641 research outputs found

    Biological Invasion and Coexistence in Intraguild Predation

    Get PDF
    Invasion of an exotic species initiated by its local introduction is considered subject to intraguild predation (IGP). Mathematically, the system dynamics is described by three nonlinear diffusion-reaction equations in two spatial dimensions. The key factors that determine successful invasion are investigated by means of extensive numerical simulations. The results reveal high asymmetry. An exotic species can invade successfully if it acted as the top predator and engaged in IGP, and the IGP interactions of the postinvasion web will be kept. While the exotic species were introduced as the intraguild prey (IGprey), they invade and spread through patchy invasion which corresponds to the invasion at the edge of extinction. Increase of the IGprey's dispersal rate and decrease of the IGpredator's may make the IGprey invade. But the interactions of the postinvasion web will change from IGP to competition, which is absolutely different from the first case. Finally, the common existence of IGP was explored once again from the perspective of biological invasion

    Coexistence of fish species with strongly similar life histories - population dynamical feedback forces species to pick sides

    Get PDF
    Fish generally grow several orders of magnitude between the larval and adult stage. Many ecological properties of organisms are related to body size, and hence small fish often have very different ecological roles than large conspecifics. This also implies that omnivory, the feeding on more than one trophic level by individuals of the same species, is a common phenomenon in fish. Intraguild predation is omnivory in its simplest form, where two species compete for the same resource, but one of the species can also eat its competitor. In models, persistence of both species in such a configuration is difficult to obtain. In marine fish communities however, it is observed routinely. One way in which persistence of omnivorous species can be established is by incorporating it as an ontogenetic diet shift, where small individuals of both species compete, and large individuals of one can feed on the small individuals of the others species. We show in this study that this mechanism can not only lead to persistence of a single omnivorous species, but also to persistence of multiple omnivorous species. This is possible given that the adults have sufficiently different diets. It is shown that, while adults of both species can feed both on small competitors or on the basic resource, due to the population dynamical feedback, one species will in practice act as a predator, while the other acts as prey. This way, a system with two omnivores in practice persists as a tritrophic system. Which of the species assumes which role depends on the specific community characteristics. We show here that by incorporating complex size-dependent feeding relationships in food webs, many more species may be able to coexist than is possible based on either species-level considerations or size spectrum models which do incorporate within-population size differences, but relate diet only to individual body size irrespective of species identity. The mechanism underlying our result may be part of the explanation why fish species with seemingly similar life histories do coexist in marine ecosystems

    Order of invasion affects the spatial distribution of a reciprocal intraguild predator

    Get PDF
    When intraguild predation is reciprocal, i.e. two predator species kill and feed on each other, theory predicts that well-mixed populations of the two species cannot coexist. At low levels of the shared resource, only the best competitor exists, whereas if the level of the common resource is high, the first species to arrive on a patch can reach high numbers, which prevents the invasion of the second species through intraguild predation. The order of invasion may therefore be of high importance in systems with reciprocal intraguild predation with high levels of productivity, with the species arriving first excluding the other species. However, natural systems are not well mixed and usually have a patchy structure, which gives individuals the possibility to choose patches without the other predator, thus reducing opportunities for intraguild predation. Such avoidance behaviour can cause spatial segregation between predator species, which, in turn, may weaken the intraguild interaction strength and facilitate their co-occurrence in patchy systems. Using a simple set-up, we studied the spatial distribution of two reciprocal intraguild predators when either of them was given priority on a patch with food. We released females of two predatory mite species sequentially and found that both species avoided patches on which the other species was resident. This resulted in partial spatial segregation of the species and thus a lower chance for the two species to encounter each other. Such behaviour reinforces segregation, because heterospecifics avoid patches with established populations of the other species. This may facilitate coexistence of two intraguild predators that would exclude each other in well-mixed populations

    Effects of Warming on Intraguild Predator Communities with Ontogenetic Diet Shifts

    Get PDF
    Species interactions mediate how warming affects community composition via individual growth and population size structure. While predictions on how warming affects composition of size- or stage-structured communities have so far focused on linear (food chain) communities, mixed competition-predation interactions, such as intraguild predation, are common. Intraguild predation often results from changes in diet over ontogeny ("ontogenetic diet shifts") and strongly affects community composition and dynamics. Here, we study how warming affects a community of intraguild predators with ontogenetic diet shifts, consumers, and shared prey by analyzing a stage-structured bioenergetics multispecies model with temperature- and body size-dependent individual-level rates. We find that warming can strengthen competition and decrease predation, leading to a loss of a cultivation mechanism (the feedback between predation on and competition with consumers exerted by predators) and ultimately predator collapse. Furthermore, we show that the effect of warming on community composition depends on the extent of the ontogenetic diet shift and that warming can cause a sequence of community reconfigurations in species with partial diet shifts. Our findings contrast previous predictions concerning individual growth of predators and the mechanisms behind predator loss in warmer environments and highlight how feedbacks between temperature and intraspecific size structure are important for understanding such effects on community composition

    Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence

    Get PDF
    1. Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). 2. Behavioural interactions are key components of interspecific competition between predators,yet these are often overlooked invasion processes. Here, we show how behavioural, nonlethal IGP interactions might facilitate the establishment success of an invading alien species. 3. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata),whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. 4. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. 5. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We demonstrate how empirical and theoretical techniques can be combined to understand better the processes and consequences of alien species invasions for native biodiversity

    Ontogenetic stage-specific reciprocal intraguild predation

    Get PDF
    The size or stage of interacting individuals is known to affect the outcome of ecological interactions and can have important consequences for population dynamics. This is also true for intraguild predation (the killing and eating of potential competitors), where the size or ontogenetic stage of an individual determines whether it is the intraguild predator or the intraguild prey. Studying size- or stage-specific interactions is therefore important, but can be challenging in species with complex life histories. Here, we investigated predatory interactions of all feeding stages of the two predatory mite species Neoseiulus californicus and Phytoseiulus macropilis, both of which have complex life cycles, typical for predatory arthropods. Populations of these two species compete for two-spotted spider mites, their prey. We evaluated both the capacity to kill stages of the other predator species and the capacity to benefit from feeding on these stages, both prerequisites for the occurrence of intraguild predation. Ontogeny played a critical role in the occurrence of intraguild predation. Whereas the juveniles of P. macropilis developed from larva until adulthood when feeding on N. californicus eggs, interestingly, adult female P. macropilis did not feed on the smaller stages of the other species. We furthermore show that intraguild predation was reciprocal: both juveniles and adult females of N. californicus preyed on the smallest stages of P. macropilis. These results suggest that a proper analysis of the interactions between pairs of species involved in intraguild predation should start with an inventory of the interactions among all ontogenetic stages of these species

    Developmental change in predators drives different community configurations [post-print]

    Get PDF
    Theoreticians who first observed alternative stable states in simple ecological models warned of grave implications for unexpected and irreversible collapses of natural systems (i.e., regime shifts). Recent ecosystem-level shifts engendering considerable economic losses have validated this concern, positioning bistability at the vanguard of coupled human-environment systems management. While the perturbations that induce regime shifts are known, the ecological forces that uphold alternative stable states are often unresolved or complex and system specific. Thus, the search continues for general mechanisms that can produce alternative stable states under realistic conditions. Integrating model predictions with long-term zooplankton community experiments, we show that the core feature of ontogenetic development, food-dependent maturation, enables a single community to reach different configurations within the same constant environment. In one configuration, predators regulate prey to foster coexistence, while in the other, prey counterintuitively exclude their predators via maturation-limiting competition. The concordance of these findings with the unique outcome and underlying mechanism of a general model provides empirical evidence that developmental change, a fundamental property of life, can support bistability of natural systems

    Complex dynamics in coevolution models with ratio-dependent functional response

    Full text link
    We explore the complex dynamical behavior of two simple predator-prey models of biological coevolution that on the ecological level account for interspecific and intraspecific competition, as well as adaptive foraging behavior. The underlying individual-based population dynamics are based on a ratio-dependent functional response [W.M. Getz, J. Theor. Biol. 108, 623 (1984)]. Analytical results for fixed-point population sizes in some simple communities are derived and discussed. In long kinetic Monte Carlo simulations we find quite robust, approximate 1/f noise in species diversity and population sizes, as well as power-law distributions for the lifetimes of individual species and the durations of periods of relative evolutionary stasis. Adaptive foraging enhances coexistence of species and produces a metastable low-diversity phase and a stable high-diversity phase.Comment: 19 page
    • …
    corecore