7,365 research outputs found

    From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    Get PDF
    ©2009 Gao, Skolnick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.doi:10.1371/journal.pcbi.1000341DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Ca deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein

    Computational structure‐based drug design: Predicting target flexibility

    Get PDF
    The role of molecular modeling in drug design has experienced a significant revamp in the last decade. The increase in computational resources and molecular models, along with software developments, is finally introducing a competitive advantage in early phases of drug discovery. Medium and small companies with strong focus on computational chemistry are being created, some of them having introduced important leads in drug design pipelines. An important source for this success is the extraordinary development of faster and more efficient techniques for describing flexibility in three‐dimensional structural molecular modeling. At different levels, from docking techniques to atomistic molecular dynamics, conformational sampling between receptor and drug results in improved predictions, such as screening enrichment, discovery of transient cavities, etc. In this review article we perform an extensive analysis of these modeling techniques, dividing them into high and low throughput, and emphasizing in their application to drug design studies. We finalize the review with a section describing our Monte Carlo method, PELE, recently highlighted as an outstanding advance in an international blind competition and industrial benchmarks.We acknowledge the BSC-CRG-IRB Joint Research Program in Computational Biology. This work was supported by a grant from the Spanish Government CTQ2016-79138-R.J.I. acknowledges support from SVP-2014-068797, awarded by the Spanish Government.Peer ReviewedPostprint (author's final draft

    In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation

    Dynamic undocking and the quasi-bound state as tools for drug discovery

    Get PDF
    There is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein–ligand complexes, which is notoriously difficult. We adopt an alternative approach that evaluates structural, rather than thermodynamic, stability. As bioactive molecules present a static binding mode, we devised dynamic undocking (DUck), a fast computational method to calculate the work necessary to reach a quasi-bound state at which the ligand has just broken the most important native contact with the receptor. This non-equilibrium property is surprisingly effective in virtual screening because true ligands form more-resilient interactions than decoys. Notably, DUck is orthogonal to docking and other ‘thermodynamic’ methods. We demonstrate the potential of the docking–undocking combination in a fragment screening against the molecular chaperone and oncology target Hsp90, for which we obtain novel chemotypes and a hit rate that approaches 40

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Gypsum-DL: an open-source program for preparing small-molecule libraries for structure-based virtual screening

    Get PDF
    Computational techniques such as structure-based virtual screening require carefully prepared 3D models of potential small-molecule ligands. Though powerful, existing commercial programs for virtual-library preparation have restrictive and/or expensive licenses. Freely available alternatives, though often effective, do not fully account for all possible ionization, tautomeric, and ring-conformational variants. We here present Gypsum-DL, a free, robust open-source program that addresses these challenges. As input, Gypsum-DL accepts virtual compound libraries in SMILES or flat SDF formats. For each molecule in the virtual library, it enumerates appropriate ionization, tautomeric, chiral, cis/trans isomeric, and ring-conformational forms. As output, Gypsum-DL produces an SDF file containing each molecular form, with 3D coordinates assigned. To demonstrate its utility, we processed 1558 molecules taken from the NCI Diversity Set VI and 56,608 molecules taken from a Distributed Drug Discovery (D3) combinatorial virtual library. We also used 4463 high-quality protein-ligand complexes from the PDBBind database to show that Gypsum-DL processing can improve virtual-screening pose prediction. Gypsum-DL is available free of charge under the terms of the Apache License, Version 2.0

    Flexible Receptor Docking Method Development and Molecular Dynamics Studies Towards Targeting Dynamic Protein Surfaces.

    Full text link
    Protein-protein interactions are integral for cellular function, playing a huge role in processes such as cell signaling and transcription regulation. Targeting these essential interactions with small molecule inhibitors is important from a biochemical and pharmaceutical perspective. This dissertation contains chapters on multidisciplinary, collaborative approaches to investigate transcription regulation as well as MHC Class I assembly, which is involved in the immune response. During these projects I applied a variety of computational tools and developed a new docking methodology in CHARMM (CDOCKER). This new version of CDOCKER incorporates receptor flexibility through maintaining selected side-chains in an all-atom representation, while the rest of the receptor is represented as a grid. This version of CDOCKER includes a newly implemented sampling protocol that leads to docking accuracy that is competitive with and even exceeds that of other commonly used docking software in redocking trials. This docking methodology was applied to identify a putative ATP binding on calreticulin (CRT), a chaperone key to MHC Class I assembly and the immune response. This work was a collaborative effort with the Raghavan research group at the University of Michigan and was the first demonstration that CRT both binds and catalyzes ATP. We added further automated functionality to the CDOCKER method to investigate small- molecules covalently bound to receptors in collaboration with the Mapp research group at the University of Michigan. The tethering method was able to stabilize the dynamic surface of GACKIX for crystallization and modeled small-molecules that were identified experimentally but were unable to be crystalized. Finally, we employed Gō-like models to investigate the allosteric signaling between the two binding sites on GACKIX. These studies demonstrated the positive allostery arises from the first peptide paying the entropic cost of binding for the second peptide. The developments in docking methodology within CHARMM allow for targeting of fluid receptors such as GACKIX. A multidisciplinary approach to investigate complex cellular processes such as transcription regulation or the immune response takes advantage of the strengths of the different approaches and leads to advancements in understanding of the process at different size scales, atomistic to in vitro and even in vivo.PHDChemistryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116710/1/gagnonj_1.pd
    corecore