8 research outputs found

    Lifting-based subdivision wavelets with geometric constraints.

    Get PDF
    Qin, Guiming."August 2010."Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references (p. 72-74).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.5Chapter 1.1 --- B splines and B-splines surfaces --- p.5Chapter 1. 2 --- Box spline --- p.6Chapter 1. 3 --- Biorthogonal subdivision wavelets based on the lifting scheme --- p.7Chapter 1.4 --- Geometrically-constrained subdivision wavelets --- p.9Chapter 1.5 --- Contributions --- p.9Chapter 2 --- Explicit symbol formulae for B-splines --- p.11Chapter 2. 1 --- Explicit formula for a general recursion scheme --- p.11Chapter 2. 2 --- Explicit formulae for de Boor algorithms of B-spline curves and their derivatives --- p.14Chapter 2.2.1 --- Explicit computation of de Boor Algorithm for Computing B-Spline Curves --- p.14Chapter 2.2.2 --- Explicit computation of Derivatives of B-Spline Curves --- p.15Chapter 2. 3 --- Explicit power-basis matrix fomula for non-uniform B-spline curves --- p.17Chapter 3 --- Biorthogonal subdivision wavelets with geometric constraints --- p.23Chapter 3. 1 --- Primal subdivision and dual subdivision --- p.23Chapter 3. 2 --- Biorthogonal Loop-subdivision-based wavelets with geometric constraints for triangular meshes --- p.24Chapter 3.2.1 --- Loop subdivision surfaces and exact evaluation --- p.24Chapter 3.2.2 --- Lifting-based Loop subdivision wavelets --- p.24Chapter 3.2.3 --- Biorthogonal Loop-subdivision wavelets with geometric constraints --- p.26Chapter 3. 3 --- Biorthogonal subdivision wavelets with geometric constraints for quadrilateral meshes --- p.35Chapter 3.3.1 --- Catmull-Clark subdivision and Doo-Sabin subdivision surfaces --- p.35Chapter 3.3.1.1 --- Catmull-Clark subdivision --- p.36Chapter 3.3.1.2 --- Doo-Sabin subdivision --- p.37Chapter 3.3.2 --- Biorthogonal subdivision wavelets with geometric constraints for quadrilateral meshes --- p.38Chapter 3.3.2.1 --- Biorthogonal Doo-Sabin subdivision wavelets with geometric constraints --- p.38Chapter 3.3.2.2 --- Biorthogonal Catmull-Clark subdivision wavelets with geometric constraints --- p.44Chapter 4 --- Experiments and results --- p.49Chapter 5 --- Conclusions and future work --- p.60Appendix A --- p.62Appendix B --- p.67Appendix C --- p.69Appendix D --- p.71References --- p.7

    Modelado jerárquico de objetos 3D con superficies de subdivisión

    Get PDF
    Las SSs (Superficies de Subdivisión) son un potente paradigma de modelado de objetos 3D (tridimensionales) que establece un puente entre los dos enfoques tradicionales a la aproximación de superficies, basados en mallas poligonales y de parches alabeados, que conllevan problemas uno y otro. Los esquemas de subdivisión permiten definir una superficie suave (a tramos), como las más frecuentes en la práctica, como el límite de un proceso recursivo de refinamiento de una malla de control burda, que puede ser descrita muy compactamente. Además, la recursividad inherente a las SSs establece naturalmente una relación de anidamiento piramidal entre las mallas / NDs (Niveles de Detalle) generadas/os sucesivamente, por lo que las SSs se prestan extraordinariamente al AMRO (Análisis Multiresolución mediante Ondículas) de superficies, que tiene aplicaciones prácticas inmediatas e interesantísimas, como la codificación y la edición jerárquicas de modelos 3D. Empezamos describiendo los vínculos entre las tres áreas que han servido de base a nuestro trabajo (SSs, extracción automática de NDs y AMRO) para explicar como encajan estas tres piezas del puzzle del modelado jerárquico de objetos de 3D con SSs. El AMRO consiste en descomponer una función en una versión burda suya y un conjunto de refinamientos aditivos anidados jerárquicamente llamados "coeficientes ondiculares". La teoría clásica de ondículas estudia las señales clásicas nD: las definidas sobre dominios paramétricos homeomorfos a R" o (0,1)n como el audio (n=1), las imágenes (n=2) o el vídeo (n=3). En topologías menos triviales, como las variedades 2D) (superficies en el espacio 3D), el AMRO no es tan obvio, pero sigue siendo posible si se enfoca desde la perspectiva de las SSs. Basta con partir de una malla burda que aproxime a un bajo ND la superficie considerada, subdividirla recursivamente y, al hacerlo, ir añadiendo los coeficientes ondiculares, que son los detalles 3D necesarios para obtener aproximaciones más y más finas a la superficie original. Pasamos después a las aplicaciones prácticas que constituyen nuestros principal desarrollo original y, en particular, presentamos una técnica de codificación jerárquica de modelos 3D basada en SSs, que actúa sobre los detalles 3D mencionados: los expresa en un referencial normal loscal; los organiza según una estructura jerárquica basada en facetas; los cuantifica dedicando menos bits a sus componentes tangenciales, menos energéticas, y los "escalariza"; y los codifica dinalmente gracias a una técnica similar al SPIHT (Set Partitioning In Hierarchical Tress) de Said y Pearlman. El resultado es un código completamente embebido y al menos dos veces más compacto, para superficies mayormente suaves, que los obtenidos con técnicas de codificación progresiva de mallas 3D publicadas previamente, en las que además los NDs no están anidados piramidalmente. Finalmente, describimos varios métodos auxiliares que hemos desarrollado, mejorando técnicas previas y creando otras propias, ya que una solución completa al modelado de objetos 3D con SSs requiere resolver otros dos problemas. El primero es la extracción de una malla base (triangular, en nuestro caso) de la superficie original, habitualmente dada por una malla triangular fina con conectividad arbitraria. El segundo es la generación de un remallado recursivo con conectividad de subdivisión de la malla original/objetivo mediante un refinamiento recursivo de la malla base, calculando así los detalles 3D necesarios para corregir las posiciones predichas por la subdivisión para nuevos vértices

    Biorthogonal Wavelets Based on Gradual Subdivision of Quadrilateral Meshes

    No full text
    This paper introduces a new biorthogonal wavelet based on a variant of root 2 subdivision by using the lifting scheme, The greatest advantage of this wavelet is its very slow gradual refinement for quadrilateral meshes, which offers the biggest number of resolution levels to control a quadrilateral mesh. Moreover, the resulting wavelet transforms have a linear computational complexity, as they are composed of local and in-place lifting operations only. Feature lines can also be effectively integrated into the wavelet transforms as self-governed boundary curves. The introduced wavelet analysis can be used in a variety of applications such as progressive transmission, data compression, shape approximation and multi resolution rendering. The experiments have shown sufficient stability as well as better performance of the introduced wavelet analysis, as compared to the existing wavelet analyses for quadrilateral meshes of arbitrary topology. (C) 2007 Elsevier B.V. All rights reserved

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    Conception, verification and application of innovative techniques to study active volcanoes

    Get PDF

    Micromechanical Study of Rock Fracture and Fragmentation under Dynamic Loads using Discrete Element Method

    Get PDF
    The study presented in this thesis aims to numerically explore the micro-mechanisms underlying rock fracture and fragmentation under dynamic loading. The approach adopted is based on the Discrete Element Method (DEM) coupled to the Cohesive Process Zone (CPZ) theory. It assumes rock material as assemblage of irregular-sized deformable fragments joining together at their cohesive boundaries. The simulation, which is referred to as Cohesive Fragment Model (CFM), takes advantage of DEM particle/contact logic to handle the fragments and boundaries in between. In this idealization, mechanical properties of particle and more dominantly those of contact control macroscopic response of the particle assemblage. A rate-dependent orthotropic cohesive law is developed for DEM contacts to capture rock material specific features, e.g. brittleness, anisotropy and rate-dependency. Rock experimental behavior is then modeled in order to assess individually the sensitivity of results to grain size, confining pressure, micromechanical parameters, stored strain energy, loading rate etc. The thesis is organized to approach the problem systematically. First, CFM application for static analysis is examined. It is shown that CFM quantitatively and qualitatively predicts compressive and tensile failure of hard and soft rocks as well as shear strength, dilatancy and degradation of rough rock joints. CFM micro-parameters, i.e., stiffness of particle and strength, stiffness, and friction of contact are calibrated using a combination of statistical disciplines and original closed-form expressions. The calibration process provides useful physical interpretation for each micro-parameter in terms of standard rock mechanical properties. These interpretations enable to understand how macroscopic behavior of rock material originates from its mineral microstructure. Energy needed to fully open a contact, the contact energy numerically represents material fracture energy in CFM. Experimental investigations suggest that fracture energy is independent of loading rate in quasi-static circumstances. Thus, contact energy is simply assumed as constant in static analysis. However, simulation on fast fracturing by CFM warns that this assumption causes serious deviations in fracture dynamic analysis. Laboratory observations reveal that fast-moving fracture consumes more energy than slow-moving one does. This inspires to consider contact energy as variable and rate-dependent to provide the model with the appropriate prediction of the fracture energy release process. Applying this new approach, fracture behavior of PMMA plates is investigated under different levels of stored strain energy. As the final stage, dynamic fracture toughness of rock samples, measured by the split-Hopkinson pressure bar test, is simulated and promising results are obtained. They demonstrate how numerical modeling can practically aid experimental methods in terms of measurement verification, error estimation, and performing appropriate corrections. The studies suggest that DEM is an effective and convenient tool to investigate fracture and fragmentation problems. While predictions by continuum models are restricted only to crack initiation, simulation by DEM made it possible to track both the initiation and progression of fracture over time by following consecutive damage of contacts. Moreover, the research specifically demonstrates that the proposed contact model properly predicts the experimental behavior of rock fracture under static and dynamic loading. This result verifies the model validity and adequacy for rock fracture analysis
    corecore