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Abstract

In this paper we present a general framework we have devel-
oped for running and evaluating automatic image and video
segmentation algorithms. This framework was designed to al-
low effortless integration of existing and forthcoming image
segmentation algorithms, and allows researchers to focus more
on the development and evaluation of segmentation methods,
relying on the framework for encoding/decoding and visualiza-
tion. We then utilize this framework to automatically evaluate
four distinct segmentation algorithms, and present and discuss
the results and statistical findings of the experiment.

1 Introduction
Image segmentation is a core tool in numerous image process-
ing, machine vision and content based multimedia retrieval
applications and as a result has been the focus of intense
research for many years (see [5] for a recent review). Indeed,
so numerous are the approaches that have been proposed, that
selecting an optimal algorithm for a particular application
has become an arduous and very time consuming task. Even
when an algorithm has been selected, adapting the method
to accept/produce the required image or video format may
require significant effort. The framework we have developed is
intended to allow simple integration, visualization, evaluation
and comparison of many different image and video segmenta-
tion algorithms, providing researchers with the means to select
an appropriate algorithm for a given task. The usefulness
of the framework is validated by applying it in a significant
segmentation evaluation task.

The paper is organized as follows. In section 2 we briefly
outline the architecture and features of the framework we
have developed. In section 3 we give an overview of the
segmentation algorithms that have been integrated into to the
tool thus far. Section 4 details the evaluation experiment setup
and presents an analysis and discussion of the results. Finally
we present conclusions in section 5 and suggest future work in
6.

The framework was developed as part of the K-Space1 project,
and includes several state-of-the-art image and video segmen-
tation techniques contributed by the various partners.

1K-Space - Knowledge Space of Semantic Inference for Automatic Anno-
tation and Retrieval of Multimedia Content.

2 Segmentation Framework
This section gives a brief overview of the image and video seg-
mentation framework we have developed. For the interested
reader, a more detailed description can be found in [12].

2.1 Features and Functionality

The following describes the main features of the platform:

User Interface: The user interface provides automatic decoder
selection, concurrent browsing of video frames and segmented
images, selected-range segmentation and a simple interface
for selecting algorithms and their parameters. Several useful
segmentation visualization methods are also included. A
screenshot of the interface is shown in figure 1.

Image and Video Formats: The framework was designed to
support all common image and video formats transparently.
A built-in video decoder capable of seek-able, frame accurate
video decoding of various video formats, including MPEG-1,
2, 4, Motion-JPEG, Quicktime and WMF is provided. Also
provided is an image decoder capable of decoding both
individual images and sequences of key-frames transparently.
It is capable of decoding all common image formats, including
JPEG, PNG, PNM, GIF and BMP.

Region-Map Format: The framework encodes region-maps
using an efficient, portable format based on a subset of PNG.
This allows lossless storage of segmented video sequences
with minimal space overhead.

Batch Processing Interface: The batch processing interface
allows command line segmentation of large image/video
collections. All the parameters that can be selected in the
graphical user interface can be input into a parameter file.
Files, ranges and increments can be selected for highly
configurable segmentation.

MPEG-7 Output Generation: In order to allow interoper-
ability of the produced region descriptions with other systems
(e.g. content based information retrieval systems), a mod-
ule is provided to generate an MPEG-7[1] description of a
segmented image or video sequence. In the description each
image is made up of a collection of still regions described by
a bounding rectangle and a reference to the label mask. The
region labeling is considered consistent throughout the video
sequence.

In the future we plan to incorporate shot boundary detection
into the application and to describe a video as a sequence of
shots. This will allow for the formal description of both still
and moving regions.
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Figure 1: Screenshot of the Application User Interface

2.2 Architecture Overview
The framework is arranged into three main layers. The top-
level module, the Application, hosts the user interface, user
preferences, batch processing interface and integration logic.
The application layer implements all of its encoding, decoding
and segmentation via interfaces specified in the module below
this, the External API. This API consists of a set of interfaces
for plug-in developers, as well as commonly required utilities
to simplify development. The bottom layer contains of all the
plug-ins, that is, all of the segmentation algorithms and codecs.
For a more detailed architecture description, see [12].

3 Segmentation Algorithms
In this section we present an overview of the segmentation
algorithms currently integrated into the framework. Figure 2
gives some sample images demonstrating the typical output of
these algorithms.

Modified RSST using Syntactic Features
This algorithm [2] is based on the well known Recursive Short-
est Spanning Tree [13] method utilizing the more perceptually
uniform L*u*v* color model and syntactic visual features
[4] to improve the quality of the segmentation. The syntactic
features represent geometric properties of regions and their
spatial configurations, and in a sense, attempt to model some
of the gestalt grouping factors [10] that have been observed in
the human visual system. The features used by the algorithm
are homogeneity, compactness, regularity and inclusion.

Homogeneity refers to spatial color changes in the image.
The algorithm begins by forming an initial over-segmentation
using a simple euclidean distance merging predicate, then
switches to a more appropriate color model for these larger
segments. The latter model accounts for outliers, and controls
over segmentation of objects comprised of gradients using the
boundary melting approach [17].

The regularity, compactness and inclusion criteria model the
spatial and geometric properties of regions, favoring region
configurations with smoother and more convex objects, similar
to most found in natural scenes.

Spatio-Temporal Region Adjacency Graphs
This method [8] aims to produce segmentations of a moving
images with a high degree of temporal coherency by operating
iteratively on pairs of frames using a hierarchical merging

process. An initial spatial segmentation based on color is
formed using a fast Minimum Spanning Tree approach. To
compensate for the fact that the initial segmentation may
differ significantly for each successive frame, as a frame is
processed, the initial segmentation is constrained using an
edge detector so that a given frame is over-segmented with
respect to the previous frame. Feature points [16] are extracted
and tracked for each frame, allowing grouping of temporally
connected regions. Grid based space-time merging groups
unmatched regions and a subgraph matching stage is used to
complete the procedure.

Optimized Mean Shift
Proposed in [3], this algorithm is based on the popular mean
shift segmentation algorithm described in [6] with three
specific modifications intended to improve performance and
temporal stability. The first of these optimizations improves
the performance of the algorithm by performing a moderate
quantization of the L*u*v* color space prior to segmentation.
As observed in [3], this quantization does not significantly
effect the quality of the segmentation but does however result
in a more sparse feature space in which nearby feature vectors
have been effectively grouped by the quantization. The re-
sulting sparse feature space induces a significant performance
gain, as less data now has to be considered in the search
window when computing the mean shift vector.

The next optimization serves both to improve the performance
of the segmentation and to improve it’s temporal stability
when applied to moving images. When computing the mean
shift, the objective is to determine the significant modes in
joint spatio-color space. Once these modes, or cluster centers,
have been determined in frame Fi−1 they can be propagated
and used as the initial estimates for the modes in frame Fi.
Under the assumption of a similar spatio-color space between
adjacent frames, these modes will now more quickly converge
on the true modes of frame Fi using the mean shift procedure.
The algorithm also includes a check for any situation in which
the feature spaces of adjacent frames are not similar (after a
shot cut, for example) to avoid propagating cluster centers
between dissimilar frames.

The final optimization of the original mean-shift algorithm
occurs in the post-processing step. Instead of clustering
small regions to larger ones in scan-line order, as originally
proposed, the improved algorithm groups regions starting with



Figure 2: Sample output of some of the segmentation algorithms. From left to right: Original, M-RSST, SRG, ST-RAG, MSHIFT

the smallest, making the algorithm independent of raster order
thus improving its stability. The aforementioned color space
quantization is also exploited in the post-processing step to
improve performance when re-assigning pixels that have been
placed in incorrect clusters.

Statistical Region Merging
The statistical region merging algorithm, proposed in [14] is
based upon the graph formulation of image processing. In
their paper, Nielson and Nock formulate image segmentation
as a statistical inference problem, and derive a simple merging
order and merging predicate that can achieve, with high
probability, a low error in segmentation.

If an image is viewed as a graph, where each pixel denotes a
node in the graph, and each node is connected via a link to
every other node in it’s 4-neighborhood, then a segmentation
can be achieved by successively merging connected nodes.
With this formulation, it suffices to specify a predicate to
determine whether or not to merge two nodes, and the order in
which this predicate should be tested, in order to completely
specify the segmentation algorithm. The test to determine
whether or not two adjacent regions should be merged is
known as merging predicate, and the order in which these tests
are carried out is called the merging order.

Nock and Nielson define the merging predicate so as to pro-
vide a quantitative bound on the segmentation error as follows.
Given a region R in an image I, let

b(R) = g

√
1

2Q|R|
ln

(
1+ |R|

δ

)
min(g, |R|) (1)

where g is the range of the color band (usually g = 256) and
δ = 1/(6|I|2). The merging predicate is then defined as:

P(R,R′)⇔ |R̄′− R̄| ≤
√

b2(R)+b2(R′) (2)

where R̄ is a the value of color band (ex. red), and the predicate
P(R,R′) must be true for all color bands.

Given the merging predicate, the merging order is given as an
invariant A which is defined as follows: If a test between any
two true regions occurs, it implies that all tests between pairs of
regions contained within these regions has occurred previously.
For RGB color images the invariant is realized by sorting the
links to be tested according to a weight Wi j equal the maximum
absolute difference between each of the color bands, i.e.,

Wi j = max(|Ri−R j|, |Gi−G j|, |Bi−B j|) (3)

and testing the merging predicate on links in the implied order.

The SRM algorithm then proceeds as follows. Links are first
formed between pixels in given a 4-neighborhood system, and
weighted as Wi j defined above. These links are then sorted

according to their edge weight. Then a single pass through the
links is performed, merging the corresponding regions if the
merging predicate is satisfied. For RGB colors Wi j ∈ [0..255]∈
Z, and so the sorting procedure can be performed in O(n) using
the bucket sort algorithm [7], and thus the entire algorithm runs
in linear time.

4 Evaluation

In this section we detail the evaluation experiment setup and
present an analysis and discussion of the results. This serves as
a validation of the utility of the platform, as well as relating re-
sults that are intended to be a practical resource for the research
community in general.

4.1 Dataset and Ground Truth

The experiments were carried out using the images and ground
truth segmentations in the Berkeley segmentation dataset [11].
This excellent dataset is comprised of 300 images, consisting
of a test set of 100 images and a training set of 200 images.
For each image, the dataset contains an average of ≈ 11
corresponding human generated ground truth segmentations.

For each machine segmented image, we evaluate against all
available ground-truths, presenting both the best-match and
mean results. The best-match results can be interpreted as
accuracy when we consider a segmentation to be correct if
it matches any human generated segmentation. On the other
hand, the mean result is less sensitive to any particular human
segmenter, and can be interpreted as a measure of how much a
segmentation corresponds to the type of segmentations that are
typically produced by humans.

4.2 Algorithms Evaluated

We evaluated all four region based segmentation algorithms,
referred to to as follows:

• M-RSST: Modified RSST using Syntactic Features.
• ST-RAG: Spatio-Temporal Region Adjacency Graphs
• MSHIFT: Optimized Mean Shift
• SRM: Statistical Region Merging

Also, in order to form a “worst-case” baseline, we also car-
ried out the evaluation on mismatched segmentations, denoted
algorithm MM. That is, compatible pairs (in terms of size) of
image segmentations derived from different scenes were ran-
domly selected, and we computed the evaluation measures on
these mismatched pairs. For all of the above algorithms the de-
fault/recommended parametrization was used. Because of this,
none of the algorithms mentioned requires any special training
data, thus, for the experiments, we also separately evaluated
against the training data set.



Table 1: GCE/LCE mean and variance for the various algorithms (given as percentages for clarity).

GCE LCE
Best Mean Best Mean

Algorithm Data µ σ2 µ σ2 µ σ2 µ σ2

M-RSST Test 11.32±1.60 0.65 18.10±1.81 0.83 7.90±0.99 0.25 12.20±1.29 0.42
M-RSST Train 10.03±0.95 0.46 16.81±1.15 0.67 6.98±0.63 0.20 10.63±0.73 0.27
ST-RAG Test 14.60±1.75 0.78 22.64±1.94 0.96 10.66±1.24 0.39 15.24±1.40 0.50
ST-RAG Train 12.20±1.16 0.69 20.00±1.28 0.84 9.13±0.79 0.32 13.35±0.84 0.36
SRM Test 16.14±1.73 0.76 24.47±1.99 1.01 10.73±1.22 0.38 15.52±1.47 0.55
SRM Train 14.62±1.22 0.76 22.80±1.32 0.89 10.17±0.90 0.41 14.77±1.00 0.51
MSHIFT Test 25.74±2.48 1.56 35.43±2.58 1.69 19.89±1.91 0.93 27.03±2.19 1.22
MSHIFT Train 24.68±1.64 1.38 33.58±1.81 1.67 19.31±1.43 1.04 25.75±1.64 1.37

4.3 Evaluation Methodology
Each algorithm is evaluated using two separate segmentation
evaluation methodologies suited to region based image seg-
mentation.

The first methodology, proposed in [11], is designed such that
if one segmentation is a refinement of another, that is, if it
is approximately the same except that it has a higher level of
detail, then the error measure produced should be very small.
The method produces two such measures of segmentation er-
ror, known as local and global consistency error, based on a
definition of local refinement error. Given two segmentations
of the same image: S1 and S2, if R(S, pi) corresponds to the set
of pixels containing pixel pi in S then the local refinement error
is defined as:

E(S1,S2, pi) =
|R(S1, pi)\R(S2, pi)|

|R(S1, pi)|
(4)

Using the above definition, the global (GCE) and local (LCE)
consistency error are defined as:

GCE =
1
A

min

{
∑

all pixels pi

E(S1,S2, pi), ∑
all pixels pi

E(S2,S1, pi)

}
(5)

LCE =
1
A ∑

all pixels pi

min{E(S1,S2, pi),E(S2,S1, pi)} (6)

where A is the area of the image, in pixels. Both measures
are in the range [0..1], where values closer to zero denote a
better segmentation. It has been observed that these mea-
sures, in general, correspond well with human perception
and usually produce very low values when used to compare
different human segmentations of the same scene. However,
care should be taken in interpreting the measures as due to
their tolerance of refinement, they are not sensitive to over-
and under-segmentation. Indeed, in the extreme case of
over-segmentation, where each pixel is considered a separate
region, GCE = LCE = 0.

In order to also consider refinement error, we employ an-
other performance measure based on the Hamming distance
between non-maximally intersecting regions proposed in [9].
Let S and T be two segmentations of the same image, and
S = {S1, . . . ,Sm} and T = {T1, . . . ,Tn} where Si corresponds to

the set of pixels in region i from segmentation S. We associate
with each region Si a region Tk such that Si ∩ Tk is maximal.
The Hamming distance between two segmentations is defined
as:

DH(T ⇒ S) = ∑
Si∈S

∑
Tj 6=Tk

∣∣Si∩Tj
∣∣ (7)

which corresponds to the sum of areas of intersection for all
non-maximally intersecting regions. Given this definition, the
performance measure is given by:

p = 1− DH(T ⇒ S)+DH(S ⇒ T )
2A

(8)

We will denote this the Huang-Dom measure (HD). Again, the
measure is in the range [0..1], where this time values closer to
one denote a better segmentation.

4.4 Results and Analysis
In total, evaluating 4 distinct algorithms on a database of
300 images, each having ≈ 11 ground truth images resulted
in 13,070 individual comparative evaluations. Table 1 and 2
tabulate the means and variances of the performance metrics
computed with respect to the evaluated algorithms over both
collections. The given mean confidence intervals are computed
assuming a normal distribution and using a confidence coef-
ficient α = 95%. Table 3 contains the means and variances
computed using the mismatched segmentations, as mentioned
previously, and can be interpreted as a baseline. The values
are given as percentages, so as to make them more readable.
Lower values for GCE and LCE are favorable, whereas a
higher Huang-Dom measure is preferred. As mentioned
earlier, we compute the performance measures on both the
best match ground truth segmentation available and the mean
value over all ground truths for each image. These values are
tabulated under the Best and Mean columns in the tables.

In terms of mean GCE and LCE, the M-RSST algorithm
appears to be the best performing of the four with the ST-RAG
algorithm in second place marginally outperforming the SRG
algorithm. According to the Huang-Dom measure, the M-
RSST, ST-RAG and SRG algorithms appear comparable, but
MSHIFT is heavily penalized for its tendency to over-segment
images. However, it should be considered that some of the
tested algorithms, in particular MSHIFT and ST-RAG, are op-
timized specifically for moving image segmentation, and it is
thus expected that a performance evaluation that considers the
temporal consistency of a segmentation algorithm would likely



Table 2: Huang-Dom mean and variance for the algorithms

Huang-Dom
Best Mean

Data µ σ2 µ σ2

M-RSST Test 78.3±2.1 1.15 74.1±2.2 1.17
M-RSST Train 80.6±1.5 1.09 76.3±1.5 1.07
ST-RAG Test 78.4±1.7 0.74 73.7±1.8 0.86
ST-RAG Train 79.2±1.2 0.79 75.1±1.3 0.82
SRM Test 78.8±1.5 0.58 73.7±1.6 0.66
SRM Train 79.2±1.6 0.67 74.7±1.2 0.75
MSHIFT Test 66.9±2.0 1.03 62.7±2.0 1.02
MSHIFT Train 68.5±1.5 1.17 64.5±1.5 1.19

Table 3: Baseline mean and variance on mismatched frames
GCE LCE HD

Test Train Test Train Test Train
µ 35.65 34.61 27.95 34.61 58.52 59.17
σ2 2.30 2.24 1.39 2.24 0.69 0.79

assign these methods a much higher performance measure.
Plots of GCE and Huang-Dom performance measures for the
test set, ranked best to worst from left to right are shown in
figures 3 and 4.

Figure 3: Comparison of GCE values

It is worth noting that the typical mean GCE and LCE error
rates for humans, as noted in [11], are 11% and 7% respec-
tively. This figures can be directly compared with the mean
(not best) values in table 1. It is clear from the comparison that
none of the algorithms achieves segmentation as accurate as a
human.

We also examined, over the entire set of experiments, the
correlation between GCE, LCE and Huang-Dom measures. It
was observed that the GCE and LCE measures are especially
highly correlated, with a correlation coefficient of 86.7%, a fact
not reported in [11]. This implies that it may not be necessary
to use both measures when performing evaluation. The choice
of measure should depend on whether mutual refinement
with respect to a ground-truth is acceptable, in which case
LCE is appropriate. Tolerance of mutual refinement is a task
dependant consideration. However, different humans tend to
produce segmentations that are mutual refinements of one
another, thus LCE is probably more appropriate for perception

Figure 4: Comparison of Huang-Dom values

based evaluation. A plot of the GCE vs LCE values for a
typical experiment (ST-RAG on test collection) is shown in
figure 5.

In contrast, the Huang-Dom and GCE/LCE correlation
coefficient was computed to be -47.9% and -58.7% respec-
tively, supporting the hypothesis that the measure conveys
important information not contained in the GCE and LCE
measures, specifically by being more sensitive to under- and
over-segmentation, and thus is effective as a complementry
performance measure.

Figure 5: Correlation of GCE and LCE values

It is also interesting to consider the histogram distributions of
the performance measures. A plot of the Huang-Dom perfor-
mance measure histogram for several segmentation algorithms
run on the test data set is shown in figure 6. As can be seen,
the distributions appear approximately Gaussian in nature, and
there seems to be a clear separation between correct and mis-
matched segmentations.

Figure 6: Huang-Dom distribution for several algorithms



5 Conclusions
We have developed a generic framework for automatic image
and video segmentation. Several state-of-the-art algorithms
have been integrated, and this was exploited in performing
an extensive automatic image segmentation evaluation exper-
iment. Two ground-truth based evaluation methodologies were
chosen for the experiment, and the complementary nature of
the methods was demonstrated in the results. High correlation
between GCE and LCE values was made evident, implying that
both measures my not be necessary for gauging performance.
The statistics presented clearly demonstrate and contrast the
effectiveness of each segmentation algorithm, it is hoped that
such results will aid other researchers in selecting the most ap-
propriate segmentation method for a given application.

6 Future Work
In this paper we did not explore standalone segmentation
evaluation, that is, performance indicators that measure
the empirical goodness [19] of an algorithm without using
ground-truth. In the future, we plan to implement several of
these standalone measures (for instance [18]) and compare
the statistical distributions of the methods with those of the
ground-truth based evaluation paradigms.

We have also recently integrated a semi-automatic image seg-
mentation algorithm based on the binary partition tree approach
proposed in [15] into the tool. This particular segmentation al-
gorithm is object based, and as such, produces a “foreground-
background” segmentation. In the future, we would like to inte-
grate semi-automatic segmentation algorithms capable of pro-
ducing multiple regions, allowing fast generation of ground-
truth for experiments.
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