go. Other aspects of the task which have to be considered are: how much
one would like the controllers to satisfy particular constraints, how much intuition one

has on the organisation of a good controller, how easy it would be to design fitness
functions for intermediate stages.

The general trend in the evolution of neural controllers for locomotion is to use a

staged-approach. Controllers for legged walking are often developed by first evolving
controllers for a single leg, and then evolving the coupling between different leg con¬

trollers [Beer & Gallagher 92, Lewis et al. 93, Gruau &; Quatramaran 97]. Alternat¬

ively, controllers for biped stick legs have been evolved in stages with a different fit¬
ness function for each stage, while keeping the same encoding for the whole evolu¬
tion [deGaris 90]. Gruau developed controllers for six-legged walking in one stage only

using his cellular encoding [Gruau 95], but without considering the control of speed
and of direction. In a similar experiment with SGOCE, Kodjabachian used an in¬
cremental approach with first the evolution of a controller layer capable of producing
a walking gait, and then the evolution of a control layer for controlling the speed of
motion [Kodjabachian & Meyer 98a], or for controlling the direction such as to be able
to perform gradient following [Kodjabachian & Meyer 98b].

Encoding

The type of encoding is an important feature of evolutionary algorithms, as it determ¬
ines the type of solutions which can be generated and the size of the search space

which is visited. Two types of encodings have been used in this thesis, a direct encod¬

ing for the evolutions presented in chapters 4, 5, and 7, and the indirect developmental

encoding SGOCE, developed by Jerome Kodjabachian, in chapter 6.
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The interesting aspects of a direct encoding are that it is simple to implement and that

it requires simple genetic operators whose effects on the chromosomes can be easily
assessed. The disadvantage is that the encoding is not compact and that it grows large
in size when the number of neurons is increased. In my case, the direct encoding was

used in association with a staged approach in order to reduce the size of the search

space for each stage.

Indirect encodings such as the developmental encoding of SGOCE encode rules of

how the network is grown. This usually leads to more compact encodings as the

same rules can be used to develop more than one set of neurons. In the case of

SGOCE, compactness is obtained by having all initial cells read the same developmental

program. Although this compactness is then not directly due to the encoding but
to external symmetries fixed by the experimenter, one could imagine extending the

encoding to evolve these symmetries as well (as discussed in chapter 6). An interesting

aspect of SGOCE is that the developmental rules are context-dependent — the effect

of a rule depends on the geometrical susbtrate. When the evolutionary process takes

advantage of this feature, this can lead the single developmental program to generate

asymmetrical controllers which are surprisingly well adapted to their task, such as

controller 9 in chapter 6. A second interesting aspect of SGOCE, and indirect encodings

in general, is that they allow variable topologies of networks, which is harder to do
in a direct encoding, except when pruning operators are used. Compared to direct

encodings, indirect encodings have usually the disadvantage of needing more complex

genetic operators, whose effect on chromosomes (and therefore on the evolutionary

process) is more difficult to assess.

Fitness function

The definition of the fitness function is a crucial part of design with evolutionary al¬

gorithms. In this thesis, the fitness functions are products of factors varying between
0.05 and 1.0 and have usually been defined incrementally. Each factor corresponds to

a desired aspect of the controllers, and I have defined the fitness functions by incre¬

mentally adding new factors when the controllers evolved in preliminary testing did
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not satisfy some of my requirements.4 The incremental design of the fitness function
for initial evolutions of swimming controllers is described in [Ijspeert 96]. The fact
that the fitness functions are products rather than sums ensures that solutions which

perform equally in all aspects will be preferred over controllers performing well in some

aspects but not in others.

In order to obtain locomotion controllers with good control capacities, each eval¬
uation was a set of simulations with different command settings so as to determ¬
ine how the controllers react to different inputs. The fitness functions are there¬
fore somewhat more complex than those used in most other examples of evolutions
of locomotion controllers. Many works indeed concentrate on pattern generation
without considering control aspects, such as the control of speed or of the direc¬
tion [deGaris 90, Beer & Gallagher 92, Lewis et al. 93, Gruau 95].

Evolutionary algorithms and search parameters

Once an encoding and a fitness function have been defined, the design problem is
transformed into an optimisation problem of the fitness function in the search space

determined by the encoding. In this thesis, real number genetic algorithms and ge¬

netic programming were used as search algorithms. The search processes themselves
have not been optimized and I have not tried to perform the best possible search

(fastest convergence, for instance). As long as there was no premature convergence to
local maxima with low fitness values and that interesting controllers were generated
in a reasonable time, the different search parameters were not changed. More work is
therefore required to assess quantitatively the effect of differing search parameters on

the search performance. My feeling is that, while faster convergence to good solutions
can probably be obtained and that potentially better solutions than those presented
here can be generated, such an improvement of the search process would not signific¬

antly change the overall results of this thesis. Other genetic operators could also be

used, and in particular it could be interesting to use, with the real number genetic al¬

gorithm, a more sophisticated mutation operator similar to the one used with evolution

4 For instance, the factor rewarding solutions keeping one foot on the ground in the evolutions of
controllers for the salamander was added after initial tests showed that several evolutions converged
to solutions which would not be stable in a 3D simulation.
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strategies (see section 2.5.2).

195

9.2.2 Evolutionary algorithms as a tool for neurobiological modelling

I believe that evolutionary algorithms can prove very useful tools for neurobiological

modeling, when used, as shown in a simple example in chapter 5, to instantiate variables

which are difficult to measure. Biophysical and connectionist models of a biological

circuitry typically require the setting of many variables, few of which are easily meas¬

urable in the real circuit. Given a fitness function which characterizes the observed

behaviour of the network and an encoding of the network which represents the un¬

known variables while including available anatomical and functional knowledge, the

evolutionary process can be used to instantiate the unknown variables such as the

neural activity to fit the observed behaviour of the circuit.

I demonstrated, in particular, that the GA is able to find sets of synaptic weights and

interconnections for CPGs when the search space was restricted to solutions present¬

ing the biological segmental connectivity. Ekeberg's segmental oscillator could, for

instance, be optimized to exhibit a larger range of frequencies, much closer to that

observed in the real lamprey.

Although it is possible, in this case, to define satisfactory values by hand, the GA proved
useful both as a synthetic tool for generating and optimizing the synaptic weights of the

segmental network, and as an indirect analytic tool for searching through the different

possibilities of intersegmental coupling and sensory feedback connections. The fact
that the GA can automatically instantiate these variables is especially interesting as

setting all these parameters by hand is a hard and time-consuming task — because
of strong non-linearities and interdependency between variables — which may become
intractable for large circuits.

Several researchers in neurobiology are currently using evolutionary algorithms

in a similar way, either for setting synaptic weights of neural network models

[Eurich et al. 95, Eurich et al. 97], or for determining conductance parameters of bio¬
physical models of single neurons [West & Wilcox 97]. From a general point of view,
note that, although the GA can be very useful for demonstrating that a model can
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produce a specific behaviour (by finding efficient sets of unknown variables), it is less
useful for invalidating a hypothetical model as an inability to find successful variable
instantiations may be due to failings of the model or to problems with the GA set up,

or both.

9.3 Neural control of swimming

This thesis considered the evolution of swimming controllers for a simulated lamprey.
Three types of evolution were carried out: staged evolution of artificial swimming
controllers with a direct encoding, staged evolution of biologically plausible swim¬

ming controllers and evolution of swimming controllers with a developmental encoding
scheme.

9.3.1 Staged evolution of artificial swimming controllers

The staged evolution of artificial swimming controllers with a direct encoding demon¬
strated how an evolutionary method could be used to generate efficient swimming
controllers. The swimming controllers are composed of neurons similar to those of

Ekeberg's model and the evolutionary process is used to determine the sign (inhibitory
or excitatory) of the neurons and the connectivity between neurons (which neurons are

connected and the synaptic weight of the connections). The controllers were chosen

(by the definition of the three evolutionary stages) to share several similarities with
the biological controller: to be composed of segmental networks which can be made to
oscillate independently from each other; to be able to produce traveling waves of neural

activity without sensory feedback for coordination; and to integrate sensory feedback
for being able to cross a speed barrier.

The evolutions showed that, within these similarities of organisation, there exists a

variety of different neural configurations which can exhibit the same swimming gaits
and the same control capacities as the biological controller modelled by Ekeberg. The
solutions differ in terms of which neurons are interconnected, of the excitatory or in¬

hibitory inffuence of the interneurons and even of the number of neurons involved in

the rhythmogenesis. Simple signals— the excitation applied to both sides of the spinal
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cord and the extra excitation given to the most rostral segments — modulate the fre¬

quency, the wavelength and the amplitude of the motoneuron activity and can therefore

be used to control the speed and direction of swimming. The evolved controllers can

be said to control swimming with at least the same efficiency as Ekeberg's biological
model. Most evolved controllers cover larger ranges of frequency, phase between seg¬

ments and speed than Ekeberg's model, but with, in general, less independence in the

control of the frequency and the phase between segments.

9.3.2 Staged evolution of biologically plausible controllers

Biologically plausible controllers were evolved with a very similar approach to the

staged evolution of artificial controllers, the main difference being that the search was

restricted for the evolved controllers to have the segmental connectivity observed in the

real lamprey. As discussed in section 9.2.2, the primary point of these evolutions was to

demonstrate how evolutionary algorithms could potentially be used for neurobiological

modeling.

These evolutions led to several interesting findings. Firstly they showed that the fre¬

quency range of Ekeberg's segmental network could be optimized to better correspond
to that observed in the real lamprey. The increase of the frequency range is due to

stronger weights of some inhibitory connections. It may be interesting to test with

paired cellular recordings whether these inhibitory connections are also stronger in the
real segmental circuit compared to other inhibitory connections.

The investigation of intersegmental coupling showed that couplings could be evolved

which can produce the anguiliform swimming of the lamprey with a similar perform¬

ance in terms of frequency and speed ranges as Ekeberg's model, while being able to

reach higher phase lags. One of these controllers propagates, unlike Ekeberg's model
and similarly to the real lamprey, a traveling wave even without extra excitation. The
different evolved couplings present several common features which would be interest¬

ing to study in further detail and compare with future anatomical findings on the

intersegmental coupling of the real lamprey.

Finally, the evolution of sensory feedback connections for crossing a speed barrier led
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to connections with similar signs to those observed sofar in the real lamprey, suggesting
that the crossing of a speed barrier is a good example of the kinds of situation for which

sensory feedback has been developed through natural evolution for the real lamprey.
In chapter 8, the effect of active corrections in the commands is also tested, and it is
found that, although active commands can help the lamprey to cross a speed barrier
it would not have crossed without, sensory feedback seems to play a crucial role for

crossing barrier with higher water speeds.

9.3.3 Evolution with a developmental encoding

The evolution with the developmental encoding scheme SGOCE investigated the gener¬

ation of swimming controllers with fewer constraints on the organisation of the swim¬

ming controllers. The controllers were, for instance, not forced to be composed of

segmental oscillators. Neuron parameters — the time constant and the bias — were

evolved rather than preset. To reduce the search space, simpler and fewer neurons

(nine neural segments, instead of 100) were used. Another difference with the pre¬

vious evolutions is that the fitness function was only based on control aspects of the
mechanical simulation rather than also depending on the neural activity.

These differences led to the generation of controllers with a larger variety of neural

organisations and with a larger variety of swimming gaits produced. The type of

swimming gaits included projection forward with an initial thrust, swimming with
chaotic neural activity, caranguiform-like swimming (with most of the body rigid and a

traveling wave of increasing amplitude in the tail) and anguiliform swimming similar to
the real lamprey. The different evolved controllers varied in the number of oscillators

(i.e. neural sub-circuits which could be made to oscillate when isolated from the

complete circuitry) they were made of, with controllers made of only one oscillator, one
oscillator per neural segment or more oscillators. The two controllers which produce

stable neural activity and reach the highest speed exhibit an anguiliform swimming

gait very similar to that of the real lamprey. Compared to the best controllers of the

previous evolutions, the maximum speed these controllers can reach is lower but on the

other hand they present a good control of direction, with the capacity to make sharp
turns.
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Because the fitness function of the second experiment is only based on mechanical

aspect, that experiment comes closest to the type of evolution which should be carried

out for evolving neural controllers for a real robot. That fitness function depends only

on mechanical aspects which could easily be measured from the swimming of a real

robot (speed of swimming, changes of direction,...).

As mentioned in chapter 6, one interesting aspect of this developmental encoding is

that the developmental rules are context-dependent — the effect of a rule depends on

the position of the cell to which that rule is applied. Similarly to biological genetic en¬

coding which relies on the environment and the laws on physics for the developmental

process, this context-dependency can lead to the generation of relatively complex asym¬

metrical neural controllers while staying remarkably compact (as for the controller 9

developed in chapter 6). It would be interesting to extend this work by introducing

more context-dependent instructions such as weight- bias- or time-parameter-setting

instructions which set the parameter of a cell through a function depending on the cell's

position. This could, for instance, introduce variable synaptic weights over the spinal
cord (e.g. stronger weights towards the tail for the connections to the muscles) which
may lead to even better swimming capacities. In the longer term, it would also be in¬

teresting to work towards an encoding which can reproduce the typical stages observed
in vertebrate prenatal development. As summarized in [Lewis 96], the following pren¬

atal movements can be distinguished: 1) uncoordinated head flexions, 2) C-bendings,

3) S-Bending, and finally 4) Traveling S-waves. This suggests that the locomotor
circuitry is progressively constructed, with, for instance, a gradual construction of in-

trasegmental followed by intersegmental coordination. It has been suggested that an

activity-dependent mechanism may be involved in this development for relating sensory

feedback and muscular activity. One pattern of movements could, for instance, be the

trigger for the next stage in the network's construction. Similarly to Lewis' research
but at a connectionist level, it would be most interesting to address similar questions

by looking in more detail to the development dynamics which can be obtained with
the SGOCE encoding (i.e. analyse the muscular activity at different stages during
the decoding of the developmental program) and potentially introducing some kind of

activity depending mechanisms for structuring the development into different stages
with typical patterns of movements. Ideally, such research should be done with the
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evolution and development of not only the neural controller but also of the body.

9.4 From swimming to terrestrial locomotion

The evolution of locomotion controllers for the salamander-like animat demonstrated

how lamprey-like swimming controllers could be extended to exhibit both the swim¬

ming and the trotting gaits observed in the real salamander.

The circuitry underlying locomotion in the real salamander is not decoded yet, and
the evolution of potential locomotion controllers can be seen to be one step ahead of

neurobiology, compared to the evolution of controllers for the lamprey. The evolved
controllers have, however, a neural organisation which is close to the one hypothesised

by neurobiologists. The controllers are composed of a body CPG which corresponds to
a lamprey-like swimming controller and of a limb CPG made of two further oscillators,
one for the forelimbs and one for the hindlimbs. These limb oscillators are copies of

the segmental oscillators of the body CPG, and can therefore be seen as segmental
oscillators specialised to control the movements of the limbs.

Two experiments are carried out with slightly different neural organisations. In exper¬

iment A, a "parallel" organisation is chosen with limb and body CPGs projecting to

the same motoneurons but without interaction at the level of the interneurons, while

in experiment B, the organisation is more "hierarchical" with the limb oscillators pro¬

jecting to the interneurons of the body CPG, therefore creating a unilateral coupling
between the limb and the body CPGs. This second configuration is very similar to the

organisation proposed by neurobiologists [Delvolve et al. 97].

In both experiments, controllers were evolved which could exhibit the swimming or

the trotting gait depending on the tonic drive applied to the controllers. The best
controllers all present a body-limb coordination very similar to the one observed dur¬

ing trotting in the real salamander, with also similarities between the simulated mo¬

toneuron activity and EMG recordings of muscle activation in the real animal. This

suggests that the evolved controllers may not be too different from the actual circuitry

underlying locomotion in the salamander.
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The controllers are developed such that simple input signals — the tonic drive applied
to the different subcircuits — modulate the speed, the direction and the type of gait.

To the best of my knowledge this is the first example of simulated neural controllers

capable of producing both an aquatic and a terrestrial gait.

9.5 Considerations on the mechanical simulations

The mechanical simulations allowed the neural controllers to be tested on their capacity

to generate the motion of a body with its own dynamics.

Although the simulations may not be completely realistic (see next sections), they still

provided a critical test for the efficiency of the controllers to produce locomotion. In

particular, they required an appropriate timing (i.e. appropriate burst durations and

phase relations) and amplitudes of the multiple motoneuron signals. Analysing only
neural activity does not provide a good evaluation of how good a controller is, as it

gives no means of evaluating whether the burst durations, the details of the phase

relations, the amplitudes of the motoneurons, ..., are suitable for gait generation.

Having mechanical bodies meant that the controllers had to be adapted to the complex

dynamics of the mechanical simulation determined by the elasticity and damping of
the muscles, friction forces due to the ground, inertial forces due to water forces, etc.

In other words, as expressed by Raibert, "rather than issuing commands, the nervous

system can only make "suggestions" which are reconciled with the physics of the system

and the task" [Raibert & Hodgins 93]. For the salamander-like animat, this meant that
a good interlimb coordination was necessary for locomotion and that the coordination
of limb and body motoneurons had to take into account the elasticity of the body,

which, interestingly, led to a motoneuron coordination very similar to EMG recordings
in the real salamander.

Other important features of mechanical simulations include the possibilities: of test¬

ing the effects of sensory feedback, of investigating control aspects such as changes
of direction or changes of speeds, of making sensori-motor coordination experiments.

Finally, because mechanical simulations offer a first approximation of a physical robot,
the design method for these simulations may be transferrable to design controllers for
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a real robot (see next sections).

Note that, as the simulations are simple and by no means realistic biomechanical sim¬
ulations of animals (or physical robots), the mechanical simulations may have placed

wrong constraints on the evolution of neural configurations. The similarities between
the neural activity of the simulated swimming controllers and those of the real lamprey
as well as those between the motoneuron activity in the simulated salamander-like an-

imat and the EMG recordings in the real animal suggest, however, that the mechanical
simulations include some realistic features of a real body. Furthermore, as the design

technique has not encountered important problems for generating controllers for these
two simulations, it can probably be applied without major problem to the design of
controllers for similar but different simulations, for instance, a realistic simulation of

swimming robot (see next sections).

Finally, many experiments in the control of locomotion of animats have used kinematic

rather than mechanical (or dynamical) simulations of the body. Kinematic simulations,
i.e. simulations which do not compute forces but only velocities, usually fail to render
the complex dynamics of physically plausible environments and bodies. With the

exception of simple gaits, for instance statically stable walking gaits, in which the

dynamics of the environment and of the body are not important, there is little chance
that these controllers could be transferred to control physical robots without major

redesign.

9.6 Further work and perspectives

9.6.1 More realistic mechanical simulations

An important extension of this work is to develop more realistic mechanical simulations.
This is necessary both for gaining better understanding of the control systems of real

animals, and for coming closer to robotics.

Ekeberg has already extended his 2D lamprey simulation to a 3D simulation

[Ekeberg et al. 95], with links being attached by spherical (3 degrees of freedom) joints.
Torques on the joints are then determined by four muscles arranged symmetrically
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around the joint. When controlled by a crossed-oscillator network5 extended from the

2D controller of [Ekeberg 93], coordinated yaw, pitch and roll movements can be pro¬

duced. As Ekeberg mentions, these simulations are based on important simplifications

concerning the calculations of the drag forces due to the water. In particular, the wa¬

ter is considered to be stationary and only local interaction between each link and the

water is taken into account. More realistic simulations of the water flow should be de¬

veloped for obtaining a simulation which comes closer quantitatively to the swimming

of the real lamprey.

The simulation of the salamander-like animat requires several improvements to make it

closer to a realistic biomechanical simulation of the real animal. Firstly, the simulation

should be extended to the third dimension, such as to calculate the accelerations of

the links in three dimensions rather than only in the horizontal plane. More joints and

links should be used to simulate the limbs. The body should also be made of more

than 9 links, in particular, neck links and muscles should be simulated.

A more complex mechanical simulation would require more complex control mechan¬

isms than those evolved in this thesis. The different limb joints, for instance, need to

be coordinated within a limb. Balance may also need to be controled actively, although

the fact that the body of the salamander slides on the ground means that balance is

less crucial in salamander locomotion than in tetrapods which are only supported by

the limbs. Body muscles should probably be activated for preventing cyclic torsions of

the body, and keeping enough rigidity during trotting for an effective transmission of
the forces created by the limbs in the stance phase, etc..

Note that the neural organisation proposed for the salamander in this thesis could

probably accommodate these more complex control mechanisms, without having to

be completely changed. The different limb joint oscillators could, for instance, be
entrained by the limb oscillators I developed. The passage to the control of a 3D body,

could also be obtained by the development of a crossed-oscillator body CPG similarly

to that proposed in [Ekeberg et al. 95].

5 The segmental crossed-oscillator network is composed of two separate segmental oscillators which
are crossed in the section of the spinal cord such that ventral neurons of one side are connected to
dorsal neurons on the contralateral side. The crossed oscillators are also synaptically weakly coupled
to make them run in parallel (see [Ekeberg et al. 95]).
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9.6.2 Implementation in a real robot
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Complementing a more realistic salamander (or lamprey)6 biomechanical simulation,
it would be most interesting to build a salamander-like robot: firstly, because a phys¬
ical implementation can only function when all elements necessary for locomotion are

correctly implemented (compared to a simulation, in which some physical aspects may
be wrongly represented), and secondly, because a robot which could both swim and
walk would be a first, and would be very useful in many outdoor applications.

Such a amphibian robot would require solution of two main problems: the physical

implementation and the design of a locomotion controller. The physical implement¬
ation would require addressing several technological challenges concerning the linear

actuators, the joints, sensors, making the system waterproof, batteries, creating the
correct density, etc.

The evolutionary design of a neural controller as proposed in this thesis would also
need to be adapted in order to be applicable for the design of controllers for a physical
robot. Two approaches can be taken: online evolution in which the controllers are

evaluated directly in the robot, or offline evolution by evolving solutions in a simulator
of the robot.

Online evolution requires an automatic external setup for evaluating a controller in
the real robot, and a communication system for transmitting that information to the
evolved controller (the genetic algorithm software can either be in the robot in which
case the fitness value is communicated to the robot, or in the external setup, in which
case a controller configuration has to be transmitted to the robot). Online evolu¬
tion has successfully been used for the evolution of 6- or 8-legged walking controllers

[Lewis et al. 93, Gruau & Quatramaran 97],7 and there exist several examples of on¬
line evolution of behaviour controllers [Floreano 97, Floreano 98]. The drawbacks of
this approach are that it requires a substantial setup if one wants the evolution to

be unsupervised by the experimenter (the evaluation and communication system, the

6 In this discussion, I mainly concentrate on the salamander, as a "lamprey system" can be seen as
being included in a "salamander system".

7 Note that for these two examples, the fitness value of a solution was given by visual inspection of
the experimenter instead of having a complex external setup as in the other examples.
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robot must be continuously powered, ...), and that care must be taken not to dam¬

age the robot (either by the result of a bad controller or simply by wear). But the

main drawback is the time needed for the evolution, as evolutionary algorithms require

numerous evaluations.

An alternative is therefore to perform offline evolution and having some preliminar

evolutions in simulation. Oscillators could, for instance, first be evolved in a neural

simulation, like the staged approach taken to evolve swimming controllers, followed

by the evolution of the couplings between these oscillators (and possibly still further
evolution of the oscillators) using the robotics setup. Alternatively, neural controllers

could be evolved for a mechanical simulation for some generations and then transferred

and evolved within the robot. This requires the simulation to be sufficiently realistic

and close to the real robot for the transfer to be as smooth as possible. Examples

of such an approach include [Jakobi et al. 95, Miglino et al. 95, O.Michel 96]. These

examples however represent situations in which the robot and its environment had

simple dynamics which could easily be simulated. Evolving locomotion controllers
which take advantage of complex dynamics of the body and the environment may be

significantly more difficult.

9.6.3 Central pattern generators for higher vertebrates

I believe that the investigation of the control of salamander locomotion and the design

of potential controllers, could help us better understand and design controllers for the
locomotion of higher vertebrates.

The next step would be, for instance, to study control of locomotion of quadrupeds
such as cats. Because cats use limbs not only to move forward but also for supporting

the body, they need locomotion controllers which are more complex than those for
the salamander. The control of balance is then crucial. Another complexity of cat

locomotion is that cats use significantly different gaits for different speeds.

I also hope that research in CPGs may significantly help medecine in a not too distant

future, in order to help people with locomotor difficulties. I can see two directions in
which research and development of CPGs may help handicaped persons. Firstly, CPG

inspired controllers could be used for controlling robotic devices such as "legged-chairs"
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or biped exoskeletons. Secondly, gaining a better understanding of biped CPGs and
how to modulate them may lead to devices capable of stimulating intact CPGs situated
below the damaged part of the spinal cord of paraplegics, or, alternatively, capable of

directly producing the rhythmic stimulation of muscles necessary for locomotion (and
therefore replacing the damaged CPG). For all these applications, difficult problems
such as how to control these devices and, in the case of the stimulation devices, how
to insert, couple and maintain the device in a hostile environment (the body), need, of

course, to be solved. Initial work towards legged-chairs and neuromuscular stimulation
can be found in [Wellman et al. 95, Yamaguchi & Zajac 90], respectively, as reported
in [Reeve 98].

9.6.4 Towards a better understanding of lower vertebrates' function¬
ing

Salamanders and lampreys may be, among vertebrates, at the right level of complexity
for gaining a better understanding of the functioning of the complex systems which
are vertebrates. They may be simple enough to permit a more or less complete under¬

standing of their global organisation and functioning, while having enough similarities
with more complex vertebrates for their study to be useful for gaining a better under¬

standing of vertebrates as a whole.

In the case of the salamander, for instance, a significant amount of work has been
carried out on the analysis of its visual system. As mentioned at the end of

chapter 9, two nice models simulating depth perception and prey localisation have
been made [Eurich et al. 95, Eurich et al. 97]. It would be very interesting to work
towards a complete model of the salamander (similarly to Arbib's computational frog

[Cobas & Arbib 92, Arbib & Lee 94] but with a mechanical simulation of the body of
the animal) which would integrate a central pattern generator for locomotion with mod¬
els of higher control centres and models of the visual system. Such a model would, for

example, enable computational sensori-motor coordination experiments which could be

compared with actual observations of visually-guided behaviour in real salamanders.

Having complete models (i.e. which include the biomechanics of the body and a model
of the central nervous system) of simple animals is important for gaining a better un-
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derstanding of how behaviours arise from the central nervous system, and how sensory

information is transformed into motor actions. Analysing only neural activity (either

through recordings in the real animal, or through numerical simulations), without ana¬

lysing the motor actions and behaviours it elicits, may never bring a full understanding

of an animal's functioning.

9.6.5 Towards a complete animat

In parallel to gaining a better understanding of lower vertebrates, it would also be very

interesting to work towards the development of a complete animat (either physical or

simulated) displaying salamander-like behaviour, without necessary waiting for neuro-

biological data to become available. Rather than trying to replicate the functioning
and the organisation of the real salamander, the emphasis would then rather be on the

design method for obtaining a complete system.

This would mean integrating the motor controllers developed in this thesis within a

system including sensory systems (a visual system, a vestibular system, touch sensors,

etc.) and control centres for different behaviours such as tracking a prey, escaping

predators, avoiding obstacles, finding mates, etc. A first small step in that direction
was realised with a simple visual system in chapter 8.

This raises the typical questions of animat research of incremental design, modularity,

hierarchy,... If this synthetic approach is carried out with neural based controllers, it

may, similarly to the research presented in this thesis on the control of locomotion,

bring a better understanding of the functioning of real animals, and/or, develop design
methods which could be used by neurobiologists for making more complete models of

central nervous systems.

The ambition is then, of course, to incrementally build more complex and adaptive

systems, and little by little move towards the level of primate intelligence.



■

-

Moissnosia

■6mxdVHD80s



Chapter 10

Conclusion

This thesis investigated the evolutionary design of neural networks for the control of

animal-like locomotion. It was inspired by the neural organisation of locomotor circuits

in vertebrates and studied in particular the undulatory locomotion of lampreys and

salamanders.

The motivations behind the thesis were 1) to address the problems of control of animal¬

like locomotion, 2) to explore the space of possible neural configurations for the control

of undulatory locomotion, and 3) to investigate how biologically plausible neural con¬

trollers might automatically be generated using evolutionary algorithms.

The thesis has therefore links with several fields and research areas such as neuro¬

biology, robotics, animat research, evolutionary algorithms, and neural networks. It

probably fits best in computational neuroethology, the field which investigates how
behaviour arises from neural circuits and which designs neural-based control mechan¬

isms for animats. The two ambitions of this field are to develop methods for designing

neural controllers for increasingly complex animats, and, through this synthetic ap¬

proach, to gain a better understanding of central nervous systems of real animals.
This thesis provides two small steps in each direction on the subject of neural control

of locomotion.

My work was inspired by neurobiological findings on the swimming circuitry of the

lamprey and by observed analogies between the locomotion of salamanders and that of

lampreys. This research was especially inspired by Ekeberg's neuronal and mechanical

simulations of the lamprey which constituted the starting elements of my experiments.

209
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Another source of inspiration was research carried out in the fields of neural networks

and evolutionary algorithms, and their application to animat control.

The first part of this thesis investigated the neural control of lamprey-like swimming.

Evolutionary algorithms were used to design connectionist models for controlling the

swimming of a 2D mechanical simulation of a lamprey which is a reproduction of the
simulation developed by Ekeberg. The evolved controllers could be compared with
models of the circuitry found in the lamprey. The second part studied salamander¬
like locomotion. A salamander-like mechanical simulation was developed capable of

both aquatic and terrestrial locomotion. Based on lamprey-like swimming controllers,
controllers were evolved which can produce both the swimming and the trotting gaits
observed in salamanders. As the locomotion circuitry of the salamander has not been
decoded yet, these controllers could not be compared with actual biological models, but

they provided a demonstration that a neural organisation of the locomotor circuitry
similar to that suggested by neurobiologists could successfully be implemented in a

connectionist model for exhibiting the gaits of the real salamander.

The main outcomes of this thesis can be summarized as follows:

• By visiting the space of possible neural configurations for the swimming of the

lamprey using a staged evolution approach, I demonstrated that the circuitry
found in the lamprey is not unique for producing the neural activity for an-

guiliform swimming. The genetic algorithm can be used to design alternative
neural configurations, which share some similarities with the biological organisa¬
tion (such as being made of coupled segmental oscillators), but which differ in
how the neurons are connected and in the number of neurons. The evolved con¬

trollers produce swimming gaits very similar to that of the real lamprey and of

Ekeberg's model, whose frequency, wavelength and therefore speed can be mod¬
ulated by simple signals. To the best of my knowledge, this is the first example
of evolution of neural controllers for swimming.

• This thesis also illustrated how a genetic algorithm can be used as a neurobio-

logical modelling tool for automatically generating a part of a model which has
the observed biological connectivity. The GA successfully generated synaptic
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weights for the biological model Ekeberg designed by hand, and even optimised

Ekeberg's model for better fitting biological observations.

• In a collaboration with Jerome Kodjabachian, we demonstrated that the devel¬

opmental encoding he developed can be used to evolve swimming controllers for
the mechanical simulation of the lamprey within a single stage. These evolutions

led to a even larger variety of controller organisations compared to the evolutions

with a staged approach. The interesting aspect of these evolutions is that their
fitness function was only based on mechanical aspects and the approach could

therefore be potentially applied to the evolution of a swimming robot without

major changes in the design method.

• This thesis presented what, I believe, is the first example of a mechanical sim¬

ulation of a salamander-like animat. Based on the simulation of the lamprey, a

simple 2D simulation of a salamander-like was developed. Following a hypothesis
on the neural organisation of the salamander's locomotion circuitry proposed by

neurobiologists, connectionist models were developed based on a lamprey-like

swimming CPG. The evolved controllers were able to produce both the swim¬

ming and the trotting gaits of the real salamander, and exhibited a neural activ¬

ity which has several similarities with that measured in the real animal. Future
neurobiological measurements will tell how close the evolved potential controllers
are to the actual circuitry used by the salamander.

• A simple preliminary experiment with a very simple visual system was also carried
out to illustrate how the evolved controllers can be integrated in higher control

centres. With all tested controllers a successful tracking behaviour was imple¬

mented demonstrating that the controllers can cope with continously changing

inputs.

Following these findings, the main conclusions of this thesis are that:

• Evolutionary algorithms are interesting tools for designing neural controllers
which can be useful both for the animat field for designing controllers given

a high-level description of the desired behaviour, and for neurobiology for instan-
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tiating unknown variables given a description of the organisation of the biological

circuitry and of its general behaviour.

• Connectionist models constitute an interesting implementation of an animal-like
locomotion control mechanism. Animal-like locomotion requires a control mech¬
anism which can transform simple commands concerning the speed and direction
ofmotion into the multiple rhythmic signals sent to the different actuators. Such
a control mechanism can be provided by oscillatory networks of neurons, and
this thesis demonstrated how simulated neural networks could be developed to

generate, similarly to central pattern generators found in animals, the patterns

of neural activity necessary for lamprey- and salamander-like locomotion. The

controllers were designed such that very simple input signals can be used to

modulate the speed, the direction and even the type of gait of the motion.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 - 8.6 -3.8 -4.3 - -0.1 -0.1
CCIN1 - 7.8 -2.9 -0.5 - - 2.9
LIN1 - 10.3 - -4.9 6.8 -1.5 -

MN1 -0.7 - - -4.6 - -0.8 10.2
EINr -4.3 - -0.1 - 8.6 -3.8 -0.1
CCINr -0.5 - - - 7.8 -2.9 2.9
LINr -4.9 6.8 -1.5 - 10.3 - -

MNr -4.6 - -0.8 -0.7 - - 10.2

Figure A.l: Runl: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.

EIN1 CCIN1 LINI EINr CCINr LINr BS
EIN1 - - - -2.2 - -4.6 4.3
CCIN1 - - - - - - -

LINI -3.3 - -0.5 -0.4 - -1.7 15.0
MN1 -0.2 - -0.3 -4.4 - - 11.3
EINr -2.2 - -4.6 - - - 4.3
CCINr - - - - - - -

LINr -0.4 - -1.7 -3.3 - -0.5 15.0
MNr -4.4 - - -0.2 - -0.3 11.3

Figure A.2: Run2: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 -1.4 -4.0 - -4.5 - - 2.4
CCIN1 -1.4 -1.0 - -4.1 -4.0 - 3.7
LIN1 - - . _ - - -

MN1 - - - -4.9 -3.5 - 7.6
EINr -4.5 - - -1.4 -4.0 - 2.4
CCINr -4.1 -4.0 - -1.4 -1.0 - 3.7
LINr - - - _ . - _

MNr -4.9 -3.5 - - - - 7.6

Figure A.3: Run3: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 - -0.1 -0.2 9.6 -2.2 - -

CCIN1 4.4 -1.1 -5.0 - -2.9 - -

LIN1 11.5 -1.3 -2.2 - -3.2 -3.4 7.2
MN1 - -0.2 -0.1 - -5.0 -1.3 6.4
EINr 9.6 -2.2 - - -0.1 -0.2 -

CCINr - -2.9 - 4.4 -1.1 -5.0 -

LINr - -3.2 -3.4 11.5 -1.3 -2.2 7.2
MNr - -5.0 -1.3 - -0.2 -0.1 6.4

Figure A.4: Run4: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 -0.7 -2.2 - - - -3.0 -

CCIN1 - -1.8 - - -4.4 -3.9 7.2
LIN1 - -3.5 -1.7 -0.4 -2.1 -2.1 15.0
MN1 -4.9 - - -0.3 -4.9 - 9.1

EINr - - -3.0 -0.7 -2.2 - -

CCINr - -4.4 -3.9 - -1.8 - 7.2
LINr -0.4 -2.1 -2.1 - -3.5 -1.7 15.0
MNr -0.3 -4.9 - -4.9 - - 9.1

Figure A.5: Run5: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 -1.9 -5.0 - -4.2 -0.1 - 12.1

CCIN1 -2.8 -1.7 - -5.0 -2.1 - 4.7
LIN1 - - - - - - -

MN1 -5.0 - - _ _ - 4.8
EINr -4.2 -0.1

■

- -1.9 -5.0 - 12.1
CCINr -5.0 -2.1 - -2.8 -1.7 - 4.7
LINr - - - - - - -

MNr - - - -5.0 - - 4.8

Figure A.6: Run6: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 -0.8 -3.8 - -0.9 -0.7 - 0.8
CCIN1 - - _ -3.5 -3.7 _ 13.6
LIN1 - - _ - . _ _

MN1 -0.4 -3.2 - - . 3.8
EINr -0.9 -0.7 - -0.8 -3.8 - 0.8
CCINr -3.5 -3.7 - _ - - 13.6
LINr - - . . _ . -

MNr - - - -0.4 -3.2 - 3.8

Figure A.7: Run7: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 -0.3 -3.6 - -3.0 - - 4.5
CCIN1 -0.7 -0.2 - -2.7 -3.8 - 2.7
LIN1 - - - - - - -

MN1 - - - -4.2 - - 8.6
EINr -3.0 - - -0.3 -3.6 - 4.5
CCINr -2.7 -3.8 - -0.7 -0.2 - 2.7
LINr - - - - - - -

MNr -4.2 - - - - - 8.6

Figure A.8: Run8: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS

EIN1 - - -5.0 -2.7 9.5 - -

CCIN1 - - -3.6 -0.5 11.4 -2.3 5.5

LIN1 -0.4 - -2.9 -2.5 10.1 -2.2 11.0
MN1 - - - -4.3 - - 4.0

EINr -2.7 9.5 - - - -5.0 -

CCINr -0.5 11.4 -2.3 - - -3.6 5.5
LINr -2.5 10.1 -2.2 -0.4 - -2.9 11.0

MNr -4.3 - - - - - 4.0

Figure A.9: Run9: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 - -0.2 - -3.2 -4.6 - 6.7
CCIN1 -3.7 -2.3 - -0.9 -2.6 - 2.4
LIN1 - - - - - - -

MN1 -4.5 - - - - 3.7
EINr -3.2 -4.6 - - -0.2 - 6.7
CCINr -0.9 -2.6 - -3.7 -2.3 - 2.4
LINr - - - - - - -

MNr - - - -4.5 - - 3.7

Figure A.10: RunlO: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 - 8.6 [2, 5] -3.8 [0, 2] -4.3 [2, 12] - -0.1 [9, 4] -0.1

CCIN1 - 7.8 [4, 5] -2.9 [3, 12] -0.5 [9, 1] - - 2.9
LIN1 - 10.3 [8, 11] - -4.9 [6, 8] 6.8 [2, 7] -1.5 [2, 9] -

MN1 -0.7 [4, 2] - - -4.6 [11, 5] - -0.8 [3, 12] 10.2
EINr -4.3 [2, 12] - -0.1 [9, 4] - 8.6 [2, 5] -3.8 [0, 2] -0.1
CCINr -0.5 [9, 1] - - - 7.8 [4, 5] -2.9 [3, 12] 2.9

LINr -4.9 [6, 8] 6.8 [2, 7] -1.5 [2, 9] - 10.3 [8, 11] - -

MNr -4.6 [11, 5] - -0.8 [3, 12] -0.7 [4, 2] - - 10.2

Figure B.l: Runl: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS

EIN1
CCIN1

- " -2.2 [4, 6] -4.6 [3, 6] 4.3

LIN1
MN1
EINr
CCINr

-3.3 [3, 1]
-0.2 [9, 2]
-2.2 [4, 6]

-0.5 [6, 12]
-0.3 [12, 6]
-4.6 [3, 6]

-0.4 [10, 10]
-4.4 [8, 4]

-1.7 [6, 3] 15.0
11.3
4.3

LINr
MNr

-0.4 [10, 10]
-4.4 [8, 4]

-1.7 [6, 3] -3.3 [3, 1]
-0.2 [9, 2]

-0.5 [6, 12]
-0.3 [12, 6]

15.0
11.3

Figure B.2: Run2: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1
CCIN1
LIN1

-1.4 [10, 0]
-1.4 [2, 12]

-4.0 [2, 4]
-1.0 [4, 10]

-4.5 [4, 5]
-4.1 [5, 6] -4.0 [4, 1]

2.4
3.7

MN1
EINr
CCINr
LINr

-0.0 [5, 9]
-4.5 [4, 5]
-4.1 [5, 6] -4.0 [4, 1]

-4.9 [7, 6]
-1.4 [10, 0]
-1.4 [2, 12]

-3.5 [8, 9]
-4.0 [2, 4]
-1.0 [4, 10]

7.6
2.4
3.7

MNr -4.9 [7, 6] -3.5 [8, 9] -0.0 [5, 9] - 7.6

Figure B.3: Run3: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS

EIN1 - -0.1 [11, 8] -0.2 [1, 11] 9.6 [9, 10] -2.2 [4, 8] - -

CCIN1 4.4 [3, 10] -1.1 [10, 0] -5.0 [8, 8] - -2.9 [2, 3] - -

LIN1 11.5 [2, 5] -1.3 [9, 12] -2.2 [4, 4] - -3.2 [3, 1] -3.4 [6, 8] 7.2
MN1 - -0.2 [10, 3] -0.1 [4, 9] - -5.0 [3, 6] -1.3 [6, 3] 6.4

EINr 9.6 [9, 10] -2.2 [4, 8] - - -0.1 [11, 8] -0.2 [1, 11] -

CCINr - -2.9 [2, 3] - 4.4 [3, 10] -1.1 [10, 0] -5.0 [8, 8] -

LINr - -3.2 [3, 1] -3.4 [6, 8] 11.5 [2, 5] -1.3 [9, 12] -2.2 [4, 4] 7.2

MNr - -5.0 [3, 6] -1.3 [6, 3] - -0.2 [10, 3] -0.1 [4, 9] 6.4

Figure B.4: Run4: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 -0.7 [5, 6] -2.2 [9, 8] - - - -3.0 [2, 6] -

CCIN1 - -1.8 [9, 0] - - -4.4 [6, 6] -3.9 [4, 12] 7.2
LIN1 - -3.5 [7, 1] -1.7 [6, 2] -0.4 [5, 9] -2.1 [3, 3] -2.1 [7, 11] 15.0
MN1 -4.9 [12, 2] - - -0.3 [7, 10] -4.9 [0, 3] - 9.1
EINr - - -3.0 [2, 6] -0.7 [5, 6] -2.2 [9, 8] - -

CCINr - -4.4 [6, 6] -3.9 [4, 12] - -1.8 [9, 0] - 7.2
LINr -0.4 [5, 9] -2.1 [3, 3] -2.1 [7, 11] - -3.5 [7, 1] -1.7 [6, 2] 15.0
MNr -0.3 [7, 10] -4.9 [0, 3] - -4.9 [12, 2] - - 9.1

I

5

Figure B.5: Run5: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 -1.9 [11, 4] -5.0 [6, 8] -4.2 [4, 8] -0.1 [5, 8] 12.1
CCIN1 -2.8 [5, 5] -1.7 [7, 0] -5.0 [8, 2] -2.1 [3, 2] 4.7
LIN1 - - - - -

MN1 -5.0 [4, 0] - - - 4.8
EINr -4.2 [4, 8] -0.1 [5, 8] -1.9 [11, 4] -5.0 [6, 8] 12.1
CCINr -5.0 [8, 2] -2.1 [3, 2] -2.8 [5, 5] -1.7 [7, 0] 4.7
LINr - - - -

MNr - - -5.0 [4, 0] - 4.8

¥5

i;

*0jt

i-

Figure B.6: Run6: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 -0.8 [12, 4] -3.8 [12, 10] -0.9 [5, 10] -0.7 [1, 10] 0.8
CCIN1 -0.0 [12, 8] - -3.5 [2, 2] -3.7 [9, 9] 13.6
LIN1 - - - - -

MN1 -0.4 [9, 2] -3.2 [8, 1] - - 3.8
EINr -0.9 [5, 10] -0.7 [1, 10] -0.8 [12, 4] -3.8 [12, 10] 0.8
CCINr -3.5 [2, 2] -3.7 [9, 9] -0.0 [12, 8] - 13.6
LINr - - - - -

MNr - - -0.4 [9, 2] -3.2 [8, 1] 3.8

Figure B.7: Run7: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS

EIN1 -0.3 [11, 1] -3.6 [0, 8] -3.0 [0, 5] - 4.5

CCIN1 -0.7 [0, 5] -0.2 [3, 11] -2.7 [11, 1] -3.8 [6, 2] 2.7

LIN1 - - - - -

MN1 - - -4.2 [12, 4] - 8.6

EINr -3.0 [0, 5] - -0.3 [11, 1] -3.6 [0, 8] 4.5

CCINr -2.7 [11, 1] -3.8 [6, 2] -0.7 [0, 5] -0.2 [3, 11] 2.7

LINr - - - - -

MNr -4.2 [12, 4] - - - 8.6

Figure B.8: Run8: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 - - -5.0 [5, 2] -2.7 [1, 4] 9.5 [10, 9] - -

CCIN1 - - -3.6 [5, 6] -0.5 [2, 1] 11.4 [2, 12] -2.3 [4, 1] 5.5

LIN1 -0.4 [8, 3] - -2.9 [11, 11] -2.5 [5, 7] 10.1 [11, 12] -2.2 [2, 8] 11.0
MN1 - - - -4.3 [1, 5] - - 4.0
EINr -2.7 [1, 4] 9.5 [10, 9] - - - -5.0 [5, 2] -

CCINr -0.5 [2, 1] 11.4 [2, 12] -2.3 [4, 1] - - -3.6 [5, 6] 5.5
LINr -2.5 [5, 7] 10.1 [11, 12] -2.2 [2, 8] -0.4 [8, 3] - -2.9 [11, 11] 11.0
MNr -4.3 [1, 5] - - - - - 4.0

Figure B.9: Run9: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.

EIN1 CCINI LIN1 EINr CCINr LINr BS
EIN1 - -0.2 [1, 4] -3.2 [6, 5] -4.6 [0, 9] - 6.7
CCIN1 -3.7 [9, 1] -2.3 [6, 11] -0.9 [7, 0] -2.6 [2, 7] 2.4
LIN1 - - - - -

MN1 -4.5 [4, 3] . _ 3.7
EINr -3.2 [6, 5] -4.6 [0, 9] - -0.2 [1, 4] 6.7
CCINr -0.9 [7, 0] -2.6 [2, 7] -3.7 [9, 1] -2.3 [6, 11] 2.4
LINr - - _ _ -

MNr - - -4.5 [4, 3] - 3.7

Figure B.10: RunlO: Top: Neural configuration, Middle: Effect of the global and extra
excitations on the frequency and the relative phase lag, Bottom: idem on the speed.
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Results of chapter 4: sensory
feedback

EIN1 CCIN1 LIN1 EINr CCINr LINr EC1 ECr BS
EIN1 -0.8 -3.8 - -0.9 -0.7 - 0.0 0.8 0.8
CCIN1 - - - -3.5 -3.7 - 1.6 3.0 13.6
LIN1 - - - - - - - - -

MN1 -0.4 -3.2 - - - - 4.2 -0.3 3.8
EINr -0.9 -0.7 - -0.8 -3.8 - 0.8 0.0 0.8
CCINr -3.5 -3.7 - - - - 3.0 1.6 13.6
LINr - - - - - - - - -

MNr - - - -0.4 -3.2 - -0.3 4.2 3.8

Table C.l: Evolved sensory feedback for artificial controller No 7, best of runl

EIN1 CCIN1 LIN1 EINr CCINr LINr EC1 ECr BS

EIN1 -0.8 -3.8 - -0.9 -0.7 - 0.1 3.4 0.8

CCIN1 - - - -3.5 -3.7 - 2.2 2.3 13.6
LIN1 - - - - - - - - -

MN1 -0.4 -3.2 - - - - 4.2 1.9 3.8
EINr -0.9 -0.7 - -0.8 -3.8 - 3.4 0.1 0.8
CCINr -3.5 -3.7 - - - - 2.3 2.2 13.6
LINr - - - - - - - - -

MNr - - - -0.4 -3.2 - 1.9 4.2 3.8

Table C.2: Evolved sensory feedback for artificial controller No 7, best of run2

EIN1 CCIN1 LIN1 EINr CCINr LINr EC1 ECr BS
EIN1 -0.8 -3.8 - -0.9 -0.7 - 0.5 4.1 0.8

CCIN1 - - - -3.5 -3.7 - 2.0 4.1 13.6
LIN1 - - - - - - - - -

MN1 -0.4 -3.2 - - - - 2.8 2.9 3.8
EINr -0.9 -0.7 - -0.8 -3.8 - 4.1 0.5 0.8

CCINr -3.5 -3.7 - - - - 4.1 2.0 13.6
LINr - - - - - - - - -

MNr - - - -0.4 -3.2 - 2.9 2.8 3.8

Table C.3: Evolved sensory feedback for artificial controller No 7, best of run3

EIN1 CCIN1 LIN1 EINr CCINr LINr EC1 ECr BS
EIN1 -0.8 -3.8 - -0.9 -0.7 - 0.1 0.7 0.8
CCIN1 - - - -3.5 -3.7 - 4.2 0.5 13.6
LIN1 - - - - - - - - -

MN1 -0.4 -3.2 - - - - 1.4 2.4 3.8

EINr -0.9 -0.7 - -0.8 -3.8 - 0.7 0.1 0.8

CCINr -3.5 -3.7 - - - - 0.5 4.2 13.6

LINr - - - - - - - - -

MNr - - - -0.4 -3.2 - 2.4 1.4 3.8

Table C.4: Evolved sensory feedback for artificial controller No 7, best of run4
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EIN1 CCIN1 LIN1 EINr CCINr LINr ECI ECr BS
EIN1 -0.8 -3.8 - -0.9 -0.7 - 0.1 5.0 0.8
CCIN1 - _ - -3.5 -3.7 - -0.6 0.0 13.6
LIN1 - - - - - - - - -

MN1 -0.4 -3.2 - - - - 3.3 3.6 3.8

EINr -0.9 -0.7 - -0.8 -3.8 - 5.0 0.1 0.8
CCINr -3.5 -3.7 - - - - 0.0 -0.6 13.6
LINr - - - - - - - - -

MNr - - - -0.4 -3.2 - 3.6 3.3 3.8

Table C.5: Evolved sensory feedback for artificial controller No 7, best of run5

EIN1 CCINI LIN1 EINr CCINr LINr ECI ECr BS
EIN1 -0.8 -3.8 - -0.9 -0.7 - 0.2 2.7 0.8
CCINI - - - -3.5 -3.7 - 0.0 1.0 13.6
LIN1 - - - - - - - - -

MN1 -0.4 -3.2 - - - - - - 3.8
EINr -0.9 -0.7 - -0.8 -3.8 - 2.7 0.2 0.8
CCINr -3.5 -3.7 - - - - 1.0 0.0 13.6

LINr - - - - - - - - -

MNr - - - -0.4 -3.2 - - - 3.8

Table C.6: Evolved sensory feedback for artificial controller No 7, best of run6

EIN1 CCINI LIN1 EINr CCINr LINr ECI ECr BS

EIN1 -0.8 -3.8 - -0.9 -0.7 - 0.1 0.4 0.8
CCINI - - - -3.5 -3.7 - -0.3 3.2 13.6

LIN1 - - - - - - - - -

MN1 -0.4 -3.2 - - - - - - 3.8
EINr -0.9 -0.7 - -0.8 -3.8 - 0.4 0.1 0.8
CCINr -3.5 -3.7 - - - - 3.2 -0.3 13.6
LINr - - - - - - - - -

MNr - - - -0.4 -3.2 - - - 3.8

Table C.7: Evolved sensory feedback for artificial controller No 7, best of run7

EIN1 CCINI LIN1 EINr CCINr LINr ECI ECr BS

EIN1 -0.8 -3.8 - -0.9 -0.7 - 0.3 0.3 0.8
CCINI - - - -3.5 -3.7 - -1.1 1.9 13.6
LIN1 - - - - - - - - -

MN1 -0.4 -3.2 - . . - - - 3.8
EINr -0.9 -0.7 - -0.8 -3.8 - 0.3 0.3 0.8
CCINr -3.5 -3.7 - - - - 1.9 -1.1 13.6
LINr - - - - - - - - -

MNr - - - -0.4 -3.2 - - - 3.8

Table C.8: Evolved sensory feedback for artificial controller No 7, best of run8

EIN1 CCINI LIN1 EINr CCINr LINr ECI ECr BS
EIN1 -0.8 -3.8 - -0.9 -0.7 - -0.0 0.0 0.8
CCINI - - - -3.5 -3.7 - -0.2 0.1 13.6
LIN1 - - - - . _ _ _ -

MN1 -0.4 -3.2 - - - _ - - 3.8
EINr -0.9 -0.7 - -0.8 -3.8 - 0.0 -0.0 0.8
CCINr -3.5 -3.7 - - - - 0.1 -0.2 13.6
LINr - - - - - - - - -

MNr - - - -0.4 -3.2 - - - 3.8

Table C.9: Evolved sensory feedback for artificial controller No 7, best of run9

EIN1 CCINI LIN1 EINr CCINr LINr ECI ECr BS
EIN1 -0.8 -3.8 - -0.9 -0.7 - 0.2 2.7 0.8
CCINI - - - -3.5 -3.7 - 3.8 1.2 13.6
LIN1 - - - - - - - - -

MN1 -0.4 -3.2 - - . _ _ _ 3.8
EINr -0.9 -0.7 - -0.8 -3.8 - 2.7 0.2 0.8
CCINr -3.5 -3.7 - - - - 1.2 3.8 13.6
LINr - - - - - - - - -

MNr - - - -0.4 -3.2 - - - 3.8

Table C.10: Evolved sensory feedback for artificial controller No 7, best of runlO
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 7.6 - - - -2.6 - 9.5
CCIN1 - - -4.4 - -1.2 - 8.8
LIN1 6.3 - - - -2.3 - 4.4
MN1 - - - - -1.4 - 3.2
EINr - -2.6 - 7.6 - - 9.5
CCINr - -1.2 - - - -4.4 8.8
LINr - -2.3 - 6.3 - - 4.4
MNr - -1.4 - - - - 3.2

Figure D.l: Runl: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 3.9 - - - -3.4 - 10.3
CCIN1 11.3 - -4.8 - -1.3 - 13.0
LIN1 4.9 - - - -4.3 - 5.0
MN1 1.9 - - - -1.9 - 2.0
EINr - -3.4 - 3.9 - - 10.3
CCINr - -1.3 - 11.3 - -4.8 13.0
LINr - -4.3 - 4.9 - - 5.0
MNr - -1.9 - 1.9 - - 2.0

Figure D.2: Run2: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 10.1 - - - -3.8 - 3.8
CCIN1 12.8 - -4.0 - -1.3 _ 11.1
LIN1 6.0 . _ _ -4.2 . 4.3
MN1 - - _ _ -1.8 _ 3.0
EINr - -3.8 - 10.1 _ - 3.8
CCINr - -1.3 - 12.8 - -4.0 11.1
LINr - -4.2 - 6.0 - . 4.3
MNr - -1.8 - - - - 3.0

Figure D.3: Run3: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 - - - - -3.6 - 7.4

CCIN1 10.4 - -3.8 - -1.2 - 13.1
LIN1 5.3 - - - -1.4 - 5.4
MN1 - - - - -1.5 - 4.1
EINr - -3.6 - - - - 7.4
CCINr - -1.2 - 10.4 - -3.8 13.1
LINr - -1.4 - 5.3 - - 5.4
MNr - -1.5 - - - - 4.1

Figure D.4: Run4: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.



230 APPENDIX D. RESULTS OF CHAP. 5: SEGMENTAL OSCILLATORS

EIN1 CCIN1 LIN1 EINr CCINr LINr BS

EIN1 6.8 - - - -0.0 - 7.1
CCIN1 3.4 - -4.5 - -1.3 - 7.6
LIN1 3.7 - - - -4.2 - 6.9
MN1 - - - - -2.0 - 4.5
EINr - -0.0 - 6.8 - - 7.1
CCINr - -1.3 - 3.4 - -4.5 7.6

LINr - -4.2 - 3.7 - - 6.9
MNr - -2.0 - - - - 4.5

Figure D.5: Run5: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS

EIN1 14.3 - - - -1.0 - -

CCIN1 5.2 - -4.3 - -1.3 - 14.8
LIN1 7.2 - - - -4.2 - 3.4
MN1 2.0 - - - -1.8 - 1.5

EINr - -1.0 - 14.3 - - -

CCINr - -1.3 - 5.2 - -4.3 14.8
LINr - -4.2 - 7.2 - - 3.4
MNr - -1.8 - 2.0 - - 1.5

Figure D.6: Run6: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 4.5 - - - -1.7 - 6.5
CCIN1 6.4 _ -3.3 . -1.6 _ _

LIN1 9.4 - - - -5.0 - 5.4
MN1 1.9 - - - -2.6 . 2.7
EINr - -1.7 - 4.5 - - 6.5
CCINr - -1.6 - 6.4 - -3.3 -

LINr - -5.0 - 9.4 - - 5.4
MNr - -2.6 - 1.9 - - 2.7

Figure D.7: Run7: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.

EINI CCIN1 LIN1 EINr CCINr LINr BS
EIN1 2.4 - - - -2.3 - 9.6
CCIN1 10.0 - -4.1 - -1.3 - 10.3

LIN1 4.2 - - - -4.1 - 6.6
MN1 - - - - -1.8 - 3.4
EINr - -2.3 - 2.4 - - 9.6

CCINr - -1.3 - 10.0 - -4.1 10.3
LINr - -4.1 - 4.2 - - 6.6
MNr - -1.8 - - - - 3.4

Figure D.8: Run8: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 6.6 - - - -3.4 - 1.1

CCIN1 - - -4.5 - -1.3 - 10.0
LIN1 4.1 - - - -4.3 - 5.8
MN1 - - - -2.0 - 3.3
EINr _ -3.4 - 6.6 - - 1.1

CCINr - -1.3 - - - -4.5 10.0
LINr - -4.3 - 4.1 - - 5.8
MNr - -2.0 - - - - 3.3

Figure D.9: Run9: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 14.3 - - - -1.5 - -

CCIN1 12.0 - -4.0 - -1.3 - 13.6
LIN1 5.2 - - - -4.1 - 5.3
MN1 - - - - -1.9 - 3.3
EINr - -1.5 - 14.3 - - -

CCINr - -1.3 - 12.0 - -4.0 13.6
LINr - -4.1 - 5.2 - - 5.3
MNr - -1.9 - - - - 3.3

Figure D.10: RunlO: Top: Neural configuration, Middle: Simulation at lowest and highest
frequency, Bottom: Effect of the excitation on the frequency and the amplitude of MN signals.
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Results of chapter 5:
intersegmental coupling

EIN1 CCIN1 LIN1 EINr CCINr LINr BS

EIN1 0.4 [10, 2] - - - -2.0 [10, 5] - 2.0
CCIN1 3.0 [3, 1] - -1.0 [5, 7] - -2.0 [1, 6] - 7.0

LIN1 13.0 [1, 6] - - - -1.0 [2, 4] - 5.0
MN1 1.0 [3, 9] - - - -2.0 [11, 8] - 5.0
EINr - -2.0 [10, 5] - 0.4 [10, 2] - - 2.0
CCINr - -2.0 [1, 6] - 3.0 [3, 1] - -1.0 [5, 7] 7.0
LINr - -1.0 [2, 4] - 13.0 [1, 6] - - 5.0
MNr - -2.0 [11, 8] - 1.0 [3, 9] - - 5.0

i"

i "
I"

Figure E.l: Runl: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 0.4 [5, 3] - - - -2.0 [1, 0] - 2.0
CCIN1 3.0 [11, 2] - -1.0 [3, 9] - -2.0 [0, 5] - 7.0
LIN1 13.0 [4, 1] - - - -1.0 [9, 4] - 5.0
MN1 1.0 [4, 1] - - - -2.0 [11, 11] - 5.0
EINr - -2.0 [1, 0] - 0.4 [5, 3] - - 2.0
CCINr - -2.0 [0, 5] - 3.0 [11, 2] - -1.0 [3, 9] 7.0
LINr - -1.0 [9, 4] - 13.0 [4, 1] - - 5.0
MNr - -2.0 [11, 11] - 1.0 [4, 1] - - 5.0

Figure E.2: Run2: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.

EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 0.4 [1, 0] - - - -2.0 [9, 5] - 2.0
CCIN1 3.0 [2, 2] - -1.0 [5, 8] - -2.0 [2, 7] - 7.0
LIN1 13.0 [3, 6] - - - -1.0 [11, 11] - 5.0
MN1 1.0 [5, 10] - - - -2.0 [4, 4] - 5.0
EINr - -2.0 [9, 5] - 0.4 [1, 0] - - 2.0
CCINr - -2.0 [2, 7] - 3.0 [2, 2] - -1.0 [5, 8] 7.0
LINr - -1.0 [11, 11] - 13.0 [3, 6] - - 5.0
MNr - -2.0 [4, 4] - 1.0 [5, 10] - - 5.0

Figure E.3: Run3: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.
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EIN1 CCIN1 LIN1 EINr CCINr LINr BS
EIN1 0.4 [11, 5] - - - -2.0 [8, 3] - 2.0
CCIN1 3.0 [12, 8] - -1.0 [1, 3] - -2.0 [0, 5] - 7.0
LIN1 13.0 [4, 7] - - - -1.0 [5, 8] - 5.0
MN1 1.0 [2, 10] - - - -2.0 [8, 1] - 5.0
EINr - -2.0 [8, 3] - 0.4 [11, 5] - - 2.0
CCINr - -2.0 [0, 5] - 3.0 [12, 8] - -1.0 [1, 3] 7.0
LINr - -1.0 [5, 8] - 13.0 [4, 7] - - 5.0
MNr - -2.0 [8, 1] - 1.0 [2, 10] - - 5.0

S.4'5

i 0

1°

Figure E.4: Run4: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.

EINI CCINI LIN1 EINr CCINr LINr BS

EIN1 0.4 [5, 2] - - - -2.0 [4, 2] - 2.0
CCIN1 3.0 [11, 6] - -1.0 [7, 7] - -2.0 [5, 8] - 7.0

LIN1 13.0 [4, 8] - - - -1.0 [4, 2] - 5.0
MN1 1.0 [11, 1] - - - -2.0 [5, 6] - 5.0

EINr - -2.0 [4, 2] - 0.4 [5, 2] - - 2.0
CCINr - -2.0 [5, 8] - 3.0 [11, 6] - -1.0 [7, 7] 7.0
LINr - -1.0 [4, 2] - 13.0 [4, 8] - - 5.0

MNr - -2.0 [5, 6] - 1.0 [11, 1] - - 5.0

£ '

i «
I"

Figure E.5: Run5: Top: Neural configuration, Middle: Effect of the global and extra excita¬
tions on the frequency and the relative phase lag, Bottom: idem on the speed.



236 APPENDIX E. RESULTS OF CHAP 5: INTERSEGMENTAL COUPLING



Appendix F

Results of chapter 5: sensory
feedback

EIN1 CCIN1 LIN1 EINr CCINr LINr EC1 ECr BS

EIN1 0.4 - - - -2.0 - -0.4 1.2 2.0

CCIN1 3.0 - -1.0 - -2.0 - 0.1 -0.2 7.0
LIN1 13.0 - - - -1.0 - 4.7 4.7 5.0

MN1 1.0 - - - -2.0 - 4.1 4.0 5.0
EINr - -2.0 - 0.4 - - 1.2 -0.4 2.0

CCINr - -2.0 - 3.0 - -1.0 -0.2 0.1 7.0
LINr - -1.0 - 13.0 - - 4.7 4.7 5.0

MNr - -2.0 - 1.0 - - 4.0 4.1 5.0

Table F.l: Biological connectivity, sensory feedback, best of runl

EIN1 CCIN1 LIN1 EINr CCINr LINr EC1 ECr BS

EIN1 0.4 - - - -2.0 - -0.4 -1.2 2.0

CCIN1 3.0 - -1.0 - -2.0 - 3.3 -2.0 7.0

LIN1 13.0 - - - -1.0 - 1.5 3.6 5.0

MN1 1.0 - - - -2.0 - 0.3 4.3 5.0

EINr - -2.0 - 0.4 - - -1.2 -0.4 2.0

CCINr - -2.0 - 3.0 - -1.0 -2.0 3.3 7.0

LINr - -1.0 - 13.0 - - 3.6 1.5 5.0

MNr - -2.0 - 1.0 - - 4.3 0.3 5.0

Table F.2: Biological connectivity, sensory feedback, best of run2

237



APPENDIX F. RESULTS OF CHAP. 5: SENSORY FEEDBACK

EIN1 CCIN1 LIN1 EINr CCINr LINr EC1 ECr BS
EIN1 0.4 - - - -2.0 - -0.8 1.6 2.0
CCIN1 3.0 - -1.0 - -2.0 - 0.9 -0.9 7.0
LIN1 13.0 - - - -1.0 - 0.1 3.2 5.0
MN1 1.0 - - - -2.0 - 4.5 3.5 5.0

EINr - -2.0 - 0.4 - - 1.6 -0.8 2.0

CCINr - -2.0 - 3.0 - -1.0 -0.9 0.9 7.0
LINr - -1.0 - 13.0 - - 3.2 0.1 5.0
MNr - -2.0 - 1.0 - - 3.5 4.5 5.0

Table F.3: Biological connectivity, sensory feedback, best of run3

EIN1 CCIN1 LIN1 EINr CCINr LINr EC1 ECr BS
EIN1 0.4 - - - -2.0 - -0.4 2.5 2.0
CCIN1 3.0 - -1.0 - -2.0 - 3.1 4.0 7.0
LIN1 13.0 - - - -1.0 - 1.5 1.9 5.0
MN1 1.0 - - - -2.0 - 3.2 1.7 5.0
EINr - -2.0 - 0.4 - - 2.5 -0.4 2.0
CCINr - -2.0 - 3.0 - -1.0 4.0 3.1 7.0
LINr - -1.0 - 13.0 - - 1.9 1.5 5.0
MNr - -2.0 - 1.0 - - 1.7 3.2 5.0

Table F.4: Biological connectivity, sensory feedback, best of run4

EIN1 CCIN1 LIN1 EINr CCINr LINr EC1 ECr BS
EIN1 0.4 - - - -2.0 - -1.0 5.0 2.0
CCIN1 3.0 - -1.0 - -2.0 - 2.4 -0.9 7.0
LIN1 13.0 - - - -1.0 - 0.8 -1.0 5.0
MN1 1.0 - - - -2.0 - 3.9 3.4 5.0
EINr - -2.0 - 0.4 - - 5.0 -1.0 2.0
CCINr - -2.0 - 3.0 - -1.0 -0.9 2.4 7.0
LINr - -1.0 - 13.0 - - -1.0 0.8 5.0
MNr - -2.0 - 1.0 - - 3.4 3.9 5.0

Table F.5: Biological connectivity, sensory feedback, best of run5
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Controller 1

Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9

A: 162.4 AL1 -»ML1 32.05 AL5 -» ML5 32.05 AL9 -> ML9 32.05

B: 678.6 CL1 -» ML1 32.05 CL5 -4 ML5 32.05 CL9 -> ML9 32.05

C: 383.0 CL1 -> ML1 32.05 CL5 -» ML5 32.05 CL9 -> ML9 32.05

CL1 -» ML1 15.95 CL5 -> ML5 15.95 CL9 -> ML9 15.95

Bias: BL1 -> ML1 32.05 BL5 ML5 32.05 BL9 -» ML9 32.05

A: 1.35 XL -» AL1 -12.75 XL -» AL5 -12.75 XL -> AL9 -12.75

B: 2.75 AL1 -»AL1 12.05 AR4 -» AL5 27.70 AR8 -> AL9 27.70

C: 2.00 XL -4 BL1 -12.15 BR4 -»AL5 21.30 BR8 -» AL9 21.30

AR1 -» BL1 -5.00 AL5 —» AL5 12.05 AL9 -♦ AL9 12.05

BL1 -» BL1 12.05 XL -> BL5 -12.15 XL -> BL9 -12.15

XL -» CL1 1.00 BR4 -4 BL5 -5.00 AR9 -♦ BL9 27.70

AL1 -* CL1 -10.05 BL5 -> BL5 12.05 BR9 -> BL9 21.30

XL -» CL5 1.00 BR8 -> BL9 -5.00

AL5 -»CL5 -10.05 BL9 -> BL9 12.05

XL -» CL9 1.00

AL9 -> CL9 -10.05
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Figure G.l: Runl. Top: Swimming, Middle: Neural configuration, Bottom: Neural activity.
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Controller 2

Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9
A 1454.5 BL1 -> ML1 -5.25 BR4 -> ML5 29.45 BR8 -» ML9 29.45

B 35.4 XL -»AL1 23.70 CR4 -♦ ML5 30.15 CR8 -» ML9 30.15

C 678.6 BL3 -> AL1 -9.75 BL4 -» ML5 -20.15 BL8 ^ ML9 -20.15

XL -* BL1 1.00 BL5 -> ML5 -5.25 BR9 -» ML9 29.45

Bias: AR1 -» BL1 -32.00 XL -* AL5 23.70 CR9 -♦ ML9 30.15

A -16.00 XL -» CL1 1.00 BL7 -> AL5 -9.75 BL9 -♦ ML9 -5.25

B 9.75 XL -» BL5 1.00 XL BL9 1.00

C 0.30 AR5 -> BL5 -32.00 BL9 -» BL9 -20.15

XL -» CL5 1.00 BR9

XL

-> BL9

-* CL9

-32.00

1.00
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Figure G.2: Run2: Top: Swimming, Middle: Neural configuration, Bottom: Neural activity.
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Controller 3

Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9
A: 50.0 CL1 -» ML1 11.05 AL4 -> ML5 32.05 AL8 -> ML9 32.05

B: 348.2 XL -»AL1 -31.40 CL5 -> ML5 11.05 CL9 -> ML9 11.05

C: 50.0 AR1 -> AL1 -22.75 XL -»AL5 -31.40 XL -* AL9 -31.40

BL2 AL1 25.70 AR5 -> AL5 -22.75 AR9 -* AL9 -22.75

Bias: XL -> BL1 -22.75 BL6 AL5 25.70 AL9 -» AL9 32.05

A: 16.05 AL1 -> BL1 -26.50 XL -> BL5 -22.75 XL BL9 -22.75

B: 16.05 BL1 -» BL1 32.05 AL5 -♦ BL5 -26.50 AL9 -> BL9 -26.50

C: 11.90 XL -»CL1 19.50 BL5 -♦ BL5 32.05 BL9 -> BL9 32.05

BL1 -»CL1 25.70 XL -»CL5 19.50 XL -»CL9 19.50

CR2 -»CL1 -27.60 CR6 ->CL5 -27.60 AR9 —> CL9 -27.60

CL1 -»CL1 -2.85 CL5 —» CL5 -2.85 CL9 —» CL9 -2.85
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Figure G.3: Run3: Top: Swimming, Middle: Neural configuration, Bottom: Neural activity.
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Controller 4

Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9
A 421.3 CR1 -» ML1 10.75 BR5 -> ML5 30.90 BR9 -> ML9 30.90

B 50.0 BR1 -» ML1 30.90 XL -* AL5 22.20 XL -> AL9 22.20

C 50.0 XL -» AL1 22.20 XL -> BL5 1.00 XL -» BL9 1.00

D 746.4 XL -♦ BL1 1.00 DL5 -4 BL5 -16.05 DL9 -> BL9 -16.05

DL1 -»BL1 -16.05 DL5 —» BL5 -18.55 DL9 -♦ BL9 -18.55

Bias: DL1 -* BL1 -18.55 DL5 -* BL5 0.00 DL9 -» BL9 0.00

A -16.00 DL1 -> BL1 0.00 CR6 -» BL5 10.75 XL -* CL9 1.00

B 2.00 CR2 -» BL1 10.75 BR6 -» BL5 -23.95 CR9 -» CL9 -26.80

C 2.00 BR2 -» BL1 -23.95 XL -»CL5 1.00 XL -» DL9 1.00

D -16.00 XL -* CL1 1.00 CR6 -* CL5 -26.80 AR9 -* DL9 22.20

CR2 -»CL1 -26.80 DR6 —» CL5 -18.00 CL9 -> DL9 -32.00

DR2 -» CL1 -18.00 XL -» DL5 1.00

XL -♦ DL1 1.00 AR5 -» DL5 22.20

AR1 -» DL1 22.20 CL5 -» DL5 -32.00

BR1 -* DL1 -23.95

DR1 -♦ DL1 -18.00

CL1 -» DL1 -32.00

2000 4000
Time [ms]

Figure G.4: Run4: Top: Swimming, Middle: Neural configuration, Bottom: Neural activity.
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Controller 5

Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9

A 91.7 BR1 -»ML1 -26.25 CL4 -» ML5 31.30 CL8 -> ML9 31.30

B 122.0 XL -» AL1 -17.90 BL4 -» ML5 21.55 BL8 -» ML9 21.55

C 91.7 DL1 -»AL1 14.80 DL4 —» ML5 0.05 DL8 -> ML9 0.05

D 1600.0 XL -» BL1 -18.75 BR5 -» ML5 -26.25 BR9 -4 ML9 -26.25

DR2 -» BL1 25.65 XL -» AL5 -17.90 XL -* AL9 -17.90

Bias: DR2 -» BL1 4.15 BL4 -» AL5 14.80 AL9 -» AL9 14.85

A 10.05 XL —> CL1 1.00 XL -> BL5 -18.75 BL8 -* AL9 14.80

B 8.40 DL1 -»CL1 -2.05 DR6 -» BL5 25.65 CL9 AL9 31.30

C 2.00 XL -» DL1 1.00 DR6 -» BL5 4.15 BL9 AL9 21.55

D 0.60 AR1 -» DL1 -30.15 XL -» CL5 1.00 DL9 -» AL9 0.05

DR1 -> DL1 4.15 DL5 -»CL5 -2.05 XL -> BL9 -18.75

XL -» DL5 1.00 AR9 -> BL9 25.65

AL4 -> DL5 14.85 XL -4 CL9 1.00

AR5 -»DL5 -30.15 DL9 —»CL9 -2.05

XL -» DL9 1.00

AL8 -> DL9 14.85

AR9 -» DL9 -30.15

HEAD

Time [ms]

•5 1
o
CO

as
3 0.5
CD

1000 2000 3000 4000

Time [ms]
5000 6000

Figure G.5: Run5: Top: Swimming, Middle top: Neural configuration, Middle bottom:
Neural activity, Bottom: Influence of the tonic input on the speed of swimming.
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Controller 6

245

Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9
A: 178.7 AL2 -» ML1 25.55 AL6 -» ML5 25.55 AL9 -> ML9 25.40

B: 50.0 XL -»AL1 -19.85 XL -> AL5 -19.85 XL -► AL9 -19.85

BR1 -> AL1 29.05 AL4 -* AL5 25.40 AL8 -* AL9 25.40

Bias: AR2 -»AL1 -27.95 BR5 -> AL5 29.05 BR9 -♦ AL9 29.05

A: 9.40 AL1 -» AL1 25.55 AR6 -»AL5 -27.95 BR9 -»AL9 -27.95

B: 4.20 BL1 -»AL1 -15.50 BL5 -+AL5 -15.50 BL9 -» AL9 -15.50

XL -» BL1 5.70 XL -♦ BL5 5.70 XL -> BL9 5.70

AR2 -> BL1 -26.30 AR6 -» BL5 -26.30 BR9 -> BL9 -26.30
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Figure G.6: Run6: Top: Swimming, Middle top: Neural configuration, Middle bottom:
Neural activity, Bottom: Influence of the tonic input on the speed of swimming.
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Controller 7

Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9
A: 421.3 BR1 -> ML1 12.35 BR5 -♦ ML5 12.35 BR9 -4 ML9 12.35

B: 50.0 CR1 -4 ML1 26.40 CR5 -» ML5 26.40 CR9 -> ML9 26.40

C: 147.7 CR1 -»ML1 32.05 CR5 -» ML5 32.05 CR9 -» ML9 32.05

BL1 -» ML1 7.15 BL5 -» ML5 7.15 AL9 -» ML9 26.40

Bias: XL -»AL1 1.00 XL -> AL5 1.00 BL9 -4 ML9 7.15

A: -3.95 AL1 -»AL1 19.90 AL5 -» AL5 19.90 XL -> AL9 1.00

B: 2.00 CL1 -»AL1 -32.00 CL5 -»AL5 -32.00 AL9 -4 AL9 19.90

C: 2.00 XL -> BL1 1.00 XL -> BL5 1.00 CL9 -4 AL9 -32.00

XL -* CL1 -7.85 AL4 -» BL5 26.40 XL -4 BL9 1.00

AL1 -»CL1 7.75 XL -♦ CL5 -7.85 AL8 -> BL9 26.40

AL5 -»CL5 7.75 XL -4 CL9 -7.85

AL9 —» CL9 7.75
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Figure G.7: Run7: Top: Swimming, Middle top: Neural configuration, Middle bottom:
Neural activity, Bottom: Influence of the tonic input on the speed of swimming, the frequency
of oscillation and the relative phase lag between segments.
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Controller 8

Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9
A: 383.0 BL1 -* ML1 32.05 BL5 -» ML5 32.05 AR9 -» ML9 -18.65

B: 216.2 XL -♦ AL1 1.00 XL -* AL5 1.00 BL9 -» ML9 32.05

AR1 -»AL1 -15.35 AR4 -» AL5 -18.65 XL -» AL9 1.00

Bias: BL1 -» AL1 19.65 AR5 -> AL5 -15.35 AR8 -» AL9 -18.65

A: 2.00 XL -» BL1 1.00 BL5 -» AL5 19.65 AR9 -» AL9 -15.35

B: 2.00 BR1 -» BL1 4.55 XL BL5 1.00 BL9 -> AL9 19.65

AL1 -» BL1 -15.30 BR5 -» BL5 4.55 XL -» BL9 1.00

AL5 -» BL5 -15.30 BR9 ^ BL9 4.55

AL9 -» BL9 -15.30

Excitation
0.5 1

Excitation
0.5 1

Excitation

Figure G.8: Run8: Top: Swimming, Middle top: Neural configuration, Middle bottom:
Neural activity, Bottom: Influence of the tonic input on the speed of swimming, the frequency
of oscillation and the relative phase lag between segments.
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Controller 9

Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9

A: 56.9 CL1 -» ML1 22.40 CL5 -> ML5 22.40 CL9 -» ML9 22.40

B: 50.0 XL -» AL1 1.00 XL -»CL5 1.00 XL -> CL9 1.00

C: 50.0 CR1 -»AL1 19.95 CR5 -> CL5 -11.90 CR9 -» CL9 -11.90

XL -* BL1 1.00 CL5 —> CL5 7.30 CL9 -> CL9 7.30

Bias: AR1 -» BL1 -11.80 CL4 -»CL5 26.65 CL8 —» CL9 26.65

A: -11.90 XL -»CL1 1.00

B: -2.10 CR1 -> CL1 -11.90

C: -8.45 CL1 -»CL1 7.30

BL1 -»CL1 26.65

45
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Time [ms]
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Figure G.9: Run9: Top: Swimming, Middle top: Neural configuration, Middle bottom:
Neural activity, Bottom: Influence of the tonic input on the speed of swimming, the frequency
of oscillation and the relative phase lag between segments.



APPENDIX G. RESULTS OF CHAPTER 6

Controller 10

249

Parameters: Weights:

Tau: Segment 1 Segment 5 Segment 9
A 1600.0 AL1 -* ML1 27.00 CL4 -» ML5 31.80 CL8 -> ML9 31.80

B 29.2 XL -»AL1 28.45 AL5 -* ML5 27.00 AL9 -» ML9 27.00

C 16.5 BL1 -* AL1 -6.10 XL -»AL5 28.45 CL9 -> ML9 31.80

CL2 -> AL1 -24.75 BL5 -»AL5 -6.10 XL -» AL9 28.45

Bias: AL1 -»AL1 -23.95 CL6 -»AL5 -24.75 CL9 -> AL9 -6.10

A -16.00 XL -» BL1 1.00 AL5 -»AL5 -23.95 CL9 -* AL9 -24.75

B -16.00 BL1 -» BL1 -16.20 XL -» BL5 1.00 AL9 -♦ AL9 -23.95

C 2.00 AL1 -> BL1 24.70 BL5 -> BL5 -16.20 XL -» CL9 1.00

XL -»CL1 1.00 AL5 -» BL5 24.70 CR9 CL9 -6.95

CR1 -»CL1 -6.95 XL -♦ CL5 1.00 AR9 -> CL9 -27.90

AR1 -* CL1 -27.90 CR5 -»CL5 -6.95 AL8 -♦ CL9 30.70

AL1 -»CL1 30.70 AR5 -»CL5 -27.90

AL4 -*CL5 30.70

0.8 1 1.2 1.4 1.6 1
Excitation

0.8 1 1.2 1.4 1.6 1.1

Excitation
0.8 1 1.2 1.4 1.6 1.1

Excitation

Figure G.10: RunlO: Top: Swimming, Middle top: Neural configuration, Middle bottom:
Neural activity, Bottom: Influence of the tonic input on the speed of swimming, the frequency
of oscillation and the relative phase lag between segments.
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E_al C_al L_al E_ar C_ar L_ar BS-al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS-pr
E_al 0.4 - -2.0 - 2.0 - E_pl 0.4 - - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 - 7.0 - C.pl 3.0 - -1.0 - -2.0 - 7.0 -

L_al 13.0 - -1.0 - 5.0 - L_pl 13.0 - - -1.0 - 5.0 -

E_ar 2.0 0.4 - -
.

- 2.0 E_pr - -2.0 0.4 - - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar 1.0 13.0 - - - 5.0 L_pr - -1.0 13.0 - - - 5.0
Flex_al - -0.5 -0.2 6.8 -0.9 -0.5 12.4 4.1 Flex.pl 1.3 - 2.5 -1.5 -3.1 7.9 16.7
Ext_al 3.6 -3.0 -1.4 9.6 - -0.4 18.0 6.2 Ext_pl 1.2 -3.3 13.2 -0.1 - 6.7 16.1
Flex_ar 6.8 -0.9 -0.5 - -0.5 -0.2 4.1 12.4 Flex.pr 2.5 -1.5 -3.1 1.3 - - 16.7 7.9
Ext_ar 9.6 - -0.4 3.6 -3.0 -1.4 6.2 18.0 Ext.pr 13.2 -0.1 1.2 -3.3 - 16.1 6.7
Trunk_I 0.4 -1.0 8.1 -3.1 - 11.0 10.5 TailJ 2.1 - -0.1 0.3 -0.6 -0.4 -0.3 -0.8
Trunk_r 8.1 -3.1 0.4 -1.0 - 10.5 11.0 Tail_r 0.3 -0.6 -0.4 2.1 - -0.1 -0.8 -0.3

E_pl 3.0 -1.4 -0.3 - -2.0 - - - E_al 5.0 -1.8 -0.3 1.0 -0.0 -1.1 - -

C_pl 2.8 -1.7 0.5 -0.2 -0.4 - - C_al 0.0 -0.2 -0.9 1.1 -1.1 -1.2 - -

L_pl 1.7 4.9 - -1.7 - -• L_al 5.0 -1.1 1.4 - -1.2 - -

E_pr 2.0 3.0 -1.4 -0.3 - - E_ar 1.0 -0.0 -1.1 5.0 -1.8 -0.3 - -

C_pr 0.5 -0.2 -0.4 2.8 -1.7 - - - C_ar 1.1 -1.1 -1.2 0.0 -0.2 -0.9 - -

L_pr 4.9 - -1.7 1.7 - - - - L_ar 1.4 - -1.2 5.0 -1.1 - - -

Excitation

Time [ms]

Figure H.l: Run_Al: Neural configuration {top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level {bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - - -2.0 - 2.0 - E_pl 0.4 - - - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 - 7.0 - C_pl 3.0 - -1.0 - -2.0 - 7.0 -

L_al 13.0 - - - -1.0 - 5.0 - L_pl 13.0 - - -1.0 - 5.0 -

E_ar - -2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 - - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - - 5.0 L_pr - -1.0 13.0 - - - 5.0
Flex_al 11.5 -1.2 -0.0 0.7 - -3.4 18.8 7.5 Flex_pl 8.5 -3.2 -1.2 1.5 - -4.5 7.5 6.4
Ext_al - - -2.8 6.6 -2.8 -0.7 13.7 7.1 Ext_pl 12.6 - -1.0 7.9 -4.1 -3.8 17.4 8.1
Flex_ar 0.7 - -3.4 11.5 -1.2 -0.0 7.5 18.8 Flex.pr 1.5 - -4.5 8.5 -3.2 -1.2 6.4 7.5
Ext_ar 6.6 -2.8 -0.7 - - -2.8 7.1 13.7 Ext.pr 7.9 -4.1 -3.8 12.6 - -1.0 8.1 17.4
TrunkJ 2.5 - -0.4 - -3.2 -2.6 1.2 1.7 TailJ 0.7 - -0.8 1.9 -0.1 -0.3 0.4 0.4
Trunk_r - -3.2 -2.6 2.5 - -0.4 1.7 1.2 Tail_r 1.9 -0.1 -0.3 0.7 - -0.8 0.4 0.4

E_pl - -1.2 -0.1 1.0 - -0.6 - - E_al - -0.1 -0.2 - - -1.6 - -

C.pl - -0.2 1.0 -1.3 -1.6 - - C_al 0.7 -1.1 -0.1 - -0.0 -1.0 - -

L_pl 0.2 -0.8 -1.6 1.0 -2.0 - - - L_al 4.3 -1.1 -0.2 - -0.4 -1.7 - -

E_pr 1.0 - -0.6 - -1.2 -0.1 - - E_ar - - -1.6 - -0.1 -0.2 - -

C_pr 1.0 -1.3 -1.6 - -0.2 - - - C_ar - -0.0 -1.0 0.7 -1.1 -0.1 - -

L_pr 1.0 -2.0 0.2 -0.8 -1.6 - - L_ar - -0.4 -1.7 4.3 -1.1 -0.2 - -

Excitation

Time [ms]

Excitation

E
"O 0.4

Q.0.3
CO

Excitation

Figure H.2: Run_A2: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS-pr
E_al 0.4 - -2.0 2.0 - E_pl 0.4 - - - -2.0 2.0 -

C_al 3.0 - -1.0 - -2.0 7.0 - C_pl 3.0 - -1.0 - -2.0 7.0 -

L_al 13.0 - -1.0 5.0 - L_pl 13.0 - - _ -1.0 5.0 -

E_ar - -2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 - - 2.0

C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - 5.0 L_pr - -1.0 13.0 - - 5.0

Flex_al - -2.6 - 3.5 9.5 4.9 Flex.pl 2.4 - -0.0 5.8 - -2.8 4.5 2.2

Ext_al 11.2 -0.3 -0.1 4.3 -4.1 -4.5 2.4 6.1 Ext_pl - -0.0 -2.5 3.3 -2.5 -0.6 5.7 17.2
Flex_ar - -3.5 - -2.6 4.9 9.5 Flex_pr 5.8 - -2.8 2.4 - -0.0 2.2 4.5

Ext_ar 4.3 -4.1 -4.5 11.2 -0.3 -0.1 6.1 2.4 Ext_pr 3.3 -2.5 -0.6 - -0.0 -2.5 17.2 5.7
Trunk_l 4.8 -2.1 rv- -0.0 -0.4 1.3 3.4 TailJ 0.4 -0.7 -0.5 1.4 -0.1 -0.1 0.1 0.2

Trunk_r - -0.0 -0.4 4.8 -2.1 3.4 1.3 Tail_r 1.4 -0.1 -0.1 0.4 -0.7 -0.5 0.2 0.1

E_pl - -0.6 -0.2 4.6 -0.2 -0.0 - - E_al 5.6 -1.4 -0.0 4.7 - -0.2 - -

C.pl 2.7 5.9 - -2.0 - - C_al 1.5 -1.4 0.1 -0.7 -1.4 - -

L_pl 0.6 -0.1 -1.4 0.3 -1.0 -0.0 - - L_al 0.0 -1.0 -1.9 3.0 - -0.6 - -

E_pr 4.6 -0.2 -0.0 - -0.6 -0.2 - - E_ar 4.7 - -0.2 5.6 -1.4 -0.0 - -

C_pr 5.9 - -2.0 2.7 - - - - C_ar 0.1 -0.7 -1.4 1.5 -1.4 - -

L_pr 0.3 -1.0 -0.0 0.6 -0.1 -1.4 - - L_ar 3.0 - -0.6 0.0 -1.0 -1.9 - -

Figure H.3: Run_A3: Neural configuration {top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level {bottom).
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E_al C_al L_al E_ar C_ar L_ar BS-al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - -2.0 - 2.0 - E_pl 0.4 - - - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 - 7.0 - C_pl 3.0 - -J .0 - -2.0 - 7.0 -

L_al 13.0 - -1.0 - 5.0 - L_pl 13.0 _ - -1.0 - 5.0 -

E_ar - -2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 - - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - - 5.0 L_pr - -1.0 13.0 - - - 5.0
Flex_al 1.0 - -1.4 4.8 -3.9 -0.8 5.7 15.5 Flex_pl 0.1 - -3.0 2.7 -2.0 -0.3 21.0 7.0
Ext_al 14.1 -4.3 -0.1 2.6 - -0.5 1.8 1.9 Ext_pl 13.1 -4.0 -3.4 8.3 -0.4 - 16.9 8.1
Flex_ar 4.8 -3.9 -0.8 1.0 - -1.4 15.5 5.7 Flex.pr 2.7 -2.0 -0.3 0.1 - -3.0 7.0 21.0
Ext_ar 2.6 - -0.5 14.1 -4.3 -0.1 1.9 1.8 Ext_pr 8.3 -0.4 13.1 -4.0 -3.4 8.1 16.9
TrunkJ 4.5 -3.1 -4.7 15.0 - - -6.4 -3.6 Tail_l - -0.4 -0.4 0.1 -0.1 -0.4 2.1 1.8
Trunk_r 15.0 4.5 -3.1 -4.7 -3.6 -6.4 Tail_r 0.1 -0.1 -0.4 - -0.4 -0.4 1.8 2.1

E_pl - -0.9 -0.0 2.2 -1.8 -2.0 - - E_al 0.2 -2.0 -0.5 0.3 - -1.2 - -

C_pl 2.7 -1.1 -0.1 0.1 - -1.4 - - C_al 4.7 -0.2 -1.3 0.5 -1.1 -1.8 - -

L_pl 3.7 - -2.0 0.4 - - - - L_al 5.1 -0.8 -0.5 0.2 -1.9 - - -

E_pr 2.2 -1.8 -2.0 - -0.9 -0.0 - - E_ar 0.3 - -1.2 0.2 -2.0 -0.5 - -

C_pr 0.1 - -1.4 2.7 -1.1 -0.1 - - C_ar 0.5 -1.1 -1.8 4.7 -0.2 -1.3 - -

L_pr 0.4 3.7 - -2.0 - - L_ar 0.2 -1.9 5.1 -0.8 -0.5 - -

Time [ms]

Excitation Excitation
0.5 1

Excitation

0.5

TJ 0.4

Figure H.4: Run_A4: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS-pr
E_al 0.4 - -2.0 - 2.0 - E_pl 0.4 _ -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 - 7.0 - C-pl 3.0 - -1.0 - -2.0 - 7.0 -

L_al 13.0 - -1.0 - 5.0 - L.pl 13.0 - -1.0 - 5.0 -

E_ar - -2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 - - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - - 5.0 L_pr - -1.0 13.0 - - - 5.0
Flex_al 13.5 -3.5 -0.3 11.8 -0.1 -0.5 2.2 4.5 Flex_pl - -4.1 -0.2 2.9 - -1.4 17.2 6.9
Ext_al 3.3 -0.1 - -1.5 -0.3 0.4 0.7 Ext_pl 5.6 -0.7 -2.6 3.2 -4.6 - 3.2 1.4
Flex_ar 11.8 -0.1 -0.5 13.5 -3.5 -0.3 4.5 2.2 Flex_pr 2.9 - -1.4 - -4.1 -0.2 6.9 17.2
Ext_ar - -1.5 -0.3 3.3 -0.1 - 0.7 0.4 Ext_pr 3.2 -4.6 5.6 -0.7 -2.6 1.4 3.2
Trunk_l - -2.6 -2.6 - -1.1 -1.8 1.9 1.4 TailJ - -0.1 -0.4 1.4 - -0.2 1.3 3.9
Trunk_r - -1.1 -1.8 - -2.6 -2.6 1.4 1.9 Tail_r 1.4 - -0.2 - -0.1 -0.4 3.9 1.3

E_pl - -1.7 1.5 -1.4 -0.8 - - E_al ToCOCOvr 0.4 -0.2 -1.3 - -

C-pl - -0.7 -0.1 5.1 -0.2 -1.9 - - C_al - -1.8 -0.1 2.1 - -0.4 - -

L.pl 1.3 -1.2 3.3 - -1.7 - - L_al 4.0 -0.4 - - -0.3 - -

E_pr 1.5 -1.4 -0.8 - - -1.7 - - E_ar 0.4 -0.2 -1.3 4.8 -1.8 -0.4 - -

C_pr 5.1 -0.2 -1.9 - -0.7 -0.1 - - C_ar 2.1 - -0.4 - -1.8 -0.1 - -

L_pr 3.3 - -1.7 1.3 -1.2 - - - L_ar - -0.3 4.0 -0.4 - - -

0.5 1

Excitation Excitation

Time [ms]

&
"O 0.4 ■

Excitation

Figure H.5: Run_A5: Neural configuration {top), gait (middle-top), neural activity {middle-
bottom), and effect of the excitation level {bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS.pl BS.pr
E_al 0.4 - -2.0 2.0 - E_pl 0.4 - _ - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 7.0 - C_pl 3.0 - -1.0 - -2.0 - 7.0 -

L_al 13.0 - -1.0 5.0 - L_pl 13.0 - - - -1.0 - 5.0 -

E_ar - -2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 - - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - 5.0 L_pr - -1.0 13.0 - - - 5.0
Flex_al 0.1 -5.0 -2.5 14.4 - -2.5 4.0 1.3 Flex_pl - -4.0 14.1 - - 21.7 8.3
Ext_al - -1.6 -1.1 1.0 -1.4 16.5 7.1 Ext_pl 0.9 -1.1 -2.4 4.0 -3.5 - 6.9 6.0
Flex_ar 14.4 - -2.5 0.1 -5.0 -2.5 1.3 4.0 Flex_pr 14.1 - - - -4.0 - 8.3 21.7
Ext_ar 1.0 -1.4 - -1.6 -1.1 7.1 16.5 Ext.pr 4.0 -3.5 0.9 -1.1 -2.4 6.0 6.9
Trunk_l 1.1 -1.6 - - -1.8 6.7 20.0 TailJ 0.0 -0.0 - -0.6 -0.2 0.3 0.4
Trunk_r - -1.8 1.1 -1.6 20.0 6.7 Tail_r - -0.6 -0.2 0.0 -0.0 - 0.4 0.3

E_pl 0.7 -0.6 -1.4 2.4 -1.7 -0.9 - - E_al 0.6 -1.2 - -0.4 -0.5 - -

C_pl 0.7 -1.6 -0.3 0.4 -0.3 -1.3 - - C_al 2.0 - -0.8 3.2 -0.6 -1.7 - -

L.pl 1.4 -0.1 -0.2 2.4 -0.3 - - L_al 0.4 -2.0 -1.6 - - -0.8 - -

E_pr 2.4 -1.7 -0.9 0.7 -0.6 -1.4 - - E_ar - -0.4 -0.5 0.6 -1.2 - - -

C_pr 0.4 -0.3 -1.3 0.7 -1.6 -0.3 - - C_ar 3.2 -0.6 -1.7 2.0 - -0.8 - -

L_pr 2.4 -0.3 1.4 -0.1 -0.2 - - L_ar - - -0.8 0.4 -2.0 -1.6 - -

Duration: 400 ms

Excitation

^ 0.5
-O 0.4
d)
d)
Q.0.3
CO

Time [ms]

0.5 1

ExcitationExcitation

Figure H.6: Run_A.6: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - -2.0 2.0 - E_pl 0.4 - -2.0 - 2.0 -

C.al 3.0 - -1.0 - -2.0 7.0 - C_pl 3.0 - -1.0 _ -2.0 _ 7.0 _

L_al 13.0 - -1.0 5.0 - L_pl 13.0 - -1.0 _ 5.0 -

E_ar - -2.0 0.4 -
■

- 2.0 E_pr - -2.0 0.4 _ - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - 5.0 L_pr - -1.0 13.0 - - - 5.0

Flex_al 10.1 -3.4 - -0.4 2.4 1.5 Flex_pl - -0.4 -2.5 7.5 -1.9 -0.5 5.0 2.8
Ext_al 15.0 -0.7 -0.3 0.9 -4.0 -0.4 7.9 20.5 Ext_pl - -4.4 -0.3 - -0.8 -4.1 5.2 4.6
Flex_ar - -0.4 10.1 -3.4 1.5 2.4 Flex_pr 7.5 -1.9 -0.5 - -0.4 -2.5 2.8 5.0
Ext_ar 0.9 -4.0 -0.4 15.0 -0.7 -0.3 20.5 7.9 Ext_pr - -0.8 -4.1 - -4.4 -0.3 4.6 5.2
Trunk_l 8.3 -0.4 1.1 -2.3 -1.7 3.9 9.7 Tail_l 0.5 -0.0 0.9 -0.2 - 1.7 4.1
Trunk_r 1.1 -2.3 -1.7 8.3 -0.4 9.7 3.9 Tail_r 0.9 -0.2 0.5 -0.0 - 4.1 1.7

E_pl 0.3 1.0 -1.4 -0.5 - - E_al _ _ 0.8 -1.3 -1.4 - -

C.pl - -1.3 -0.1 3.4 - -0.3 - - C_al 1.7 -0.3 _ -1.3 -1.7 - -

L_pl - -1.7 -0.2 - -0.3 -1.1 - - L_al 4.7 -1.3 -0.5 5.1 -0.9 -1.2 - -

E_pr 1.0 -1.4 -0.5 0.3 - - - - E_ar 0.8 -1.3 -1.4 - - - - -

C_pr 3.4 - -0.3 - -1.3 -0.1 - - C_ar - -1.3 -1.7 1.7 -0.3 - - -

L_pr - -0.3 -1.1 - -1.7 -0.2 - - L_ar 5.1 -0.9 -1.2 4.7 -1.3 -0.5 - -

0 0.5 1 1.5

Excitation

Time [ms]

Excitation

Figure H.7: Run_A.7: Neural configuration {top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level {bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS-pr
E_al 0.4 - - - -2.0 - 2.0 - E_pl 0.4 - - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 - 7.0 - C_pl 3.0 - -3.0 - -2.0 - 7.0 _

L_al 13.0 - - - -1.0 - 5.0 - L_pl 13.0 - - -1.0 - 5.0 -

E_ar - -2.0 ''■fC-F-. 0.4 - - - 2.0 E_pr - -2.0 0.4 - - - 2.0
C_ar - -2.0 - 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 - 13.0 - - - 5.0 L_pr - -1.0 13.0 - - - 5.0
Flex_al - - - 4.1 -3.4 -0.5 3.9 4.2 Flex_pl 11.0 -3.8 -3.9 9.6 -0.2 -2.1 12.8 17.2
Ext_al - -2.1 - - -0.8 - 3.6 2.1 Ext_pl 9.1 -0.9 -2.1 1.0 -5.0 -0.4 10.0 18.2
Flex_ar 4.1 -3.4 -0.5 - - - 4.2 3.9 Flex.pr 9.6 -0.2 -2.1 11.0 -3.8 -3.9 17.2 12.8
Ext_ar - -0.8 - - -2.1 - 2.1 3.6 Ext_pr 1.0 -5.0 -0.4 9.1 -0.9 -2.1 18.2 10.0
Trunk_l 1.4 -4.0 - 12.0 -3.2 - 8.1 21.9 TailJ 3.0 -1.0 -0.7 2.5 -0.2 -0.4 -0.1 -0.1
Trunk_r 12.0 -3.2 - 1.4 -4.0 - 21.9 8.1 Tail_r 2.5 -0.2 -0.4 3.0 -1.0 -0.7 -0.1 -0.1

E-pl 2.2 -1.9 - 3.3 -0.6 - - - E_al 6.0 -0.2 -0.0 0.5 -0.9 -0.3 - -

C-pl - - -1.2 4.4 -1.6 - - - C_al 0.3 -0.2 -0.2 - - - - _

L_pl - -1.5 - 0.1 - - - - L_al 0.1 -0.3 -0.0 - -0.3 -0.5 - -

E_pr 3.3 -0.6 - 2.2 -1.9 - - - E_ar 0.5 -0.9 -0.3 6.0 -0.2 -0.0 - -

C_pr 4.4 -1.6 - - - -1.2 - - C_ar - - - 0.3 -0.2 -0.2 - -

L_pr 0.1 - - - -1.5 - - - L_ar - -0.3 -0.5 0.1 -0.3 -0.0 - -

Excitation
O.S 1 1.5
Excitation

0.5 1 1.5

Excitation

Time [ms]
10

E,
TJ 0.4

Figure H.8: Run^A.8: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - -2.0 2.0 - E_pl 0.4 - - _ -2.0 2.0 -

C_al 3.0 - -1.0 - -2.0 7.0 - C_pl 3.0 - -1.0 - -2.0 7.0 -

L_al 13.0 - -1.0 5.0 - L_pl 13.0 _ _ _ -1.0 5.0 -

E_ar 2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 _ - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar 1.0 13.0 - - 5.0 L_pr - -1.0 13.0 - - 5.0

Flex_al 9.2 -0.5 -0.2 11.5 -2.3 -0.2 1.7 5.1 Flex.pl 6.4 -0.1 -3.5 3.0 -1.9 -2.1 8.3 14.3
Ext_al - -3.9 5.4 -0.4 5.3 7.7 Ext-pl 8.5 -4.5 -5.0 - -0.1 -0.5 17.3 8.7

Flex_ar 11.5 -2.3 -0.2 9.2 -0.5 -0.2 5.1 1.7 Flex.pr 3.0 -1.9 -2.1 6.4 -0.1 -3.5 14.3 8.3
Ext_ar 5.4 -0.4 - - -3.9 7.7 5.3 Ext.pr - -0.1 -0.5 8.5 -4.5 -5.0 8.7 17.3
Trunk_l 13.6 -0.5 - -3.2 8.9 5.4 Tail-1 1.7 -0.1 -0.4 1.6 -0.9 -0.2 0.9 0.7
Trunk_r - -3.2 13.6 -0.5 5.4 8.9 Tail_r 1.6 -0.9 -0.2 1.7 -0.1 -0.4 0.7 0.9

E_pl 2.1 -0.9 -0.7 4.2 -1.4 -0.7 - - E_al 1.2 -0.3 -0.9 1.2 -1.4 -1.3 - -

C-pl 1.0 -1.6 -0.1 0.3 -0.5 - - C-al 2.6 -0.6 -2.0 5.7 -1.8 -0.0 - -

L_pl 3.2 -1.9 -1.8 0.5 -1.6 -0.0 - - L_al 2.9 -0.2 -0.4 3.4 -0.7 -2.0 - -

E_pr 4.2 -1.4 -0.7 2.1 -0.9 -0.7 - E_ar 1.2 -1.4 -1.3 1.2 -0.3 -0.9 - -

C_pr 0.3 -0.5 1.0 -1.6 -0.1 - - C_ar 5.7 -1.8 -0.0 2.6 -0.6 -2.0 - -

L_pr 0.5 -1.6 -0.0 3.2 -1.9 -1.8 - - L_ar 3.4 -0.7 -2.0 2.9 -0.2 -0.4 - -

Duration: 400 ms

7

Time [ms]

Excitation ExcitationExcitation

Figure H.9: Run_A9: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS-al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - - -2.0 2.0 - E_pl 0.4 - - - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 7.0 - C_pl 3.0 - -1 0 - -2.0 - 7.0 -

L_al 13.0 - - -1.0 5.0 - L_pl 13.0 - - - -1.0 - 5.0 -

E_ar - -2.0 0.4 - 2.0 E_pr - -2.0 0.4 - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 -1.0 - 7.0
L_ar - -1.0 13.0 - 5.0 L_pr - -1.0 13.0 - - 5.0
Flex_al - -0.3 -3.8 6.7 -4.0 -2.5 8.7 17.9 Flex_pl 0.1 - - - -0.2 -2.7 11.6 17.4
Ext_al - -3.5 9.3 -1.4 -2.5 10.1 5.1 Ext.pl 1.9 -0.3 -4.7 11.9 -0.2 -0.2 6.4 5.9
Flex_ar 6.7 -4.0 -2.5 - -0.3 -3.8 17.9 8.7 Flex_pr - -0.2 -2.7 0.1 - 17.4 11.6
Ext_ar 9.3 -1.4 -2.5 - -3.5 5.1 10.1 Ext.pr 11.9 -0.2 -0.2 1.9 -0.3 -4.7 5.9 6.4
Trunk_l - -0.1 -0.4 3.8 -4.8 5.9 16.4 TailJ 3.0 -0.4 -0.3 - - -1.0 4.0 2.0
Trunk_r 3.8 -4.8 - -0.1 -0.4 16.4 5.9 Tail_r - - -1.0 6oCO -0.3 2.0 4.0

E_pl 0.6 -2.0 2.1 -0.2 -0.0 - - E_al 5.2 - - 2.2 -1.7 -0.5 - -

C-pl 3.6 -0.1 -0.6 - -0.8 -0.2 - - C_al 0.3 -1.6 -1.6 3.7 -0.5 -0.8 - -

L_pl 0.3 -0.0 -0.9 5.4 -0.1 -0.2 - - L_al 5.8 -0.8 0.4 -0.0 -0.3 - -

E_pr 2.1 -0.2 -0.0 0.6 -2.0 - - E_ar 2.2 -1.7 -0.5 5.2 - - -

C_pr - -0.8 -0.2 3.6 -0.1 -0.6 - - C_ar 3.7 -0.5 -0.8 0.3 -1.6 -1.6 - -

L_pr 5.4 -0.1 -0.2 0.3 -0.0 -0.9 - - L_ar 0.4 -0.0 -0.3 5.8 -0.8 - - -

Duration: 400 ms

ExcitationExcitation

Time [ms]

Figure H.10: Run_A10: Neural configuration (top), gait (middle-top), neural activity
(middle-bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al - 8.6 -3.8 -4.3 - -0.1 -0.1 - E_pl - 8.6 -3.8 -4.3 _ -0.1 -0.1 -

C.al - 7.8 -2.9 -0.5 - - 2.9 - C_pl - 7.8 -2.9 -0.5 - - 2.9 -

L_al - 10.3 -4.9 6.8 -1.5 - - L_pl - 10.3 -4.9 6.8 -1.5 - _

E_ar -4.3 - -0.1 - 8.6 -3.8 - -0.1 E_pr -4.3 - -0.1 - 8.6 -3.8 - -0.1
C_ar -0.5 - - 7.8 -2.9 - 2.9 C_pr -0.5 - - 7.8 -2.9 - 2.9

L_ar -4.9 6.8 -1.5 - 10.3 - - - L_pr -4.9 6.8 -1.5 - 10.3 - - -

Flex_al -4.5 10.7 -1.9 -0.1 1.3 - 15.1 8.5 Flex_pl -1.9 14.2 -4.5 - 0.5 -2.0 18.1 9.1

Ext-al - 11.1 -3.3 - -2.7 5.7 17.0 Ext_pl -0.4 - - -3.5 5.3 -4.6 6.9 6.5

Flex_ar -0.1 1.3 -4.5 10.7 -1.9 8.5 15.1 Flex_pr - 0.5 -2.0 -1.9 14.2 -4.5 9.1 18.1
Ext_ar -3.3 - -2.7 - 11.1 - 17.0 5.7 Ext.pr -3.5 5.3 -4.6 -0.4 - - 6.5 6.9
TrunkJ -2.5 2.3 -1.2 0.3 -3.0 10.7 6.9 TailJ -0.7 2.0 -0.1 -0.4 0.2 - 0.9 1.2

Trunk_r -1.2 0.3 -3.0 -2.5 2.3 - 6.9 10.7 Tail_r -0.4 0.2 -0.7 2.0 -0.1 1.2 0.9

E_pl -0.0 - -1.8 - -0.9 - - E_al -2.0 - -0.6 -0.0 0.3 -1.0 - -

C.pl -0.2 0.7 -1.3 -0.2 0.1 -0.2 . - - C_al - 3.2 -1.4 -1.1 2.7 -1.3 - -

L_pl -1.6 4.4 -0.1 -0.5 - -1.6 - - L_al -0.6 0.0 -1.6 -1.2 2.3 -1.8 - -

E_pr -1.8 - -0.9 -0.0 - - - - E_ar -0.0 0.3 -1.0 -2.0 - -0.6 - -

C_pr -0.2 0.1 -0.2 -0.2 0.7 -1.3 - - C_ar -1.1 2.7 -1.3 - 3.2 -1.4 - -

L_pr -0.5 - -1.6 -1.6 4.4 -0.1 - - L_ar -1.2 2.3 -1.8 -0.6 0.0 -1.6 - -

0.5 1

Excitation

Time [ms]

Excitation Excitation

Figure 1.1: Run_A.10: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS-al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS -pr
E_al - 8.6 -3.8 -4.3 - -0.1 -0.1 - E_pl - 8.6 -3.8 -4.3 - -0.1 -0.1 -

C_al - 7.8 -2.9 -0.5 - 2.9 - C.pl - 7.8 -2.9 -0.5 - - 2.9 -

L_al - 10.3 - -4.9 6.8 -1.5 - - L_pl - 10.3 -4.9 6.8 -1.5 - -

E_ar -4.3 - -0.1 8.6 -3.8 - -0.1 E_pr -4.3 - -0.1 - 8.6 -3.8 - 0.1
C_ar -0.5 - - - 7.8 -2.9 - 2.9 C_pr -0.5 - - 7.8 -2.9 - 2.9
L_ar -4.9 6.8 -1.5 10.3 - - L_pr -4.9 6.8 -1.5 - 10.3 - - -

Flex_al -2.8 6.9 -1.0 -0.1 2.4 6.3 3.9 Flex_pl -5.0 - -4.8 - - -0.8 3.3 2.9
Ext_al -2.4 4.9 -0.1 -4.6 13.2 10.0 7.3 Ext_pl -0.3 13.5 -0.7 -2.7 1.5 -1.5 5.0 6.6
Flex_ar -0.1 - -2.4 -2.8 6.9 -1.0 3.9 6.3 Flex.pr - - -0.8 -5.0 - -4.8 2.9 3.3
Ext_ar -4.6 13.2 - -2.4 4.9 -0.1 7.3 10.0 Ext_pr -2.7 1.5 -1.5 -0.3 13.5 -0.7 6.6 5.0
Trunk_l - 0.3 -2.2 -0.0 1.4 4.2 12.5 Tail_l - - -0.3 -0.6 1.7 - 3.9 1.8
Trunk_r -0.0 1.4 0.3 -2.2 12.5 4.2 Tail_r -0.6 1.7 - - -0.3 1.8 3.9

E_pl -0.9 3.5 -1.3 -0.8 1.7 -1.3 - - E_al -0.0 5.4 -0.2 - 2.4 -1.5 - -

C_pl -0.4 4.1 -0.7 4.6 -0.2 - - C_al -1.8 3.8 -0.8 - 4.2 -0.6 - -

L_pl -0.0 6.0 -1.8 -0.6 0.1 -0.3 - - L_al - 4.9 -1.8 -0.8 6.0 -1.4 - -

E_pr -0.8 1.7 -1.3 -0.9 3.5 -1.3 - - E_ar - 2.4 -1.5 -0.0 5.4 -0.2 - -

C_pr - 4.6 -0.2 -0.4 4.1 -0.7 - - C_ar - 4.2 -0.6 -1.8 3.8 -0.8 - -

L_pr -0.6 0.1 -0.3 -0.0 6.0 -1.8 - - L_ar -0.8 6.0 -1.4 - 4.9 -1.8 - -

1600 1650 1700 1750 1800 1850 1900 1950 2000
_

Time [ms]

1600 1650 1700 1750 1800 1850 1900 1950 2000

Time [ms]

Excitation Excitation Excitation

Figure 1.2: Run_A12: Neural configuration {top), gait {middle-top), neural activity {middle-
bottom), and effect of the excitation level {bottom).
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E_al C_al L_al E_ax- C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al - 8.6 -3.8 -4.3 - -0.1 -0.1 - E_pl - 8.6 -3.8 -4.3 - -0.1 -0.1 -

C_al - 7.8 -2.9 -0.5 - - 2.9 - C_pl _ 7.8 -2.9 -0.5 _ _ 2.9 -

L_al - 10.3 - -4.9 6.8 -1.5 - - L_pl - 10.3 -4.9 6.8 -1.5 - -

E_ar -4.3 - -0.1 8.6 -3.8 - -0.1 E_pr -4.3 - -0.1 - 8.6 -3.8 - -0.1
C_ar -0.5 - - - 7.8 -2.9 - 2.9 C_pr -0.5 - - - 7.8 -2.9 - 2.9

L_ar -4.9 6.8 -1.5 10.3 - - L_pr -4.9 6.8 -1.5 - 10.3 - -

Flex_al -0.4 0.2 -3.3 -3.5 9.1 -4.0 10.6 19.4 Flex_pl -2.6 7.8 -0.7 5.1 -4.5 12.5 11.8

Ext_al -1.5 8.5 -5.0 -1.4 5.7 -3.2 19.7 10.2 Ext_pl - 8.0 -3.7 -4.0 - - 5.9 6.0

Flex_ar -3.5 9.1 -4.0 -0.4 0.2 -3.3 19.4 10.6 Flex.pr -0.7 5.1 -4.5 -2.6 7.8 11.8 12.5
Ext_ar -1.4 5.7 -3.2 -1.5 8.5 -5.0 10.2 19.7 Ext_pr -4.0 - - - 8.0 -3.7 6.0 5.9

Trunk_l - 1.8 -3.3 10.9 -4.3 1.9 1.9 TailJ -0.3 1.8 -0.1 -0.2 2.1 -0.4 1.7 2.0

Trunk_r - 10.9 -4.3 1.8 -3.3 1.9 1.9 Tail_r -0.2 2.1 -0.4 -0.3 1.8 -0.1 2.0 1.7

E_pl -0.5 3.2 -1.9 -1.2 - -1.4 - - E_al -1.3 1.7 -1.3 -1.0 4.7 -0.4 - -

C-pl -0.6 3.1 - -1.5 3.0 -0.9 - - C.al -0.9 - - -0.1 0.3 -1.9 - -

L_pl -1.7 - -0.5 5.0 -1.8 - - L_al _ 2.0 -1.0 - 1.6 - -

E_pr -1.2 - -1.4 -0.5 3.2 -1.9 - - E_ar -1.0 4.7 -0.4 -1.3 1.7 -1.3 - -

C_pr -1.5 3.0 -0.9 -0.6 3.1 - - C_ar -0.1 0.3 -1.9 -0.9 - - - -

L_pr -0.5 5.0 -1.8 -1.7 - - - L_ar - 1.6 - 2.0 -1.0 - -

Excitation Excitation
0.5 1 1.5

Excitation

Time [ms]

Figure 1.3: Run_A.13: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS-al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al - 8.6 -3.8 -4.3 - -0.1 -0.1 - E_pl - 8.6 -3.8 -4.3 - -0.1 -0.1 -

C_al - 7.8 -2.9 -0.5 - - 2.9 - C.pl - 7.8 -2.9 -0.5 - 2.9 -

L_al - 10.3 - -4.9 6.8 -1.5 - - L_pl - 10.3 -4.9 6.8 -1.5 - -

E_ar -4.3 - -0.1 8.6 -3.8 - -0.1 E_pr -4.3 - -0.1 - 8.6 -3.8 - -0.1
C_ar -0.5 _ _ _ 7.8 -2.9 - 2.9 C_pr -0.5 - - 7.8 -2.9 - 2.9
L_ar -4.9 6.8 -1.5 10.3 - - L_pr -4.9 6.8 -1.5 - 10.3 - -

Flex_al -4.1 8.9 -1.1 -1.0 0.3 -0.5 13.1 9.3 Flex_pl -4.0 2.5 -0.5 - 4.9 0.9 0.5
Ext_al -0.4 - -2.9 1.2 1.9 4.4 Ext_pl - 0.5 -4.1 - -4.6 17.6 9.6
Flex_ar -1.0 0.3 -0.5 -4.1 8.9 -1.1 9.3 13.1 Flex_pr - 4.9 -4.0 2.5 -0.5 0.5 0.9
Ext_ar -2.9 1.2 - -0.4 - 4.4 1.9 Ext_pr -4.1 - -4.6 - 0.5 9.6 17.6
TrunkJ -2.0 6.4 - -0.4 -1.0 -3.0 Tail_l -0.2 1.2 -0.1 - 0.1 -0.1 0.9 2.6
Trunk_r - - -0.4 -2.0 6.4 -3.0 -1.0 Tail_r - 0.1 -0.1 -0.2 1.2 -0.1 2.6 0.9

E_pl -1.4 5.4 -0.2 - -1.4 - - E_al - 3.1 -0.0 -1.6 - -2.0 - -

C_pl -0.8 1.3 -0.3 -0.2 5.8 - - C_al - - -0.1 -0.2 0.6 -0.7 - -

L_pl -0.1 - -0.7 - -0.7 - - L_al -1.6 0.4 -1.9 -0.3 3.9 -0.0 - -

E_pr - - -1.4 -1.4 5.4 -0.2 - - E_ar -1.6 - -2.0 - 3.1 -0.0 - -

C_pr -0.2 5.8 - -0.8 1.3 -0.3 - - C_ar -0.2 0.6 -0.7 - - -0.1 - -

L_pr - - -0.7 -0.1 - -0.7 - - L_ar -0.3 3.9 -0.0 -1.6 0.4 -1.9 - -

TAIL

0.5 1 1.5
Excitation

2 2.5

Excitation

Time [ms]

Excitation

Figure 1.4: Run_A14: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).



268 APPENDIX I. RESULTS OF CHAP. 7: RUNS All TO A20

E_al C_a,l L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al - 8.6 -3.8 -4.3 - -0.1 -0.1 - E_pl - 8.6 -3.8 -4.3 - -0.1 -0.1 -

C_al - 7.8 -2.9 -0.5 - - 2.9 - C_pl - 7.8 -2.9 -0.5 - - 2.9 -

L_al - 10.3 - -4.9 6.8 -1.5 - - L_pl - 10.3 -4.9 6.8 -1.5 - -

E_ar -4.3 - -0.1 8.6 -3.8 - -0.1 E_pr -4.3 - -0.1 - 8.6 -3.8 - -0.1
C_ar -0.5 _ 7.8 -2.9 - 2.9 C_pr -0.5 - - - 7.8 -2.9 - 2.9
L_ar -4.9 6.8 -1.5 10.3 - - - L_pr -4.9 6.8 -1.5 - 10.3 - - -

Flex_al -3.8 _ _ 12.0 - 3.1 1.8 Flex.pl -4.0 7.9 -5.0 -0.6 2.5 - 15.9 11.9
Ext_al -1.1 - -2.9 -3.2 3.0 -0.3 8.9 4.7 Ext_pl -0.2 5.1 -0.2 -3.6 - -2.8 3.2 1.7
Flex_ar - 12.0 - -3.8 - - 1.8 3.1 Flex_pr -0.6 2.5 -4.0 7.9 -5.0 11.9 15.9
Ext_ar -3.2 co6oCO - -2.9 4.7 8.9 Ext.pr -3.6 - -2.8 -0.2 5.1 -0.2 1.7 3.2

Trunk_l -0.4 7.0 - -0.5 0.6 -2.7 9.3 20.7 Tail.1 -0.0 0.2 -0.1 - 1.7 -0.7 1.2 1.5
Trunk_r -0.5 0.6 -2.7 -0.4 7.0 - 20.7 9.3 Tail_r - 1.7 -0.7 -0.0 0.2 -0.1 1.5 1.2

E_pl -0.2 4.7 -1.3 -1.4 1.4 -0.1 - - E_al -1.3 4.4 - 1.8 -1.2 - -

C.pl - 2.8 -0.2 -1.8 - - - - C_al -0.8 2.9 -0.9 - 4.6 -0.1 - -

L_pl -2.0 5.6 - -1.5 - - L_al -0.7 5.8 -1.5 -0.9 0.4 -1.0 - -

E_pr -1.4 csoo 4.7 -1.3 - - E_ar - 1.8 -1.2 -1.3 4.4 - - -

C_pr -1.8 - - - 2.8 -0.2 - - C_ar - 4.6 -0.1 -0.8 2.9 -0.9 - -

L_pr - - -1.5 -2.0 5.6 - - - L_ar -0.9 0.4 -1.0 -0.7 5.8 -1.5 - -

- Duration: 400 ms

A FLEX.

txiA

fB=uxNpK
—O— EXTp
-o- TAIL

Excitation

Time [ms]

Excitation
0.5

Excitation

Figure 1.5: Run_A15: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al - 8.6 -3.8 -4.3 - -0.1 -0.1 - E_pl - 8.6 -3.8 -4.3 0.1 -0.1 _

C_al - 7.8 -2.9 -0.5 - - 2.9 - C_pl - 7.8 -2.C -0.5 - 2.9 _

L_al - 10.3 - -4.9 6.8 -1.5 - - L_pl - 10.3 -4.9 6.8 -1.5 - -

E_ar -4.3 - -0.1 8.6 -3.8 - -0.1 E_pr -4.3 - -0.1 - 8.6 -3.8 - -0.1
C_ar -0.5 - - - 7.8 -2.9 - 2.9 C_pr -0.5 - - - 7.8 -2.9 _ 2.9
L_ar -4.9 6.8 -1.5 10.3 - - - L_pr -4.9 6.8 -1.5 - 10.3 - -

Flex_al -3.6 12.5 -0.0 8.5 -2.5 12.9 16.8 Flex_pl - 10.3 - 13.5 -4.4 5.3 6.8
Ext_al -0.8 - -4.8 -4.1 0.2 -0.7 2.2 5.1 Ext_pl -2.9 - -0.6 - 7.5 -0.2 4.6 8.5
Flex_ar - 8.5 -2.5 -3.6 12.5 -0.0 16.8 12.9 Flex_pr - 13.5 -4.4 - 10.3 6.8 5.3
Ext_ar -4.1 0.2 -0.7 -0.8 - -4.8 5.1 2.2 Ext_pr - 7.5 -0.2 -2.9 - -0.6 8.5 4.6
TrunkJ -0.6 6.5 -0.3 -3.0 0.8 -3.1 12.6 13.7 TailJ -0.2 0.1 -0.4 -0.6 0.1 -0.0 -1.4 -0.5
Trunk_r -3.0 0.8 -3.1 -0.6 6.5 -0.3 13.7 12.6 Tail_r -0.6 0.1 -0.0 -0.2 0.1 -0.4 -0.5 -1.4

E.pl -0.8 4.0 -1.0 -0.7 - - - - E_al - 0.3 -0.1 -2.0 6.0 -1.1 - -

C.pl - - -0.4 - -0.5 - - C-al -1.5 0.5 -0.8 4.3 -0.6 - -

L_pl -0.1 - -1.2 -0.3 0.0 -0.1 - - L_al -0.1 4.8 -1.9 -1.0 0.2 -1.1 - -

E_pr -0.7 - -0.8 4.0 -1.0 - - E_ar -2.0 6.0 -1.1 - 0.3 -0.1 - -

C_pr - - -0.5 - -0.4 - - C_ar -0.8 4.3 -0.6 -1.5 0.5 - -

L_pr -0.3 0.0 -0.1 -0.1 - -1.2 - - L_ar -1.0 0.2 -1.1 -0.1 4.8 -1.9 - -

Excitation

Time [ms]

0.5 1 1.5

Excitation

Figure 1.6: Run_A.16: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS-al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS.pr
E_al - 8.6 -3.8 -4.3 - -0.1 -0.1 - E_pl _ 8.6 -3.8 -4.3 - -0.1 -0.1 _

C_al - 7.8 -2.9 -0.5 - - 2.9 - C_pl - 7.8 -2.9 -0.5 - 2.9 -

L_al - 10.3 -4.9 6.8 -1.5 - - L_pl - 10.3 -4.9 6.8 -1.5 - -

E_ar -4.3 - -0.1 - 8.6 -3.8 - -0.1 E_pr -4.3 - -0.1 - 8.6 -3.8 - -0.1

C_ar -0.5 - - 7.8 -2.9 - 2.9 C_pr -0.5 - - _ 7.8 -2.9 - 2.9
L_ar -4.9 6.8 -1.5 - 10.3 - - - L_pr -4.9 6.8 -1.5 - 10.3 - -

Flex_al -4.3 0.8 -5.0 - 3.1 -0.8 8.2 8.5 Flex.pl -4.6 0.1 -1.7 - 0.4 4.8 12.5
Ext_al - 12.6 -0.1 -2.1 10.1 -0.1 19.0 6.3 Ext.pl -0.8 - -0.0 -4.9 - -2.8 2.0 1.0

Flex_ar - 3.1 -0.8 -4.3 0.8 -5.0 8.5 8.2 Flex_pr - 0.4 -4.6 0.1 -1.7 12.5 4.8
Ext_ar -2.1 10.1 -0.1 - 12.6 -0.1 6.3 19.0 Ext_pr -4.9 - -2.8 -0.8 - -0.0 1.0 2.0
Trunk_l -0.8 6.5 -1.3 -0.1 - -1.3 -2.7 -5.0 Tail J -0.8 0.2 -0.1 -0.1 3.0 -0.3 0.1 0.2

Trunk_r -0.1 - -1.3 -0.8 6.5 -1.3 -5.0 -2.7 Tail_r -0.1 3.0 -0.3 -0.8 0.2 -0.1 0.2 0.1

E_pl -1.4 0.4 -1.1 -0.4 0.5 - - - E_al -0.0 1.9 -0.1 -1.9 1.8 -1.1 - -

C_pl - 0.6 -0.2 - 2.4 -2.0 - - C_al -0.7 0.2 -1.7 -0.1 1.4 -1.8 - -

L.pl -0.3 2.0 -0.1 -1.7 - -0.2 - - L_al -1.3 - -2.0 -0.9 0.6 -0.4 - -

E_pr -0.4 0.5 -1.4 0.4 -1.1 - - E_ar -1.9 1.8 -1.1 -0.0 1.9 -0.1 - -

C_pr - 2.4 -2.0 - 0.6 -0.2 - - C_ar -0.1 1.4 -1.8 -0.7 0.2 -1.7 - -

L_pr -1.7 - -0.2 -0.3 2.0 -0.1 - - L_ar -0.9 0.6 -0.4 -1.3 - -2.0 - -

Duration: 400 ms

-A— Flex

o Ext
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Figure 1.7: Run_A17: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al - 8.6 -3.8 -4.3 - -0.1 -0.1 - E_pl - 8.6 -3.8 -4.3 - -0.1 -0.1 -

C_al - 7.8 -2.9 -0.5 - - 2.9 - C.pl - 7.8 -2.9 -0.5 - 2.9 -

L_al - 10.3 - -4.9 6.8 -1.5 - - L_pl - 10.3 -4.9 6.8 -1.5 - -

E_ar -4.3 - -0.1 8.6 -3.8 - -0.1 E_pr -4.3 - -0.1 - 8.6 -3.8 - -0.1
C_ar -0.5 _ _ _ 7.8 -2.9 - 2.9 C_pr -0.5 - - 7.8 -2.9 - 2.9
L_ar -4.9 6.8 -1.5 10.3 - - - L_pr -4.9 6.8 -1.5 - 10.3 - -

Flex_al -0.2 - -4.4 -0.7 1.5 -1.7 11.2 16.7 Flex_pl - 1.2 -0.5 -5.0 - -0.5 9.8 9.7
Ext_al -0.2 - -2.9 10.9 -1.2 17.4 8.2 Ext_pl -4.5 1.2 -0.7 9.1 -2.1 14.2 6.2
Flex_ar -0.7 1.5 -1.7 -0.2 - -4.4 16.7 11.2 Flex.pr -5.0 - -0.5 - 1.2 -0.5 9.7 9.8
Ext_ar -2.9 10.9 -1.2 -0.2 - - 8.2 17.4 Ext_pr -0.7 9.1 -2.1 -4.5 1.2 6.2 14.2
Trunk_l - 3.2 - -0.5 - - -2.4 -6.1 TailJ - - -0.5 -0.3 0.1 -0.2 1.6 0.7
Trunk_r -0.5 - - - 3.2 - -6.1 -2.4 Tail_r -0.3 0.1 -0.2 - - -0.5 0.7 1.6

E_pl -1.0 5.3 -1.4 4.4 -0.0 - - E_al -0.5 1.2 -1.7 -1.5 5.9 -0.9 - -

C_pl -0.1 - -0.1 -1.7 1.5 -1.1 - - C_al - 1.7 -0.8 0.7 -0.3 - -

L_pl -0.1 - -0.3 -0.1 6.0 - - - L_al -1.4 3.8 -0.6 -1.3 0.1 - -

E_pr - 4.4 -0.0 -1.0 5.3 -1.4 - - E_ar -1.5 5.9 -0.9 -0.5 1.2 -1.7 - -

C-pr -1.7 1.5 -1.1 -0.1 - -0.1 - - C_ar -0.8 0.7 -0.3 - 1.7 - -

L_pr -0.1 6.0 - -0.1 - -0.3 - - L_ar -1.3 - -0.1 -1.4 3.8 -0.6 - -
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exta
TO?
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Figure 1.8: Run_A18: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS-al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS.pr
E_al - 8.6 -3.8 -4.3 - -0.1 -0.1 - E_pl - 8.6 -3.8 -4.3 - -0.1 -0.1 -

C_al - 7.8 -2.9 -0.5 - - 2.9 - C_pl - 7.8 -2.9 -0.5 _ _ 2.9 -

L_al - 10.3 -4.9 6.8 -1.5 - - L_pl - 10.3 -4.9 6.8 -1.5 - -

E_ar -4.3 - -0.1 - 8.6 -3.8 - -0.1 E_pr -4.3 - -0.1 - 8.6 -3.8 - -0.1
C_ar -0.5 - - 7.8 -2.9 - 2.9 C_pr -0.5 - - - 7.8 -2.9 - 2.9
L_ar -4.9 6.8 -1.5 - 10.3 - - - L_pr -4.9 6.8 -1.5 - 10.3 - -

Flex_al -3.0 - -5.0 -2.0 - - 7.3 4.2 Flex_pl - - -4.4 -3.4 1.3 -1.1 20.0 8.1
Ext_al -0.3 2.6 -1.5 -3.6 1.1 -2.6 1.1 3.3 Ext_pl -1.8 - - - 1.7 -2.7 2.0 3.5

Flex_ar -2.0 - - -3.0 - -5.0 4.2 7.3 Flex.pr -3.4 1.3 -1.1 - - -4.4 8.1 20.0
Ext_ar -3.6 1.1 -2.6 -0.3 2.6 -1.5 3.3 1.1 Ext_pr - 1.7 -2.7 -1.8 - 3.5 2.0
TrunkJ -4.2 0.7 -0.1 6.7 -2.1 -3.4 -5.1 TailJ -0.5 0.1 -0.3 -0.1 0.2 -0.5 -0.2
Trunk_r -0.1 6.7 -2.1 -4.2 0.7 - -5.1 -3.4 Tail_r -0.1 0.2 -0.5 0.1 -0.3 -0.2 -0.5

E_pl -1.5 - - -1.2 0.6 -1.8 - - E_al -1.8 - -2.0 -0.3 - -1.8 - -

C-pl -2.0 - -0.0 -0.5 1.0 -0.3 - - C_al -1.2 5.4 -0.2 -0.0 - -1.1 - -

L_pl -1.1 4.1 -0.4 -0.3 0.2 - - - L_al -1.8 0.6 -1.5 -0.3 to -4 oo - -

E_pr -1.2 0.6 -1.8 -1.5 - - - - E_ar -0.3 - -1.8 -1.8 - -2.0 - -

C_pr -0.5 1.0 -0.3 -2.0 - -0.0 - - C_ar -0.0 - -1.1 -1.2 5.4 -0.2 - -

L_pr -0.3 0.2 -1.1 4.1 -0.4 - - L_ar -0.3 COei -1.8 0.6 -1.5 - -

0.5 1

Excitation

Time [ms]
101 1
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Figure 1.9: Run_A19: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).



APPENDIX I. RESULTS OF CHAP. 7: RUNS All TO A20 273

E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E.pr C_pr L_pr BS_pl BS_pr
E_al - 8.6 -3.8 -4.3 - -0.1 -0.1 - E_pl - 8.6 -3.8 -4.3 - -0.1 -0.1 -

C_al - 7.8 -2.9 -0.5 - - 2.9 - C_pl - 7.8 -2.9 -0.5 - - 2.9 -

L_al - 10.3 -4.9 6.8 -1.5 - - L_pl - 10.3 -4.9 6.8 -1.5 - -

E_ar -4.3 - -0.1 - 8.6 -3.8 - -0.1 E_pr -4.3 - -0.1 - 8.6 -3.8 - -0.1
C_ar -0.5 - - - 7.8 -2.9 - 2.9 C_pr -0.5 - - - 7.8 -2.9 - 2.9
L_ar -4.9 6.8 -1.5 - 10.3 - - - L_pr -4.9 6.8 -1.5 - 10.3 - - -

Flex_al -3.9 - - -1.5 15.0 -1.1 6.2 18.7 Flex.pl - 10.4 -2.9 -1.6 2.4 -0.1 4.7 12.8
Ext_al -0.3 11.2 -3.8 -2.8 12.2 -3.2 3.6 5.8 Ext_pl -2.5 - - 7.2 -2.1 7.4 16.6
Flex_ar -1.5 15.0 -1.1 -3.9 - - 18.7 6.2 Flex_pr -1.6 2.4 -0.1 - 10.4 -2.9 12.8 4.7
Ext_ar -2.8 12.2 -3.2 -0.3 11.2 -3.8 5.8 3.6 Ext_pr - 7.2 -2.1 -2.5 - - 16.6 7.4
Trunk_l -5.0 9.1 -0.9 - 0.8 - 6.1 7.5 Tail J - 3.0 -0.9 -0.1 0.8 -0.5 2.5 2.1
Trunk_r - 0.8 -5.0 9.1 -0.9 7.5 6.1 Tail-r -0.1 0.8 -0.5 - 3.0 -0.9 2.1 2.5

E_pl -0.0 2.1 -2.0 - - - - E_al -1.9 6.0 -0.9 -1.2 5.3 -0.6 - -

C.pl -0.1 - -0.4 - -0.2 - - C_al -0.7 0.8 -1.4 -0.6 3.5 -0.5 - -

L_pl -0.7 - -0.2 4.0 -2.0 - - L_al -0.6 4.2 -0.4 -1.1 0.9 -0.5 - -

E_pr -2.0 - - -0.0 2.1 - - - E_ar -1.2 5.3 -0.6 -1.9 6.0 -0.9 - -

C_pr -0.4 - -0.2 -0.1 - - - - C_ar -0.6 3.5 -0.5 -0.7 0.8 -1.4 - -

L_pr -0.2 4.0 -2.0 -0.7 - - - - L_ar -1.1 0.9 -0.5 -0.6 4.2 -0.4 - -

Duration: 400 ms

Time [ms]

Excitation

Figure 1.10: Run_A.20: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).



274 APPENDIX I. RESULTS OF CHAP. 7: RUNS All TO A20

.

.



Appendix J

Results of chapter 7: Runs B1 to
BIO

275



276 APPENDIX J. RESULTS OF CHAP. 7: RUNS B1 TO BIO

E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - - - -2.0 - 2.0 - E_pl 0.4 - - - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 - 7.0 - C.pl 3.0 - -1.0 - -2.0 - 7.0 -

L_al 13.0 - - - -1.0 - 5.0 - L_pl 13.0 - - - -1.0 - 5.0 -

E_ar - -2.0 - 0.4 - - - 2.0 E_px- - -2.0 - 0.4 - - - 2.0
C_ar - -2.0 - 3.0 - -1.0 - 7.0 C_pr - -2.0 - 3.0 _ -1.0 _ 7.0

L_ar - -1.0 - 13.0 - - - 5.0 L_pr - -1.0 - 13.0 - - - 5.0

Flex_al 0.9 -2.8 -4.4 - - -4.5 8.9 16.7 Flex_pl - -3.0 -1.2 - -0.4 - -4.1 -2.1

Ext_al 1.1 -1.2 -3.6 2.3 - - 2.6 1.6 Ext_pl 7.6 -3.9 -1.7 15.0 -3.4 -4.7 11.7 5.5

Flex.ar - - -4.5 0.9 -2.8 -4.4 16.7 8.9 Flex_pr - -0.4 - - -3.0 -1.2 -2.1 -4.1

Ext_ar 2.3 - - 1.1 -1.2 -3.6 1.6 2.6 Ext_pr 15.0 -3.4 -4.7 7.6 -3.9 -1.7 5.5 11.7

E_pl 3.0 -1.9 -1.6 5.0 -1.1 -0.8 - - E_al 6.0 -0.2 -0.6 3.4 -0.7 -0.2 - -

C_pl 1.5 - - 5.2 - - - - C_al _ -1.9 -0.6 0.2 -1.8 -1.2 - -

L_pl - - - - -0.4 -1.2 - - L_al 0.1 -0.6 -1.5 2.0 -0.7 -1.2 - -

E_pr 5.0 -1.1 -0.8 3.0 -1.9 -1.6 - - E_ar 3.4 -0.7 -0.2 6.0 -0.2 -0.6 - -

C_pr 5.2 - - 1.5 - - - - C_ar 0.2 -1.8 -1.2 - -1.9 -0.6 - -

L_pr - -0.4 -1.2 - - - - - L_ar 2.0 -0.7 -1.2 0.1 -0.6 -1.5 - -

E_trunk_l 0.3 - -2.0 1.6 - -0.3 - - E.tailJ 0.4 -1.5 -1.4 0.8 -1.4 -1.1 - -

C_trunk_l 1.6 -0.8 -1.4 1.2 -1.4 -0.9 - - C-tailJ 4.5 -1.2 -0.2 4.7 -2.0 -0.7 _ _

L_trunkJ - -1.8 -1.6 - -1.3 -1.5 - - L.tailJ 0.0 -0.1 -0.6 4.4 -0.7 -0.8 _

E_trunk_r 1.6 - -0.3 0.3 - -2.0 - - E-tail_r 0.8 -1.4 -1.1 0.4 -1.5 -1.4 - -

C_trunk_r 1.2 -1.4 -0.9 1.6 -0.8 -1.4 - - C_tail_r 4.7 -2.0 -0.7 4.5 -1.2 -0.2 _ _

L_trunk_r - -1.3 -1.5 - -1.8 -1.6 - - L_tail_r 4.4 -0.7 -0.8 0.0 -0.1 -0.6 - -

Excitation Excitation Excitation

Figure J.l: Run_Bl: Neural configuration {top), gait (middle-top), neural activity {middle-
bottom), and effect of the excitation level {bottom).
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E_al (J_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C.pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - - - -2.0 - 2.0 - E_pl 0.4 - - - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 - 7.0 - C_pl 3.0 - -1.0 - -2.0 - 7.0 -

L_al 13.0 - - - -1.0 - 5.0 - L_pl 13.0 - - - -1.0 - 5.0 -

E_ar - -2.0 - 0.4 - - - 2.0 E_pr - -2.0 - 0.4 - - - 2.0
C_ar - -2.0 - 3.0 - -1.0 - 7.0 C_pr - -2.0 - 3.0 - -1.0 - 7.0
L_ar - -1.0 - 13.0 - - - 5.0 L_pr - -1.0 - 13.0 - - - 5.0
Flex_al 4.9 -4.8 -2.9 0.9 -0.7 -3.3 16.2 5.4 Flex.pl - -3.1 -1.1 10.0 -1.1 -3.7 -2.9 -7.1
Ext-al 2.7 -4.8 -2.0 - - - -3.4 -6.6 Ext_pl 6.4 -0.2 -0.9 9.2 -2.1 -1.7 -2.5 -7.5
Flex_ar 0.9 -0.7 -3.3 4.9 -4.8 -2.9 5.4 16.2 Flex_pr 10.0 -1.1 -3.7 - -3.1 -1.1 -7.1 -2.9
Ext_ar - - - 2.7 -4.8 -2.0 -6.6 -3.4 Ext.pr 9.2 -2.1 -1.7 6.4 -0.2 -0.9 -7.5 -2.5

E_pl 5.5 -1.3 -0.1 5.5 -1.5 -0.4 - - E_al 0.8 -1.0 -1.2 - -0.3 -1.2 - -

C_pl - - -1.9 1.9 - -0.4 - - C_al 1.5 -0.1 -1.8 - -1.0 -0.5 - -

L_pl 0.0 -1.7 -0.3 1.7 -0.9 - - - L_al 5.8 -0.7 -0.5 2.6 -0.8 -1.2 - -

E_pr 5.5 -1.5 -0.4 5.5 -1.3 -0.1 - - E_ar - -0.3 -1.2 0.8 -1.0 -1.2 - -

C_pr 1.9 - -0.4 - - -1.9 - - C_ar - -1.0 -0.5 1.5 -0.1 -1.8 - -

L_pr 1.7 -0.9 - 0.0 -1.7 -0.3 - - L_ar 2.6 -0.8 -1.2 5.8 -0.7 -0.5 - -

E.trunkJ 0.8 - -1.7 - -1.4 -0.4 - - E.tailJ 5.5 -2.0 -1.4 2.2 -1.2 -1.8 - -

C-trunkJ - -0.7 -2.0 - -0.4 -1.1 - - C-tailJ 4.3 -0.8 -0.7 5.4 -0.0 -1.1 - -

L_trunk_l - - -1.9 0.6 - - - - L.tail.1 5.3 -1.1 -0.5 - -0.6 -0.5 - -

E_trunk_r - -1.4 -0.4 0.8 - -1.7 - - E_tail_r 2.2 -1.2 -1.8 5.5 -2.0 -1.4 - -

C_trunk_r - -0.4 -1.1 - -0.7 -2.0 - - C_tail_r 5.4 -0.0 -1.1 4.3 -0.8 -0.7 - -

L_trunk_r 0.6 - - - - -1.9 - - L_tail_r - -0.6 -0.5 5.3 -1.1 -0.5 - -

- Duration: 400 ms

Time [ms] Time [ms]

Excitation Excitation Excitation

Figure J.2: Run_B2: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS-pr
E_al 0.4 - -2.0 - 2.0 - E_pl 0.4 - -2.0 2.0 -

C_al 3.0 - -1.0 - -2.0 - 7.0 - C.pl 3.0 - -1.0 _ -2.0 7.0 -

L_al 13.0 - -1.0 - 5.0 - L_pl 13.0 _ -1.0 5.0 -

E_ar - -2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - - 5.0 L_pr - -1.0 13.0 - - 5.0
Flex.al 1.2 -4..1 -4.6 1.2 -1.1 -3.2 -2.5 -7.5 Flex_pl 1.9 -0.3 -3.8 3.6 -2.4 -1.6 -6.4 3.6
Ext_al 9.0 -1.6 -3.3 13.3 - -0.3 4.2 12.6 Ext_pl 15.0 -0.3 -2.0 0.1 -3.7 -4.4 2.3 6.8
Flex_ar 1.2 -1.1 -3.2 1.2 -4.1 -4.6 -7.5 -2.5 Flex.pr 3.6 -2.4 -1.6 1.9 -0.3 -3.8 -3.6 6.4
Ext_ar 13.3 - -0.3 9.0 -1.6 -3.3 12.6 4.2 Ext_pr 0.1 -3.7 -4.4 15.0 -0.3 -2.0 6.8 2.3

E_pl 0.2 -0.1 -0.1 3.0 - - - - E_al 2.7 -0.9 -0.6 2.6 -1.4 -0.4 - -

C.pl 0.4 -1.9 -1.2 0.7 -0.8 -0.0 - - C_al 1.5 -1.0 -0.5 - -0.7 -0.9 - -

L_pl - -0.8 2.8 -1.5 -1.3 - - L_al 5.0 -0.5 -0.6 1.0 -1.6 -0.0 - -

E_pr 3.0 0.2 -0.1 -0.1 - - E_ar 2.6 -1.4 -0.4 2.7 -0.9 -0.6 - -

C_pr 0.7 -0.8 -0.0 0.4 -1.9 -1.2 - - C_ar - -0.7 -0.9 1.5 -1.0 -0.5 - -

L_pr 2.8 -1.5 -1.3 - -0.8 - - - L_ar 1.0 -1.6 -0.0 5.0 -0.5 -0.6 - -

E_trunk_l 4.3 -1.8 -0.3 3.8 -1.1 -1.8 - - E_tailJ - -0.8 -1.8 0.1 -0.8 -1.6 - -

C_trunkJ 3.7 - -1.7 - -1.1 -0.9 - - C_tail_I 2.9 -0.5 -0.3 0.0 -1.3 -1.6 - -

L_trunk_l •<*CDocso - - - - - L_tailJ 4.2 -1.3 -0.8 4.7 -0.8 -1.4 _ _

E_trunk_r 3.8 -1.1 -1.8 4.3 -1.8 -0.3 - - E_tail_r 0.1 -0.8 -1.6 _ -0.8 -1.8 _ _

C_trunk_r - -1.1 -0.9 3.7 - -1.7 - - C-tail_r 0.0 -1.3 -1.6 2.9 -0.5 -0.3 - -

L_trunk_r - - - 0.2 -0.6 -1.4 - - L_tail_r 4.7 -0.8 -1.4 4.2 -1.3 -0.8 - -

Time [ms]

Excitation

1000 1200 1400 1600 1800 2000
Time [ms]

Excitation Excitation

Figure J.3: RunJB3: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS-al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - - - -2.0 2.0 - E_pl 0.4 - - -2.0 2.0 -

C_al 3.0 - -1.0 - -2.0 7.0 - C-pl 3.0 - -1.0 - -2.0 7.0 -

L_al 13.0 - - -1.0 5.0 - L_pl 13.0 - - - -1.0 5.0 -

E_ar - -2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 - - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - 5.0 L_pr - -1.0 13.0 - - 5.0
Flex_al - -3.7 -3.0 - -2.3 -0.2 0.7 2.0 Flex_pl 2.4 - -3.1 8.0 -5.0 -3.3 1.3 2.1
Ext_al - -5.0 -1.9 9.8 -1.4 -1.5 10.6 10.1 Ext_pl 3.9 - -3.0 - -1.2 -2.3 2.9 7.0
Flex_ar - -2.3 -0.2 - -3.7 -3.0 2.0 0.7 Flex_pr 8.0 -5.0 -3.3 2.4 - -3.1 2.1 1.3
Ext_ar 9.8 -1.4 -1.5 - -5.0 -1.9 10.1 10.6 Ext.pr - -1.2 -2.3 3.9 - -3.0 7.0 2.9

E_pl - -0.3 -1.6 5.8 -0.1 -1.6 - - E_al 2.9 -1.9 -1.0 1.2 -0.6 -1.9 - -

C.pl - - -0.1 - -1.1 - - C_al 2.8 -2.0 -1.2 1.5 -1.3 -0.2 - -

L_pl 0.4 -0.0 -0.2 2.7 - -1.3 - - L_al - -2.0 -1.9 4.2 -1.8 -1.0 - -

E_pr 5.8 -0.1 -1.6 - -0.3 -1.6 - - E_ar 1.2 -0.6 -1.9 2.9 -1.9 -1.0 - -

C_pr - -1.1 - - -0.1 - - C_ar 1.5 -1.3 -0.2 2.8 -2.0 -1.2 - -

L_pr 2.7 - -1.3 0.4 <N6oo - - L_ar 4.2 -1.8 -1.0 - -2.0 -1.9 - -

E-trunkJ 0.5 - -1.2 1.6 -0.3 -0.3 - - E_tailJ 0.9 -0.7 3.2 -1.5 -1.6 - -

C_trunkJ 0.1 -0.2 -1.8 - - -1.9 - - C_tail_l 0.8 -0.1 -1.1 3.6 -1.0 -1.1 - -

L_trunk_l 6.0 -1.3 4.8 -1.2 -1.4 - - L_tail_l - -1.6 -2.0 0.1 -0.1 -0.6 - -

E_trunk_r 1.6 -0.3 -0.3 0.5 - -1.2 - - E_tail_r 3.2 -1.5 -1.6 0.9 -0.7 - -

C_trunk_r - - -1.9 0.1 -0.2 -1.8 - - C_tail_r 3.6 -1.0 -1.1 0.8 -0.1 -1.1 - -

L_trunk_r 4.8 -1.2 -1.4 6.0 -1.3 - - L_tail_r 0.1 -0.1 -0.6 - -1.6 -2.0 - -

Duration: 400 ms

Excitation Excitation Excitation

Figure J.4: RunJB4: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - -2.0 2.0 - E_pl 0.4 - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 7.0 - C_pl 3.0 - -1.0 - -2.0 _ 7.0 _

L_al 13.0 - -1.0 5.0 - L_pl 13.0 - -1.0 _ 5.0 _

E_ar - -2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 _ - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 -1.0 - 7.0
L_ar - -1.0 13.0 - - 5.0 L_pr - -1.0 13.0 - - 5.0
Flex_al 5.8 -3.0 -2.0 6.9 -4.4 -3.0 -2.9 -5.9 Flex_pl - -2.8 -3.5 1.2 -2.5 21.3 7.8
Ext_al 5.5 -0.5 -3.9 - -0.1 -4.7 -3.1 -4.7 Ext_pl 4.9 -3.9 -0.3 0.6 -3.2 -1.8 9.9 13.4
Flex_ar 6.9 -4.4 -3.0 5.8 -3.0 -2.0 -5.9 -2.9 Flex_pr 1.2 - -2.5 - -2.8 -3.5 7.8 21.3
Ext_ar - -0.1 -4.7 5.5 -0.5 -3.9 -4.7 -3.1 Ext_pr 0.6 -3.2 -1.8 4.9 -3.9 -0.3 13.4 9.9

E_pl 1.5 -1.6 -0.2 0.6 -1.8 -0.4 - - E_al 5.3 -0.2 - -1.0 -1.1 _ -

C.pl 0.3 -0.2 - -0.1 -1.4 - - C_al 0.8 -1.8 -1.5 4.1 -1.5 -1.5 - -

L_pl 6.0 -1.5 -1.2 4.1 - - - L_al - -0.6 -1.0 1.2 -1.1 -1.2 - -

E_pr 0.6 -1.8 -0.4 1.5 -1.6 -0.2 - - E_ar - -1.0 -1.1 5.3 -0.2 - - -

C_pr - -0.1 -1.4 0.3 -0.2 - - C_ar 4.1 -1.5 -1.5 0.8 -1.8 -1.5 - -

L_pr 4.1 6.0 -1.5 -1.2 - - L_ar 1.2 -1.1 -1.2 - -0.6 -1.0 - -

E.trunkJ 3.6 -2.0 -0.0 5.8 - - - - E_tailJ 3.3 - -0.1 6.0 -0.3 -1.8 - -

C_trunk_l - -0.8 -0.0 3.1 -0.5 -1.8 - - C_tailJ - -0.2 -2.0 2.7 -0.3 -1.4 _ _

L_trunk_l 3.8 -1.7 -0.8 0.7 - -1.5 - - L.tailJ 0.9 -1.6 -1.9 0.1 -1.5 -0.6 _ -

E_trunk_r 5.8 3.6 -2.0 -0.0 - - E_tail_r 6.0 -0.3 -1.8 3.3 -0.1 _ _

C_trunk_r 3.1 -0.5 -1.8 - -0.8 -0.0 - - C_tail_r 2.7 -0.3 -1.4 - -0.2 -2.0 _ _

L_trunk_r 0.7 - -1.5 3.8 -1.7 -0.8 - - L_tail_r 0.1 -1.5 -0.6 0.9 -1.6 -1.9 - -

Excitation

Head

1400 1600 1800 2000
Time [ms]

ExcitationExcitation

Figure J.5: Run_B5: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS.pr
E_al 0.4 - -2.0 2.0 - E_pl 0.4 - - - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 7.0 - C_pl 3.0 - -1.0 - -2.0 - 7.0 -

L_al 13.0 - -1.0 5.0 - L_pl 13.0 - - - -1.0 - 5.0 -

E_ar - -2.0 0.4 - 2.0 E_pr - -2.0 0.4 - - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - 5.0 L_pr - -1.0 13.0 - - - 5.0
Flex_al 0.7 -2.7 -0.0 - -0.5 -0.8 8.2 4.8 Flex.pl 14.3 - -2.3 14.8 -5.0 -2.7 -2.5 -7.5
Ext_al 4.3 - -1.0 9.7 -4.0 -2.7 2.2 5.4 Ext_pl 11.6 -3.9 -1.4 4.9 -1.9 -3.0 4.4 10.3
Flex_ar - -0.5 -0.8 0.7 -2.7 -0.0 4.8 8.2 Flex.pr 14.8 -5.0 -2.7 14.3 - -2.3 -7.5 -2.5
Ext_ar 9.7 -4.0 -2.7 4.3 - -1.0 5.4 2.2 Ext_pr 4.9 -1.9 -3.0 11.6 -3.9 -1.4 10.3 4.4

E_pl 0.6 -1.8 -0.8 6.0 -1.8 -1.4 - - E_al 4.4 -0.3 - -1.6 -0.6 - -

C-pl 0.4 -0.0 -0.2 - -1.6 -0.3 - - C_al 3.1 -0.9 -0.5 4.7 -1.3 -0.7 - -

L_pl 0.5 -0.9 3.4 -0.0 -1.8 - - L_al 0.5 -1.7 -1.3 4.3 -1.1 -0.9 - -

E_pr 00oco 0.6 -1.8 -0.8 - - E_ar - -1.6 -0.6 4.4 -0.3 - - -

C_pr 1.6 -0.3 0.4 -0.0 -0.2 - - C_ar 4.7 -1.3 -0.7 3.1 -0.9 -0.5 - -

L_pr ooo6rrco - -0.5 -0.9 - - L_ar 4.3 -1.1 -0.9 0.5 -1.7 -1.3 - -

E_trunk_l 1.9 -0.3 1.5 -1.8 - - E.tailJ 0.5 -0.1 -1.1 5.4 -1.0 -0.8 - -

C_trunk_l 3.1 -0.6 -0.3 1 oo o - - C_tail_l 5.6 -1.0 -1.9 3.2 - -1.0 - -

L_trunk_l 2.6 2.8 -0.2 - - L.tailJ - - -1.4 0.9 -1.8 -1.6 - -

E_trunk_r 1.5 -1.8 1.9 -0.3 - - E_tail_r 5.4 -1.0 -0.8 0.5 -0.1 -1.1 - -

C_trunk_r 1.8 -0.7 3.1 -0.6 -0.3 - - C_tail_r 3.2 - -1.0 5.6 -1.0 -1.9 - -

L_trunk_r 2.8 -0.2 2.6 - - L_tail_r 0.9 -1.8 -1.6 - - -1.4 - -

Excitation Excitation

Time [ms]

0.5 1
Excitation

100
1000 1200 1400 1600 1800 2000

Time [ms]

Figure J.6: Run_B6: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C.al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - - -2.0 2.0 - E_pl 0.4 - -2.0 2.0 -

C_al 3.0 - -1.0 - -2.0 7.0 - C.pl 3.0 - -1.0 - -2.0 7.0 _

L_al 13.0 - - - -1.0 5.0 - L_pl 13.0 _ -1.0 5.0 -

E_ar - -2.0 0.4 - - 2.0 E_pr - -2.0 0.4 - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - 5.0 L_pr - -1.0 13.0 - - 5.0
Flex_al - -2.9 -1.9 - -4.2 -1.5 3.5 5.8 Flex_pl 0.8 - -1.0 13.0 -1.9 -2.6 -6.2 -3.8

Ext_al 11.6 -2.3 -4.4 10.4 -4.3 -4.5 -3.0 -3.0 Ext.pl 11.4 -1.7 -2.3 12.6 -2.2 -2.4 -2.6 -1.4
Flex_ar - -4.2 -1.5 - -2.9 -1.9 5.8 3.5 Flex_pr 13.0 -1.9 -2.6 0.8 - -1.0 -3.8 -6.2

Ext_ar 10.4 -4.3 -4.5 11.6 -2.3 -4.4 -3.0 -3.0 Ext_pr 12.6 -2.2 -2.4 11.4 -1.7 -2.3 -1.4 -2.6

E.pl - - -0.4 - -1.6 -1.0 - - E_al 0.0 -1.8 -0.6 - -2.0 -0.9 - -

C.pl 2.7 -1.7 -1.9 5.1 -1.1 -0.7 - - C_al 3.2 -0.5 - -1.8 -0.3 _ _

L_pl - -0.8 -0.8 2.4 -0.6 -1.5 - - L_al 2.3 -0.3 -1.8 1.4 -1.7 -0.0 - -

E_pr - -1.6 -1.0 - - -0.4 - - E_ar - -2.0 -0.9 0.0 -1.8 -0.6 - -

C_pr 5.1 -1.1 -0.7 2.7 -1.7 -1.9 - - C_ar - -1.8 -0.3 3.2 -0.5 - -

L_pr 2.4 -0.6 -1.5 - -0.8 -0.8 - - L_ar 1.4 -1.7 -0.0 2.3 -0.3 -1.8 - -

E_trunk_l 4.0 -0.2 -0.2 0.3 - -1.0 - - E-tailJ 0.6 -0.8 -0.9 _ -1.1 -1.6 - -

C_trunkJ 5.4 - -1.1 - - -1.0 - - C_tail_l 0.8 -1.1 -0.6 0.2 -1.3 -1.8 _ _

L_trunk_l - -0.3 -0.4 3.3 -0.7 -0.6 - - L_tail_l 3.6 - -1.4 3.6 -1.5 -0.8 - -

E_trunk_r 0.3 - -1.0 4.0 -0.2 -0.2 - - E_tail_r - -1.1 -1.6 0.6 -0.8 -0.9 _ _

C_trunk_r - - -1.0 5.4 - -1.1 - - C_tail_r 0.2 -1.3 -1.8 0.8 -1.1 -0.6 _ _

L_trunk_r 3.3 -0.7 -0.6 - oCOo - - L_tail_r 3.6 -1.5 -0.8 3.6 - -1.4 - -

Figure J.7: RunJ37: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - - - -2.0 2.0 - E_pl 0.4 - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 7.0 - C-pl 3.0 - -1.0 - -2.0 - 7.0 _

L_al 13.0 - - - -1.0 5.0 - L_pl 13.0 - -1.0 - 5.0 -

E_ar - -2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 - - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - 5.0 L_pr - -1.0 13.0 - - - 5.0
Flex_al 4.2 -4.4 -2.0 3.4 -2.7 -3.6 7.9 5.3 Flex_pl 6.7 - -5.0 0.9 -3.5 -1.2 -2.5 -7.5
Ext_al - -2.8 -2.9 13.2 -5.0 -0.4 -3.7 -3.9 Ext_pl 0.5 -0.1 -2.0 11.3 -0.6 -4.9 -5.8 -4.2
Flex_ar 3.4 -2.7 -3.6 4.2 -4.4 -2.0 5.3 7.9 Flex.pr 0.9 -3.5 -1.2 6.7 - -5.0 -7.5 -2.5
Ext_ar 13.2 -5.0 -0.4 - -2.8 -2.9 -3.9 -3.7 Ext_pr 11.3 -0.6 -4.9 0.5 -0.1 -2.0 -4.2 -5.8

E_pl - - - 0.1 -1.4 -0.2 - - E_al 5.4 -1.0 -1.0 - -0.6 -0.6 - -

C_pl 0.2 -1.0 -0.0 0.3 -0.9 - - C_al 0.4 -0.8 -0.6 - - -0.3 - -

L_pl 4.4 - -0.4 - -0.1 -0.2 - - L_al 0.8 -1.2 -0.8 - - -0.1 - -

E_pr 0.1 -1.4 -0.2 - - - - E_ar - -0.6 -0.6 5.4 -1.0 -1.0 - -

C_pr 0.3 -0.9 0.2 -1.0 -0.0 - - C_ar - -0.3 0.4 -0.8 -0.6 - -

L_pr - -0.1 -0.2 4.4 - -0.4 - - L_ar - -0.1 0.8 -1.2 -0.8 - -

E_trunk_l 0.1 -1.9 -0.1 0.6 - -0.6 - - E_tail_l 0.7 -0.7 -0.2 - -2.0 -0.9 - -

C_trunk_l 0.3 - -0.2 0.5 - -0.8 - - C_tail_l - -0.4 -0.2 0.5 -0.5 -2.0 - -

L_trunk_l 3.2 - -0.9 5.6 -1.9 - - L_tail J 2.9 -0.8 -1.3 1.4 -1.2 -0.4 - -

E_trunk_r 0.6 - -0.6 0.1 -1.9 -0.1 - - E_tail_r - -2.0 -0.9 0.7 -0.7 -0.2 - -

C_trunk_r 0.5 - -0.8 0.3 - -0.2 - - C_tail_r 0.5 -0.5 -2.0 - -0.4 -0.2 - -

L_trunk_r 5.6 -1.9 3.2 - -0.9 - - L_tail_r 1.4 -1.2 -0.4 2.9 -0.8 -1.3 - -

Figure J.8: Run_B8: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).



284 APPENDIX J. RESULTS OF CHAP. 7: RUNS B1 TO BIO

E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS -Pr
E_al 0.4 - - - -2.0 - 2.0 - E_pl 0.4 - -2.0 2.0 -

C.al 3.0 - -1.0 - -2.0 - 7.0 - C_pl 3.0 - -1.0 - -2.0 7.0 -

L_al 13.0 - - -1.0 - 5.0 - L_pl 13.0 - -1.0 5.0 -

E_ar - -2.0 0.4 - - - 2.0 E_pr - -2.0 0.4 - - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 - -1.0 - 7.0
L_ar - -1.0 13.0 - - - 5.0 L_pr - -1.0 13.0 - - 5.0

Flex_al - -4.3 -4.1 2.8 - -5.0 -1.8 -5.4 Flex_pl 8.3 -0.2 -2.1 6.5 - -3.5 8.3 3.2
Ext_al 3.8 -0.0 -3.5 1.0 -1.6 - -6.1 -3.4 Ext_pl 2.0 -3.2 -3.2 0.2 -1.1 -1.1 1.9 1.5
Flex_ar 2.8 - -5.0 - -4.3 -4.1 -5.4 -1.8 Flex.pr 6.5 - -3.5 8.3 -0.2 -2.1 3.2 8.3
Ext_ar 1.0 -1.6 3.8 -0.0 -3.5 -3.4 -6.1 Ext_pr 0.2 -1.1 -1.1 2.0 -3.2 -3.2 1.5 1.9

E_pl 5.2 to o o 3.7 -0.9 - - - E_al 3.6 -0.4 -2.0 0.1 -1.5 - -

C.pl - - -0.9 5.6 -1.5 -0.5 - - C_al - -1.0 -1.2 - -1.2 -0.5 - -

L_pl 5.8 -0.7 3.7 -0.0 -1.6 - - L_al 5.6 -1.2 -1.6 6.0 -0.6 -2.0 - -

E_pr 3.7 -0.9 5.2 -2.0 -0.4 - - E_ar 0.1 -1.5 3.6 -0.4 -2.0 - -

C_pr 5.6 -1.5 -0.5 - - -0.9 - - C_ar - -1.2 -0.5 - -1.0 -1.2 - -

L_pr 3.7 -0.0 -1.6 5.8 -0.7 - - - L_ar 6.0 -0.6 -2.0 5.6 -1.2 -1.6 - -

E_trunk_l 1.3 -0.3 -1.2 2.3 -0.4 -0.4 - - E_tailJ 2.0 -1.2 -1.2 2.5 -1.6 -0.9 - -

C_t.runk_l 2.8 -1.8 -0.2 - - -2.0 - - CLtail J 3.8 -1.1 -1.4 3.9 -1.9 -0.7 - -

L_trunk_l 0.5 -2.0 -1.2 - -0.1 -1.2 - - L_tail_l - -0.7 -1.5 0.2 -1.3 -0.6 - -

E_trunk_r 2.3 -0.4 -0.4 1.3 -0.3 -1.2 - - E_tail_r 2.5 -1.6 -0.9 2.0 -1.2 -1.2 - -

C_trunk_r - - -2.0 2.8 -1.8 -0.2 - - C_tail_r 3.9 -1.9 -0.7 3.8 -1.1 -1.4 - -

L_trunk_r - -0.1 -1.2 0.5 -2.0 -1.2 - - L_tail_r 0.2 -1.3 -0.6 - -0.7 -1.5 - -

Time

Excitation Excitation

1200 1400 1600 1800 2000

Time [ms]

Head

Excitation

Figure J.9: RunJB9: Neural configuration {top), gait {middle-top), neural activity {middle-
bottom), and effect of the excitation level {bottom).
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E_al C_al L_al E_ar C_ar L_ar BS_al BS_ar E_pl C_pl L_pl E_pr C_pr L_pr BS_pl BS_pr
E_al 0.4 - -2.0 2.0 - E_pl 0.4 - -2.0 - 2.0 -

C_al 3.0 - -1.0 - -2.0 7.0 - C_pl 3.0 - -l.C - -2.0 _ 7.0 -

L_al 13.0 - -1.0 5.0 - L_pl 13.0 - -1.0 - 5.0 -

E_ar - -2.0 0.4 - - 2.0 E_pr - -2.0 0.4 - - 2.0
C_ar - -2.0 3.0 - -1.0 - 7.0 C_pr - -2.0 3.0 -1.0 - 7.0
L_ar - -1.0 13.0 - - 5.0 L_pr - -1.0 13.0 - - 5.0
Flex_al - -1.3 -4.7 4.9 -1.1 -3.1 -0.8 -2.4 Flex.pl 0.4 -0.7 -2.8 15.0 -1.9 2.8 2.5
Ext_al 0.8 - -0.7 2.3 -3.0 -0.6 -2.5 -7.5 Ext_pl 0.6 - -0.5 10.4 -0.9 -1.2 -0.1 -0.2
Flex_ar 4.9 -1.1 -3.1 - -1.3 -4.7 -2.4 -0.8 Flex_pr 15.0 - -1.9 0.4 -0.7 -2.8 2.5 2.8
Ext_ar 2.3 -3.0 -0.6 0.8 - -0.7 -7.5 -2.5 Ext.pr 10.4 -0.9 -1.2 0.6 -0.5 -0.2 -0.1

E_pl 3.8 -1.9 -0.5 - - -1.8 - - E_al 5.4 -0.3 -0.0 - -0.5 -1.0 - -

C_pl - -0.7 -1.0 5.0 -0.4 -0.8 - - C_al 6.0 -0.5 - -1.3 -0.0 - -

L_pl - -1.2 -0.7 - -0.6 - - L_al - -1.4 -0.1 - -1.7 -1.9 - -

E_pr - -1.8 3.8 -1.9 -0.5 - - E_ar - -0.5 -1.0 5.4 -0.3 -0.0 - -

C_pr 5.0 -0.4 -0.8 - -0.7 -1.0 - - C_ar - -1.3 -0.0 6.0 -0.5 - - -

L_pr - -0.6 - -1.2 -0.7 - - L_ar - -1.7 -1.9 - -1.4 -0.1 - -

E_trunk_l 4.4 -0.0 - -0.2 - - E_tailJ - -0.2 -1.1 - -0.9 -1.3 - -

C_trunk_l 1.2 -1.4 - -0.4 -1.7 - - C_tail_l - -1.2 -0.4 1.9 -0.6 -0.8 - -

L_trunk_l 4.1 -1.6 -0.7 0.6 -1.5 -1.7 - - L_tail_l 0.6 -1.6 -1.6 0.2 -1.1 -0.1 - -

E_trunk_r 0.2 4.4 -0.0 - - E_tail_r - -0.9 -1.3 - -0.2 -1.1 - -

C_trunk_r - -0.4 -1.7 1.2 -1.4 - - C_tail_r 1.9 -0.6 -0.8 - -1.2 -0.4 - -

L_trunk_r 0.6 -1.5 -1.7 4.1 -1.6 -0.7 - - L_tail_r 0.2 -1.1 -0.1 0.6 -1.6 -1.6 - -

I0'
T3 0.4
0)
d)
Q.0.3
cn

0.5 1

Excitation

Figure J.10: RunJBlO: Neural configuration (top), gait (middle-top), neural activity (middle-
bottom), and effect of the excitation level (bottom).
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