4,683 research outputs found

    Region-based segmentation of images using syntactic visual features

    Get PDF
    This paper presents a robust and efficient method for segmentation of images into large regions that reflect the real world objects present in the scene. We propose an extension to the well known Recursive Shortest Spanning Tree (RSST) algorithm based on a new color model and so-called syntactic features [1]. We introduce practical solutions, integrated within the RSST framework, to structure analysis based on the shape and spatial configuration of image regions. We demonstrate that syntactic features provide a reliable basis for region merging criteria which prevent formation of regions spanning more than one semantic object, thereby significantly improving the perceptual quality of the output segmentation. Experiments indicate that the proposed features are generic in nature and allow satisfactory segmentation of real world images from various sources without adjustment to algorithm parameters

    Using dempster-shafer theory to fuse multiple information sources in region-based segmentation

    Get PDF
    This paper presents a new method for segmentation of images into large regions that reflect the real world objects present in a scene. It explores the feasibility of utilizing spatial configuration of regions and their geometric properties (the so-called Syntactic Visual Features [1]) for improving the correspondence of segmentation results produced by the well-known Recursive Shortest Spanning Tree (RSST) algorithm [2] to semantic objects present in the scene. The main contribution of this paper is a novel framework for integration of evidence from multiple sources with the region merging process based on the Dempster-Shafer (DS) theory [3] that allows integration of sources providing evidence with different accuracy and reliability. Extensive experiments indicate that the proposed solution limits formation of regions spanning more than one semantic object

    Region-based representations of image and video: segmentation tools for multimedia services

    Get PDF
    This paper discusses region-based representations of image and video that are useful for multimedia services such as those supported by the MPEG-4 and MPEG-7 standards. Classical tools related to the generation of the region-based representations are discussed. After a description of the main processing steps and the corresponding choices in terms of feature spaces, decision spaces, and decision algorithms, the state of the art in segmentation is reviewed. Mainly tools useful in the context of the MPEG-4 and MPEG-7 standards are discussed. The review is structured around the strategies used by the algorithms (transition based or homogeneity based) and the decision spaces (spatial, spatio-temporal, and temporal). The second part of this paper proposes a partition tree representation of images and introduces a processing strategy that involves a similarity estimation step followed by a partition creation step. This strategy tries to find a compromise between what can be done in a systematic and universal way and what has to be application dependent. It is shown in particular how a single partition tree created with an extremely simple similarity feature can support a large number of segmentation applications: spatial segmentation, motion estimation, region-based coding, semantic object extraction, and region-based retrieval.Peer ReviewedPostprint (published version

    Image segmentation evaluation using an integrated framework

    Get PDF
    In this paper we present a general framework we have developed for running and evaluating automatic image and video segmentation algorithms. This framework was designed to allow effortless integration of existing and forthcoming image segmentation algorithms, and allows researchers to focus more on the development and evaluation of segmentation methods, relying on the framework for encoding/decoding and visualization. We then utilize this framework to automatically evaluate four distinct segmentation algorithms, and present and discuss the results and statistical findings of the experiment

    An improved image segmentation algorithm for salient object detection

    Get PDF
    Semantic object detection is one of the most important and challenging problems in image analysis. Segmentation is an optimal approach to detect salient objects, but often fails to generate meaningful regions due to over-segmentation. This paper presents an improved semantic segmentation approach which is based on JSEG algorithm and utilizes multiple region merging criteria. The experimental results demonstrate that the proposed algorithm is encouraging and effective in salient object detection

    Using rule extraction to improve the comprehensibility of predictive models.

    Get PDF
    Whereas newer machine learning techniques, like artifficial neural net-works and support vector machines, have shown superior performance in various benchmarking studies, the application of these techniques remains largely restricted to research environments. A more widespread adoption of these techniques is foiled by their lack of explanation capability which is required in some application areas, like medical diagnosis or credit scoring. To overcome this restriction, various algorithms have been proposed to extract a meaningful description of the underlying `blackbox' models. These algorithms' dual goal is to mimic the behavior of the black box as closely as possible while at the same time they have to ensure that the extracted description is maximally comprehensible. In this research report, we first develop a formal definition of`rule extraction and comment on the inherent trade-off between accuracy and comprehensibility. Afterwards, we develop a taxonomy by which rule extraction algorithms can be classiffied and discuss some criteria by which these algorithms can be evaluated. Finally, an in-depth review of the most important algorithms is given.This report is concluded by pointing out some general shortcomings of existing techniques and opportunities for future research.Models; Model; Algorithms; Criteria; Opportunities; Research; Learning; Neural networks; Networks; Performance; Benchmarking; Studies; Area; Credit; Credit scoring; Behavior; Time;

    The aceToolbox: low-level audiovisual feature extraction for retrieval and classification

    Get PDF
    In this paper we present an overview of a software platform that has been developed within the aceMedia project, termed the aceToolbox, that provides global and local lowlevel feature extraction from audio-visual content. The toolbox is based on the MPEG-7 eXperimental Model (XM), with extensions to provide descriptor extraction from arbitrarily shaped image segments, thereby supporting local descriptors reflecting real image content. We describe the architecture of the toolbox as well as providing an overview of the descriptors supported to date. We also briefly describe the segmentation algorithm provided. We then demonstrate the usefulness of the toolbox in the context of two different content processing scenarios: similarity-based retrieval in large collections and scene-level classification of still images

    Hyperspectral image representation and processing with binary partition trees

    Get PDF
    The optimal exploitation of the information provided by hyperspectral images requires the development of advanced image processing tools. Therefore, under the title Hyperspectral image representation and Processing with Binary Partition Trees, this PhD thesis proposes the construction and the processing of a new region-based hierarchical hyperspectral image representation: the Binary Partition Tree (BPT). This hierarchical region-based representation can be interpreted as a set of hierarchical regions stored in a tree structure. Hence, the Binary Partition Tree succeeds in presenting: (i) the decomposition of the image in terms of coherent regions and (ii) the inclusion relations of the regions in the scene. Based on region-merging techniques, the construction of BPT is investigated in this work by studying hyperspectral region models and the associated similarity metrics. As a matter of fact, the very high dimensionality and the complexity of the data require the definition of specific region models and similarity measures. Once the BPT is constructed, the fixed tree structure allows implementing efficient and advanced application-dependent techniques on it. The application-dependent processing of BPT is generally implemented through a specific pruning of the tree. Accordingly, some pruning techniques are proposed and discussed according to different applications. This Ph.D is focused in particular on segmentation, object detection and classification of hyperspectral imagery. Experimental results on various hyperspectral data sets demonstrate the interest and the good performances of the BPT representatio
    corecore