We explore the complex dynamical behavior of two simple predator-prey models
of biological coevolution that on the ecological level account for
interspecific and intraspecific competition, as well as adaptive foraging
behavior. The underlying individual-based population dynamics are based on a
ratio-dependent functional response [W.M. Getz, J. Theor. Biol. 108, 623
(1984)]. Analytical results for fixed-point population sizes in some simple
communities are derived and discussed. In long kinetic Monte Carlo simulations
we find quite robust, approximate 1/f noise in species diversity and population
sizes, as well as power-law distributions for the lifetimes of individual
species and the durations of periods of relative evolutionary stasis. Adaptive
foraging enhances coexistence of species and produces a metastable
low-diversity phase and a stable high-diversity phase.Comment: 19 page