64 research outputs found

    Advancing Musculoskeletal Robot Design for Dynamic and Energy-Efficient Bipedal Locomotion

    Get PDF
    Achieving bipedal robot locomotion performance that approaches human performance is a challenging research topic in the field of humanoid robotics, requiring interdisciplinary expertise from various disciplines, including neuroscience and biomechanics. Despite the remarkable results demonstrated by current humanoid robots---they can walk, stand, turn, climb stairs, carry a load, push a cart---the versatility, stability, and energy efficiency of humans have not yet been achieved. However, with robots entering our lives, whether in the workplace, in clinics, or in normal household environments, such improvements are increasingly important. The current state of research in bipedal robot locomotion reveals that several groups have continuously demonstrated enhanced locomotion performance of the developed robots. But each of these groups has taken a unilateral approach and placed the focus on only one aspect, in order to achieve enhanced movement abilities;---for instance, the motion control and postural stability or the mechanical design. The neural and mechanical systems in human and animal locomotion, however, are strongly coupled and should therefore not be treated separately. Human-inspired musculoskeletal design of bipedal robots offers great potential for enhanced dynamic and energy-efficient locomotion but also imposes major challenges for motion planning and control. In this thesis, we first present a detailed review of the problems related to achieving enhanced dynamic and energy-efficient bipedal locomotion, from various important perspectives, and examine the essential properties of the human locomotory apparatus. Subsequently, existing insights and approaches from biomechanics, to understand the neuromechanical motion apparatus, and from robotics, to develop more human-like robots that can move in our environment, are discussed in detail. These thorough investigations of the interrelated essential design decisions are used to develop a novel design for a musculoskeletal bipedal robot, BioBiped1, such that, in the long term, it is capable of realizing dynamic hopping, running, and walking motions. The BioBiped1 robot features a highly compliant tendon-driven actuation system that mimics key functionalities of the human lower limb system. In experiments, BioBiped1's locomotor function for the envisioned gaits is validated globally. It is shown that the robot is able to rebound passively, store and release energy, and actively push off from the ground. The proof of concept of BioBiped1's locomotor function, however, marks only the starting point for our investigations, since this novel design concept opens up a number of questions regarding the required design complexity for the envisioned motions and the appropriate motion generation and control concept. For this purpose, a simulator specifically designed for the requirements of musculoskeletally actuated robotic systems, including sufficiently realistic ground reaction forces, is developed. It relies on object-oriented design and is based on a numerical solver, without model switching, to enable the analysis of impact peak forces and the simulation of flight phases. The developed library also contains the models of the actuated and passive mono- and biarticular elastic tendons and a penalty-based compliant contact model with nonlinear damping, to incorporate the collision, friction, and stiction forces occurring during ground contact. Using these components, the full multibody system (MBS) dynamics model is developed. To ensure a sufficiently similar behavior of the simulated and the real musculoskeletal robot, various measurements and parameter identifications for sub-models are performed. Finally, it is shown that the simulation model behaves similarly to the real robot platform. The intelligent combination of actuated and passive mono- and biarticular tendons, imitating important human muscle groups, offers tremendous potential for improved locomotion performance but also requires a sophisticated concept for motion control of the robot. Therefore, a further contribution of this thesis is the development of a centralized, nonlinear model-based method for motion generation and control that utilizes the derived detailed dynamics models of the implemented actuators. The concept is used to realize both computer-generated hopping and human jogging motions. Additionally, the problem of appropriate motor-gear unit selection prior to the robot's construction is tackled, using this method. The thesis concludes with a number of simulation studies in which several leg actuation designs are examined for their optimality with regard to systematically selected performance criteria. Furthermore, earlier paradoxical biomechanical findings about biarticular muscles in running are presented and, for the first time, investigated by detailed simulation of the motion dynamics. Exploring the Lombard paradox, a novel reduced and energy-efficient locomotion model without knee extensor has been simulated successfully. The models and methods developed within this thesis, as well as the insights gained, are already being employed to develop future prototypes. In particular, the optimal dimensioning and setting of the actuators, including all mono- and biarticular muscle-tendon units, are based on the derived design guidelines and are extensively validated by means of the simulation models and the motion control method. These developments are expected to significantly enhance progress in the field of bipedal robot design and, in the long term, to drive improvements in rehabilitation for humans through an understanding of the neuromechanics underlying human walking and the application of this knowledge to the design of prosthetics

    The biomechanics of human locomotion

    Get PDF
    Includes bibliographical references. The thesis on CD-ROM includes Animate, GaitBib, GaitBook and GaitLab, four quick time movies which focus on the functional understanding of human gait. The CD-ROM is available at the Health Sciences Library

    筋骨格ロボットによる棒高跳び実現のための姿勢・ポール弾性特性活用戦略

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 國吉 康夫, 東京大学教授 中村 仁彦, 東京大学教授 稲葉 雅幸, 東京大学教授 原田 達也, 東京大学講師 新山 龍馬University of Tokyo(東京大学

    Local Online Motor Babbling: Learning Motor Abundance of a Musculoskeletal Robot Arm

    Get PDF
    Motor babbling and goal babbling has been used for sensorimotor learning of highly redundant systems in soft robotics. Recent works in goal babbling have demonstrated successful learning of inverse kinematics (IK) on such systems, and suggest that babbling in the goal space better resolves motor redundancy by learning as few yet efficient sensorimotor mappings as possible. However, for musculoskeletal robot systems, motor redundancy can provide useful information to explain muscle activation patterns, thus the term motor abundance. In this work, we introduce some simple heuristics to empirically define the unknown goal space, and learn the IK of a 10 DoF musculoskeletal robot arm using directed goal babbling. We then further propose local online motor babbling guided by Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which bootstraps on the goal babbling samples for initialization, such that motor abundance can be queried online for any static goal. Our approach leverages the resolving of redundancies and the efficient guided exploration of motor abundance in two stages of learning, allowing both kinematic accuracy and motor variability at the queried goal. The result shows that local online motor babbling guided by CMA-ES can efficiently explore motor abundance at queried goal positions on a musculoskeletal robot system and gives useful insights in terms of muscle stiffness and synergy.IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS2019), November 4 - 8, 2019, Macau, Chin

    Human Movement Variability, Nonlinear Dynamics, and Pathology: Is There A Connection?

    Get PDF
    Fields studying movement generation, including robotics, psychology, cognitive science, and neuroscience utilize concepts and tools related to the pervasiveness of variability in biological systems. The concept of variability and the measures for nonlinear dynamics used to evaluate this concept open new vistas for research in movement dysfunction of many types. This review describes innovations in the exploration of variability and their potential importance in understanding human movement. Far from being a source of error, evidence supports the presence of an optimal state of variability for healthy and functional movement. This variability has a particular organization and is characterized by a chaotic structure. Deviations from this state can lead to biological systems that are either overly rigid and robotic or noisy and unstable. Both situations result in systems that are less adaptable to perturbations, such as those associated with unhealthy pathological states or absence of skillfulness
    corecore