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Abstract—This paper discusses region-based representations of
image and video that are useful for multimedia services such
as those supported by the MPEG-4 and MPEG-7 standards.
Classical tools related to the generation of the region-based
representations are discussed. After a description of the main
processing steps and the corresponding choices in terms of feature
spaces, decision spaces, and decision algorithms, the state of
the art in segmentation is reviewed. Mainly tools useful in the
context of the MPEG-4 and MPEG-7 standard are discussed. The
review is structured around the strategies used by the algorithms
(transition based or homogeneity based) and the decision spaces
(spatial, spatio-temporal, and temporal).

The second part of this paper proposes a partition tree rep-
resentation of images and introduces a processing strategy that
involves asimilarity estimationstep followed by apartition creation
step. This strategy tries to find a compromise between what can
be done in a systematic and universal way and what has to be
application dependent. It is shown in particular how a single
partition tree created with an extremely simple similarity feature
can support a large number of segmentation applications: spatial
segmentation, motion estimation, region-based coding, semantic
object extraction, and region-based retrieval.

Index Terms— Compression, indexing, motion estimation,
MPEG-4, MPEG-7, object tracking, partition tree, regions, shot
detection, spatial and temporal segmentation, video objects.

I. INTRODUCTION

ATA and signal modeling for images and video sequences
is experiencing important developments. Part of this

the areas of interest, or to assign different behaviors to
the entities represented in the image. In these applications,
the notion of object is essential. As a consequence, the
data modeling has to be modified and, for example, has to
include regions of arbitrary shapes to represent objects. In
the following, we make a distinction between an object,
which is the visual two-dimensional (2-D) representation
of an entity that has a semantic meaning and a region,
which is a connected component of the space that is
generally defined by a homogeneity criterion. An object
may be represented by the union of several regions that
may be connected or not.

* The MPEG-7 standard [40], [41] is also facing the same

kind of challenges. For instance, the video representation
based on a flow of frames is inadequate for a large number
of video indexing applications. Among the large set of
functionalities involved in a retrieval application, let us
consider browsing. The browsing functionality should go
far beyond the “fast forward” and “fast reverse” allowed
by VCR’s. One would like to have access to a table of
contents of the video and to be able to jump from one
item to another. This kind of functionality implies at least
a structuring of the video in terms of individual shots and
scenes. Of course, indexing and retrieval involve also
a structuring of the data in terms of objects, regions,
semantic notions, etc.

evolution is due to the need to support a large number ofln both examples, the new data modeling has to take into
new multimedia services. Traditionally, digital images weraccount part of the creation process: an image is created by
represented as rectangular arrays of pixels and digital videwjection of a visual scene composed of three-dimensional
was seen as a flow of frames. New multimedia applicatiof8-D) objects into a 2-D plane. Modeling the image in terms

and services imply a representation that is closer to the redilregions is an attempt to know the projection of the 3-D

word or, at least, that takes into account part of the procesigject boundaries in the 2-D plane. Detecting shots in a video
that has created the digital information. Let us mention twaims as well at finding what has been done during the video
examples. editing process. Note that, in both cases, an important goal of

« Applications supported by the MPEG-4 standard [38}!16 data modeling is to define spatial or temporal transitions
[39] constitute a typical case: the representation based &d discontinuities in a signal which was traditionally seen
an array of pixels is not appropriate if one wants to be abf @ whole. In the sequel, we will refer to this problem as
to interact with objects in the image, to encode differentigegmentation

Segmentation can be an extremely easy task if one has

_ _ _ _ access to the production process that has created the disconti-
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Fig. 1. Major segmentation steps and related choices.

large number of discontinuities either in space or in time. The organization of this paper is as follows. Section I
Spatial discontinuities are created by combining foregroumtkfines the main steps involved in a segmentation process
objects that have been filmed over a blue screen with a baekd introduces the terminology that will be used. Section I
ground sequence that has been taken independently. Temparailews the state of the art on segmentation tools related
transitions are produced by cutting and concatenating rushies MPEG-4 and MPEG-7 applications. Section IV proposes
In both cases, the discontinuities detection is trivial if one haspartition tree representation of images and a segmentation
access to the information at this level of the production. strategy that differentiates what can be done in a universal way
However, if the segmentation intents to estimate what htesm what has really to be matched to the application and the
been done during the production process, its task is extremsggmentation goal. Conclusions are given in Section V.
difficult and one has to recognize that the state of the art has
still to be improved to lead to robust segmentation algorithms
able to deal with generic images and video sequences. The goal Il. SEGMENTATION STRATEGIES

of this paper is to review the state of the art in tools creating The word “segmentation” has a meaning that depends to

region-based representations of images and video (Segmfr]érge extent on the application and the context in which

tation algorithms), to show how region-based representatiqp§s used. The basic goal of any segmentation algorithm is
may be useful in the context of the MPEG-4 and MPEG—é‘Fd

dardsand to di ion-based . Io define a partition of the space. In the context of image
stan arasan to ISCUSS a reglon-base rep_resentauon, ca video, the space can be temporal [one-dimensional (1-
a partition tree, that tries to find a compromise between wh@

be d ) i d uni | 4 wh , spatial (2-D), or spatio-temporal (3-D). In the following,
can be done In a systematic and universal way and what }f iS space is called thdecision spaceThis section reviews
to be application dependent.

. ; . . the main steps involved in a segmentation algorithm and the
For multimedia services, segmentation may address v

. . . . _ i in choices that have to be done. Moreover, the terminology
different goals. It includes, in particular, object detection fq introduced. A general scheme for segmentation can be seen
coding (MPEG-4) or description (MPEG-7), estimation

. : - . N Obs the concatenation of three major steps represented in Fig. 1:
partitions allowing an efficient encoding, temporal tracking implification, feature extraction, and decision

regions, or shot-cut detection. The specific characteristics that = _. . . . .
9 b < Simplification: Most of the time, the original data in

have to be considered are: ) . . . :
X  of the fime the algorithm should be able to deal 2" /Ma0€ OF in a video sequence contain information
) most of the time the algorithm should be able to deal 5 is jrrelevant for a given application. In such cases,

\.N'th generic images and sequences; . data should be simplified by removing (e.g., filtering)

2) in the case of video, the amount of data to process is irrelevant information. The simplification controls the
very Iargg; - . amount and nature of the information that is preserved.
3) the algorithm ShOUId be efficient |n.terms of computa- Furthermore, the simplified data should contain areas that
tional complexity and memory requirements. are easier to segment. For instance, simplification can
reduce the complexity of textured areas or remove details

smaller than a given size. Typical filtering tools are listed

INote that segmentation is vital for a large number of applications supported below the “Simplification” block in Fig. 1. The simplifi-

by the MPEG-4 and the MPEG-7 standards. However, since it has no influence . hould di he b d inf . h
on the interoperability between systems, it is not a normative part of the cation should not mo |fy the boundary information that

standards. is relevant for the application.
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« Feature extraction:Segmentation is performed relyingbetween representations of the same objects in consecutive
on specific features of the data. The selection of tHemes [31]. These techniques are specified by the tater
feature spacedrives the type of homogeneity that iswhereas the remaining approaches kutea techniques. The
expected in the final partition. In some applications, thierminology we will use is summarized by the following
original data directly provide the feature space necessamynstruction:
for segmentation. For example, for color segmentation, Inter
the pixel values can directly correspond to the feature of {Feature} {Decision

interest. However, in a large number of cases, the features / space space

} segmentation
Intra

of interest have to be estimated from the original data.

Typical features are listed below the “Feature Extraction” segmentation techniques often use more than one feature.
block of Fig. 1. The list includes texture, motion, depthyhis can be done either through the definition of a complex
frame difference (FD), displaced frame difference (DFDyiterion combining several features or through the use of
histograms, or even spaces characterizing some semagfigeral segmentation steps that use different criteria. For
notions. Note that, in some cases, the feature estimatiggample, the application of various degrees of simplification
has to be done on a region of support which should Biows the analysis to be done at several levels of resolution
homogeneous in terms of the same feature. As a resyglhq, at each resolution level, a specific feature space may be
a loop may be introduced in the segmentation process $&q. Feature space can also be very complex to define if the
that the estimation depends on the segmentation resuffgmentation process allows user interaction. In these cases,
The final result is obtained through an iterative processne yser can implicitly introduce semantic notions which might

+ Decision:To finally obtain a partition of the data, the feanot pe easily obtained by any automatic analysis of the data.
ture space has to be analyzed. The decision step decigdes, result, it is often not possible to classify the segmentation
on the position of the boundaries that form the partitiog|gorithmS as a function of the feature space they use.
in the decision space. Boundaries separate data areag, thjs paper, we analyze the main segmentation approaches
that contain elements sharing the same characteristigs multimedia services from the viewpoint of the type of
in the selected feature space. For instance, in spati@dcision they use. Two classes will be discussed. The first one
segmentation, the decision may yield the precise shagnsists in estimating the position of the transitions that mark
of a region or, in temporal segmentation, the exact set @fe separation between neighboring regiomanGition-based
frames that form a shot. segmentation techniquesThis approach, although being ap-

In practice, three strategies may be used to define tpied to both spatial and temporal segmentation problems,
partition: classification, transition-based, and homogeneityas been mainly successful for the temporal case. The sec-
based algorithms. Classification techniques start by creatigd approach consists in estimating the region of support
a partition of the feature space and then translate this partitiohhomogeneous elementsomogeneity-based segmentation
into a partition of the decision space. This approach has beeshniquel This approach has been mostly applied to spatial
seldom used for general purpose image or video segmentatigil spatio-temporal segmentation.
because the topology of the regions in the decision space
is not taken into account. Transition-based and homogeneity-
based techniques are extensively used and will be discussed
in Section 1l

A region created by a segmentation algorithm is defined
as a set of elements (pixels or images) homogeneous in fhe
feature space and connected in the decision space. A regioi) Overview of the Decision Algorithmdn a segmenta-
may not have any semantical meaning. On the contrary, 8on process, thedecision step should provide the final
objectis the visual 2-D representation of an entity that hasartition of the data. Transition-based techniques intend to
semantical meaning. An object may be formed by the uni@stimate the position of discontinuities in the decision space.
of several regions. These discontinuities are evaluated in the feature space. The

In order to name a specific segmentation algorithm, wdscontinuities are highlighted by a preprocessing that can
will use the following terminology: first, we will define thebe seen as a filtering. The filter output should contain high
feature spaceand then thedecision space For example, values in data positions close to the transition and low values in
motion spatialsegmentation corresponds to an algorithm thAbmogeneous data areas. Linear high-pass as well as nonlinear
defines spatial regions (partition of a 2-D space) that afiters have been adopted.
homogeneous in motion. In the case of spatial and spatioHowever, the estimation of the discontinuities positions
temporal segmentation for video sequences, some approad®ss not directly create a partition. Elements in the transition
rely on the result obtained for the frame at tifie— 1 to areas have values corresponding to the likelihood of being the
segment the frame at tim@& [50]. They are usually basedactual position of the transition. This is due to the fact that
on the estimation of the motion between both frames and emen abrupt transitions in the scene may be represented by
the motion compensation of the previous partition informatiotocal smooth transitions in the image or video data and thus
This approach, in addition to increasing the robustness of theundaries may not be easy to localize. For instance, estimated
global segmentation method, allows creating a temporal linkgion transitions in spatial segmentation may have a width

Ill. STATE OF THE ART IN SEGMENTATION
TooLs FOR GENERIC CONTENTS

Transition-Based Segmentation Techniques
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of various pixels, and estimated shot transitions in temporad-gem:
segmentation may contain a few frames. This informatio
has to be binarized to reduce the uncertainty in the position
of the transitions and, if necessary, thinned to define th
estimated boundaries. That is, binary transitions are thinne
to obtain boundary segments of width one pixel in spatial.
segmentation and of one frame in temporal segmentatiors
Thinning techniques should preserve the connectivity of the
binary transitions. Several techniques for thresholding and
thinning have been reported in the literature, and some of them @ (®)
are commented in Sections IlI-A2 and [11-A3.

Last, the resulting boundaries may not fulfill the connectiv-
ity constraints of a real partition. This is a common problem in
spatial and spatio-temporal segmentation where the estimated
transitions can be unconnected and partially represent the

spatial contours of regions. This problem is overcome using WY*}

gap filling approaches that connect boundary segments to

create final partitions. However, the gap filling process often e
relies on geometrical rules to connect the boundary segments:

Such rules may not be generic or may not lead to the real (© (d)

contours of the video data. Note that this problem does nqg. 2. Example of object representation. (a) Original image. (b) Accurate
exist in temporal segmentation since the transitions are defirrdigct shape representation. (c) Blocky object shape representation. (d) Blocky
by a single (time) element and no connectivity is required. °PIect representation.

The main drawback of transition-based approaches is their
lack of robustness. In particular for spatial or spatio-temporatige images in the sequence. The comparison is performed
segmentation, if one element of a region contour is nasing the generalized Hausdorff distance. After comparison,
detected, the entire region is merged with another region. tifie model is updated to compensate for rotation and changes
other words, a local error may have very significant consgr the shape of the object. A typical result of this technique
guences. Another weak point concerns the gap filling aigl shown in Fig. 2. The blocky representation of the object
thinning steps. Most of the time, they only rely on the binarghape [see Fig. 2(c)] does not yield its exact contours and,
geometric information obtained after thresholding. As a resulhus, it may not be useful for MPEG-4 applications such
the localization of the transition after thinning or gap fillingas video editing and manipulation. Nevertheless, this object
may not be accurate. representation may be good enough for several object-based

2) Transition-Based Approach to Spatial Segmentatitm: video indexing applications [see Fig. 2(d)].
spite of the previously commented drawbacks, some transition-A complete video analysis and retrieval system based on
based spatial segmentation methods have been proposedoior and texture spatio-temporal segmentation is presented in
the literature. The strong points of this type of techniqudg5]. Although the core of this technique is transition based, it
are basically two. First, in intra spatial segmentation, relevagdinnot be said to be a pure transition-based segmentation since
segment boundaries can be easily detected avoiding overases a homogeneity-based step as well. In this approach,
segmented results. Second, in inter spatial segmentation, itheages are grouped and the middle frame of the group is
tracking of object boundaries avoids the problems of assignisggmented. The segmentation looks for transitions in a feature
uncovered regions. In this section, three of these techniqgggmce that combines color and texture information. After
are commented as representatives of different transition-baggtimating the transitions, disjoint boundaries are connected to
approaches and applications. form a partition. The other frames in the group are segmented

A pure transition-based gray-level spatio-temporal segmamsing a (either forward or backward) motion compensated
tation technique has been recently proposed in [33]. In tipartition as initial estimate. Final partitions are found using
work, the goal is to extract and track moving objects. Images strategy that combines a homogeneity-based criterion for
are first simplified using global motion estimation. Simplifisolving occlusions and a transition-based criterion for solving
cation is only applied to align the video frames in the casencovered areas. The main problems with this technique are to
of a moving camera or background. Spatial boundaries atecide the temporal extension of the group of frames as well as
estimated directly on the grey level values by the Canng ensure that the regions that are defined in the middle frame
operator [6]. The final object is obtained as a blocky aremn correctly represent all the objects present in the complete
containing a subset of boundaries that forms the model gfoup of frames.
the object to be tracked. The object model is created byThe technique in [5] proposes a transition-based tem-
comparing the spatial boundaries to the information obtainedral link, although the initial partition is achieved by
from the gray-level difference between consecutive imagas homogeneity-based decision that uses the gray-level
after binarization and thinning. Once the model of the objettformation as feature space. Motion between consecutive
is obtained, it is tracked by comparing it to the followingmages is estimated [45], and the open boundaries and
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nodes (contact points of boundary segments) of the previous 4, : . . ‘
partition are motion compensated. Compensated boundaries _ Shotl __ Shot2__Shot3 Shot4
are correctly placed in the current image by minimization of an :

energy function along the boundary segment. Final boundary T Cut
segments are connected relying on pure geometrical criteria. 300 .
As previously commented, the use of such criteria usually
leads to final contours that locally do not represent the real
transitions in the image.

3) Transition-Based Approach to Temporal Segmentation: 20| ]
Transition-based techniques are commonly applied to temporal
segmentation and have been quite successful. The 1-D nature
of the segments alleviates the lack of robustness and the |, *Meim FD Fade ]

connectivity issues of the approach. In the sequel, we analyze
some of the techniques proposed in the literature. Techniques o
are grouped based on the feature space they use. Other W cebiidi)
reviews analyzing temporal segmentation approaches from 0 Mean DED, —
other viewpoints can be found in [1], [69], and [70]. Time

The flrs.t reported techniques for temporal sggmentatlon I" ig. 3. Comparison between the use of FD and DFD for temporal segmen-
on very simple feature spaces such as the difference of pixghn in the cases of transitions due to scene cuts and fades.
values in consecutive frames [42]. A pixel is said to have

changed if the difference in consecutive frames is larger than ] ) ] ]
a given threshold. When the amount of changed pixels indgpending on whether it vanishes or not in the camera center.

frame is large enough, a temporal transition is declared. T}l{ge_classification allows a more ropust extrgction of dorningnt
lack of robustness of this technigue in front of noise or evdRotion. In [58], the feature space is a nonlinear combination
slow camera or object motion is reduced by the use of &f the matching va_lues_ obtained in the bl_ogk m_atchmg process
simplification step. This way, in [70] images are |0W_pasgetween_ successive images. The decision is based on the
filtered before computing the frame difference. In additio@Ssumption that, if the information in the current image can
to decrease the sensitivity to camera and object motion, itGrrectly predict the following image, both images belong to
proposed to divide every image into a set of blocks and e same shot.
estimate the mean and variance values of the pixels in eactf\n example of the improvement achieved when using the
block. The decision is finally taken based on the amount Bfotion information in temporal segmentation is presented
blocks with similar mean and variance features in successieFig. 3. The displaced frame difference (DFD) and frame
frames. difference (FD) are computed and used as feature space to
The selection of a global image feature such as the imagRgment a video sequence that presents four different shots.
histogram helps improving the robustness against camdi€ transitions between the first three shots are due to the
and object motion. Techniques based on the difference %fene cuts, and they are better determined using the DFD as
consecutive histograms are presented in [42] and [70] ftature space. Note that FD values in the interior of the second
the gray-level and color cases. A simplification is proposé@gion (shot with a high motion activity) are similar to that in
for the color histogram where the code for each color i§€ transition between the second and third regions. Therefore,
created using only the two most significant bits of every coldfe real position of the transition cannot be obtained by a
component. The final decision is taken by thresholding tisémple threshold.
sum of a function of the histogram value differences from Editing effects represent a very important and specific
consecutive frames. Among the different functions that apgoblem in temporal segmentation. They produce gradual
tested for histogram temporal segmentatighcomparison of transitions that cannot be handled as abrupt ones. In the
color histograms is reported to be the most robust approagxample of Fig. 3, the transition between the third and fourth
[42]. shot is due to a fade. The so-called twin-comparison method
To further improve the robustness against camera and objb@] proposes a double threshold on the estimated transitions
motion, motion information can be estimated and applied ta cope with gradual as well as abrupt transitions. This
temporal segmentation of video sequences. Global motionajgproach can be used for a large number of feature spaces.
estimated and images are motion compensated to simplify thdower threshold detects those frames that are candidates
video data previous to feature extraction. This technique airits be either an abrupt transition or part of a gradual one.
at removing the effect of camera motion in the shot transitioh higher threshold is used to detect the actual position of
detection. A global motion temporal segmentation algoriththe transitions. Isolated frames with values greater than the
is presented in [70]. Here, the direction of motion vectorsigher threshold are associated to abrupt transitions. Gradual
is used as the feature to segment the video data. Therefdransitions are represented by a set of consecutive frames with
temporal segments are associated with the different cameadues higher than the lower threshold. To assess whether such
movements. A similar goal is pursued in [61] where tha set of frames should be considered as a gradual transition and
computed optical flow is classified as singular and nonsingul#s, establish its position, the difference between consecutive
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Fig. 4. Block diagram of homogeneity-based segmentation techniques. The process may iteratively estimate the homogeneity criterion andeoptimize t
partition. At each step in the loop, a different homogeneity criterion may be selected.

frame values is added up. The transition is placed at the frateehniques implement the decision as an iterative process. A
where the added value reaches the level of the higher threshglcheme of the global process is presented in Fig. 4.
If the higher threshold value is not reached, the set of frames a) Partition initialization: The algorithm is initialized by
is not associated to any transition. selecting a first estimation of the partition. This first estimation
An additional problem in temporal segmentation is the largaay be as rough as having all elements gathered in a single
amount of images that must usually be processed and thgion or every element associated to a different region.
resulting computational load. The current existence of vidgrurthermore, the first estimation may not even be a partition
data in compressed form has lead to the developmentiglf. It may contain a set of components marking the core
techniques that segment video sequences temporally witheatfions (markers), and a large number of elements may remain
totally decoding the bitstream. Some techniques take advafassigned. The iterative algorithm builds up the final partition
tage of the data structure in the compressed domain asisked on the selected homogeneity feature space(s) and on
simplify the image contents working in the so-called dc imageg optimization algorithm. The performance of the global
[69]. DC images are spatially reduced versions of origingkocess is less sensitive to the quality of the initial estimation
images where each pixel corresponds to the dc value of Sy random optimization is used instead of a deterministic
associated block in the compressed image. Various featyigs Nevertheless, due to computational load, deterministic
spaces are shown to work properly when applied to dc imag@ﬁtimization strategies are commonly used.
and techniques for detecting abrupt and gradual transitions are b) Homogeneity estimationAs previously discussed,

proposed. multimedia applications require the use of complex feature

In addition to the previous one, several approaches hayg, e |n temporal segmentation, the use of frame differences
been proposed to further exploit the encoding strategies in {4€,, gy ficient to partition the sequence into shots in the

cage-of MPEG-1 and MPEG-2. Using the different charagioqonce of moving camera or editing effects. Complex
teristics of the three types of frames (I-, P-, and B-frame

. atures are even more necessary in the case of spatial
temporal segmentation can be done at several levels of resQll- entation. To extract the spatial contours of objects

't|on and combmmg various fefatu.res. The method presentg olving in a generic scene, various basic features should
in [3] performs first a simplification of the sequence onl% combined
retaining the I-frames. The feature space is some of the discre?«;_\n obiect i.s an entity with semantic meanina. which is
cosine transform (DCT) coefficients of a selected set of blocks ) . y 9
) . .—.commonly associated to a set of connected regions whose
in the frame. For each frame, a vector is formed chainin ) . o .
- e . c%ntours are defined in the original image. As a result, it should
the selected DCT coefficients. The transition is estimat 1 bossible to define an object by selecting a set of regions
by computing the normalized inner product of the VeCtO}om a correctly segmented image. This concept leads to the
of two consecutive frames. If the normalized inner produ i ¢ col yd tgt foat ge. th i Ip tati
is close to zero, the two frames are said to be differefp® ©' cOlor and texture features in the spatial segmentation

and the shot boundary is located between both frames. SRERCESS- Furthermore, contour features may be introduced to
boundaries can be more precisely located if the simplificatiGy©id OISy contours and to obtain regions conforming to the
step preserves P-frames as well as I-frames [34]. When usfifPe of natural objects. The automatic selection of the regions
P-frames, the feature space is related to the motion predictidffMing the objects generally relies on other homogeneity
The ratio between motion compensated and intraframe codggtures. Motion information is largely applied since regions
macroblocks is used to estimate the temporal boundaries. L44fh homogeneous motion can be considered as objects in
the use of B-frames has been proposed as well [34]. TReveral applications. In addition, scenarios with foreground
feature space is associated to the amount of backward &R@Ving objects and static or quasi-static backgrounds are
forward motion vectors used in the prediction of a framg&ommonly assumed. As in transition-based approaches, global
If a B-frame is coded using mainly backward prediction, Eotion estimation and compensation can be used to simplify

temporal boundary is detected. the image and to obtain a (quasi-) static background video
sequence.

Although some techniques are only based on motion fea-

B. Homogeneity-Based Segmentation Techniques tures, segmentation performance improves when combining

1) Overview of the Feature Spaces and the Decision Algmotion with color and texture information. Direct segmen-
rithms: The decision step in homogeneity-based segmentati@tion of the motion information does not yield accurate
looks for the actual region of support where elements am@nsitions. Object contours are more accurately defined rely-
homogeneous with respect to the feature space. Most releviagt on color information. The combination of these feature
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spaces can be done following a parallel or a hierarchical
strategy. The parallel approach computes a motion spati
segmentation on one side and a color spatial segmentation
on the other side. Then both partitions are combined. Th
hierarchical strategy relies on merging steps. It starts, in a fir
step, by a color spatial segmentation and changes its criteri
to deal with motion spatial segmentation in a second step.

Some objects do not fulfill the constrain of homogeneous
motion but can be seen as a union of sub-objects with their own
motion. This is for example the case for regions corresponding @) (®)
to human bodies. The depth information (distance to th
camera) is a useful feature for segmenting such comple
objects. As before, depth can be estimated and combined wi
previous features in a parallel or in a hierarchical manne
[48]. For some specific objects and applications, it is possibl
to introduce in the segmentation process semantic featuress
Semantic features are selected after analyzing the behavic
and characteristics of the object. A typical example includes
segmentation of human face regions.

When the object to be tracked in a spatio-temporal seg- © (d)
mentation is too complex, or its attributes may vary in timé;jg. 5. Example of homogeneity criterion combining texture and contour
user interaction can be applied to define or update the oqu(tal.tures. The results are presented filling each region with its mean gray

. . evel and have been obtained changing the weight assigned to the contour

Note that, for the various features previously commented,sfhoothness with respect to the texture smoothness. (a) Original image. (b)
is always possible to help the automatic process by meang-of weight. (c) Medium weight (d) High weight.
user interaction and, this way, to improve the segmentation
performance. processes: split and merge. Given a region, its goodness in

Analysis of the feature space is done by assessing a @ms of the selected homogeneity criterion is judged, and the
mogeneity criterion. In the literature, one can find two maifegion is split if its division leads to a better configuration. All
types of homogeneity criteria: deterministic and probabilistiossible divisions of the original region are not tested but only
For deterministic criteria, a modél/r(¢) per regionR is fitto  some predefined splits are analyzed. Typically, the region is
the dataf(¢), and a distance is computed between the modglided into parts with equal area of support [50] or divided

fitting the data and the data into two parts by a line segment [24].
. p p Merging is applied to two regions when their union into a
P= §§||f(L) = Mr(@). (1) single region leads to the best partition in the homogeneity

criterion sense. Note that a merging can even result into an
Typically, low-order polynomial models are used and the norimprovement in the homogeneity criterion. An example is
|I-]| is the Euclidean distance. presented in Fig. 5 where the same image has been segmented
For probabilistic criteria, the region data are assumed to bsing as homogeneity criterion a combination of texture ho-
a realization of a given random fieldr (i) and, usually, th@ mogeneity and contour smoothness. In all cases, the number
posteriorilikelihood of the data to be a sample of this randoraf regions is the same. Note that when the weight assigned to
field is computed. Assuming independence between regiahe contour smoothness decreases (increases), textured areas
and neighboring pixels, the likelihood of a given partition hagppear segmented into regions with complex (simple) shapes;

the following expression: e.g., the forest in the background of the image. On the
‘ . . other hand, the segmentation of highly contrasted regions
ﬁIHHPIOb{FR(Z) = [0} (2) produces similar shapes, regardless of the weight of the

R i€R

contour smoothness in the homogeneity criterion, e.g., the gate.
Gaussian models are commonly used for characterizingRegion growings the basic merging approach. Regions are
random fields. Based on the estimated likelihood or logrerged based on a homogeneity criterion up to reaching a
likelihood, the region is said to be homogeneous or not. termination decision. The process can be initialized by defining
In a large number of cases, practical implementations afset of labeled markers partially covering the space or a
these two types of criteria lead to very similar algorithmsomplete partition where regions can be formed even by single
If the observed data are assumed to have a Gaussian digtiiels. Given a partition or set of markers, the analysis of all
bution with zero mean around a deterministic region modglpssible mergings may be cumbersome due to the complex-
the log-likelihood is the Euclidean distance weighted by thty of the homogeneity criterion. Consequently, strategies to
covariance matrix of the distribution. reduce the number of analyzed unions are frequently used. A
c) Partition optimization: Partitions (or marker informa- possible solution to represent the merging steps of a region-
tion) are modified and updated to reach an optimum in tlggowing algorithm is to define a spanning tree [37]. Once
homogeneity criterion sense. Modifications rely on two bas@mputed, the spanning tree can be used to derive several
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partitions resulting from the region growing process. Thisf this approach will be further discussed in Section IV.
approach will be further extended and discussed in Section IMowever, the simplicity of the quad-tree reduces the quality
However, in spite of computing all possible mergings aif the final partitions. In addition, there is no temporal link

each step, the final result may not be the optimum parbetween partitions.
tion. Many homogeneity criteria are multimodal, that is, they Several techniques for spatial segmentation have been de-
present several local maxima or minima. Since the study wloped having as a basic decision tool the watershed algo-
the possible region unions is usually carried out locally, thiéhm [35], [65], which is the morphological approach for
optimization algorithm can get trapped in a local optimum. image segmentation. The watershed technique is a region
Pure split-based and merge-based algorithms have begeowing algorithm that analyzes the image as a topographic
largely applied, (e.g., thguad-tree splif50] and thewatershed surface. It detects the minima of the gradient of the gray-
[35], respectively). Nevertheless, other algorithms for partitidevel image and grows these minima according to the gradient
optimization have been proposed combining these two basaues. It can be viewed as a flooding process. Points of
processes. This way, the so-callsglit&merge [50] applies contact between the propagation originating from different
a merging process on the partition resulting from a splminima are defined as the boundaries of the regions and create
step. The iterated conditional modes (ICM) approach [4fe final partition. This basic algorithm has been extended to
analyzes elements on the region boundaries. It comparedeal with markers and to process directly the original data
given partition with the result of splitting a region by removindnstead of the gradient image. In this case, the watershed
an element lying on its boundary and merging it with any dfecomes an efficient way of implementing region growing. In
its neighboring regions. addition, the watershed has been adapted and combined with
In the sequel, only homogeneity-based spatial segmentatather techniques to yield partitions with suitable characteristics
approaches are discussed since, up to the authors’ knofal specific applications, including coding and progressive
edge, no homogeneity-based temporal segmentation has keamsmission [57], [22].
reported in the literature. The analysis of these approachesn the framework of region-based video coding, the work
will be carried out from the point of view of application andoresented in [55] uses features such as contrast, size, and

feature space complexity. motion of regions to obtain a hierarchy of partitions. At
2) Homogeneity-Based Approach to Spatial or Spatio-Temach level of the hierarchy, the homogeneity criterion that
poral Segmentation: is assessed in the watershed algorithm takes into account

a) Region-based coding algorithm®ne of the first the complexity of the final contours. Contour complexity is
methods for generic spatio-temporal segmentation wasroduced since contour coding cost is a very relevant issue
presented in the framework of video coding [68]. Regiorin video coding. This hierarchy of partitions is input to a
based image and video coding techniques [27], [63] aim fial decision step that combines regions from all levels in
improving the coding efficiency by applying segmentatiothe partition hierarchy and creates a final partition of the
technigues before encoding the data. In the work presentaifial image. The hierarchy of partitions is built up using
in [68], a set of consecutive frames (a 3-D block) is taken asotion as well as size and contrast criteria. Therefore, this
a single unit, and gray-level information is used to segmeségmentation approach combines several feature spaces to
it. A 3-D Split&Merge approach is proposed to segmentreate a universe of possible partitions. As in [52], the final
the sequence while the homogeneity criterion compares thartition is chosen to be optimal in the rate-distortion sense.
data in each 3-D region with a polynomial model. The samf similar strategy is adopted for the following frames in
type of model is used in the merging step. This approathe sequence. The temporal link is created by an extension
presents several problems due to the 3-D block structure, saeéhthe partition projection proposed in [49]. Furthermore,
as blocky shapes of regions and lack of temporal relatidhis technique partially decouples the problem of finding
between 3-D blocks. From the coding point of view, thbomogeneous regions and that of defining the final partition,
major problems are associated to the large delay and lewhich will be further discussed in Section IV.
compression efficiency. The reason for this low compression b) Object tracking algorithms:Previously = commented
efficiency is the large number of regions that is necessaryterhniques were developed in the framework of region-based
get a good visual quality. This problem is due to the use wideo coding, and therefore they did not specifically aim at
only spatial information. object tracking. Object tracking enables video object (in the

In [52], a quad-tree split spatial segmentation techniqeense of MPEG-4) creation and, as a consequence, opens the

for coding purposes is presented. The technique works om@or to content-based functionalities.

frame-by-frame basis and creates, for each frame, the complet®orphological techniques allow accurate boundary local-
guad-tree. For each node in the tree, several coding techniqizesion and are broadly used for object tracking purposes
are applied, and the quality of the coded result is stored. spatio-temporal segmentation. The usual approach is to
The final partition is defined by the combination of regionsbtain a partition of the initial image containing the object
and coding techniques that optimizes the rate (distortioapntours and to project this partition in the following frame.
under a constraint of distortion (rate). The feature space Rsojected regions are used as markers in the following frame
therefore the rate-distortion space. This technique introduaasd, if necessary, they are grown to conform to the actual
the concept of creating a set of possible solutions that dareundaries [49]. The work presented in [67] follows this
jointly analyzed to achieved the final partition. The potentiatructure, with a modification in the projection step that allows
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(@) (b) (c)

Fig. 6. Example of object tracking using a hierarchy of partitions. (a) Original images. (b) Object partitions. (c) Color-homogeneous paltitions. T
tracking is carried out at the color partition level.

the extraction of new regions. In [23], a predefined object is The motion spatio-temporal segmentation suggested in [32]
tracked using an extension of the projection step presentechas been combined with the previous one [11]. The resulting
[49]. The so-called global perspective motion estimation aradigorithm has been involved itore experiments the frame-
compensation is used to improve the location of the markeserk of the MPEG-4 standardization process. The technique
in successive frames. Final boundaries are obtained usingviti be described as an informative annex in the standard. The
color watershed algorithm. However, since projected markessgmentation technique in [32] estimates the global motion
are related to complex objects, they are not homogeneousaimd simplifies the video data by global motion compensa-
color. Therefore, only local homogeneity criteria (pixel-wiselion. In addition, a scene cut detector is used to establish
can be applied. whether the initial frame of a shot is under consideration.
This problem is solved in [30], where a hierarchy oMotion information is used to create a change detection mask
partitions is used to track the object. The object partitiondicating the presence of moving objects. The shape of the
is resegmented using a color homogeneity criterion. Thigsoving object(s) is further refined by using motion features
color-based patrtition is projected, and projected markers dnat allow the correct assignment of uncovered background.
accommodated to the color information in a simplified versioRinal boundaries are obtained by adapting the partition to the
of the current image. Simplification is carried out by connectddminance information. Different techniques for adapting the
operators that yield a very fine partition of the current imageartition have been proposed. For example, this algorithm can
in the color space. This technique allows tracking generie combined with a technique that uses color and motion
objects since they are divided into simple, color-homogenedigaitures in a hierarchical way in a rule-based region processing
regions, which are easier to track (see Fig. 6). Neverthelefd, Segmentation is carried out by means of a recursive
this approach as well as all pure object tracking techniqusortest spanning tree first in the color space and then, relying
require the initial definition of the object to be tracked. on the color homogeneous regions, in the motion space. The
¢) Moving object segmentation and trackinge com- combination of both algorithms is the analysis model currently
mon way to handle the object definition issue is to restrieidopted by the COST 211 group [2]. This type of algorithm
the problem to the case of detecting and tracking movimerforms quite well although it may detect false objects in
objects. Such an approach is followed in the work presentedenarios containing shadows or reflections. Moreover, the
in [11], where original images are simplified by globahlgorithm loses track of objects that stop.
motion compensation and further filtered using morphological A typical result of this type of techniques is presented in
open—close by reconstruction. The watershed technique Fig. 7. Three frames of th€hildren sequence are presented.
a color space is applied to obtain the initial segmentatioRarts of the moving objects are included in the segmentation
From this partition, those regions containing more than 508ésult as soon as they start moving. Previous moving parts are
of their pixels with a value different from the previous imagécluded thanks to the use of a memory in the segmentation
are marked as belonging to the moving foreground. Thmocess. As can be seen, the estimation of moving objects is
performance of this algorithm is constrained by the simpliciynproved by the tracking process.
of the motion feature that is used, and new methods have beeDifferent approaches have been proposed in the literature to
proposed combining it with techniques that better exploit tHarther exploit the motion feature space. For instance, in [44],
motion information. higher order statistics are used to classify the image elements
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Fig. 7. Example of segmentation and tracking of moving objects. (a) Frame 001. (b) Frame 003. (c) Frame 005.

into foreground and background zones. Three-dimensiomairoduced in the sequence model. Detected boundaries con-
models have also been applied for the detection, segmentationmn very well to natural contours, although the concept of
and tracking of moving objects in different scenarios [25hbject is not exploited.

[59]. Kalman filtering has been proposed as well for allowing Pure object tracking applications have also been addressed
object tracking [16]. by MRF approaches. The work proposed in [46] breaks the
Last, a very popular approach to the problem of motiotypical loop of motion estimation and partition optimization,
spatial segmentation relies on the use of compound Markmducing it to a single step. This is done thanks to a robust
random field (MRF) models [21], [9]. A compound randommultiresolution parametric affine motion estimation. The se-
field consists of two levels, called upper and lower. The uppleicted features take into account motion smoothness, spatial
level describes the observed image and is formed by sevdramogeneity properties, and temporal coherence of the parti-
submodels related to the different homogeneous regionstiins. The performance of the technique is further improved
the image. The lower level governs the transition between thg the use of the so-called highest confidence first technique

observed submodels, whereby it is associated to the hidd&a] for modifying the partition. This segmentation technique
partition of the image. This type of model is very appropriate tachieves very good tracking results, although contours do not
estimate and segment motion data. The introduction of a lewadivays match with real boundaries because the algorithm does
in the model specifically handling the presence of boundarigst use any spatial segmentation step.

allows a robust estimation of the motion information as well d) Semantic segmentation through user interacticit

as an accurate definition of regions that are homogeneougpigvious approaches may very likely fail to segment objects
motion. with semantic meaning, due to the complex definition of such

The estimation/segmentation is done by maximizing aheobjects. Nevertheless, some specific cases (such as human
posterioriprobability of a partition((Q = ¢) for an observation faces) have been successfully addressed, as will be discussed
(X = z). Thanks to the Bayesian approach, the problem céh Section IV. A common way to introduce complex homo-
be translated into maximizing(X = z/Q = ¢)P(Q = ¢). In  geneity features is by allowing user interaction. This possibility
the case of motion spatial segmentation, the observation is the&learly necessary in object tracking applications, when the
motion field that has to be estimated from the original data. @bject to be tracked is too complex to be described in terms of
usual approach to this problem is to iterate the estimation leiv-level features [13]. Nevertheless, interaction should be as
the motion information and the maximization of the probabilityestricted and easy as possible. Three main types of interaction
(see Fig. 4). have been proposed in the literature.

The motion can be estimated using parametric or non-« Feature based:n [8], a vector of features (including
parametric models. The work presented in [60] computes a color, texture, and motion information) is estimated for
nonparametric motion field. Images are simplified to perform each pixel. Each one of these features is assumed to
the optimization using the ICM algorithm in a multiresolution ~ have a probability density function (pdf) that can be
approach. The features used to define the MRF model are approximated by a sum of Gaussian pdf's. To approximate
related to spatial and temporal bindings of motion vectors. the pdf's, the user selects a set of pixels belonging to the
Temporal bindings are established accounting for motion tra- different regions that represent the object. The remaining
jectories. As a result, the concept of object tracking is directly pixels are classified into one of the classes specified by the
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user. However, connectivity aspects have to be taken intolndeed, the previous section has highlighted the relation
account after classification, and further user interactidretween the feature space, the decision space, and the ap-
may be necessary. plications. One of the major difficulties in segmentation is

« Contour based:Another possibility for user interactionto adapt the analysis algorithm to the application. It is in

is to enable roughly marking the position of the objeajeneral impossible to judge the quality of a partition produced
boundaries. An automatic algorithm accommodates thg an algorithm without taking into account the subsequent
user’'s information to the real boundaries of the objectise of this partition. One possible solution is to define a
Actual boundaries can be found by a homogeneity-bassplecific segmentation algorithm for each possible application.
technique as in [23], or by any of the transition-base@ihe drawback of this approach is that most of the time, it is not
approaches discussed in the previous section, as in [7ddsy to reuse the work done for a given application to design
In this case, object boundaries may not correspond @aosegmentation algorithm useful for a different application.
the type of boundaries needed for a proper tracking. A An alternative solution consists in finding a compromise
complete semiautomatic object tracking technique basbdtween what could be done in a systematic and universal
on the concept of snakes has been presented in [2@hy and what has to be really application dependent. Note
leading to good spatio-temporal segmentation results. that this has to be a compromise since the “universal seg-

» Region based:The third possibility is related to the mentation” does not exist. A possible solution is discussed in

definition of objects as the union of regions, which arthis section. It is summarized by Fig. 8: the three steps of the
homogeneous in some sense. The user is then allovgagimentation described in Fig. 1 are remapped into two steps:
to interact with an initial partition by, usually, mergingl) the similarity estimationand 2) thepartition creation The
regions to create the final object [7]. In Section IV, &imilarity estimation deals with the simplification step as well
similar type of user interaction will be proposed. Sinces part of the feature extraction (generic features), whereas
the initial partition is defined by the algorithm, it can usehe partition creation addresses specific (nongeneric) feature
motion features to help the tracking process. Moreovegxtraction and the decision step. The output of the similarity
this technique allows an easy integration of the user iestimation is already a region-based representation (but more
teraction during the tracking process by allowing merginghan a partition in the sense that it is a hierarchial set of
or splitting of erroneous regions. partitions).

In [29], the region-based user interaction approach has beer he similarity estimationis, to a certain extent, independent
extended, integrating features of the other two approachegthe application. Its goals are, first, to build a region-based
The work in [29] allows the introduction of rough markergepresentation by defining a set of regions that may be used by
proposed by the user, which is a type of interaction vetje partition creation,and second, to estimate the similarity
close to that proposed in feature-based approaches wiigween these regions. At this stage, the feature(s) used to
directly using connectivity concepts. Furthermore, it allowsieasure the similarity should be rather genericpdtition
the definition of rough contours to obtain the object shapge structure can be used to represent the set of regions
enabling a type of interaction very close to the contour-bastapether with the similarity. An example of partition tree is
approach. However, in this case internal and external roughown in Fig. 9. The original image is shown in Fig. 9(a).
contours of the object are necessary. Last, the use of regidws initial partition corresponding to this image is given in
in the tracking process has been exploited to propose possibig. 9(b). Note that this partition is composed of 100 regions
improvements of the final result to the user. and would be considered as oversegmented for a large number
of applications. In fact, in the present approach, it only defines
the lowest resolution scale in term of regions. Ideally, it should
represent all image elements that are perceptually relevant.
Fig. 9(c) shows the image obtained by filling the regions of
the initial partition with their mean gray value. As can be seen,
almost all details of the original image are visible. Information

The previous section reviewed the state of the art in segpout the similarity is encoded in the tree shown in the upper
mentation. Segmentation aims at creating a partition (that psrt of the figure. The tree leaves represent the regions of the
a specific region-based representation) of the original dataitial partition. The remaining tree nodes are parent nodes.
One of the difficulties to be faced is related to the initial lowThey represent regions that can be obtained by merging the
level representation of the original data. Most algorithms tmggions represented by the child nodes. The information about
to progressively convert the pixel-based representation into tie similarity is encoded by the tree structure itself: the set of
initial region-based representation and then act on this regigagions that are the most similar to a given regianis given
based representation to obtain the final partition by splittifgy the set of siblings nodes df,. As a result, the similarity
or merging steps. In this section, we propose a partition trbetween regions represented in the lower (upper) part of the
as a region-based representation that can be used for a ldrge is very high (rather low). In practice, the tree can be
number of segmentation algorithms. The partition tree creatiarbitrary in the sense that a node can have an arbitrary number
can be viewed as a preprocessing step creating a representatfochild nodes. In the example of Fig. 9, the tree is binary
that is appropriate for many segmentation algorithms and tHaaich node has either no child or two children). This is not a
does not depend on the application. constraint on the approach itself, but a binary partition tree [54]

IV. PARTITION TREE AS A REGION-BASED
IMAGE REPRESENTATION UNIVERSAL
SEGMENTATION AND APPLICATIONS



1158 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 8, DECEMBER 1999

! i
i . " §
| Simplification Y Feature Decision L .
Extraction
Generic feature Application dependent
feature .
R 4 b W 4
Input signal o . Final partition
Similarity Partition
. . " .
Estimation p creation
Tree representation
of the similarity

Fig. 8. Segmentation viewed as a two steps process.sithitarity estimationis application independent and deals with the simplification steps as well as
generic features. Thpartition creationis application dependent and covers the use of specific features and the decision step.

(@) (b) (c)

Fig. 9. Example of partition tree (top). (a) Original image. (b) Initial partition with 100 regions. (c) Regions of the initial partition represgnted
their mean value.

is simple to construct and sufficient to illustrate the interest &r this final decision can be very specific by contrast to the
the approach. Last, let us mention that sirailarity estimation generic feature(s) used in the similarity estimation.
can be viewed as a hierarchical segmentation problem. Ther'he main drawback of the proposed approach is that we do
approach reported here is related to the work presentedniot take into account the application to define the similarity
[37]. The main difference of our approach is that the trdgetween regions. In order to show that this drawback does not
is proposed here as an image representation that is the bpsgvent dealing with very different applications, we are going
of a large number of different tools (that is various partitioto discuss various examples: unsupervised and supervised
creation techniques). Moreover, the tree construction is m@patial segmentation, motion spatial segmentation, region-
flexible than in [37], because it allows to deal with varioubased coding, semantic object extraction, and region-based
criteria and with precomputed analysis results. retrieval. We assume that themilarity estimationhas been
The partition creation block of Fig. 8 takes as input thecomputed once and that in all cases (except in Section IV-
partition tree and creates the final partition. This last step B9, the partition creationstarts with the partition tree shown
closely related to the application. Its goal is to search, within Fig. 9 (top). Furthermore, to show the flexibility of the
the space of regions and of similarity encoded in the tregartition creation,an almost trivial similarity criterion is used
the best set of regions for the application. The feature(s) ugedcreate the partition tree. More precisely, the tree is created
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Fig. 10. Examples of unsupervised spatial segmentation: creation of partition with (a) 8 and (b) 48 regions.

by merging pairs of neighboring regions that belong to thtee time, the propagation involves complex algorithms and
initial partition of Fig. 9(b). The merging order is defined bymay be time consuming. However, if the partition tree has
the Euclidean distance in the YUV space between the mearbelen previously computed, the propagation process based on
each region. More details about the actual merging algoritrgimilarity between neighboring regions becomes an easy task.
implementation can be found in [20]. Let us describe this propagation on a simple example.
Fig. 12(a) shows a simple image made of four regions of
constant gray level value. Assume that ¢ivilarity estimation
has been computed. The resulting partition tree indicates that
An example of unsupervised spatial segmentation is illugsgions 1 and 2 are the most similar. Once merged, their closest
trated in Fig. 10. The segmentation is unsupervised in theyion is region 3. Region 4 is the most dissimilar. Consider
sense that theartition creationsimply defines the number o two markersA and B that have to be propagated by
of regions that are useful for the application. As can be Seefhilarity. The two corresponding leaf nodes are indicated

in Fig. 10, the extraction of a partition with a given numbef, rig 12(h). By construction of the partition tree, the most
of regions is a trivial operation. For example, a patrtition W'tgimilar neighboring region with respect to a given node is

eight regions can be obtained by selecting all nodes that ar?ear}resented by its sibling node and the result of the merging is

:\Tetthtirr]d tl(?vel gelotw 'thde ro;)r: node (graf[ytrhombusltin ';'g 10 presented by the parent node. Therefore, a marker associated
ote that In order 1o judge the segmentation results ot =1g. ]t 'a node is propagated to its sibling and parent. Of course, this
regions of the final partitions have been filled with the mean

values of the original image. To obtain a partition with a highéarr_opagatlon can only .be _done if the S'b'”?g_'s ’not in conflict
. . ) th the marker, that is, if none of the sibling’s descendant
number of regions, one has to descent in the hierarchy. }

4 o : . .-has been assigned to a different marker. In the example of
the homogeneity between siblings is stored with the tree, it . .
. . o . . . ig. 12(c), the first marker to be propagated is the marker
possible to define a partition witN regions, by performing the

first ¥ —1 splits from the root node following the homogeneit;?orresloondlng to region 2. It is propagated to its sibling, that

values [37], [66]. Last, any global criterion that is a functiofy: "€910N 1, and their union 1s represented by their pargnt.
this level, the propagation has to stop because there is a

of the partition can be used to define the segmentation. P ) . X
example, thepartition creationcan use the global peak signal-ConﬂICt between the marker of the union of regions 1 and 2

to-noise ratio (PSNR) to define the optimum partition [66](,marl_<erA) and the marker of region 3 (mqué?).
[54]. This propagation process may not assign a marker to all

A less trivial example is illustrated by the superviseflodes of the tree. In our example, region 4 remains without
segmentation shown in Fig. 11. Assume that a user waﬂﬁ??'- This situation means t.hat-the similarity betweelj regions
to extract from the image two objects of interest. With thé€fined by markersi and B is higher than any combination
help of a graphical user interface (GUI), two markers roughlyith region 4 (region 4 is indeed the most dissimilar). The
indicating the center of the objects of interest are defind@fopagation process does not blindly assign all regions to
In the example of Fig. 11, the two markers correspond fBarkers. In most cases, this control is an attractive feature
the face and the jacket regions. Note that the objects aredbfthe partition tree representation with respect to classical
interest because of their semantic value, and their definitionfigopagation strategies [35], [53]. If necessary, the algorithm
not directly related to the color homogeneity criterion used ay be modified so that it fills the entire space.
compute the partition tree. A complete example is shown in Fig. 11. In this example,

The partition creationcan rely on a propagation strategywe assume that a user has defined two markers (dark and gray).
similar to the one used for morphological segmentation [35The first step is to assign the markers to the leaves of the
The traditional strategy consists in propagating the markdrse [Fig. 11(a)]. Then, the propagation process creates three
by similarity until the entire image space is filled. Most ofonnected components [Fig. 11(b)]. The first two correspond

A. Unsupervised and Supervised Spatial Segmentation
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Fig. 11. Example of supervised spatial segmentation: the user marks two regions of interest with markers; then a tree propagation strategyfioetates th
partition. (a) Binary partition tree where the leaves intercepted by markers have been indicated. (b) Result of the propagation process.
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Fig. 12. Propagation process on the partition tree. (a) Binary partition tree. (b) Markers. (c) Propagation process.

to the zones of influence of the markers, whereas the lastpractice, the user may have to define markers in an iterative
one remains without label because it is judged as beifgghion to obtain the partition of interest.

“too different.” As can be seen, the face and jacket regionsin this context, one of the attractive features of the approach
defined by the markers have been properly segmented anddahsimilarity estimation and partition creation is its efficiency.
background has been merged with none of these regions. NOtece the partition tree has been computed, the propagation
that in this example, the background was judged as being “tpmcess is very easy and almost instantaneous. This is partic-
different” with respect to the regions defined by the markerslarly important for applications involving user interaction.
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Fig. 13. Motion estimation/segmentation and face detection with the partition tree.

B. Motion Spatial Segmentation obtained by the union of all leaves with a significant FD. It is

A partition tree created according to a given feature is shown in gray in the ima_lge of I_:ig. 13. the that this exa_mple
rather simple. In particular, if the FD is small for a given

useful representation to estimate various signal characteristlgs'

For example, the partition tree of Fig. 9 has been defined pygon. f[t rtlemamsbsn:ﬁll for all |tsdcg]|ldre|n. 'T‘f. pl’?CtIC(;, :h|s
a color homogeneity criterion and can be used to deal wi ay not aways be the case an € classification between

motion static” and “moving” areas has to involve a robust decision

A typical case where a region-based representation of ir%t_rategy. The description of robust decision techniques goes

. . . . beyond the scope of this paper, and the reader is referred to
ages provides robustness is motion detection. The strategy jﬁ’% P bap

) ) _ for a detailed explanation of such a technigue involving
proposed in [56] for Max_Tree and Min_Tree representati A Viterbi algorithm. Last, let us mention that the application

and is_used here for partition trees. Let us describe thg motioNis change detection algorithm to cases where the camera
detec“?” strategy_on the example of F|g._ 13. Two images moving is straightforward. One has simply to estimate the
belonging to theAkiyo sequence are shown in the upper pPagiominant motion(A., (¢, j), A, (i, 5)) induced by the camera

of the figure. The frame at tim&, is the original image of mqtion and compute the DFD to compensate for the dominant
Fig. 9. The motion between both frames is due to the fag§otion. The DED is given by

movements of the speaker.

A simple solution to detect the motion between fraries  DFD =" | fr, (4, 4) — fr, (i—As(6,§), 5= A, (6,4)]. (3)
and 71 relies on the FD. If fr,(¢,4) and fr, (¢,7) denote i
the two images, the FD is given lyD = >, . [fr,(4,j) — _ o ) -
fz,(i,7)|. Classical approaches analyze the FD at the pixe|Mot|on e_st|mat|on can also gain frpm the partmon tre_e
level. This strategy is not robust because the decision is véRpresentation. The strategy consists in propagating a region-
local and therefore sensitive to noise. Moreover, the FD dog@sed motion estimation process in a top-down fashion. As-

not detect the moving regions but only part of their contouf&!/Me; for example, that the motion is modeled by an affine
(contours that are not parallel to the motion trajectory). Thtéansformatlon (six parameters)

partition tree allows this analysis to be done at the region <A,;(i j)) <ocxi+/3xj+%>

i i e . : 4
level. In fa(_:t,_ for each reg:on gf”frarruié’o rgpr?sented in the Ay (i, j) i + Byd + 1y 4)
tree, a decision between “static” or “moving” area has to be

taken. In the tree of Fig. 13, regions with significant FD are The dominant motion can be estimated by finding the

indicated by a square node. The mask of moving regionsdptimum set of parameters,,...,v,, so that the DFD is
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minimized over the region of support of the entire image (repe be done for each region and each coding technique. The
resented by the root of the tree). Gradient-based optimizatioomputation of the distortion is rather straightforward. The
techniques are appropriate for this purpose [17]. A significasuared error between the original and coded frames (i.e.,
DFD indicates that the motion is not homogeneous in thiee sum of the squared differences between the values of the
image. Therefore, the optimization is iterated individuallpriginal and coded frames for all pixels belonging to the region
on each child region denoted hy and B in the tree of support) can be used. If each region is encoded separately, the
Fig. 13. In this example, the motion parameters estimated fate is computed by adding the number of bits devoted to
region A correspond to a static motion. and the correspondiglor and shape information.
DFD is insignificant. As a result, the propagation may stop. The situation is more complex when regions are jointly
However, for regionB, the DFD computed with the optimumencoded. A typical example is when a contour coding tech-
parameters is still significant. Therefore, the estimation hague is used to encode the boundary between two regions
to be performed individually on region§’ and D. The in the partition. In such cases, the optimization involves
motion of regionC is static. whereas the motion of regionrcomplex dependencies between regions and, in general, the
D involves a vertical displacement. In both cases. the DRDoblem is not tractable. A practical solution consists in using
is not significant and the estimation process may stop. Tha approximation so that individual rates can be assigned
final motion estimation is presented in the image of Fig. 181dependently to regions. For example, if a contour is shared
The motion is defined by dark lines indicating its magnitudey two regions, the shape rate assigned to each region can be
and orientation. As can be seen, the approach combiredf of the total rate.
the advantages of having a high precision on the contourThe rate/distortion optimization itself relies on the technique
definition (because the tree has been constructed usingliscussed in [47], [51]. The problem can be formulated as
color homogeneity criterion) and of dealing initially withthe minimization of the distortiorD of the image with the
large regions, which increases the robustness of the motiastriction that the total cosk is below a given budget. It
estimation. The drawback of the current approach is thathias been shown that this problem can be reformulated as
involves a pure split strategy. In the example of Fig. 13he minimization of the Lagrangiaf? + AR, where\ is the
the partition is made of three regions. However, regighs so-called Lagrange parameter. Both problems have the same
(background) and” (jacket) are both static. The algorithmsolution if we find\* such thatR is equal (or very close) to the
can be improved by adding a postprocessing step that mergadget. Therefore, the problem consists in using the partition
neighboring regions with similar motions (note that the regionsee to find a set of regions creating a partition and minimizing
that might be merged are regions that were not siblings in tfe+ A*R [55]. Assume in a first step that the optimux# is
partition tree). known. How can the best set of regions be selected?
For each region, the encoding technique corresponding to

the best Lagrangian is selected. Then, the definition of the

C. Segmentation for Region-Based Coding best partition can be done by a bottom-up analysis of the

Region-based coding relies on segmentation algorithms pR#tition tree? One checks if it is better to code the area
ducing partitions that could be efficiently encoded. Obviouslyepresented by a node as a single regfror as various
the criterion used to create the partitions is quite different frofidependent region$R;} corresponding to its two children.
the one used in the previous sections. We will assume howevé&e selection of the best choice is done by comparing the
that the similarity estimation is not modified. Starting fronkagrangian of® with the sum of the Lagrangians @t;. If
the same partition tree defined by color homogeneity, we dfe former is lower than the latter, the node corresponding to
going to show how an appropriate partition creation Stratedil is selected and the selection of children nodes is removed.
can produce partitions suitable for coding. This procedure is iterated up to the root node. Note that to

In the framework of region-based coding, bits are distributétfe this approach, the distortion should be additive over the
between shape and color information [27], [63]. Color infortegions. In our experiments, the squared error has been used.
mation can be encoded by modification of the well-knowhiowever, any other additive measure can be used. At the end
DCT, by region-based wavelet transform, or even low-ordéf the procedure, the best partition is defined by the regions
polynomials. The shape information may be encoded I§prresponding to the selected nodes.
techniques such as chain code, spline approximation, or thdn practice, of course, the optimurk® parameter is not
MPEG-4 shape coding tool. In this context, the segmentati§ROWN, and the previous bottom-up analysis of the partition
should find a partition such that the global distortion i§ee is embedded in a loop that searches for the best
minimized and the coding cost (in terms of bits) is loweParameter. The computation of the optimum parameter
than a given budget. It is basically a “rate/distortion” problen¢an be done with a gradient search algorithm. The bottom-
Note that this problem can be seen as a particular caseUgf analysis itself is not expensive in terms of computation
global optimization under constraint. As discussed in [55], ince the algorithm has simply to perform a comparison of
partition tree is a very attractive representation to perform &ggrangians for all nodes of the tree. The part of the algorithm
optimization in the rate/distortion sense. that might be expensive is the computation of the rate and

The first step consists in analyzing the rate and distdiistortion associated to the regions. This computation has to
tion associated to each region. Assuming that several coding
techniques are available, the rate and distortion analysis ha® top-down analysis process can also be used.
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Initial partition

Coding with 3000 bits Coding with 7000 bits (,odmf, with 11000 bits
Fig. 14. Examples of rate/distortion optimization: black squares (gray rhombus) in the tree define the optimum solution for 11 000 bits (3000 bits).

be done once, but if the encoding techniques are complex, this, ,on (vean Square Frror)
tree population may be complex. In our example, it is not the s, 0
case, since the encoding techniques are very simple.

Fig. 14 shows a binary partition tree corresponding to the
initial partition involving 100 regions. If this original partition
would have to be transmitted, and assuming that the coding of
contours is done by chain code and that a constant color value
is transmitted for each regionthe cost in term of bits would
be equal to 14 000. However, for visualization purposes, this!300
strategy is not optimum. We show in Fig. 14 three examples
of coded images at 3000, 7000, and 11000 bits. As can be
seen, the image coded at 11000 bits is visually equal to theoo -
original image. In the case where the transmission rate is very |
low, higher compression factors may be used while allowing |
the user to have an idea about the image content and may,
be useful for progressive transmission. Two coding strategies
are shown in the tree representation of Fig. 14. The first one
corresponds to the optimum solution for 11000 bits and is
shown with dark squares. The second one shown in the gray |
rhombus gives the optimum solution at 3000 bits. As can be
seen, for low bit rates, the a|gorithm selects regions closefig- 15. Rate/distortion curve for the partition tree of Fig. 14.
the root of the tree. For higher bit rates, a larger number of

small regions providing details about the image content cafjy detect the position of the face but also really segment it
be transmitted. Last, Fig. 15 gives the complete rate/distortigiy optain its actual shape.

curve. One can see the evolution of the visual quality as a80ne of the basic approaches in face detection relies on

function of the number of regions introduced in the paruuoqhe notion of eigenspaces [36]. It assumes that the set of all
possible face patterns is a low-dimensional linear subspace

D. Segmentation of Regions with Semantic Meaning Q within the high-dimensional space of all possible image

Automatic segmentation of regions with a semantic meanipgtterns. An image pattern is classified as a face if its distance
is a very active area of image analysis. Among this class, fatem the face subspace is below a certain threshold. With
detection is one of the most useful tools given its large numbtis technique, the position of a face in an image can be
of applications [10]. Several techniques have been proposeditaected. Information about the face subspace is derived from
detect and track faces [10], [62]. Nevertheless, new multimedige analysis of a face data base. The database is made of face
applications rise a new need: the analysis algorithm should ﬁ@fageS{fn( ¢,J)} with the same uniform background. For each

3A single and extremely simple coding technique is used here in order to mage a vector, of IengthN 's constructed by Scannmg the
highlight the effect of region selection. In practice, more efficient teChanUt!.'g]eS and columns. The mean vectérand the covariance
should be used in particular to encode the color. matrix 2 are computed from the vector populati¢,, }.

000

6 8 10 12 14 Rate in kbits

2
Iy



1164 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 8, DECEMBER 1999

Within this context, the partition tree is a very attractiv@bject, an event, or a property that was not judged as being
representation not only to detect but also to segment faceaningful during the indexing process and therefore was not
regions. The main modification with respect to the techniquedexed. Flexibility can be obtained by introducing a low-level
proposed in [36] is that one has to analyze each redton description of the signal (sometimes called syntactical descrip-
represented by the partition tree and measure its distancdiom as opposed to the semantical description). This low-level
the face subspac@ [46]. If the distance is small, the regiondescription mainly deals with signal properties such as spatial
is classified as a face region. or temporal regions, color, texture, shape, motion, etc.

To calculate the distance between a given regdibof the Segmentation plays an important role for low-level descrip-
partition tree and the face subspace, the first step consistsi@m. The goal is to define regions either in space or in time
creating the vectoifg representing the region. To this endto support information retrieval. During the indexing process,
the smallest rectangle including the region is considered asiiis not possible to define the appropriate analysis resolution.
auxiliary image. In the areas outside the region, the uniforRuture queries may address large regions as well as very small
data-base background is introduced. The auxiliary imagedstails of the image. As a result, the segmentation has to
then scaled so that it matches the size of the data-base imagesgduce more than a single partition. The issue of “universal
and the vectorfr is extracted by scanning the lines andegmentation” and “application” discussed at the beginning of
columns of the scaled image. Section 1V is particularly important in the case of indexing

The distance is defined as the image likelihood of beingsince it is not possible to define a single retrieval application.
face P(Zr/2). The class membership of a scaled image rep- A possible solution consists in segmenting the image or
resented by its vectarr is generally modeled as a unimodathe video sequence at various levels of resolution and in
Gaussian density structuring the set of regions within a partition tree. Of course,
exp [_l(fR AT (@ — j?)] the Iow-leve_l descriptiqn based on regions s_hould be Iink_eq to

2 A . (5) the semantic description. An example of image description
(2m)= |Z]= structure is illustrated in Fig. 16. In this example, the low-

The Mahalanobis distance is used as a sufficient statistic fBY€! description appears as a region tree [Fig. 16(a)]. As

characterizing this likelihood can be seen,.the region tree defines a set of regions (tree
nodes) at various scales and structures them depending on

d(Zr,Q) = (Zr — 2)" VTR — T). (6) their inclusion relationships. Large regions appear on upper

o ) levels of the tree whereas fine details can be found on lower

In the case of thé\kiyoimage, the algorithm successfully|oyels. The high-level description is addressed by the object
detects the face region (region D of Fig.13). Last, nog.s [Fig. 16(b)] where nodes represent semantic notions.
that this sgctlon has cor)centrated on face segmentation. 1Ah‘ﬁnk between an object and a region relates a semantic
approach is however fairly general and can be extended {gion 1o its occurrence in the image. For example, object
all cases where the semantic Qf interest can been_ Cons_'de@}drefers to regionRs. ObjectO, refers to regionsis and
as a visual pattern corresponding to a low-dimensional linegf’ qince two TV screens are visible in the image. Note that
_subspace within thg h|gh—d|men3|9nal space of all poss@hae region tree can be considered as the “table of contents”
image patterns. Typical examples include eyes, nose, or eYRNhe image. As in the case of a written document, the

rigid objects [43]. table of contents is a hierarchical representation that splits
. ) ) the document into elementary pieces. To follow the analogy

E. Segmentation for Region-Based Retrieval with written document, the object tree can be viewed as the

Image and video sequence indexing aims at describing fhiedex,” since it defines a set of potentially interesting items
original content in such a way that it can be easily searchadd provides references to where these items are present.
for and retrieved. Efficient searching is primarily supported As can be seen, the problem of segmentation for indexing
by high-level descriptors that address the semantic contesttherefore equivalent to the “similarity estimation” step of
Indeed, in a large number of cases, the user would like fig. 8. The example of Fig. 16 does not use the tree of Fig. 9.
find content where a specific event or a particular object This is because the tree of Fig. 9 is constructed with a very
present. Event and object notions are easily handled by natwgiahple homogeneity criterion (color), which is not suitable
languages or keywords with a semantic meaning. to produce regions with a high probability of corresponding

For high-level descriptors, the indexing process consists tof semantic notions. For region-based retrieval, the partition
defining the semantic entities (objects, events, properties) thiae should be based on much more powerful criteria such as
are present in the image or in the video and that are usefulrootion trajectory, relative depth, etc. Also, the result of spe-
of interest. These entities are described by keywords or texfic preprocessing techniques such as foreground/background
and the description is structured so that efficient retrieval @etection, face detection, etc., should be taken into account
supported. Note that the definition of “useful” or “interesting(see Section IV-F). Last, user interaction can also be used
entities is a subjective issue. Ideally, one has to foresee theimprove the partition tree. Note that in this context, the
most likely queries and anticipate the set of possible answegeal of the user interaction is not to correct a partition or a

The drawback of a pure semantic description is its ladet of regions [13] but to modify the tree itself (regions and
of flexibility. Indeed, it is extremely difficult to deal with structure). To the authors’ knowledge, almost no work has
an unforeseen query. Unforeseen queries often involve la@en reported in this direction.

P(Fr/Q) =
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______ Mouth 06 _ Eye o7
, Region Tree Object Tree

Fig. 16. Example of region and object trees. The region tree defines the spatial organization of regions as well as their inclusion relationsjeigt. The ob
tree is a hierarchical list of items referring to occurrences in the region tree.

Beside segmentation, the indexing process has also to assiginary since, at each step, only two neighboring regions are
region descriptors to each node of the tree. These descriptorsrged.
typically deal with color, texture, shape, position, and orien- Using region-based merging algorithms such as [37], [66],
tation features as well as motion if the image is extractdédi4], [20], and [28], the binary partition tree is created by
from a sequence. Note that the tree structure introduceske®ping track of the regions that are merged at each iteration.
notion of scalability in the description itself. Indeed, ondhe homogeneity criterion used in the example of Fig. 9 is
region is described by its own descriptors but also by the ggised on color similarity. It should be noticed, however, that
of descriptors of its children. Assume, for example, that thde homogeneity criterion has not to be restricted to color. For
luminance information of a region is described by a constagkample, if the image for which we create the binary partition
value. This is a very crude approximation. However, for fee belongs to a sequence of images, motion information
given regionZ, this approximation can be improved if the seshould also be used to generate the tree: in a first stage, regions
of luminance descriptors of all the regions includediirare are merged using a color homogeneity criterion, whereas a
considered. The tree structure is also an attractive solutionpf@tion homogeneity criterion is used to merge regions in the
encode the descriptors. Indeed, the tree defines the correlaiedond stage [18], [19]. Fig. 17(a) shows an example of binary
and inheritance relationships between descriptors. partition tree that has been constructed exclusively with a color
homogeneity criterion: the region merging order is defined
by the Euclidean distance between the mean YUV values
F. Similarity Estimation of the regions. In this case, it is not possible to concentrate

In the previous sections, we have illustrated the intere§te information about the foreground object within the same
of the similarity estimation step of Fig. 8. A single partitiorsubtree. For example, the face mainly appears in the subtree
tree (except in Section IV-E) has been used to support a lafnging from region A, whereas the helmet regions are located
number of segmentation tasks. The goal of this section is kglow region D. In practice, the nodes that are close to the root
describe possible implementations of the similarity estimatioRave no clear meaning because they are not homogeneous in
We will focus exclusively on the creation of a binary partitior¢olor. Fig. 17(b) presents an example of partition tree created
tree [54]. with color and motion criteria. The nodes appearing in the

Several approaches can be followed to create this tree. lawer part of the tree as white circles correspond to the color
attractive solution relies on a region-based merging algoritneriterion, whereas the dark squares correspond to the motion
that follows a bottom-up approach. Starting from an initiagriterion. As can be seen, the process starts with the color
partition, the algorithm recursively merges neighboring regiomsiterion as in Fig. 17(a), and then, when a given PSNR s
based on a homogeneity criterion until one region is obtaingeached, it changes to the motion criterion. Using motion
As described by Fig. 9, the tree leaves represent the regionsnéérmation, the face and the helmet now appear as a single
the initial partition. The remaining nodes represent the regioregion E.
that are obtained by merging the regions associated to théAdditional information on previous processing or detection
two children regions. In this representation, the root noagdgorithms can also be used to generate the tree in a more
represents the entire image support. Note that the resulting trebust way. For instance, a mask of an object included in the
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(b)

Fig. 17. Examples of creation of binary partition tree. (a) Color homogeneity criterion. (b) Color and motion homogeneity criteria.

Original image

Background

Fig. 18. Example of partition tree creation with restriction imposed with object masks.

image can be used to force the merging algorithm in suchba represented as a single node in the resulting partition tree.
way that the object itself is represented with a node in the trde. Fig. 18, the nodes corresponding to the background and
Typical examples of such algorithms are face, skin, characttre two foreground objects are represented by squares. The
and foreground object detection. An example is illustratdtiree subtrees further decompose each object into elementary
in Fig. 18. Assume for example that the origin@hildren regions.

image sequence has been analyzed so that masks of the twdote that in most practical cases, the similarity estimation is
foreground objects are available. If the merging algorithm much more complex to implement than the partition creation,
constrained to merge regions within each mask before dealiangd it may involve a high computational load. Since a single
with remaining regions, the region of support of each mask wlartition tree can support a large number of segmentation tasks,
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it makes sense to perform the “similarity estimation” oncénother example is a feature space addressing semantic no-
The resulting partition tree can be stored for subsequent usms. Currently, a very low number of semantic notions, such
by different “partition creation” algorithms. A future codingas faces or specific rigid objects, can be analyzed.
standard may encode the original image together with itsShift the complexity from the data to the algorith®eg-
partition tree, and, in the case of sequences, the encoaeentation is generally considered as a rather complex and
frames may be multiplexed with the corresponding partitidime-consuming process. However, in a large number of cases,
trees. the complexity does not result from the algorithm but from
the amount of pixels and frames to process. In the future, a
possible trend may be to use more complex algorithms on
V. CONCLUSION a reduced number of elements. The approach described in

This paper has discussed the main issues related to segnf&ftion IV can be viewed as a first step toward this goal. The
tation algorithms that may be used for multimedia applicationgimilarity estimation can be considered as preprocessing that
After a description of the main processing steps and tmeduces the cardinality of the elements to process. Instead of
corresponding choices, the state of the art in segmentation RE&cessingV/ = IV pixels, one may work with a few tens or a
been reviewed. Segmentation tools are progressing rapidgWw hundreds of regions stored in a partition tree.
and, for specific applications where the input signal comes
from a controlled environment or where the feature to analyze
is simple, robust algorithms are already available. In other ACKNOWLEDGMENT
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