389 research outputs found

    Bio-inspired model of ground temperature behavior on the horizontal geothermal exchanger of an installation based on a heat pump

    Get PDF
    [Abstract] Nowadays the Heat Pump is one of the best systems to warm a building with a good performance. Usually, with the aim to increase the efficiency, a geothermal heat exchanger is added to the installation. This component shows a disturbing effect on the ground where it is placed. On this research a bio-inspired system was developed to test the ground temperature behavior where there is a heat exchanger. The novel approach has been implemented and tested under a real dataset. One year temperature measurements were recorded. The final approach is based on clustering and regression techniques. Then, the model was validated and tested with a dataset from a real installation with a good performance

    An intelligent fault detection system for a heat pump installation based on a geothermal heat exchanger

    Get PDF
    The heat pump with geothermal exchanger is one of the best methods to heat up a building. The heat exchanger is an element with high probability of failure due to the fact that it is an outside construction and also due to its size. In the present study, a novel intelligent system was designed to detect faults on this type of heating equipment. The novel approach has been successfully empirically tested under a real dataset obtained during measurements of one year. It was based on classification techniques with the aim of detecting failures in real time. Then, the model was validated and verified over the building; it obtained good results in all the operating conditions ranges

    Geothermal Energy: Delivering on the Global Potential

    Get PDF
    After decades of being largely the preserve of countries in volcanic regions, the use of geothermal energy—for both heat and power applications—is now expanding worldwide. This reflects its excellent low-carbon credentials and its ability to offer baseload and dispatchable output - rare amongst the mainstream renewables. Yet uptake of geothermal still lags behind that of solar and wind, principally because of (i) uncertainties over resource availability in poorly-explored reservoirs and (ii) the concentration of full-lifetime costs into early-stage capital expenditure (capex). Recent advances in reservoir characterization techniques are beginning to narrow the bounds of exploration uncertainty, both by improving estimates of reservoir geometry and properties, and by providing pre-drilling estimates of temperature at depth. Advances in drilling technologies and management have potential to significantly lower initial capex, while operating expenditure is being further reduced by more effective reservoir management — supported by robust mathematical models — and increasingly efficient energy conversion systems (flash, binary and combined-heat-and-power). Advances in characterization and modelling are also improving management of shallow low-enthalpy resources that can only be exploited using heat-pump technology. Taken together with increased public appreciation of the benefits of geothermal, the technology is finally ready to take its place as a mainstream renewable technology, This book draws together some of the latest developments in concepts and technology that are enabling the growing realisation of the global potential of geothermal energy in all its manifestations.After decades of being largely the preserve of countries in volcanic regions, the use of geothermal energy—for both heat and power applications—is now expanding worldwide. This reflects its excellent low-carbon credentials and its ability to offer baseload and dispatchable output - rare amongst the mainstream renewables. Yet uptake of geothermal still lags behind that of solar and wind, principally because of (i) uncertainties over resource availability in poorly-explored reservoirs and (ii) the concentration of full-lifetime costs into early-stage capital expenditure (capex). Recent advances in reservoir characterization techniques are beginning to narrow the bounds of exploration uncertainty, both by improving estimates of reservoir geometry and properties, and by providing pre-drilling estimates of temperature at depth. Advances in drilling technologies and management have potential to significantly lower initial capex, while operating expenditure is being further reduced by more effective reservoir management — supported by robust mathematical models — and increasingly efficient energy conversion systems (flash, binary and combined-heat-and-power). Advances in characterization and modelling are also improving management of shallow low-enthalpy resources that can only be exploited using heat-pump technology. Taken together with increased public appreciation of the benefits of geothermal, the technology is finally ready to take its place as a mainstream renewable technology

    IEA ECES Annex 31 Final Report - Energy Storage with Energy Efficient Buildings and Districts: Optimization and Automation

    Get PDF
    At present, the energy requirements in buildings are majorly met from non-renewable sources where the contribution of renewable sources is still in its initial stage. Meeting the peak energy demand by non-renewable energy sources is highly expensive for the utility companies and it critically influences the environment through GHG emissions. In addition, renewable energy sources are inherently intermittent in nature. Therefore, to make both renewable and nonrenewable energy sources more efficient in building/district applications, they should be integrated with energy storage systems. Nevertheless, determination of the optimal operation and integration of energy storage with buildings/districts are not straightforward. The real strength of integrating energy storage technologies with buildings/districts is stalled by the high computational demand (or even lack of) tools and optimization techniques. Annex 31 aims to resolve this gap by critically addressing the challenges in integrating energy storage systems in buildings/districts from the perspective of design, development of simplified modeling tools and optimization techniques

    Selected Papers from SDEWES 2017: The 12th Conference on Sustainable Development of Energy, Water and Environment Systems

    Get PDF
    EU energy policy is more and more promoting a resilient, efficient and sustainable energy system. Several agreements have been signed in the last few months that set ambitious goals in terms of energy efficiency and emission reductions and to reduce the energy consumption in buildings. These actions are expected to fulfill the goals negotiated at the Paris Agreement in 2015. The successful development of this ambitious energy policy needs to be supported by scientific knowledge: a huge effort must be made in order to develop more efficient energy conversion technologies based both on renewables and fossil fuels. Similarly, researchers are also expected to work on the integration of conventional and novel systems, also taking into account the needs for the management of the novel energy systems in terms of energy storage and devices management. Therefore, a multi-disciplinary approach is required in order to achieve these goals. To ensure that the scientists belonging to the different disciplines are aware of the scientific progress in the other research areas, specific Conferences are periodically organized. One of the most popular conferences in this area is the Sustainable Development of Energy, Water and Environment Systems (SDEWES) Series Conference. The 12th Sustainable Development of Energy, Water and Environment Systems Conference was recently held in Dubrovnik, Croatia. The present Special Issue of Energies, specifically dedicated to the 12th SDEWES Conference, is focused on five main fields: energy policy and energy efficiency in smart energy systems, polygeneration and district heating, advanced combustion techniques and fuels, biomass and building efficiency

    Energy for Sustainable Future

    Get PDF
    Energy and the environment are irrevocably interrelated, and they are critical factors that influence the development of societies. The pollution of the environment without considering various consequences has become one of the most important global issues today. This environmental pollution is mainly the result of increases in economic activities, population, transportation, electricity generation, agriculture, forestry, and land use. The exigency of energy for these activities, the rapidly rising price of petroleum oil, the harmful effect of greenhouse gases, and the quest for energy security have steered our attention towards sustainable sources of energy. It is fundamental to find innovative solutions that are sustainable from the perspective of energy management and environmental protection. This book includes three review articles which review the state-of-the-art of different sustainable energy resources. These articles include ammonia as a renewable energy carrier, integration of solar photovoltaic, and bio-oil from waste tires for automotive engine application. In addition, eight research studies reveal new knowledge about energy for a sustainable future. The topics covered span many diverse areas associated with sustainable energy, including various biofuels, photovoltaic, and other aspects of sustainability. These complementary contributions provide a substantial body of knowledge in the field of Renewable and Sustainable Energy

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    Renewable Energy Sources and Energy Efficiency for Rural Areas

    Get PDF

    Estimation of Power Production of Wind Potential

    Get PDF
    Estimating the wind potential for a particular micro location (siting) involves detailed analysis of the possibility of annual electricity production at that location. Based on the assumption of installed capacity, area and number of hours constant load, it is possible to obtain annual theoretical production of electricity according to expression . The wind atlas for target location contains data onto 5 reference roughness lengths (0.000 m , 0.030 m , 0.100 m , 0.400 m , 1.500 m ) and 5 reference heights (10 m , 25 m , 50 m , 100 m , 200 m ) above ground level . This paer have measured data onto site at target location, and base of that there was modeled digital model of location and wind power model for elevation at 110m. There was estimation of 20 GE (2,78 MW) instaling capacity for target location.14th Conference on Sustainable Development of Energy, Water and Environment Systems : October 1-6, Dubrovnik, Croatia, 2019
    • …
    corecore