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Abstract 11 

Fields studying movement generation, including robotics, psychology, cognitive science and 12 

neuroscience utilize concepts and tools related to the pervasiveness of variability in biological systems. 13 

The concept of variability and the measures for nonlinear dynamics used to evaluate this concept open 14 

new vistas for research in movement dysfunction of many types. This review describes innovations in 15 

the exploration of variability and their potential importance in understanding human movement. Far 16 

from being a source of error, evidence supports the presence of an optimal state of variability for 17 

healthy and functional movement. This variability has a particular organization and is characterized by 18 

a chaotic structure. Deviations from this state can lead to biological systems that are either overly rigid 19 

and robotic or noisy and unstable. Both situations result in systems that are less adaptable to 20 

perturbations, such as those associated with unhealthy pathological states or absence of skillfulness. 21 

 22 

Highlights 23 

> Exploration of variability using measures for nonlinear dynamics opens new vistas for research and 24 

treatment for movement dysfunction. > Chaos could be a powerful component of the locomotive 25 

system and its structure can be controlled by the nervous system. > An optimal state of variability that 26 

exhibits chaos is important for health and functional movement. > Loss of this optimal state of 27 

variability renders the system more predictable and rigid. > Increases beyond optimal variability render 28 

the system more noisy and unpredictable 29 

 30 

Keywords 31 

Chaos, Stability, Anterior Cruciate Ligament, Cerebral Concussion, Passive Dynamic Walker, Infant 32 

Motor Development 33 

 34 

35 



3 

1. Introduction 36 

One of the most common features of human movement is its variability. Human movement 37 

variability can be described as the normal variations that occur in motor performance across multiple 38 

repetitions of a task (Stergiou, Harbourne, & Cavanaugh, 2006). This variability is intrinsic in all 39 

biological systems and it can be observed quite easily. If a person tries to repeat the same movement 40 

twice, the two actions will never be identical. Bernstein (1967) used an expression “repetition without 41 

repetition” whereby each repetition of an act involved unique, non-repetitive neural and motor 42 

patterns. Recently, the role of movement variability in motor control has become an object of study in 43 

its own right (Bates, 1996; Newell & Corcos, 1993). Therefore, a number of questions have been 44 

raised (Stergiou et al., 1996). Examples of such questions are “How variability is controlled while 45 

learning a new skill?”, “Is variability associated with disease/health?”, and “What are the sources of 46 

variability, and how do they interact in the production of the observed variation in movement?” 47 

In the past, variability in motor performance has been considered from a variety of theoretical 48 

perspectives (e.g., Newell & Corcos, 1993). A prominent theory is the Generalized Motor Program 49 

Theory (GMPT; Summer & Anson, 2009). This theory considers variation in a given movement 50 

pattern to be the result of error. This error in the ability to predict the necessary parameters for 51 

employing the underlying motor program results in variation in motor performance (Schmidt, 2003; 52 

Schmidt & Lee, 2005). With task-specific practice, prediction error is gradually eliminated or 53 

minimized, thereby optimizing the accuracy and efficiency of the movement pattern.  54 

Another prominent theory is the uncontrolled manifold (UCM) hypothesis. Practically, motor 55 

variability has been associated with motor redundancy. Motor redundancy refers to having more 56 

elements than necessary to solve a task, resulting in the existence of multiple solutions to a given 57 

motor problem (Scholz & Schöner, 1999). Latash, Scholz, & Schöner (2002) described the UCM 58 

hypothesis to address this problem of motor redundancy. According to this hypothesis, when a multi-59 

element system changes its state within a UCM computed for a particular performance variable (e.g., 60 
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total force produced by a set of fingers), this variable is kept at a constant value. As long as the system 61 

does not leave the UCM, the hierarchically higher controller (e.g., central nervous system) does not 62 

need to interfere and, in that sense, the system of elemental variables does not need to be controlled 63 

within that manifold. If the system leaves the UCM and shows an acceptable error in the performance 64 

variable, the controller may have to interfere and introduce a correction (Latash, 2008). The UCM 65 

approach has been applied to several motor tasks such as maintaining quiet stance, finger force 66 

production, bimanual pointing, sit-to-stand, and pistol shooting (Domkin, Laczko, Jaric, Johansson, & 67 

Latash, 2002; Latash, Scholz, Danion, & Schöner, 2001; Scholz, Kang, Patterson, & Latash, 2003) to 68 

discover coordination strategies of apparently redundant motor systems and uncover the functional 69 

purposes that variability plays in those motor tasks.     70 

A third theoretical perspective briefly presented here is the Dynamical Systems Theory (DST) 71 

which proposes that biological systems self-organize according to environmental, biomechanical, and 72 

morphological constraints to find the most stable solution for producing a given movement (Clark & 73 

Phillips, 1993; Hamill, van Emmerik, Heiderscheit, & Li, 1999; Kamm, Thelen, & Jensen, 1990; 74 

Kelso, 1995; Thelen, 1995; Thelen & Ulrich, 1991). Increased variability in a movement pattern 75 

generally indicates loss of stability, while decreased variability generally indicates a highly stable 76 

behavior. The GMPT, UCM, and DST perspectives are similar in that they all recognize that decreased 77 

variability results from the efficient execution of a given movement pattern. DST focuses more on 78 

behavioral transitions and provides tools to describe such phenomena. Specifically, DST suggests that, 79 

in certain dynamical systems and under certain conditions, when variability increases and reaches a 80 

specific critical point, the system becomes highly unstable and switches to a new, more stable 81 

movement pattern (with less variability). This proposition is a significant step forward because it 82 

explains transitions between behavioral states and implies that a persistent lack of movement 83 

variability may indicate rigid, inflexible motor behaviors with limited adaptability to changing task or 84 

environmental demands. However, a significant limitation of DST is that it does not account for the 85 



5 

observation that some behaviors, which appear to be highly stable, paradoxically are performed in 86 

variable ways. This is especially evident when we observe elite sports players or musicians performing 87 

(e.g., Michael Jordan taking a jump shot or Yo-Yo Ma playing the cello). Not only is their 88 

performance more consistent than that of less capable individuals, but they also seem to have 89 

developed an infinite number of ways of performing. If we actually consider fundamental motor skills 90 

(i.e., gait) as activities when applied in “real life” contexts, we can actually say that every single one of 91 

us is a Michael Jordan in our abilities to walk through crowds or on diverse and challenging terrains. 92 

Therefore, it seems that in this sense, variability is closely related with a rich behavioral state. 93 

The idea that variability decreases with skill acquisition in one context (motor learning paradigm) 94 

and increases with skill acquisition in another context (the development of a behavioral repertoire) is 95 

readily explained by the way in which variability is measured. Typical motor learning curves are 96 

constructed using traditional variability measures of skill performance to capture error in performance. 97 

Such linear statistical measures quantify the magnitude of variation in a set of values independently of 98 

their order in the distribution. The magnitude of variability continuously decreases and eventually 99 

plateaus as motor learning occurs. In contrast, variation in how a motor behavior emerges in time is 100 

best captured by measures where the temporal organization in distribution of values is the facet of 101 

interest. Temporal organization (or structure) of variability is quantified by the degree to which values 102 

emerge in an orderly manner, often across a range of time scales. Therefore, recent theoretical 103 

approaches perspectives have suggested that variability contains important information about 104 

movement (Amato, 1992; Cavanaugh, Guskiewicz, & Stergiou, 2005; Harbourne & Stergiou, 2009; 105 

Newell & Corcos, 1993). These approaches have now propagated in the human movement literature 106 

and lead the development of alternative theoretical frameworks and methodology to study human 107 

movement related injuries and treatments. 108 

Much of the controversy that exists in the literature with respect to human movement variability 109 

stems from the methodology used. Traditional linear measures, such as the standard deviation or the 110 
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range, are measures of centrality and thus provide a description of the amount or magnitude of the 111 

variability around a central point (Fig. 1). From a human movement perspective, this approach in 112 

evaluating variability has led to several practitioners and scientists to believe that the mean is the 113 

standard of performance and everything away from the mean is error. From a statistical standpoint, the 114 

valid usage of traditional linear measures to study variability assumes that variations between 115 

repetitions of a task are random and independent (of past and future repetitions) (Lomax, 2007). 116 

However, previous studies have shown that such variations are distinguishable from noise (Delignières 117 

& Torre, 2009; Dingwell & Cusumano, 2000; Dingwell & Kang, 2007; Stergiou, Buzzi, Kurz, & 118 

Heidel, 2004). In addition, several studies have indicated that these variations have a deterministic 119 

origin (Dingwell & Cusumano, 2000; Dingwell & Kang, 2007; Harbourne & Stergiou, 2009; Miller, 120 

Stergiou, & Kurz, 2005). Thus, they are neither random nor independent. For instance, although 121 

variations between strides during walking appear to vary randomly, with no correlation between the 122 

present and future strides, the healthy adult locomotor system actually possesses “motor memory”, 123 

such that the fluctuations from one stride to the next display a subtle, “hidden” temporal structure. 124 

Mathematical tools, such as entropic or fractal measures or tools developed for the study of 125 

deterministic chaos have enabled the evaluation of this temporal structure of variability. From this 126 

approach, how human movement evolves over time becomes of importance. Therefore, the focus is not 127 

on the standard of performance represented by the average but rather on the exploratory nature of 128 

movement, which enhances practice and quality of performance. 129 

[Insert Fig. 1 about here, 100%] 130 

From an evaluation perspective, these two approaches are complimentary since each explores 131 

different aspects of variability (Harbourne & Stergiou, 2009; Stergiou et al., 2004). As mentioned 132 

above, conventional statistical tools quantify the magnitude of variation in a set of values 133 

independently of their order in the distribution; this works properly for linear systems. In contrast, 134 

variation in how a motor behavior emerges in time is best captured by tools developed for the study of 135 



7 

nonlinear systems. These tools that have been used in the literature for this purpose include 136 

approximate entropy, sample entropy, correlation dimension, largest lyapunov exponent, and detrended 137 

fluctuation analysis (Bruijn, van Dieën, Meijer, & Beek, 2009; Cavanaugh, Kochi, & Stergiou, 2010; 138 

Delignières, Deschamps, Legros, & Caillou, 2003; Donker, Roerdink, Greven, & Beek, 2007; Gates & 139 

Dingwell, 2007, 2008; Hausdorff, 2009; Liao, Wang, & He, 2008; Kurz & Hou, 2010; Kurz, 140 

Markopoulou, & Stergiou, 2010; Sosnoff, Valantine, & Newell, 2006; Sosnoff & Voudrie, 2009; Stins, 141 

Michielsen, Roerdink, & Beek, 2009; Vaillancourt, Sosnoff, & Newell, 2004; Yang & Wu, 2010). 142 

2. Further theoretical developments 143 

There is a growing body of literature showing that the cycle-to-cycle variation seen in a wide 144 

variety of physiological systems is nontrivial and may offer insight into the control of these systems 145 

(Bassingthwaighte, Liebovitch, & West, 1994). This intrinsic movement variability is highly 146 

suggestive of a fundamental feature of the neural control of movement. Cai et al. (2006) provided some 147 

evidence with respect to this issue by studying the ability of spinal mice to learn to step. In their 148 

protocol, variation was permitted by applying an assist-as-needed mode of control of a robotic arm 149 

attached to the ankle of each hindlimb. The results showed that when the intrinsic variability was 150 

overridden (e.g., when a fixed pattern is imposed with no variability allowed), learning of a task was 151 

suboptimal relative to the condition when the training is assist-as-needed. The authors suggested that 152 

training with robotic control algorithms that provide a soft assist-as-needed control permits the 153 

intrinsic variability that characterized any neural controlled movements. This study provided strong 154 

evidence that a fundamental strategy of the neural control of a given motor task (stepping) is to 155 

incorporate a degree of variability in the sensorimotor pathways. Importantly, when the system is 156 

forced to adapt a rigid behavior, it produces suboptimal results. From a clinical point of view, these 157 

findings highlight the importance of variation of stepping kinematics as a feature of optimizing 158 

relearning to step. 159 
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Further evidence for the association of variability and health comes from research on higher neural 160 

functions and their association with gait. To better understand the underlying mechanisms of gait 161 

variability in community-dwelling older adults, Rosano, Brach, Studenski, Longstreth, & Newman 162 

(2007) investigated the relationships between the variability of different aspects of gait and subclinical 163 

brain vascular abnormalities in adults who are free of neurological diseases. Increased variability of 164 

step length was associated with greater prevalence of infarcts, including infarcts in the basal ganglia. It 165 

was also associated with greater white matter hyperintensities severity, independent of age, gender, 166 

cognitive function and cardiovascular disease. Importantly, these brain abnormalities were associated 167 

with increased movement variability in comparison with optimal healthy behavior. This is in the 168 

opposite direction than what was presented in the previous paragraph. Here we do not have rigidity and 169 

absence of movement variability, which is undesirable, but we have too much variability, which is also 170 

undesirable. Can it possible then that healthy movement variability is associated with an optimal state, 171 

which is in between too much and too little? Interestingly, Rocchi, Chiari, & Horak (2002) 172 

demonstrated that variability of postural sway was larger than normal in patients with Parkinson’s 173 

disease without the effects of drugs and even larger with levodopa. However, with deep brain 174 

stimulation these patients exhibited smaller than normal variability of postural sway. Practically, the 175 

normal healthy controls were in between all these conditions suggesting that too much or too little 176 

were not optimal. Similarly, in Brach, Berlin, VanSwearingen, Newman, & Studenski (2005), elderly 177 

individuals with extreme step width variability (either low or high step width variability) were more 178 

likely to report a fall in the past year than those with moderate step width variability. Therefore, either 179 

too little or too much step width variability was associated with falls. 180 

Recently, it has been demonstrated that temporal variations in biological signals, even though they 181 

appear no different from random noise, exhibit deterministic patterns. These patterns have been 182 

defined as chaotic (Fig. 2: middle panel) and can have significant implications for medicine. For 183 

example, heart rhythms in which the variation in the time interval between subsequent QRS waves is 184 
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either periodic or random (Fig. 2) have been associated with heart attacks (Denton, Diamond, Helfant, 185 

Khan, & Karagueuzian, 1990; Glass & Mackey, 1988). Conversely, chaotic heart rhythms are related 186 

to healthy states. Similar results have been found in other biological signals. These studies employed 187 

more advanced tools to describe conditions in which more conventional, linear techniques appeared 188 

inadequate, confounding scientific study and the development of meaningful therapeutic options. 189 

Research along these lines include investigations of heart rate irregularities, sudden cardiac death 190 

syndrome, blood pressure control, brain ischemia, epileptic seizures, and several other conditions 191 

(Amato, 1992; Buchman, Cobb, Lapedes, & Kepler, 2001; Faure & Korn, 2001, 2003; Garfinkel, 192 

Spano, Ditto, & Weiss, 1992; Goldberger, Rigney, Mietus, Antman, & Greenwald, 1988; Goldstein, 193 

Toweill, Lai, Sonnenthal, & Kimberly, 1998; Korn & Faure, 2003; Lanza et al., 1998; Orsucci, 2006; 194 

Slutzky, Cvitanovic, & Mogul, 2001; Toweill & Goldstein, 1998; Wagner, Nafz, & Persson, 1996), 195 

aiming to understand their effect on the human physiology and eventually develop prognostic and 196 

diagnostic tools. Based on such investigations, the presence of chaotic temporal variations in the steady 197 

state output of a healthy biological system can represent the underlying physiologic capability to make 198 

flexible adaptations to everyday stresses placed on the human body (Lipsitz & Goldberger, 1992; 199 

Lipsitz, 2002). Importantly, there are certain benefits for the nervous system for adopting chaotic 200 

regimes allowing a wide range of potential behaviors. This leads to healthy biological systems that are 201 

adaptable and flexible in an unpredictable and ever-changing environment (Faure & Korn, 2001, 202 

2003). But what happens in diseased states? In which way are these deterministic properties of a 203 

healthy system and, in consequence, its behavior is affected? Two main propositions have been 204 

developed recently to address these questions. 205 

 [Insert Fig. 2 about here, 100%] 206 

The first proposition has been stated by Lipsitz and Goldberger (1992) and proposed that healthy 207 

systems are characterized with physiologic capability to make flexible adaptations to everyday stresses 208 

placed on the human body. In the case of human gait this is demonstrated as we observe variations 209 



10 

over small time scales (i.e., a few strides) being statistically similar to those over larger and larger time 210 

scales (i.e., hundreds and even thousands of strides). The use of scaling analysis techniques (e.g., 211 

detrended fluctuation analysis) revealed that fluctuations in stride interval time series display long-212 

range correlations (Hausdorff, Peng, Ladin, Wei, & Goldberger, 1995), and these correlation properties 213 

evolve during childhood (Hausdorff, Zermany, Peng, & Goldberger, 1999) and degrade both with 214 

physiologic aging and with certain degenerative neurological diseases (Hausdorff, 2009; Hausdorff et 215 

al., 1997). This breakdown in this physiologic capability may be associated with the degradation of 216 

these properties (Peng, Hausdorff, & Goldberger, 2000). Thus, it is proposed that there is a positive 217 

correlation between this physiologic capability and healthy motor performance. On the other hand, it is 218 

proposed that there is a negative relation between physiologic capability and aging (Lipsitz & 219 

Goldberger, 1992).  220 

However, not all studies are consistent with this proposition. It appears that the task goal plays a 221 

critical role in shaping the nature of the differences that arise with aging and disease (Vaillancourt & 222 

Newell, 2002, 2003). For instance, postural studies showed that the direction of change as a function of 223 

aging is opposite in the actions of posture and locomotion (Newell, 1998; Hausdorff et al., 1997). This 224 

contrasts with the above proposition. Rather it is the loss of adaptability of the intrinsic dynamics that 225 

is the key feature of change as a function of age. In an empirical examination of the “loss of 226 

adaptability hypothesis”, Vaillancourt and Newell (2003) examined whether age-related differences in 227 

the time and frequency structure of force output are dependent on task demands. They found that the 228 

specific direction of the change is dependent on the task demands and reflects the role of intentions and 229 

goals in organizing the dynamics of the motor output (Vaillancourt & Newell, 2002). 230 

More recently and in an effort to bring together the above propositions, Stergiou et al. (2006) and 231 

as refined in Harbourne & Stergiou (2009) proposed a new theoretical model to explain movement 232 

variability as it relates to motor learning and health. This model is based on the idea that mature motor 233 

skills and healthy states are associated with optimal movement variability that reflects the adaptability 234 
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of the underlying control system. The principle of optimality in movement variability is pioneering in 235 

the sense that it relates in an inverted U-shape relationship the presence of chaotic temporal variations 236 

in the steady state output of a healthy biological system with the concept of predictability (see Fig. 3). 237 

Practically at this optimal state of movement variability the biological system is in a healthy state and 238 

is characterized by exhibiting chaotic temporal variations in the steady state output (i.e., the uppermost 239 

point along the inverted U-shaped function), attaining high values only in the intermediate region 240 

between excessive order (i.e., maximum predictability) and excessive disorder (i.e., no predictability). 241 

Thus, this variability has deterministic structure and reflects the adaptability of the system to 242 

environmental stimuli and stresses. Decrease or loss of this optimal state of variability renders the 243 

system more predictable, rigid and with a robotic type of motor behavior. This is fairly similar to the 244 

Lipsitz and Goldberger hypothesis. However, our research group also added that increases beyond 245 

optimal variability render the system more noisy and unpredictable, similarly to what is observed for 246 

example in a very frail elder or a drunken sailor walking. Both situations result in decreased 247 

adaptability to perturbations and are associated with lack of health (see Fig. 3). 248 

[Insert Fig. 3 about here, 100%] 249 

Recent empirical research in motor control supports the theoretical model of optimal movement 250 

variability. Among the most recent investigations, the study of Cignetti, Schena, & Rouard (2009) 251 

gives an illustration of the flexibility capabilities of the neuromuscular system to counteract the fatigue 252 

induced by a cross-country skiing effort. The study exemplifies the model developed by Stergiou et al. 253 

(2006). In this investigation, both the inter-cycle variability in cross-country skiing gait and its 254 

evolution with fatigue were examined to understand the flexibility capabilities of the neuromuscular 255 

system. The fluctuations of the limb movements of the skiers were not random but displayed a chaotic 256 

behavior, reflecting flexibility to adapt for possible perturbations present during skiing. This behavior 257 

degraded with fatigue through increased and more random fluctuations. 258 
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In the theoretical model of optimal movement variability, it is also proposed that motor 259 

development and learning processes obey these principles. In other words, the development of healthy 260 

and highly adaptable systems relies on the achievement of the optimal state of variability. 261 

Alternatively, abnormal development may be characterized by a narrow range of behaviors, some of 262 

which may be rigid, inflexible and highly predictable or, on the contrary, random, unfocused and 263 

unpredictable. Motor disabilities many times are described as such. In accordance with this proposition 264 

the authors also suggest that the goal of neurologic physical therapy and performance in sport activities 265 

should be to enhance the development of this optimal state movement variability by incorporating a 266 

rich repertoire of movement strategies, which can be achieved by implementing a multitude of 267 

experiences. Several such examples are given later in the review. 268 

3. Variability does not equate with stability 269 

Before we will continue with the presentation of our experimental work, which is based on the 270 

above proposition, we would like to address an issue where we believe that there is confusion in the 271 

literature. As mentioned above, variability was interpreted traditionally as noise superimposed upon a 272 

signal, where the signal is the intended movement and the variability is random noise about this 273 

intended movement (Newell & Corcos, 1993). The focus of this approach was to quantify the amount 274 

of variability associated with the movement of interest. Typically, the amount of variability was 275 

assessed by the standard deviation. Increased amount of variability found in postural sway as well as in 276 

gait has been linked to an increased risk of falling in the elderly (Demura, Kitabayashi, & Aoki, 2008; 277 

Maki, 1997). As increased amount of variability has been reported as a predictor of risk of falling, it 278 

has been assumed that variability and stability are negatively correlated, where increases in the amount 279 

of variability were assumed to equate with increases in instability. However, evidence shows that a 280 

moving system (e.g., a swaying body during posture or a moving body during gait) with large 281 

variability implies neither a highly stable system nor poor stability (Cavanaugh et al., 2005, 2006; 282 

Cavanaugh, Guskiewicz, & Stergiou et al., 2005). For instance, a trained athlete can balance without 283 
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falling while standing one-legged on a fully inflated soccer ball. Clearly, this demonstrates exceptional 284 

stabilizing capacity despite the fact that center-of-pressure measurements under the ball will 285 

demonstrates large movement variability. This simple example illustrates that variability does not 286 

necessarily predict instability. 287 

As recently stated by Granata and England (Reply to the Letter to the Editor from Beauchet, Allali, 288 

Berrut, & Dubost, 2007), “it is incorrect to assume that variability can be equated to the biomechanics 289 

of stability”. According to their view, “variability” refers to the ability of the motor system to reliably 290 

perform in a variety of different environmental and task constraints, while “stability” refers to the 291 

dynamic ability to offset an external perturbation. Thus, variability and stability represent different 292 

properties within the motor control process. For these authors and others, variability is quantified using 293 

measures derived from linear statistics, such as the standard deviation of the mean ensemble curve (Li, 294 

Haddad, & Hamill, 2005), whereas stability is quantified using measures derived from nonlinear 295 

dynamics. Specifically, local stability is commonly defined as the “inverse of the rate of divergence 296 

from the intended trajectory after a small perturbation”, as quantified by the use of the largest 297 

Lyapunov exponent (Buzzi, Stergiou, Kurz, Hageman, & Heidel, 2003; Dingwell et al., 2000, 2001; 298 

Dingwell & Cusumano, 2000; Dingwell & Kang, 2007; Hurmuzlu & Basdogan, 1994; Hurmuzlu, 299 

Basdogan, & Stoianovici, 1996; Kang & Dingwell, 2006a, 2006b, Stergiou et al., 2004). By the same 300 

token, stability can be inferred via the “presence of long-range, fractal correlations”, as quantified by 301 

the use of fractal analysis (e.g., detrended fluctuation analysis) (Hausdorff, 2009; Hausdorff et al., 302 

1995, 1996, 1997, 1999, 2000; Jordan et al., 2006). Thus, stability covers different aspects, that of 303 

deviations from deterministic orbits quantified through trajectory divergence (local stability) and that 304 

of temporal statistics quantified through correlations and entropies (self-similarity and regularity; see 305 

also below). 306 

Presently and after significant work in this area, we humbly believe that the terminology used by 307 

human movement scientists to describe their findings should be more specific and straightforward. 308 
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This is necessitated by our interactions with clinicians and practitioners where simplicity is important 309 

in order to establish proper communication and efficient collaboration. To date, there is general 310 

agreement that measures for linear systems (indexed by either the standard deviation in absolute terms, 311 

or the coefficient of variation in relative terms) quantify the amount or magnitude of the variations 312 

present in a time series (e.g., center of pressure oscillations or gait fluctuations), whereas the measures 313 

for nonlinear systems (e.g., approximate entropy, sample entropy, correlation dimension, largest 314 

Lyapunov exponent, and detrended fluctuation analysis) quantify the structure or organization of the 315 

variations present in a time series (i.e., changes observed in gait fluctuations or postural sway 316 

oscillations over time). But, there is no reason to infer that stability is uniquely related to any measure, 317 

since each of those measures quantifies different aspects of the time-dependent structural 318 

characteristics embedded in a given time series. For instance, the largest Lyapunov exponent quantifies 319 

the rate at which nearby trajectories from a time series in state space diverge over time; this equals the 320 

so-called local stability, i.e. deviation from a certain orbit (Wolf, Swift, Swinney, & Vastano, 1985; 321 

Rosenstein, Collins, & De Luca, 1993; Abarbanel, 1996); the approximate entropy quantifies the 322 

regularity of a time series (Pincus, 1991; Pincus, Gladstone, & Ehrenkranz, 1991); the detrended 323 

fluctuation analysis quantifies the presence of long-range correlations in a time series (Hausdorff et al., 324 

1995). In conclusion, we suggest that interpretation of findings derived from nonlinear dynamics 325 

should not be made beyond what the nonlinear measures actually quantify, unless correlated with other 326 

measurements (e.g., electromyographic analysis for quantification of muscle fatigue, 327 

magnetoencephalographic analysis for direct quantification of cortical activity, etc.). 328 

4. Experimental work from our laboratory exploring the above theoretical frameworks 329 

Armed with the above tools a great number of investigators have explored important questions on 330 

variability and sought to provide support for or against the above-mentioned theoretical frameworks. 331 

Here we will present some of our work including posture and gait from healthy and pathological 332 

populations at different stages of the lifespan. 333 
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4.1. Infant motor development 334 

Harbourne and Stergiou (2003) explored the development of independent postural control in 335 

sitting. Specifically, they investigated whether developing postural control in sitting has deterministic 336 

origins, and if so, how this can be characterized using measures for nonlinear dynamics. Normal 337 

infants were examined longitudinally. Postural sway data were collected for ten seconds while the 338 

child attempted to maintain sitting postural control on a force platform. The resulting center of pressure 339 

(COP) time series during sitting were analyzed which revealed largest Lyapunov exponent values that 340 

were significantly different from their surrogate counterparts. This result indicated that the fluctuations 341 

observed in the COP time series were not randomly derived, and reflect deterministic processes by the 342 

neuromuscular system. The fluctuations in the time series were not noise, but had a structure or order 343 

that needed further investigation and description. Results further indicated differences in the largest 344 

Lyapunov exponent (LyE) and approximate entropy (ApEn) across the three stages of sitting 345 

development, reflecting changes in the dynamics of sitting postural control. The LyE values decreased 346 

as the sitting behavior emerged, indicating less divergence in the movement trajectories of the COP. 347 

Therefore, as the infants had more experience exploring the sitting position, they increasingly occupied 348 

trajectories that were closer together within the state space. The ApEn values also decreased, indicating 349 

that the child develops more repeatable movement patterns of the COP, which are most successful to 350 

maintain sitting postural control. Based on the findings the authors suggested that a centrally 351 

determined program of specific muscle responses is unlikely to provide successful postural control 352 

within the changing context of a growing infant. The findings of this study add to the evidence that 353 

infants dynamically assemble the sitting posture by originally organizing movement strategies that are 354 

more regular and repeatable, thus first allowing control of the degrees of freedom to approximate the 355 

skill, and then to explore adaptations to function in the environment. 356 

Toward the goal of better understanding the control strategies that are involved in evaluating 357 

postural control during sitting in infants, Harbourne, Deffeyes, Kyvelidou, and Stergiou (2009) 358 
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performed a principal component analysis as a data reduction method. Four factors were identified: the 359 

postural sway area and the amount of variability of that area (Factor 1: range and root-mean-square in 360 

the anterior-posterior and medial-lateral directions); the divergence of the sway movement trajectories 361 

and the regularity of the sway front-to-back (Factor 2: LyE and ApEn in the anterior-posterior 362 

direction); the speed and coordination of the postural sway (Factor 3: postural sway velocity and 363 

frequency dispersion); and the divergence of the sway movement trajectories and regularity of the 364 

sway side-to-side (Factor 4: LyE and ApEn in the medial-lateral direction). Thus, Factors 1 and 3 365 

included measures of the amount of variation in the postural sway, and Factors 2 and 4 included 366 

measures of the temporal organization of these variations. The isolation of the two types of measures 367 

into separate factors indicated possible separate features of postural control during sitting in typically 368 

developing infants. For example, the measures of the amount of variation did not exhibit loading into 369 

different factors by direction (anterior-posterior vs. medial-lateral) suggesting that during development 370 

infants may concentrate in a specific direction for exploration. Furthermore, the authors stressed that 371 

different measures taken together offer a more comprehensive description of postural control, with the 372 

ability to understand specific characteristics in the system. Problems in the system may occur when 373 

one or more of several components are compromised. The authors also stressed the importance of this 374 

approach in determining the health of the developing postural control system in infants as well as for 375 

early diagnosis of postural disorders. 376 

The above two studies suggested that learning of the sitting skill appears to be in line with 377 

theoretical suggestions and empirical results obtained when examining the acquisition of motor skills 378 

(e.g., Mitra, Riley, & Turvey, 1997; Newell & Vaillancourt, 2001). Specifically, the maintenance of 379 

equilibrium in the sitting skill is based on a problem of compressing a high-dimensional system 380 

composed of many components (e.g., neural, muscular and segmental components) into a low-381 

dimensional system (such as in chaos which arises specifically in very low-dimensional nonlinear 382 

systems that are deterministic; Strogatz, 1994) with only few macroscopic or collective variables that 383 
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need to be controlled. This could allow the attainment of the postural performance since these variables 384 

govern the coordination of the different system components. In this way, it is then possible to assume 385 

that the rationale of decreasing the degrees of freedom and then the number of controlled collective 386 

variables makes the achievement of the postural control easier for the infants. 387 

Our methodological approach was further used by Deffeyes, Harbourne, Kyvelidou, Stuberg, & 388 

Stergiou (2009b) to investigate how sitting postural sway in typically developing infants differs from 389 

developmentally delayed infants. Infants in the developmentally delayed group were diagnosed with 390 

cerebral palsy, or else were developmentally delayed and at risk for cerebral palsy. Motor development 391 

in infants with cerebral palsy is delayed, meaning that developmental milestones such as sitting, 392 

standing, or walking may occur later than in infants with typical development, and in severe cases 393 

these milestones may never be met (Wu Day, Strauss, & Shavelle, 2004; Fedrizzi et al., 2000). The 394 

results from Deffeyes et al. (2009b) showed that the LyE was the only parameter of COP time series 395 

that revealed significant differences (p<0.000) between infants with typical versus delayed 396 

development. The authors suggested that the infants with delayed development appear to further 397 

minimize the fluctuations that are present in their postural sway patterns indicating more rigid control 398 

than infants with typical development. If it is assumed that the infants with typical development have 399 

better motor control, then it can be suggested that these infants are exploring a wider variety of 400 

solutions to postural control. It can also be assumed that infants with delayed development are further 401 

freezing degrees of freedom to have fewer control parameters to manipulate as they maintain upright 402 

posture. These results may seem contradictory with the results presented by the study of Harbourne 403 

and Stergiou (2003). However, this is not the case if we consider them under the prism of the 404 

theoretical framework of optimal state of variability. The infants with delayed development behave in 405 

a more robotic and periodic fashion (Fig. 3) than healthy typically developing infants. Furthermore, the 406 

healthy infants seem to “live” or move between randomness and optimal variability as they explore 407 

effective strategies for postural control. Importantly, the nonlinear measure of LyE has the potential to 408 



18 

add the specificity of diagnosis in the early months of life, when most standardized tests of infant 409 

development have little predictive value. 410 

Most recently, Deffeyes et al. (2009a) examined the utility of different entropy algorithms to 411 

further explore if different control strategies exist between typically developing infants and 412 

developmentally delayed infants. Postural sway data were acquired while infants were sitting on a 413 

force platform. Two types of entropy measures were used: (1) symbolic entropy (SymEn), (2) a new 414 

asymmetric entropy (SymEn) measure, and (3) ApEn. For each method of analysis, parameters were 415 

adjusted to optimize the separation of the results between the infants with delayed development and the 416 

infants with typical development. The method that gave the widest separation between the two groups 417 

was the asymmetric SymEn method, which Deffeyes et al. (2009a) developed by modification of the 418 

SymEn algorithm. The ApEn algorithm also performed well, using parameters optimized for the infant 419 

sitting postural sway data. As in the previous study the infants with delayed development were found 420 

to have more regular patterns of postural sway, while the infants with typical development are seen to 421 

have more information entropy in their movement. This further supported the conclusions from the 422 

previous study and suggested that the development of a postural control strategy involves an 423 

exploration of many possible solutions to arrive at a control strategy with an optimal state of 424 

variability. The authors further suggested that infants with typical development appear to be exploring 425 

more motor strategies, giving rise to the development of chaotic temporal variations in their postural 426 

sway.  427 

Critical to the above studies, was to establish the reproducibility of these measures for infant sitting 428 

posture. Therefore, Kyvelidou, Harbourne, Stuberg, Sun, & Stergiou (2009) and Kyvelidou, 429 

Harbourne, Shostrom, & Stergiou (2010) investigated the intra-session and inter-session reliability of 430 

linear and nonlinear measures when used to analyze COP time series during the development of infant 431 

sitting postural control in both typically developing and developmental delayed infants. Overall, the 432 

results showed that the evaluation of COP time series using linear and nonlinear measures is a reliable 433 
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method for quantifying incremental change across the development of sitting postural control in both 434 

typically developing infants and in infants with or at risk for cerebral palsy, and therefore the efficacy 435 

of therapeutic interventions directed at improving the sitting postural abilities in infants with motor 436 

developmental delays. 437 

Taken together, the findings from the motor development investigations conducted by our research 438 

group identified control strategies that point towards a new approach with respect to therapy 439 

(Harbourne & Stergiou, 2009). In this approach, the therapist assumes that the general rule for the 440 

patient is to optimize variability of movement for improving functional mobility and therefore health. 441 

This will include keeping the patient in a state of dynamic equilibrium during therapy sessions. 442 

Additionally, the therapist uses the strategy of providing only information for the patient on how to do 443 

a task if the patient does not have a way to get the information. The rationale is that variability is 444 

encouraged if the patient seeks information independently, and the patient is kept in a dynamic state. 445 

The therapist does not focus on a particular movement form or strategy, but rather allows the patient to 446 

discover that enhanced deterministic variability of various movements has an inherent value in 447 

promoting success during a task. Importantly, the findings from our motor development studies 448 

recommend that measures for studying nonlinear dynamics reveal that exhibiting chaotic temporal 449 

variations is probably inherent in normal variations, indicating features of motor control that are 450 

important for physical therapists to measure as they implement intervention. The application of 451 

principles based on our theoretical framework capitalize on concepts and measures of nonlinear 452 

dynamics to provide with innovative approaches to guide physical therapist practice and research in 453 

motor development. 454 

4.2. Sports medicine 455 

Over the past ten years, we have conducted several studies on musculoskeletal injuries such as 456 

anterior cruciate ligament injury or brain injury such as cerebral concussion. 457 

4.2.1. Anterior cruciate ligament: A sport-related injury to the neuromuscular system 458 
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Anterior cruciate ligament (ACL) is the most commonly injured ligament in sports (Zarins & 459 

Adams, 1988) and its reconstruction is a common operation among orthopaedic surgeons who are 460 

involved in sports medicine. The purpose of ACL reconstruction and subsequent rehabilitation is to 461 

restore complete and normal functionality of the knee joint in terms of muscular strength and stability 462 

(Chmielewski, Rudolph, & Snyder-Mackler, 2002). The ability of the surgical procedure to achieve 463 

complete and normal functionality of the knee joint is assessed with either static measures (i.e., KT-464 

1000, pivot-shift test) or questionnaires (i.e., Lysholm score) or combinations of both (i.e., 465 

International Knee Documentation Committee score). However, none of these measures is a true 466 

assessment of the dynamic functionality of the reconstructed knee under low demanding activities, 467 

such as walking, or higher demanding activities, such as those encountered in sports. To address this 468 

critical knowledge gap, our research group conducted explored variability during gait to assess the 469 

efficacy of anatomical ACL reconstruction for restoring normal knee mechanics and preserving long-470 

term joint health. 471 

In our first study, Stergiou, Moraiti Giakas, Ristanis, & Georgoulis (2004) investigated the effect of 472 

walking speed on the dynamic function of the ACL deficient knee using nonlinear measures. Dynamic 473 

function of the knee was assessed in terms of the structure of the variations that exist in the natural 474 

stride-to-stride movements of the knee. Individuals with unilateral deficiency walked on a treadmill at 475 

different speeds while kinematics was collected. The deficient knee was found to have significantly 476 

larger LyE values than the intact contralateral knee. Furthermore, increases in walking speed did not 477 

affect these differences in the LyE values. However, these results were limited because comparisons 478 

with healthy controls were not included. It is quite possible that the intact contralateral knee is not 479 

absolutely healthy and several compensations occur leading to contradictory results. 480 

Therefore, Moraiti, Stergiou, Ristanis, & Georgoulis (2007) extended the above research by 481 

investigating the temporal structure of the variations present in the ACL deficient knee as compared to 482 

that of a healthy control knee during walking. Individuals with unilateral ACL deficiency and healthy 483 
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controls walked at their self-selected speed on a treadmill, while lower extremity kinematics was 484 

collected for 80 consecutive strides. The ACL deficient knee exhibited smaller LyE values than a 485 

healthy control knee, indicating less divergence in the flexion-extension movement trajectories of the 486 

deficient knee. The results also verified the hypothesis made in the previous study that the intact 487 

contralateral knee is not absolutely healthy. The fact that the ACL deficient knee exhibited smaller 488 

LyE values than the healthy control is likely non-desirable since it may represent a decrease or loss of 489 

the optimal state of variability (which is exhibited by the healthy controls) rendering the system more 490 

predictable, periodic and with a rigid type of motor behavior. Neurologically this can explained if we 491 

consider that the ACL plays an important role in knee function because of its mechanical properties 492 

and the mechanoreceptors that exist in it (Johansson, Sjölander, & Sojka, 1991; Solomonow & 493 

Krogsgaard, 2001). For instance, it has been shown that activations of the ACL mechanoreceptors 494 

induce hamstring contraction resisting anterior tibial translation (ACL-hamstring reflex), in both 495 

animals and humans (Dyhre-Poulsen & Krogsgaard, 2000; Fujita, Nishikawa, Kambic, Andrish, & 496 

Grabiner, 2000; Tsuda, Okamura, Otsuka, Komatsu, & Tokuya, 2001). It has been proposed that the 497 

loss of proprioceptive input from the mechanoreceptors that exist in the ACL may lead to changes in 498 

the central nervous system which, in turn, leads to the development of altered muscle patterns and 499 

postural synergies (Courtney, Rine, & Kroll, 2005; Di Fabio, Graf, Badke, Breunig, & Jensen 1992; 500 

Valeriani et al., 1996). It has been further suggested that this kind of injury might be regarded as a 501 

neurophysiological dysfunction, not being a simple musculoskeletal injury (Kapreli & Athanasopoulos, 502 

2006). Therefore, ACL deficiency can lead to altered somatosensory input, which results in decline in 503 

the system’s flexibility and narrowed functional responsiveness reflected as rigidity. 504 

Importantly, degeneration of the knee joint and eventually development of osteoarthritis has been 505 

associated with ACL deficiency. Longitudinal follow-up studies have shown that ACL deficiency 506 

leads to the development of chondral injuries (Mankin, 1982), meniscal tears, degeneration of the 507 

articular cartilage and eventually post-traumatic arthritis (Fithian, Paxton, & Goltz, 2002; McDaniel & 508 
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Dameron, 1983; Noyes, Matthews, Mooar, & Grood, 1983; Noyes, Mooar, Matthews, & Butler, 1983). 509 

Therefore, it is possible that the increased behavioral rigidity found in these patients could lead to 510 

continuous systematic loading of the same areas on the articulating surfaces of the bones resulting over 511 

time in these pathological results. The absence of flexibility in the system does not practically allow 512 

for the loading to be more dispersed and over time the result is osteoarthritis. This hypothesis, 513 

however, needs to be further explored via additional research. Nonetheless, from this theoretical 514 

standpoint, initial experimental work has demonstrated the ability of nonlinear analysis to provide 515 

insight on specific causal physiological mechanisms of motor pathology. 516 

Based on the above, it can then be asked if ACL reconstruction can restore the LyE values to 517 

normative levels. Thus, Moraiti et al. (2010) investigated the functional outcome after ACL 518 

reconstruction using bone-patellar tendon-bone (BPTB) and quadrupled semitendinosus and gracilis 519 

tendon (ST/G) autografts by evaluating the stride-to-stride fluctuations present in the knee flexion-520 

extension time series. Patients with BPTB and patients with ST/G ACL reconstruction, two years 521 

postoperatively, and healthy controls walked on a treadmill at their self-selected pace, while lower 522 

extremity kinematics was collected for 100 consecutive strides. Both the BPTB and the ST/G groups 523 

had significantly larger LyE values than the healthy controls, even though clinical outcomes indicated 524 

complete restoration. No differences were found between the BPTB and the ST/G LyE values. 525 

Practically, the ACL reconstruction using either BPTP or ST/G renders the system more noisy and 526 

unpredictable as compared to healthy controls. This is probably because ACL reconstruction cannot 527 

restore the proprioceptive pathways found in a healthy knee (Solomonow et al., 1987; Johansson, 528 

Sjölander, & Sojka, 1990). These results may indicate that the current reconstruction techniques or the 529 

grafts used are not sufficient in restoring knee kinematic variability to normal (i.e., absence of 530 

complete reinstatement of the actual anatomy of the ACL; Arnoczky, Tarvin, & Marshall, 1982).  531 

Behaviorally, the findings from the above studies indicate that the ACL deficient individual 532 

exhibits a more predictable and rigid behavior with respect to their knee movement variability. On the 533 
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other hand, after ACL reconstruction the knee demonstrates a more noisy and unpredictable behavior. 534 

Clinically, these results can be explained as follows. An individual that knows that the ACL is 535 

reconstructed feels “secure” to increase and add extra movement. However, since the proper 536 

proprioceptive channels are not there, the temporal structure of the stride-to-stride variations of the 537 

knee is not restored to normative levels. On the contrary, the rigidity found in the ACL deficient knee 538 

signifies that ACL deficient patients are more “careful” in the way they walk trying to eliminate any 539 

extra movements. These behavioral phenomena are well described by the theoretical proposition of the 540 

optimal movement variability. Specifically, healthy gait is characterized by an optimal state of 541 

movement variability. This state allows for flexibility, adaptability, and ability to respond to 542 

unpredictable stimuli and stresses. In our above experiments this is the state that is exhibited by our 543 

healthy controls. Decrease or loss of this optimal state is associated with a system that is more rigid 544 

and very repeatable, as in the ACL deficient knee. Increase beyond optimal variability is associated 545 

with a system, which is noisy and irregular, as in the ACL reconstructed knee (Fig. 3). 546 

Furthermore, the impaired variability noted in the reconstructed knee using either graft could be the 547 

reason that ACL reconstruction is still linked to susceptibility to further sports injury and development 548 

of future pathology without alleviating the problems that were mentioned above for the ACL 549 

deficiency. Specifically, long-term follow-up studies have shown an increased incidence of 550 

osteoarthritis in ACL-reconstructed knees (Pinczewski et al., 2007). The studies described above used 551 

ACL reconstruction techniques representative of the standard of care for the last fifteen years (i.e., 552 

single graft bundle, typically transtibial drilling of femoral tunnel). Cadaver and in vivo studies have 553 

highlighted limitations of this approach for restoring normal knee anatomy and function, and led to a 554 

surge of interest in anatomical ACL reconstructions that attempt to better reproduce its actual two-555 

bundle anatomy and insertion sites. The approach used here can provide similar insights for the 556 

efficacy of these new surgical techniques for ACL reconstruction for restoring normal knee movement 557 

patterns and preserving long-term joint health. 558 
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4.2.2. Cerebral concussion: An example of sport-related injury to the brain 559 

Complete recovery of postural control after cerebral concussion is an important determinant of an 560 

athlete’s readiness to return to competitive activity. Athletes who return to competitive activity too 561 

early after injury are potentially more vulnerable to injury recurrence, the consequences of which can 562 

be dramatic (Kelly et al., 1991). The assessment of postural control provides an indirect means of 563 

identifying concussion-related neurophysiological abnormality (Guskiewicz, Ross, & Marshall, 2001). 564 

Postural control traditionally has been characterized according to a biomechanical framework as 565 

postural balance. Changes in postural control in athletes after cerebral concussion previously have been 566 

measured with a metric known as the equilibrium score resulting from the Sensory Organization Test 567 

(SOT) (Guskiewicz, Riemann, Perrin, & Nashner, 1997; Guskiewicz et al., 2001; Guskiewicz, 2002). 568 

This score estimates the maximum anterior-posterior angular displacement of the whole body center of 569 

gravity based on the range of the anterior-posterior COP displacement. Higher equilibrium scores are 570 

derived from lower amplitude COP displacement, thereby assuming greater postural stability. Several 571 

studies have raised the possibility that traditional postural stability measures (such as the SOT 572 

equilibrium scores; Guskiewicz, 2002) may not be capable of detecting subtle changes in postural 573 

control. 574 

In response to this concern, Cavanaugh et al. (2005a) recently investigated whether ApEn could 575 

detect changes in postural control in athletes with normal postural stability after cerebral concussion. 576 

COP data were collected from NCAA Division I (USA) athletes prior to and within 48 hours after 577 

injury. After injury, athletes displayed normal postural stability equivalent to preseason levels. For 578 

comparison, COP data also were collected from healthy non-athletes on two occasions. Compared to 579 

healthy controls, COP oscillations among athletes generally became more regular (lower ApEn value) 580 

after injury despite the absence of postural instability. For anterior-posterior time series, declines in 581 

ApEn values were much larger in SOT conditions 1 (eyes open on a firm surface) and 2 (eyes closed 582 

on a firm surface) than for all other conditions. For medial-lateral time series, ApEn values declined 583 
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after injury in all sensory conditions. Thus, if an investigator’s goal is solely to assess changes in the 584 

variability of COP oscillations after cerebral concussion, standing quietly with eyes open and eyes 585 

closed on a stable platform may be the only sensory condition that would need to evaluate. Overall, 586 

these findings provided preliminary evidence that ApEn could be a sensitive indicator of change in 587 

postural control in the acute stage after concussion. However, the authors also wanted to identify why 588 

ApEn seems to be sensitive to these changes. 589 

Therefore, Cavanaugh et al. (2006) examined the post-concussion recovery of postural control 590 

using ApEn. Collegiate athletes from whom COP and symptom data were collected at preseason, less 591 

than 48 hours after injury, and 48 to 96 hours after injury, were included in the analysis. Compared 592 

with the healthy preseason state, ApEn values for the anterior-posterior and medial-lateral time series 593 

declined immediately after injury in both steady and unsteady injured athletes. The decline in ApEn 594 

values after concussion reflects changes in the neurophysiological and mechanical constraints on 595 

postural control. Diffuse axonal injury reduces and distorts the interactions among neurons in the brain 596 

(McCrory, Johnston, Mohtadi, & Neeuwisse, 2001), thereby increasing the regularity of cortical 597 

oscillations (Pincus, 1995) that are subsequently manifested in more regular patterns of COP 598 

oscillation. Increased co-contraction of the lower extremity musculature is also generated by injured 599 

athletes in an attempt to gain control over postural sway. This mechanism can also result in more 600 

regular COP oscillations. Above and beyond, the positive relationship between ApEn values and 601 

equilibrium scores indicated that larger amplitude COP oscillations (diminished postural control 602 

reflected in a lower equilibrium score) tended to be more regular (lower ApEn values), whereas lower 603 

amplitude COP oscillations (better postural control reflected in a higher equilibrium score) tended to 604 

be more noisy (higher ApEn values). It appears, therefore, that effective postural control is achieved 605 

through relatively unconstrained, more irregular patterns of motor output. The ApEn and the 606 

equilibrium score have distinct theoretical constructs. ApEn quantifies regularity in the system output 607 

to provide clues to underlying system organization (Pincus & Goldberger, 1994). The ApEn algorithm 608 



26 

is a highly iterative process that analyzes the recurrent nature of short sequences of data points 609 

considered incrementally throughout a time series. In contrast, the equilibrium score provides little 610 

insight into the evolving patterns of variation in postural control performance during the course of a 611 

trial. Equilibrium scores are calculated using only two COP data points, the maximum and the 612 

minimum, regardless of when they occur. As a biomechanical measure, the resulting range of COP 613 

displacement reflects only the amount of variability in the system output. 614 

Importantly, the ApEn provides a theoretically distinct and valuable measurement alternative that 615 

may prove effective for reducing uncertainty in the return-to-play decision. Another very interesting 616 

finding of the above study was that, at 48 to 96 hours after injury, ApEn values for the medial-lateral 617 

time series remained significantly depressed, even among athletes whose initial postural instability had 618 

resolved. In other words, the effects of cerebral concussion on postural control appeared to persist for 619 

longer than 3 to 4 days, even among athletes with no clinical signs of unsteadiness. This finding 620 

contrasts with the SOT equilibrium score data that demonstrated that postural instability generally 621 

resolves within that time frame allowing athletes to return to sports (Riemann & Guskiewicz, 2000, 622 

Guskiewicz et al., 1997, 2001; McCrea et al., 2003). It is then possible that the documented recurrence 623 

of cerebral concussions is due to undetected pathology that ApEn is more sensitive to identify 624 

(Cavanagh et al., 2005b). 625 

Collectively, the above findings support the theoretical model of optimal movement variability, 626 

indicating that effective postural control in quiet standing is achieved via relatively unconstrained 627 

patterns of motor output. As sensory information was withdrawn or degraded, COP oscillations 628 

became more regular. Pincus (1994) and Pincus & Keefe (1992) gave heuristic support for the idea that 629 

systems with a relatively limited number of viable interconnections among components may generate 630 

more regular output. Newell (1998) proposed a similar idea using a degrees of freedom theoretical 631 

framework. Accordingly, either fewer or more poorly organized degrees of freedom reduce the 632 

adaptive capability of the individual (Newell, van Emmerik, & Sprague, 1993). Together, these 633 
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hypotheses suggest that a healthy postural control system, because of numerous interconnections 634 

among its components, is capable of adapting to a wide variety of task and environmental demands. 635 

Hence, when the system is allowed to operate with minimal constraints (e.g., at rest during quiet 636 

standing under normal sensory conditions), the system (i.e. COP oscillations) output appears to 637 

fluctuate in relatively random fashion, presumably reflecting the readiness of the system to rapidly 638 

respond to perturbation. In the presence of injury, however, normal interconnections among system 639 

components would be compromised, thereby reducing the motor flexibility and adaptability of the 640 

system. As a result, fluctuations in the system output at rest would be more constrained, appearing 641 

more regular. Consistent with the aforementioned hypotheses, the removal of accurate sensory 642 

feedback not only made it more difficult for individuals to precisely control body position, but also 643 

artificially constrained interactions among control system components, producing more predictable 644 

oscillations in system output (Cavanaugh et al., 2005a, 2005b). 645 

Based on the above presented studies, future investigations in the postural control after cerebral 646 

concussion could explore the following questions: “How long ApEn values remain depressed after 647 

injury?”, “Which factors correlate with the eventual return of ApEn values to pre-injury levels?”, and 648 

“Which specific neurophysiological or mechanical mechanisms explain the changes in regularity of 649 

postural sway after concussion?”. These investigations can lead to the determination of whether the 650 

changes in the ApEn values after injury are associated with an increased risk of recurrence of cerebral 651 

concussion. 652 

4.3. Chaos in passive dynamic gait models 653 

Full and Koditschek (1999) suggested that the multifactorial nature of locomotion can be 654 

approached by using simple models or templates that can be made to resolve the redundancy of 655 

multiple legs, joints and muscles by seeking synergies and symmetries. Using this approach, our group 656 

sought to identify a template that can exhibit chaos in its gait variability. Such a template can verify 657 
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that chaos can be present in the fluctuations that are present from one step to the next during 658 

locomotion, and then can be used to investigate how chaos in gait can be controlled.  659 

A relatively simple model that has been used as a template to address questions about the 660 

biomechanical requisites and energetics of bipedal human locomotion is the passive dynamic walking 661 

model that walks down a slightly sloped surface (Garcia, Chatterjee, Ruina & Coleman, 1998; 662 

Goswami, Thuilot & Espiau, 1998; Kuo, 2001, 2002; McGeer, 1990). Garcia et al. (1998) 663 

demonstrated that a simple passive dynamic walking model can exhibit a cascade of period doublings 664 

in the walking pattern. They noted that the distances between consecutive period doublings appear to 665 

converge to the Feigenbaum constant (4.669201…). This suggested that a passive dynamic walking 666 

model might exhibit a chaotic bipedal locomotive pattern (Alligood, Sauer, & Yorke, 1997). However, 667 

Garcia et al. (1998) did not examine or prove the presence of chaos per se in the model’s locomotion. 668 

Nor did they identify which ramp angle is associated with the onset of a chaotic walking pattern. Kurz, 669 

Stergiou, Heidel, & Foster (2005), using simulations of the model, were the first to identify that as the 670 

ramp angle was increased, a cascade of bifurcations were present in the model’s locomotive pattern 671 

that lead to a chaotic attractor from 0.01839 rad < ramp angle < 0.0189 rad. These results provided 672 

evidence that such a model can be used as a template for exploring the biomechanical control 673 

parameters responsible for chaos in human locomotion. 674 

Subsequently our group proceeded to investigate how the presence of chaos on our template can be 675 

controlled. In two subsequent studies, Kurz and Stergiou (2005, 2007a) demonstrated that 676 

implementing “muscles” in the model in the form of hip joint actuations during the swing phase can 677 

provide slight perturbations to the unstable manifolds of points in a chaotic system that will promote 678 

the transition to new stable behaviors embedded in the rich chaotic attractor. Stable behavior here is 679 

when the passive walker does not fall down. The simulations indicated that systematic alterations of 680 

the hip joint actuations resulted in rapid transitions to any stable locomotive pattern available in the 681 

chaotic locomotive attractor (Kurz & Stergiou, 2007a). Based on these findings, they investigated the 682 
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benefits of having a chaotic gait with a biologically inspired artificial neural network (ANN) that 683 

employed this chaotic control scheme. The ANN was robust and capable of selecting a hip joint 684 

actuation that transitioned the passive dynamic model to a stable gait embedded in the chaotic attractor. 685 

Additionally, the ANN was capable of using hip joint actuations to accommodate environments that 686 

were previously unstable and to even overcome unforeseen perturbations. These simulations provided 687 

with an understanding of the advantages that exist when we have a locomotive system that exhibits 688 

chaos and provide insight as to how chaos can be used as an advantageous control scheme for the 689 

nervous system (Kurz & Stergiou, 2005). 690 

Similar results as with the hip joint actuation were produced using toe-off impulses that assist the 691 

forward motion of the center of mass (Kurz & Stergiou, 2007b). Furthermore, results from human 692 

experiments supported the model's prediction that the control of the forward progression of the center 693 

of mass influences the gait dynamics. More recently, Kurz et al. (2010) and Kyvelidou, Kurz, Ehlers, 694 

& Stergiou (2008) used the passive bipedal walking model to relate attractor divergence and walking 695 

balance. Their simulations revealed that attractors that have a greater amount of divergence are more 696 

susceptible to falls from external perturbations. They supplemented these results with human 697 

experiments where they demonstrated that elderly and patients with Parkinson’s disease have walking 698 

patterns that are more noisy with increased LyE values than their young healthy counterparts. These 699 

results suggested that elderly and patients with Parkinson’s disease may have a higher likelihood of 700 

falling as predicted by the theoretical framework of the optimal movement variability. 701 

Together, these studies demonstrated that chaos could be a powerful component of the locomotive 702 

system. As we mentioned earlier in this review, chaos is necessary for the control of locomotion by 703 

allowing the nervous system to rapidly transition to new gaits that are embedded within the chaotic 704 

attractor demonstrating healthy flexibility and adaptability. This is reflected in our optimal movement 705 

variability model where deterioration of these properties results in lack of health. As demonstrated in 706 

the above studies, joint actuations and mechanical perturbations could be used to rapidly transition to 707 
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any gait available in the bifurcation map of the passive dynamic walking model. In a similar fashion, 708 

humans demonstrate predictable scaling in the chaotic structure of the gait pattern as the dynamics of 709 

the locomotive system are assisted and the mechanics of the locomotive system are altered. The above-710 

presented experimental results demonstrate that the presence and the way chaos is being exhibited 711 

could be controllable which is fundamentally important for the nervous system. 712 

5. Concluding comments 713 

In conclusion, using analysis for nonlinear dynamical systems to human behavior provides a better 714 

understanding of variability and how relates with pathology. In this context, the theoretical model of 715 

optimal movement variability developed by our research group provides the framework for interpreting 716 

both simulated and empirical results. Fields studying movement generation, including robotics, 717 

psychology, and neuroscience have utilized concepts and tools related to the pervasiveness of 718 

variability in biological systems. The concepts of variability and chaotic variations in human 719 

movement along with the advanced tools used to measure these concepts open new vistas for research 720 

in movement dysfunction and pathology. In this review we described innovations in the exploration of 721 

variability and their potential importance in understanding human movement. Far from being a source 722 

of error, evidence supports the necessity of an optimal state of variability for health and functional 723 

movement. Concepts of and methods used for nonlinear dynamics offer significant application 724 

possibilities to guide rehabilitation practice and research in human movement. 725 

726 
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Figure Captions 1232 

Fig. 1. Complementary linear and nonlinear measures from different signals; six signals are displayed, 1233 

with the respective values for range and largest Lyapunov Exponent (LyE). The first two time series 1234 

are periodic and have been generated using the sine function 15sin(t/24) and the cosine function 1235 

40cos(t/24). The following two time series are chaotic and have been generated using the Rössler and 1236 

Lorenz systems, respectively. The final two time series are random and correspond to uniformly and 1237 

Gaussian distributed white noise, respectively. All time series contain 4000 data points. The figure 1238 

demonstrates that signals can have the same range but differ in terms of temporal structure (LyE) or 1239 

they can have different ranges but the same LyE. 1240 

 1241 

Fig. 2. Periodic, chaotic, and random time series and their corresponding three-dimensional phase 1242 

space plots. The phase space plot is obtained by plotting the original time series and its time delayed 1243 

copies. This figure provides with an illustration of a chaotic signal and how is different from other 1244 

signals. 1245 

 1246 

Fig. 3. Theoretical model of optimal movement variability illustrated using the signals from Fig. 2. For 1247 

clarification purposes, the signals presented ("Periodic", "Chaotic", and "Random") are not the only 1248 

three possibilities. Behavior in terms of variability should be viewed in a continuum as being more or 1249 

less predictable (on the X-axis) or exhibiting or not chaos (on the Y-axis). Thus, there are many other 1250 

possibilities. 1251 
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