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Local Online Motor Babbling: Learning Motor Abundance of a
Musculoskeletal Robot Arm*

Zinan Liu1, Arne Hitzmann2, Shuhei Ikemoto3, Svenja Stark1, Jan Peters1, Koh Hosoda2

Abstract— Motor babbling and goal babbling has been used
for sensorimotor learning of highly redundant systems in soft
robotics. Recent works in goal babbling have demonstrated
successful learning of inverse kinematics (IK) on such systems,
and suggest that babbling in the goal space better resolves
motor redundancy by learning as few yet efficient sensorimo-
tor mappings as possible. However, for musculoskeletal robot
systems, motor redundancy can provide useful information
to explain muscle activation patterns, thus the term motor
abundance. In this work, we introduce some simple heuristics
to empirically define the unknown goal space, and learn the
IK of a 10 DoF musculoskeletal robot arm using directed goal
babbling. We then further propose local online motor babbling
guided by Covariance Matrix Adaptation Evolution Strategy
(CMA-ES), which bootstraps on the goal babbling samples
for initialization, such that motor abundance can be queried
online for any static goal. Our approach leverages the resolving
of redundancies and the efficient guided exploration of motor
abundance in two stages of learning, allowing both kinematic
accuracy and motor variability at the queried goal. The result
shows that local online motor babbling guided by CMA-ES can
efficiently explore motor abundance at queried goal positions
on a musculoskeletal robot system and gives useful insights in
terms of muscle stiffness and synergy.

I. INTRODUCTION

The human body is an over-actuated system. Not only does
it have a higher dimension in motor space than the degrees
of freedom (DoF) in the action space, i.e., more muscles
than joints, it also has more DoF than necessary to achieve
a certain motor task. How the effector redundant system
adaptively coordinates movements remains a challenging
problem. In the field of robot learning, when assuming rigid
body links with pure rotation and translation [1], model
learning is commonly used to learn the forward or inverse
models of kinematics and dynamics for accurate yet agile
control [2]. However, for biomechanical and soft robots
such as the elephant trunks [3], or musculoskeletal systems
[4] [5], where models based on rigid body links are no
longer available, learning becomes difficult due to the highly
redundant and non-stationary nature of such systems.
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Fig. 1. 10 DoF musculoskeletal robot arm actuated by 24 pneumatic arti-
ficial muscles (PAMs), with an empirically defined goal space in reference
to the red marker, visualized in rviz.

This paper investigates the reaching skills and motor
variability of the reached points on a musculoskeletal robot
arm [6], an over-actuated system of 24 Pneumatic Artificial
Muscles (PAMs) actuating 10 DoFs, as shown in Fig. 1.
Traditionally, this problem could be addressed by learning
the forward kinematics using motor babbling, and explore
the motor-sensory mapping from scratch [7]–[9] until the
robot can predict the effects of its actions. However au-
tonomous exploration without prior knowledge in motor
babbling doesn’t scale well to high dimensional sensorimotor
space, due to the rather inefficient sampling of random motor
commands in over-actuated systems. An alternative in [10]
suggests that learning inverse kinematics with active explo-
ration in goal babbling avoids the curse of dimensionality,
simply because the goal space is of much smaller dimension
than the redundant motor space. Nonetheless, [10] assumes
that the sensorimotor space can be entirely explored, which is
not feasible in practice for high dimensional motor systems
[3]. Another alternative is then to specify the goal space
a priori as a grid, and sampling the goal grid points to
guide exploration [11], such that sensorimotor mapping can
be sufficiently generalized and bootstrapped for efficient
online learning. It has also been quantitatively evaluated
for an average of sub-centimeter reaching accuracy on an
elephant trunk robot [3] with reasonable experiment time.
We therefore implement and further extend on directed goal
babbling in [3]. Since the goal space of the robot arm is



unknown and non-convex [6], we empirically estimate it with
randomly generated postures, forcing the convex hull such
that directed goal babbling can be applied, and subsequently
remove the outlier goals in the goal space after learning.

Given the above works aiming to reduce motor redundancy
for learning [3], [7]–[11], it can be argued that motor
redundancy in human musculoskeletal systems gives rise
to the flexible and adaptable natural movements, hence it
should be termed motor abundance [12] [13]. In robot motor
learning, [14] also suggests that joint redundancy facilitates
motor learning, whereas task space variability does not. Thus
we leverage the trade-off between goal babbling and motor
babbling in two learning stages. Firstly motor redundancy
is resolved in the goal babbling phase to accurately learn
the IK, and motor babbling guides the exploration using
CMA-ES initialized by local samples from goal babbling
to ”recover” motor abundance. In this way, the exploration
in the motor space is effectively constrained to the neigh-
borhood of the queried goal within the goal space, and the
explored motor abundance data can be visualized in terms
of muscle stiffness and synergies by sampling the fitted
Gaussian Mixture Model (GMM).

This paper is organized as follows: in Section II and III
directed online goal babbling and CMA-ES are reviewed.
Section IV introduces the simple heuristics to define the
goal space, implements directed goal babbling on the mus-
culoskeletal robot arm and evaluates the learning results.
Section V proposes, implements, and evaluates local online
motor babbling using CMA-ES to query motor abundance
while providing some insights in muscle stiffness and muscle
synergy of the musculoskeletal robot system. Section VI
concludes the paper and discusses possible future research.

II. DIRECTED GOAL BABBLING

Given the specified convex goal space X∗ ∈ Rn encap-
sulating K goal points, and denoting all the reachable set
of commands in the motor space as Q ∈ Rm, the aim is to
learn the inverse kinematics model X∗→Q, that generalizes
all points in the goal space to a subset of solutions in
the motor space. Starting from the known home position
xhome

0 , and home posture qhome
0 , i.e., the inverse mapping

g(xhome
0 ) = qhome

0 , the goal-directed exploration is

q∗t = g(x∗t ,θt)+Et(x∗t ), (1)

where g(x∗t ,θt) is the inverse mapping given learning pa-
rameter θt , and Et(x∗t ) adds perturbation noise to discover
new positions or more efficient motor commands in reaching
goals. At every time step, the motor system forwards the
perturbed inverse estimate, xt ,qt = fwd(q∗t ), and the actual
(xt ,qt) samples are used for regression, where prototype vec-
tors and local linear mapping [15] is used as the regression
model, and to monitor the progress of exploration in the
defined goal space.

The major part of directed goal babbling is to direct the
babbling of the end-effector at specified goals and target
positions. Each trial of goal babbling is directed at one goal

randomly chosen from X∗, and continuous piecewise linear
targets are interpolated along the path

x∗t+1 = x∗t +
δx

||X∗g − x∗t ||
· (x∗g− x∗t ), (2)

where x∗t ,X
∗
g are the target position and final goal of the trial,

and δx being the step size. Target positions are generated until
x∗t is closer than δx to X∗g , then a new goal X∗g+1 is chosen.
The purpose of directed goal babbling is to generate smooth
movement around the end-effector position, such that the
locally learned prototype vectors can bootstrap and extend
the exploration of the goal space, and allow the integration
of the following weighting scheme

wdir
t =

1
2
(1+ arccos(x∗t − x∗t−1,xt − xt−1) (3)

weff
t = ||xt − xt−1|| · ||qt −qt−1||−1 (4)

wt = wdir
t ·weff

t . (5)

wdir
t and weff

t measure direction and kinematic efficiency of
the movement, such that inconsistency of a folded manifold,
and redundant joint positions can be optimized [11]. The
multiplicative weighting factor wt is then integrated to the
gradient descent that fits the currently generated samples by
reducing the weighted square error.

To prevent drifting to irrelevant regions and facilitate
bootstrapping on the local prototype centers, the system
returns to (xhome,qhome) with probability phome instead of
following another goal directed movement. Returning to
home posture stablizes the exploration in the known area of
the sensorimotor space [12], [18], similar to infants returning
their arms to a comfortable resting posture between practices:

q∗t+1 = q∗t +
δq

||qhome−q∗t || · (qhome−q∗t )
. (6)

The system moves from the last posture q∗t to the home pos-
ture qhome in the same way as in (2) by linearly interpolating
the via-points along the path, until ||qhome−q∗t ||< δq.

The exploratory noise, or motor perturbation in (1), is
crucial for discovering new postures that would otherwise not
be found by the inverse estimate [12], [29]. By initializing
each motor dimension with a normal distribution of zero
mean and certain variance, the following motor commands
can be sampled with the perturbation noise, which is also
drawn from a separate normal distribution.

Et(x∗t ) = At · x∗t +bt , At ∈ Rm×n, bt ∈ Rm, (7)

where all entries ei
t in the matrix At is initialized and varied

ei
0 ∼N (0,σ2), δ

i
t+1 ∼N (0,σ2

∆)

ei
t+1 =

√
σ2

σ2 +σ2
∆

· (ei
t +δ

i
t+1)∼N (0,σ2).

In this way the local surrounding of the end-effector can be
well explored, whereas the variance is scaled by the sum of
the added variance to avoid sudden jumps in the exploration.

After learning, the average reaching accuracy is evaluated
by querying the inverse model for every goal within the



defined goal space X∗, and a simple feedback controller to
adapt to execution failures. Execution failure occurs when
the inverse estimate is not possible to execute, i.e., q∗ /∈ Q,
due to interference and non-stationary changes in Q. Thus a
simple feedback controller is introduced [3]

x̂∗0 = x∗, ˆx∗t+1 = x̂∗t +α · errt . (8)

Given the queried goal x∗ and the predicted posture q∗ =
g(x∗), where q∗ /∈Q, the feedback controller would slightly
shift the queried goal from x∗ to x̂∗t , proportional to the
observed error errt = x∗ − xt integrated over time, then
forwarding the inverse estimate xt = fwd(g(x̂∗t )).

III. CMA-ES

CMA-ES is a method of black box optimization that
minimizes the objective function f : Q∈Rm→R, q→ f (q),
where f is assumed to be a high dimensional, non-convex,
non-separable, and ill-conditioned mapping of the multi-
variate state space. The idea of CMA-ES is introducing
a multi-variate normal distribution to sample a population,
evaluating the population f (q) to select the good candidates,
and updating the search distribution parameters by adapting
the covariance and shifting the mean of the distribution
according to the candidates.

Given a start point q0 and initializing the covariance to
identity matrix C0 = I, the search points in one population
iteration is sampled as follows:

qt
i ∼ mt +σ

tyt
i i = 1, · · · ,λ qi,m ∈ Rn,σ ∈ R+,C ∈ Rn×n

(9)
where yt

i = Ni(0,Ct), m being the mean vector, σ being
the step-size, and λ is the population size. For notation
simplicity, the iteration index t is henceforth omitted.

The mean vector m is updated by using the non-elitistic
selection [16]. Let qi:λ denote the ith best solution in the
population of λ , the best µ points from the sampled popula-
tion are then selected, such that f (q1:λ )≤ ·· · ≤ f (qµ:λ ), and
weighted intermediate recombination is applied:

m← m+Σ
µ

i=1wiyi:λ =: m+ yw, (10)

where w1 ≥ ·· · ≥ wµ > 0, Σ
µ

i=1wi = 1,
1

Σu
i=1w2

i
=: µw ≈

λ

4
.

The step size σ is updated using cumulative step-size adap-
tation (CSA). The intuition is when the evolution path, i.e.,
the sum of successive steps, is short, single steps tend to
be uncorrelated and cancel each other out, thus the step-size
should be decreased. On the contrary, when evolution path
is long, single steps points to similar directions and tend to
be correlated, therefore increasing the step size. Initializing
the evolution path vector pσ = 0, and setting the constants
cσ ≈ 4/n,dσ ≈ 1, the step size is updated as:

pσ ← (1− cσ )pσ +
√

1− (1− cσ )2 √µw yw (11)

σ ← σ × exp
(

cσ

dσ

(
||pσ ||

E||N ((0,I))||
−1
))

(12)
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Fig. 2. Empirical goal space XE(in blue) sampled from 2000 random
postures, and the convex goal space XC(in red), which is used for learning
as shown in Fig. 1

The essential part of the evolution strategy is the covariance
matrix adaptation. It is suggested that the line distribution
adapted using rank-one update will increase the likelihood
of generating successful steps yw, because the adaptation
follows a natural gradient approximation of the expected
fitness of the population f (q)

pc← (1− cc)pc +
√

1− (1− cc)2 √µw yw (13)

C← (1− ccov)C+ ccov pc pT
c (14)

IV. INVERSE KINEMATICS LEARNING

We use a 10 DoF musculoskeletal robot arm from [6] for
the experiments. The arm is driven by 24 pneumatic muscles,
each with pressure actuation range of [0,0.4]MPa. As shown
in Fig. 1, the hand of the robot is replaced with a tennis
ball as the color marker, and tracking of the end-effector is
performed in reference to the center of the red marker as the
origin, using Intel RealSense ZR300. However the tracking
introduces an error up to 1cm in depth, i.e., x-axis, and sub-
millimeter error in y and z axis. The colored point cloud
overlayed in ROS rviz is the specified convex goal space as in
Fig. 1. The control accuracy of the robot is tested according
to [3]. By repeating P= 20 random postures for R= 20 times
each, the average Euclidean norm error is computed as x̄p =
1
R ∑r xr

p, where D = 1
P ∑p

1
R ∑r ||xr

p− x̄p||, and D = 1.2cm.

A. Define the Goal Space

The complete task space of the upper limb robot is
unknown and non-convex, however, directed goal babbling
would require the specified goal space to be convex to effi-
ciently bootstrap and allow the integration of the weighting
scheme in (5). Thus we first empirically estimate the goal
space by randomly generating 2000 random postures for each
muscle within [0,0.4] MPa, and take the encapsulated convex
hull as the empirical goal space XE . In order to approximate
the uniform samples in XE for efficient online learning and
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space XC in Fig. 2 used for IK learning, and the one in green bars are
evaluated in the post-processed goal space XS in Fig. 5

evaluations, a cube grid C with 3cm spacing encapsulating
XE is defined, where XE ⊂C. The sampled convex hull goal
grid XC in Fig. 1 is then made from the intersection of all
points in the empirical goal space and the cube grid, i.e.,
XC = XE ∩C. However, as shown in Fig. 2, XE is a slanted
non-convex irregular ellipsoid, forcing a convex hull in the
empirical goal space would introduce non-reachable regions.
This is addressed later with a similar set operation to remove
the outlier goals using the learned prototype vectors.

B. Experiment and Results

The experiment is conducted with T = 20000 samples,
with target step length δx = 0.02, which corresponds to
the target velocity of 2 cm/s, allowing the robot to gen-
erate smooth local movements. The sampling rate is set
to 5Hz, generating 5 targets and directed micro-movements
for learning. After every 4000 samples are generated, per-
formance error is evaluated online by querying every goal
in XC, executing the estimated IK command, and compute
the average euclidean distance to the goal. The learning
experiment including online evaluations amounts to less than
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Fig. 5. Prototype spheres S (green) encapsulating the final goal space XS
(red), after outlier goals have been removed.

2 hours real-time. As illustrated in Fig. 3, in the first 4000
samples the performance error greatly reduces, meaning a
fast bootstrapping of local models that spread throughout the
XC. The rest of the learning is followed by some finer guided
exploration in XC, which is relatively well-explored in the
first 4000 samples. At T = 20000, the feedback controller
is applied, where the performance error drops to 3.4cm.
However in XC there are still many outlier goals, which
are the non-reachable regions introduced by forcing the
convex hull. A similar set intersection operation is applied to
remove outlier goals, i.e., XS = S∩XC, where S is taken as
the encapsulated space of the learned prototype spheres, as
shown in Fig. 5. We then evaluate again these goals with the
feedback controller, the performance error reduces further
to an average of 1.8 cm in Fig. 3. However, due to the
forced convex hull XC, local inverse models cannot efficiently
regress at the edge of the task space, the error distribution
still shows a few errors larger than 3 cm, which can be further
reduced later by motor babbling using CMA-ES.

V. LEARNING MOTOR ABUNDANCE

CMA-ES explores by expanding the search distribution
of the parameters, shifting the mean and expanding the
covariance, until an optimum solution is found within that
distribution, followed by shrinking the covariance and shift-
ing the mean to the global optimum. By intentionally setting
the initial mean vector slightly away from the optimum, i.e.,
the posture that leads to closest end-effector position to the
goal, CMA-ES would naturally expand the covariance while
keeping the search within the vicinity of the queried goal, as
the objective function is set to minimize the goal-reaching
error. Essentially CMA-ES is used to effectively generate
motor babbling data, which can be achieved by initializing
the mean vector with neighboring goal postures g(x̂) of the
queried goal x∗, and the step-size with the empirical variance
estimate of the local samples around x∗ gathered from the
goal babbling process.



A. Local Online Motor Babbling

When learning inverse kinematics using online goal bab-
bling, since there are multiple postures q reaching x∗, it
is assumed that we don’t need to know all redundancy,
and only learn the ones with most direction and kinematic
efficiency by integrating the weighting scheme (5) in the
optimization. In fact, Q is not only unknown, and may never
be exhaustively explored on a physical system, but also non-
stationary due to the nature of musculoskeletal robot design
with PAMs. This can be addressed by using the simple
feedback controller in (8), where execution failures due to
the changing of Q are adapted when the queried goal x∗ is
slightly shifted based on the observed error.

Algorithm 1: Motor Babbling Using CMA-ES
input : x∗, g(x), Qx̂
output : Qcma
initialize: α = 0.05, T = 30, N = 5, λ = 13, r =

0.02, c = 10, f ∗ = 0.03, Qcma = {}
select N closest goals x∗1, · · · ,x∗N to x∗;
for n← 0 to N do

x̂∗0 = x∗n;
Qfb = {};
for t← 0 to T do

xt ,qt = forward(g(x̂∗t ));
x̂∗t = x̂∗t−1 +α · (x∗− xt);
if ||x∗− xt ||< r then

collect (xt , qt ) In Qfb;
end

end
select qt for the minimum ||xt − x∗|| in Qfb;
initialize m = qt , σ = mean(var(Qx̂∪Qfb)), C = I;
while f̂ < f ∗ do

sample posture population qs : q1 · · ·qλ as in (9);
for k← 1 to λ do

xt ,qt = forward(qk);
f̂ = f (xk) = c · ||x∗− xt ||;
if ||x∗− xt ||< r then

collect qk in Qcma;
end

end
update m as in (10);
update pσ and σ as in (11), (12);
update pc and C as in (13), (14);

end
end

As illustrated in Algorithm 1, the queried goal x∗, the
learned inverse model g(x), and the neighboring postures
Qx̂ : qt∀xt ⇐⇒ ||xt − x∗|| < r, which are collected from
the goal babbling process, are the input to online motor
babbling. The aim of the algorithm is to output a new posture
configuration set Qcma, from which different muscle stiffness
can be generated while keeping the end-effector position
fixed. The initialization sets the gain and number of iteration

of the feedback controller to α = 0.05, T = 30, t number of
trials for CMA-ES N = 5, and the prototype sphere radius is
r = 0.02. We use pycma library [17] to implement CMA-
ES, where we encode variables q in the objective function
implicitly f (fwd(q)) [16]. The objective function is simply
set as the euclidean norm to the goal scaled with a constant,
i.e., c · ||x∗− xt ||, where c = 10, and the optimum objective
function value is set to f ∗ = 0.03, meaning that an empirical
optimum of f ∗/c = 3mm to the goal, which is also the
stopping criteria for each CMA-ES trial.

Each trial of CMA-ES starts by iterating the feedback
controller and finding the posture qt that leads closest to the
neighboring goal, and qt is subsequently used to initialize
the mean vector m. The covariance is initialized to be an
identity matrix, which allows isotropic search and avoids
bias. In order to initialize the step-size, an empirical variance
is estimated from Qx̂ ∪Qfb, and the mean of the variance
is taken as initialization. The union of the two sets is to
ensure sufficient data for a feasible estimation. Near the home
position, which is the centroid of the goal space, many data
samples are available as online goal babbling often comes
back to (xhome,qhome). However, around the edges of the goal
space, there are often very few local samples, sometimes less
than the action space dimension, i.e., the 24 muscles. By
taking in the samples generated by the feedback controller,
a better initialization of σ can be robustly estimated.

B. Visualizing Muscle Abundance

In order to visualize muscle abundance, namely in terms
of reproducing muscle stiffness and muscle synergy encoded
in the evolved covariance matrix, we assume the distribution
of parameters to be multi-variate Gaussian and multi-modal,
as the motor space is of high dimension, and there can be
different muscle group posture configurations while keeping
the end-effector fixed. Therefore a multi-variate Gaussian
Mixture Model [18] is fit to the collected data in Q. By
assuming a distribution of Gaussian parameters over the data
samples p(Q|θ), a prior multi-variate Gaussian distribution
is introduced as p(θ) = ΣK

i=1wiN (µi,Σi), where wi are the
weights for each Gaussian mixture component. The posterior
distribution is estimated by using Bayes rule [18], such that
the posterior distribution would preserve the form Gaussian
mixture model, i.e., p(θ |Q) = ΣK

i=1w̃iN (µ̃i, Σ̃i), where the
parameters (µ̃i, Σ̃i) and weights w̃i are updated using Ex-
pectation Maximization (EM) to maximize the likelihood
[18]. The number of mixture models P is estimated using
Bayesian Information Criterion (BIC) [18] for P ∈ [1,10],
where the lowest BIC of P is taken. Finally, we sample
from the mixture model with updated parameters and weights
q∗ ∼ ΣK

i=1w̃iN (µ̃i, Σ̃i) and forward q∗ on the robot.

C. Experiment and Results

We evenly selected 10 goals in the final goal space XS to
perform online motor babbling. The selected goals and their
local samples within the 2cm radius are shown in Figure 6.
The goals are selected to showcase the generality of querying
any goal within the goal space for motor babbling. Around
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the edges, goal 26, 5, 89, 52 are chosen, and near the centroid
home position, goal 44 and 39 are selected. The remaining
goals 17, 43, 55, and 60 are to populate the rest of the goal
space. It can be expected that more samples were generated
near the home posture, since in online goal babbling the
arm returns to (xhome,qhome) with probability phome, whereas
goals around the edges have only a few samples, such as
goal 26 and 89.

For each selected goal, N = 5 trials of CMA-ES is per-
formed as in Algorithm 1, where each trial takes on average
5 minutes experiment time on the robot. Muscle stiffness
is then reproduced by first fitting the collected neighboring
samples Qx̂ to the Gaussian mixture model, which serves
as a baseline learned during goal babbling, followed by
another experiment fitting Qcma to the mixture model and
the subsequent sampling. 200 samples from the mixture
model are evaluated on the robot, the mean and standard
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Fig. 8. One evolution trial for goal 44, the search of the step-size increases
until the defined optimum objective function value is found

deviation of the reaching error, and of the pressure variance
are plotted. As illustrated in Fig. 7, CMA-ES outperforms the
baseline in terms of both larger muscle pressure variance and
smaller goal-reaching error, where the average lies close to
the 2cm prototype sphere radius. Since online goal babbling
favors kinematic and direction efficiency by reducing motor
redundancy, the sampled muscle pressure generally varies
trivially compared to the ones generated from the CMA-ES
GMM model, which expands the variance in search of global
optimum while keeping the goal-reaching accuracy. Due to
non-stationary changes of the possible posture configurations
Q, the local neighboring samples Qx̂ no longer lead to a close
position to the goal, however Qx̂ of the neighboring goals can
be used for initializing the step-size σ , and initializing the
mean vector m from Qfb, to adapt to non-stationary changes.

It can be observed that for goal 44, which is closest to
the home position, the motor variance doesn’t increase as
much as other queried goals. This is because every time the
interpolated directed goal path comes across the centroid
home region, goal 44 has a higher chance of collecting
more samples qt of varied motor configurations within the
neighborhood. Nevertheless, CMA-ES still explores motor
redundancy rather efficiently. As shown in Fig. 8, the evo-
lution trial expands the maximum and minimum standard
deviation of the search, i.e., such that the optimum f ∗ is
reached. After 5 such evolution trials, the sampled GMM
data is used to estimate the covariance, compared with
the covariance estimate from the baseline GMM data. As
shown in 9, CMA-ES preserves the structure while enhancing
the variance on the diagonal, while also discovers more
correlation within different groups of muscles, which can
be prominently observed on the robot in Fig. 10.

D. Interpreting Muscle Abundance

The muscle pressure variability in the covariance encodes
muscle abundance, which can be interpreted as muscle stiff-
ness and static muscle synergies. Loosely speaking, muscle
synergy is defined as a co-activation pattern of muscles in
a certain movement from a single neural command signal
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Fig. 9. Comparing baseline and CMA-ES covariances, where the base
structure is preserved yet with enhanced correlations. The largest change
of variance occurs at muscle pair (8,20) from 0.003 to -0.01, where the
-0.01 covariance corresponds to the standard deviation of 0.1 MPa pressure
change, consituting 25% of the PAM actuation range

# Muscle Name Function

3 serratus anterior pulls scapula forward
7 latissimus dorsi rotates scapula downward
8 rear deltoid abducts, flexes,
10 front deltoid and extends
11 medial deltoid the shoulder
15 biceps brachii flexes and supinates the forearm
18 brachialis flexes the elbow
19 pronator pronates the hand
20 supinator supinates the hand

TABLE I
MUSCLE NAMES AND FUNCTIONS

[19]. It can be argued that muscle synergy is a way of kinet-
ically constraining the redundant motor control of limited
DoFs, or as neural strategies to handle the sensorimotor
systems [20]. By constraining the end-effector position of
the musculoskeletal robot arm, the static muscle synergies
and stiffness can be encoded in the covariance matrix and
provide some useful insights. In Fig. 9, muscles of high
variances, namely muscle 3, 7, 8, 10, 11, 15, 18, 19, 20 are
of particular interest, where muscle 7 and 8, 20 and 8 are
highly negatively correlated. Inspired by the human’s upper
limb, the PAMs of the robot arm mimics the function of
human arm muscles, as illustrated in Table I. By fitting the
data Qcma in the mixture models and subsequently applying
sampling, we can observe the co-activation patterns of the

(a) (b)

(c) (d)

Fig. 10. Motor abundance replay by sampling the fitted GMMs: fixed end-
effector position with varied muscle pressures gives rise to static muscle
synergies. The labeled muscles are color-coded in green (low), orange
(medium), and red (high) to indicate the state of pressure actuation. A
relaxed arm posture with a lowered shoulder can be observed in (a) and
(c), whereas a stiffened arm with a pronating hand and a lifted shoulder
and can be observed in (b) and (d), while keeping the end-effector position
fixed.

muscles. As shown in Fig.10(a) and 10(c), the upper limb
first reaches goal 44 with a relaxed arm posture and a
lowered adducted shoulder, whereas in Fig.10(b) and 10(d)
the end-effector position is maintained by stiffening the arm,
lifting the extended shoulder, and pronating the hand. The
negative correlation of muscle 7 and 8 can be interpreted
as the coordination of extension and abduction, as well as
the flexion and adduction of the shoulder. Muscle 8 and 20
coordinate shoulder abduction with a supinating hand, and
by adducting the shoulder while pronating the hand.

VI. CONCLUSIONS

We have implemented directed goal babbling [11] to learn
the inverse kinematics of a 10 DoF musculoskeletal robot
arm actuated by 24 PAMs. We empirically estimated and
forced the convex goal space, followed by post-processing to
remove outlier goals. The learning result shows an average
reaching error of 1.8 cm, where the reaching accuracy
achievable by the robot is 1.2 cm. The simple heuristics and
approximation of the goal space allow us to use directed
goal babbling to learn the IK in an unknown goal space.



Nevertheless, learning with a forced convex goal space
where the intrinsic task space is non-convex introduces
outlier goals, which leads to relatively large reaching errors
along the non-convex edge. A future research direction of
integrating directed goal babbling with active exploration
could be of interest [10], where the goal space grid can be
defined large enough to encapsulate the whole task space,
and active exploration guided by the k-d tree splitting and
progress logging can indicate the learned task space while
still keeping the bootstrapping flavor of the local learners.

We further extended directed goal babbling to local online
motor babbling using CMA-ES in search of more motor
abundance. By initializing the evolution strategy with local
samples generated from goal babbling, any point within the
goal space can be queried for motor abundance. The idea is to
intentionally initialize the mean vector of CMA-ES slightly
away from the queried goal. By expanding the covariance
and setting the stop condition to meet the set optimum
of the objective function value, efficient motor babbling
data can be generated locally around the queried goal with
a few CMA-ES trials of different initializations from the
neighboring goals. We evenly selected 10 goals throughout
the goal space to showcase the generality of local online
motor babbling. The results show that our proposed method
has significantly increased the average muscle variability
compared to the goal babbling baseline, while keeping the
end-effector more stable. The collected motor abundance
data can be fit to Gaussian mixture models, and the sampling
of the GMMs can be used to reproduce motor abundance in
terms of muscle stiffness and muscle synergies encoded in
the evolved covariance matrix. The bonus that comes with
the fitted GMMs is that the queried motor abundance can
be captured and reproduced by distributions, which enables
the formulation of reinforcement learning trials in future
research, such as learning weight lifting with varied muscle
stiffness, trajectory planning by sampling motor commands
at the via-points to collect demonstrations and possibly
integrate with the probabilistic movement primitives [21].

Another future research direction would be to investigate
the motor abundance of continuum-based soft robotic sys-
tems. When precise end-effector manipulation with flexible
motor adaptation is needed, exploring the motor abundance
could be a good start. Given that accurate IK can be learned
with such systems [3], local online motor babbling that
bootstraps on goal babbling would also scale well to effector
redundant systems with infinitely many DoFs. The challenge,
however, lies in the initialization of the starting positions of
CMA-ES. For musculoskeletal systems, it can be initialized
by random neighboring goals or heuristically selected ones,
since motor variability is constrained by the skeletal systems
and appears rather intuitive. For continuum soft bodies, ini-
tializing with prior knowledge might be needed for efficient
motor babbling, such as the neighboring goals of higher
sample variance from the goal babbling stage.
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