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Abstract

Whereas newer machine learning techniques, like artificial neural net-
works and support vector machines, have shown superior performance in
various benchmarking studies, the application of these techniques remains
largely restricted to research environments. A more widespread adoption
of these techniques is foiled by their lack of explanation capability which
is required in some application areas, like medical diagnosis or credit scor-
ing. To overcome this restriction, various algorithms have been proposed
to extract a meaningful description of the underlying ‘black box’ models.
These algorithms’ dual goal is to mimic the behavior of the black box as
closely as possible while at the same time they have to ensure that the
extracted description is maximally comprehensible.

In this research report, we fist develop a formal definition of ‘rule
extraction’” and comment on the inherent trade-off between accuracy and
comprehensibility. Afterwards, we develop a taxonomy by which rule
extraction algorithms can be classified and discuss some criteria by which
these algorithms can be evaluated. Finally, an in-depth review of the most
important algorithms is given. This report is concluded by pointing out
some general shortcomings of existing techniques and opportunities for
future research.

1 Introduction

1.1 Definition

Whereas there already exist various definitions of ‘rule extraction’, we believe
that most of these are too restrictive. For example, Craven [13] defines rule
extraction as:

“Given a trained neural network and the data on which it was trained, pro-
duce a description of the network’s hypothesis that is comprehensible yet closely



approximates the network’s prediction behaviour.”
which is reformulated in [10] as:

“In the scenario of high dimensional feature spaces, given a trained SVM and
the data on which it was trained, produce a description of the SVM’s hypothesis
that is understandable yet closely approximates the SVM’s prediction behavior”

Both definitions view the process of rule extraction from their specific field
of interest, respectively neural networks and SVMs. However, the above defini-
tions of rule extraction can be formulated more generally as:

“Given an opaque predictive model and the data on which it was
trained, produce a description of the predictive model’s hypothe-
sis that is understandable yet closely approximates the predictive
model’s behavior”

¥

(a) Better Comprehensibility (b) Better Accuracy

Figure 1: Trade-off between Accuracy and Comprehensibility (full line=original
model, dotted line=extracted rules)

A first issue to notice from this definition is that although the process is
coined ‘rule extraction’, it is not required that the returned description con-
sists of rules. We consider any method that delivers a human-comprehensible
description of the underlying model as a rule extraction technique. Although
most algorithms will indeed provide a description consisting of rules, there exist
techniques that provide descriptions in different formats such as decision trees,
finite state machines or graphical models. The term ‘white box extraction’ might
therefore be more appropriate than the widespread term ‘rule extraction’.

From the above definitions, one can also observe the inherent duality between
comprehensibility and accuracy!. The extracted description should be compre-
hensible but at the same time approximate the underlying model as closely as

L As explained below, ‘fidelity’ might be a more appropriate term



possible. Which of both goals is favored usually depends on the specific require-
ments of the application. For example, in Figure 1, a regression model (full
line) is built from the available sample observations. In the left figure, a simple
model (dotted line) of the following form is extracted:

if X is smaller than threshold then Y is Value;
else Y is Value,

While this rule set provides a relatively good approximation of the underlying
model, there are some minor deviations between the original model and the
extracted rules. Figure 1(b) shows a rule set that better approximates the
underlying model.

if X is smaller than threshold; then Y is Value;
if X € [threshold;,thresholds] then Y is Values
if X € [thresholds,thresholds] then Y is Values
else Y is Valuey

This rule set is however more elaborate and contains twice the amount of
rules as the first rule set. Which of both rule sets is preferred, usually depends
on the specific requirements of the application at-hand.

During our review of rule extraction algorithms, this trade-off between accu-
racy and comprehensibility will be encountered several times. Most algorithms
deal with the duality by allowing users to set some parameters to specify a
desired level of accuracy or a maximum level of complexity.

1.2 Motivation

At this point, one might start wondering why rule extraction is important. If
it is of major concern to have a good understanding of the predictive model, it
seems logical to avoid the intermediate step of creating an opaque model and
to start directly with a ‘white box’ model.

The main motivation is that a well trained intermediate model can often
better represent the data than the data itself by filtering out the noise that is
present in the samples. Additionally, the use of the intermediate ‘black box’
model allows the creation of ‘artificial’ data examples for those regions of the
input space that are covered by only a small number of sample points. Finally,
several benchmarking studies [5, 54, 57] have shown that in many application
areas opaque models achieve better performance than ‘white box’ models. In
situations where performance is a crucial issue, the opaque models are there-
fore the preferred choice for implementation in the decision process but rule
extraction can be adopted to verify the knowledge encoded in these models.

This knowledge verification is crucial in many application areas and some-
times even legally required. For example, the Equal Credit Opportunity Act
[1] is a US federal law which prohibits creditors from certain forms of discrim-
ination. Under this law, financial institutions are required to provide specific



reasons in case an application is rejected: indefinite and vague reasons for de-
nial are illegal [33]. An unacceptable motivation is for example: “You didn’t
receive enough points on our credit scoring system”, which is pretty much the
only possible explanation that can be provided by a ‘black box’ scoring system
when no rule extraction is performed.

Similar requirements can also be found in the medical domain, where users
are reluctant to use ‘black box’ computer-aided diagnosis (CAD) systems that
can influence patient treatment [21]. The ability to generate even limited ex-
planations is essential for user acceptance of such systems.

Apart from the explanation capability, several other reasons that underline
the importance of rule extraction are mentioned in [3]. Automatic knowledge
acquisition is one of them. Constructing and debugging a knowledge base for a
decision support system is a difficult and time-consuming task. Automatic rule-
extraction can considerably facilitate the burden of maintaining such knowledge
base. Other possible motivations for rule extraction are the induction of scien-
tific theories or the study of the generalization behavior of the underlying model.

1.3 Rule Types

As discussed above, most of the extraction algorithms generate rules to describe
the underlying model’s hypothesis. Many different types of rules exist. In this
section, we provide an overview of several frequently used rule types.

The most widespread rules are without any doubt propositional if-then
rules. The condition part of a propositional rule is a boolean combination
of conditions on the input variables. Whereas the condition part can contain
conjunctions, disjunctions and negations, most algorithms will return rules that
only contain conjunctions. An example of such a rule is: ‘if X=a and Y=b then
Class=1’, with X,Y input variables and a,b possible values of these variables. For
continuous input variables, the conditions are usually specified as restrictions
on the allowed values, e.g ‘X € [c1, o]’ or ‘X > ¢3” with ¢, ¢2, c3 € R.

Most algorithms will ensure that the condition parts of each rule demarcate
separate areas in the input space: i.e. the rules are mutually exclusive. There-
fore, only one rule can be satisfied when a new observation is presented and
the rule that has fired will be the only one used for making the classification
(or regression) decision. However, some algorithms will allow multiple rules to
fire for the same instance. This requires an additional mechanism to combine
the individual predictions. For example, [10] associates a confidence factor with
each rule and rules that fire with a large confidence factor have a greater impact
on the final decision. Sorting the rules and allowing only the first firing rule to
decide is another mechanism, applied in [51].

M-of-N rules are closely related to propositional rules. They are ex-
pressions of the form ‘if {at least/exactly/at most} M of the N conditions
{C1,C4,...,Cn} are satisfied then Class=1". It is usually straightforward to
convert M-of-N rules into propositional rules. For example, the M-of-N rule ‘if
exactly 2-of-{X=a,Y=b,Z=c} then Class=1’ is logically equivalent to ‘if ((X=a
and Y=b) or (X=a and Z=c) or (Y=b and Z=c)) then Class=1’. Observe that



for M=1, the rules can be written as a number of disjunctions while for M=N
the rules can be expressed as a conjunction of the conditions. The use of M-of-N
rules was first proposed in [56]. Other algorithms that provide M-of-N rules as
result of their extraction process are the popular TREPAN [15] and FERNN
[44].

A third type of rules, which can not be transformed straightforwardly into
propositional rules, are oblique rules. Oblique rules represent piecewise dis-
criminant functions and are usually represented as follows: ‘if (¢1X+coY > ¢3)
and (¢4X+c5Z > ¢g) and ... then Class=1" with ¢1,...,¢s € R. In comparison
with propositional rules, oblique rules are usually more difficult to understand.
However, oblique rules have the advantage that they can create decision bound-
aries that are non-parallel with the axes of the original input space. In [48], it
is argued that oblique rules may therefore require fewer conditions than propo-
sitional rules. An example is shown in Figure 2.
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(a) Parallel Boundaries (b) Oblique Boundaries

Figure 2: Parallel versus Oblique Boundaries

In the left part of this figure, the decision boundary is approximated with
three propositional rules (or as one rule with three disjunctions in the condition
part). The right part shows the approximation of the decision boundary by an
oblique rule. We can observe that the same level of accuracy would require a
large number of propositional rules.

However, when categorical attributes are present in the data oblique rules
become even less interpretable. In [43], this problem is alleviated by the ex-
traction of a hierarchical rule set that combines opaque and propositional rule
characteristics. Only rules that are low in the hierarchy have conditions that
involve linear combinations of continuous attributes while the conditions of all
the other rules contain solely discrete attributes. It is argued that such rule
conditions greatly increase the comprehensibility of the rules.

Very similar to oblique rules, but slightly more complex, are equation rules.
This type of rules was proposed in [36], and contain a polynomial equation in
the condition part. An example is : “if c1 X2 4+ c2Y? + 3 XY + caX+c5Y < ¢
then Class=1’ with ¢i,...,c6 € R. Equation rules were however only used in



that particular study. It is difficult to understand them and they therefore
contribute little to the interpretation of the underlying model.

A fifth type of rules are fuzzy rules. An example of a fuzzy classification
ruleis: ‘if X is low and Y is medium then Class=1’, whereby low and medium are
fuzzy sets with corresponding membership functions. Fuzzy rules are believed
to be both comprehensible and user-friendly because the rules are expressed in
terms of linguistic concepts, which are easy to interpret for the human expert.

A final category are rules expressed in First Order Logic, i.e. rules that
can contain quantifiers and variables. At this moment, we are however not aware
of any algorithms that can extract such rules directly and we will therefore not
cover this category in more detail.

2 Taxonomy of Rule Extraction Algorithms

In this section, we develop a taxonomy that can be used for discussion and
evaluation of rule extraction algorithms. Although there already exists a widely
used taxonomy, the ADT -Taxonomy? proposed in [3], we believe that a new
classification schema may be required to cover the algorithms that extract rules
from black box models other than neural networks. The ADT-Taxonomy in-
cludes several elements, e.g. translucency and portability, that are specifically
defined for neural networks. This makes it less suitable for classifying extraction
algorithms that assume other models, such as SVMs (e.g. [36]).

The taxonomy that we propose, contains three main criteria for evaluation
of algorithms: the scope of use, the type of dependency on the black-
box and the format of the extracted description. The latter two of these
criteria are also present in the ADT-taxonomy, but as explained below with a
different interpretation.

The first dimension concerns the scope of use of an algorithm: either regres-
sion or classification. While there are a few algorithms that are applicable
for both types of problems, e.g. G-REX [25] and ITER [23], the majority is
specifically designed for either one of those. This dimension was included in the
taxonomy because it gives an immediate indication about the appropriateness
of an algorithm for a specific application. The inclusion of this criterion in the
ADT-Taxonomy was also proposed in [4].

The second dimension focuses on the dependency of the extraction algorithm
on the underlying black box: independent versus dependent algorithms. We
define a rule extraction algorithm as independent if it is totally independent
of the underlying black box model. It is therefore possible to use the same al-
gorithm in combination with different types of opaque models, such as neural
networks, support vector machines or an ensemble learner. The only require-
ment is that the underlying model can be queried. It acts as an oracle that
provides predictions for the observations that it receives. The basic idea is to
use the ‘black box’ model as an example-generator from which the algorithm
can learn. This added layer of complexity -first training a model on the data and

2ADT= after the authors Andrews, Diederich and Tickle



then extracting rules from the model- has often proven advantageous in com-
parison with direct rule extraction from the data points. The motivation is that
a well trained model can often better represent the data than the original data
set [33]. Additionally, the use of the ‘black box’ model allows the creation of
‘artificial’ data examples for those regions of the input space where not enough
original data points are available.

Algorithms that use information about the inner-workings of the underlying
model are dependent. A dependent algorithm can only be applied if the un-
derlying model is of a certain form. Knowledge about the inner-workings of the
underlying model can then be used for creation of rules. For example, in [45]
the behavior of a regression neural network is converted into regression rules by
approximating the activation function of the hidden neurons by a combination
of linear functions. For support vector machines, dependent techniques usually
rely on the support vectors for the extraction of their rules (e.g., [36]). The
main disadvantage of these dependent algorithms is that these techniques pose
strict restrictions on the underlying models: they assume that certain activa-
tion functions are used or that the architecture of the neural network follows a
certain specification.

Readers familiar with the literature on rule extraction, will probably see the
similarity of the above distinction with the translucency dimension in the ADT-
Taxonomy [3]. The translucency dimension is used to describe the relationship
between the extraction algorithm and the internal architecture of the underlying
neural network. It makes a distinction between decompositional and peda-
gogical techniques®. A decompositional technique focuses on the individual
units (neurons) within the network and aggregates the rules extracted at the
individual levels into a composite rule set. Pedagogical techniques are different
because they do not extract rules for the individual neurons but create rules
that map the inputs directly into outputs. During our evaluation of the differ-
ent rule extraction algorithms, we will observe that there is a large overlapping
between dependent and decompositional algorithms and also between indepen-
dent and pedagogical algorithms. The overlapping is however not complete. For
example, the VIA-algorithm [52] is an example of a pedagogical algorithm. It
creates rules by propagating intervals through the network. Because it uses in-
formation about the weights of the neural network during the propagation step,
VIA can not be applied to other models than neural networks. VIA is therefore
a dependent technique.

In the rest of this report, we will use all of the above terms to refer to the
translucency of the algorithms. If we state that an algorithm is decompositional
then it automatically implies that the algorithm is dependent. Unless explicitly
stated otherwise, we will also assume that the term ‘pedagogical’ implies the
‘independence’ of the extraction technique.

While the above distinction between dependent and independent algorithms
is useful for the classification of rule extraction techniques, a third criterion that
focuses more on the obtained rules might be worthwhile: predictive versus de-

3We do not cover the eclectic and compositional approaches



scriptive algorithms. We call a rule extraction algorithm predictive when the
extracted rules allow the analyst to make a prediction for each possible obser-
vation from the input space. More specifically, every possible input observation
should be covered by exactly one rule, which means that the extracted rules
should be both exclusive and exhaustive. By having both exclusive and exhaus-
tive rules, the order in which the rules are processed is of no importance. For
classification problems, exhaustivity is often realized by creating only rules for
the minority class and adding an additional rule that specifies a default class
when the input observation was not covered by any of the other rules. While
this imposes a partial ordering on the rules, we consider these rule sets as pre-
dictive because it is relatively straightforward to convert them into predictive
rules. Algorithms that extract decision trees are also examples of predictive
techniques.

If the rule sets created by a rule extraction algorithm are not predictive,
then we call it a descriptive algorithm. The resulting rules are either not-
exhaustive or not-exclusive. Non-exhaustivity might provide problems as there
will be input observations for which none of the rules fires and no forecast can
be delivered. Non-exclusivity might also provide problems because observations
can be covered by multiple rules when non-exclusive rules are present. This
requires an additional mechanism to combine the individual predictions. For
example, [10] associates a confidence factor with each rule and rules that fire
with a large confidence factor have a greater impact on the final decision. Sorting
the rules and allowing only the first firing rule to decide is another mechanism,
applied in [51]. To avoid these problems, users will often prefer the use of
predictive algorithms over descriptive algorithms.

An overview of this taxonomy together with the categorization of several
algorithms is shown in Table 1.

Independent Algorithms Dependent Algorithms
Classification | Regression Classification | Regression
Predictive CART, C4.5, ITER, G-REX Barakat et al. REFANNJ[45],
Algorithms TREPAN [25], CART, [7], Fung et al. | RN2[41]
[15], G-REX | ANN-DT [42] [21], FERNN
[25],BIO-RE[51] [44], NeuroLin-
ear [48], RE-RX
(43]
Descriptive STARE60], SVM+Prototype
Algorithms REFNE [61], [36], VIA [52]
GEX [31], BUR
[10]

Table 1: Taxonomy of Rule Extraction Algorithms



3 Overview of rule Extraction Algorithms

3.1 Evaluation Criteria

In existing surveys [3, 16, 35], rule extraction algorithms are evaluated by a
number of criteria. Besides the characteristics used during creation of the tax-
onomy, such as the expressive power of the extracted rules and applicability of
the algorithm, several other criteria appear in almost all of these surveys:

e Quality of the extracted rules
e Scalability of the algorithm
e Consistency of the algorithm

We will discuss each of these criteria in greater detail below.

3.1.1 Quality of the Extracted Rules

Quality of the extracted rules is considered to be the most important evaluation
criterion for rule extraction algorithms [35]. Many different aspects contribute
to the aspect of rule quality: accuracy, fidelity, comprehensibility,...

The concept of accuracy describes whether the extracted rules can make
correct predictions for previously unseen test examples. Fidelity is closely
related to accuracy, and measures the ability of the extracted rules to mimic
the behavior of the model from which they were extracted.

Let {x;,y;}]¥, represent observations with their corresponding label and
yPB and y/V'E the predictions made by respectively the underlying (Black Box)
model and the extracted rules (White Box).

For classification problems, accuracy is usually measured as the percentage of
correctly classified observations. More formally, the percentage of observations
for which y; and y}V 7 are the same. Fidelity is then expressed as the percentage
of observations for which y?5 and y/V® are the same.

accuracy™® = Prob(y; = y/V B|x; € X) (1)

fidelity™? = Prob(yP?P = yVB|x; € X) (2)

For regression problems, accuracy is usually measured by the mean-absolute
or mean-squared error. These can also be adopted to measure the fidelity be-
tween the underlying model and the rules extracted from it. More formally,
using the definition of mean-absolute error (MAE):

N
1
WB W B
accuracy N ;:1 lyi —yi" | (3)
1 N
idelituV B — BB _ ,WB 4
fidelity I ;:1 |y; yi | (4)



In [59], it is argued that in certain situations it might be impossible to extract
rules that have both high accuracy and high fidelity: a situation that is called the
fidelity-accuracy dilemma. Consequently, authors must make a choice for either
fidelity or accuracy. We are convinced that this dilemma is mainly caused by a
badly trained black box model. When extracting rules from a largely overfitted
model one might indeed face this problem, but if the underlying model correctly
identifies the decision boundaries we see no reason for this dilemma to arise.

A third factor that is of major importance in determining the quality of
the extracted rules is their comprehensibility. Although the main motivation
of rule extraction is to obtain a comprehensible description of the underlying
model’s hypothesis, this aspect of rule quality is often overlooked. We believe
that this is mainly due to the subjective nature of comprehensibility, which
can not be measured independently of the person using the system [35]. Prior
experience and domain knowledge of this person play an important role in com-
prehensibility. This contrasts with accuracy or fidelity that can be considered as
properties of the rules and which can be evaluated independently of the users.

In most studies, model complexity is used as a proxy for model comprehen-
sibility. The number of rules, the average number of antecedents, the number of
leaf nodes of the decision tree, etc. are hereby used as indicators for the model
comprehensibility.

3.1.2 Scalability of the algorithm

One desirable characteristic of a rule extraction algorithm is that it can be put in
practice on a wide range of applications. This means that an algorithm should
not only be able to deal with toy problems, but that it should also remain appli-
cable to large-scale problems, i.e. when faced with a large number of examples
or input features. Based on [16], scalability in the context of rule extraction can
be defined as:

Scalability refers to how the running time of a rule-extraction algorithm and
the comprehensibility of its extracted models vary as a function of such factors
as the underlying model, the size of the training set and the number of input
features

Besides including the traditional notion of scalability, i.e. running time or
algorithmic complexity, the above definition also places emphasis on the as-
pect of comprehensibility. The extracted model should remain comprehensible,
even if there are many input features and/or training examples. Let us denote
this aspect of scalability as non-algorithmic or comprehensibility com-
plexity. During the in-depth review of several prominent algorithms, we will
observe that many of these algorithms were not developed with non-algorithmic
complexity in mind. For example, most neural network decompositional al-
gorithms construct rules based on the weights within the neural network and
the size of the extracted rule set is usually proportional to the total number of
weights [16]. Feature selection and severe pruning of weights and hidden neu-
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rons is therefore crucial to obtain a comprehensible description. Pruning is also
necessary to reduce the running time of these algorithms as most of them show
worst-case exponential behavior [2].

3.1.3 Consistency of the algorithm

A final issue in the evaluation process is the consistency of the algorithm.
There are however multiple definitions of this concept. In [3, 56], an algorithm
is deemed consistent if under different training sessions, rule sets are generated
that produce the same classification of unseen examples. Slightly different is
the definition in [35] which labels consistency as the ability of an algorithm to
extract rules with the same degree of accuracy under different training sessions.
Whereas an algorithm that is consistent according to the first definition is au-
tomatically also consistent according to the second definition, the opposite is
not necessarily true: rule sets with similar accuracy face the same number of
misclassifications but the actual misclassifications can be different. Both defi-
nitions are similar in the fact that they only focus on the predictions from the
extracted rules and ignore the rules themselves. According to the definition of
consistency by Johansson et al. [27], similarity of the extracted rules is however
the key aspect:

An algorithm is consistent if it extracts similar rules every time it is applied
to the same data set.

However, the author immediately points to the difficulty associated with this
definition: there is no straightforward definition of similarity that is applicable
for the wide range of representations used in rule extraction. In the discussion
below we present a method that we believe is general enough to measure the
similarity between two rule sets (or other representation forms) for a given
number of observations.

We believe that it is desirable for a measure of similarity ¢ between two rule
sets to have the following properties:

e similarity between A and B should be equal to similarity between B and
A (symmetric)
o(A,B) =0(B,A)

e If the two rule sets are exactly the same then the similarity should be
maximal.

o(AA) =1

e If the two rule sets provide different classifications for each input observa-
tion then the similarity should be minimal

o(A,-A)=0

We propose the following algorithm to calculate the similarity o between
two rule sets A and B, given N input observations.

11



1. Assign a unique identifier to each rule of A and B

2. For each observation: find the prediction made by set A and B and the
identifiers of the rules of A and B that were used to make this prediction

3. For each rule r in A and B. Find the observations for which the classifica-
tion decision was based on r. Denote this number of observations with V,..
For each rule in the other rule set that predicts the same class as r, find
the identifier of the rule s that fired most frequently for these observations.
Denote the number of times that rule s fired as NoPposite

4. Use as similarity measure the sum of all the N2PPosi¢ divided by the sum
of all N,.

Z cAB Nropposite 1 .
o(4, B) = =2 = D N (5)
Seean¥ N 2,

We will clarify the above algorithm with the example shown in Figure 3. An
algorithm has provided two rule sets to divide the BLACK from the WHITE
observations. We first assign each rule a unique identifier: Al,...,A5 and
B1,...,B5. For this example, we will assume that all rules, except A5 and
B5, predict the class to be BLACK. We can observe from the figure that A
and B create the same decision boundary between the two classes and they will
therefore make exactly the same predictions for all observations. This means
that they are completely consistent according to the first two definitions. We
will show how the rule sets are only partially consistent when applying the third
definition and the algorithm described above.

Y a 48 ¥
: ° . o: 1 eB2e %?} o:
. .EFY'. o ® o : t; ° . ® °: 2 o; . .;
SR - e% . i °:
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% ie ¢ = %,
SO 5 iy ..E fe ..E
r B % o, i e
vie ie £
vioe o TE® et

fw
(a) Rule Set A (b) Rule Set B

Figure 3: Consistency
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In the second step of the algorithm Table 2 is constructed. For each obser-
vation, this table contains the predictions made by each rule set and the rule
identifier of the rule that fired for the observation.

This table is used during the third step of the algorithm. For each rule, we
first query the table to find out how many times the rule fired, e.g. N4g3 = 5
and Np; = 10. Afterwards, the algorithm looks for the rule in the other rule
set that provides the same classification for most of these observations. In this
example, all observations are classified the same by both rule sets, thus we only
have to find the rule in the other rule set that fires the most. Because all 5
examples classified by rule A1 are classified by rule B1, N5#**"'¢ = 5. For the
10 observations classified by rule B1, we can observe that half are classified by
A1 and the other half by A2: NgP*"“=5. The same calculation is repeated
for all the rules and the results of this step are shown in Table 3. The division
of the totals in this table gives us a similarity estimate of 80%. It is not easy
to give an intuitive meaning to this number, but the above procedure can be
considered more or less as assigning to each rule a corresponding rule of the
other rule set and the similarity measure is then the proportion of examples
that were classified by corresponding rules.

Rule Set A Rule Set B
Observation | Prediction | Rule || Prediction | Rule
« BLACK Al BLACK B1
I} BLACK A2 BLACK B3
y BLACK A2 BLACK B1
) WHITE A5 WHITE B5
w BLACK A4 BLACK B3

Table 2: Consistency: step 2

It is straightforward to alter the above algorithm to make it applicable to
other representation forms, such as decision trees or decision tables. The only
required change is in the first step of the algorithm. Instead of the assignment of
an identifier to each rule, we will assign identifiers to each leaf-node for decision
trees or to each column if the representation format is a decision table. The
only assumption for the remainder of the algorithm is that each classification
decision is based on exactly one identifier, i.e. the rules must be mutually ex-
clusive (non-overlapping). This requirement is automatically fulfilled by various
representation formats, such as decision trees and decision tables.

The proposed consistency measure is also not limited to classification prob-
lems only. With minor changes, the above algorithm can also be applied to mea-
sure consistency on regression problems. However, this requires an additional
parameter s to indicate the desired level of sensitivity. Instead of requiring the
corresponding rules to predict the same class, the sensitivity measure is used
with regression problems to decide whether the predictions of corresponding

13



opposite
Rule NRule NRule

Al 5 5(BI)
A2 19 6(B3)
A3 4 4(B2)

A4 12 | 12 (B3)
A5 | 31 | 31(B5)
B1 10 | 5(A1,A2)

B2 9 5(A2)
B3 18 12(A4)
B4 3 3 (A2)
B5 31 | 31 (A5)
SUM | 142 114

Table 3: Consistency: step 3

rules are similar enough. Therefore, in the third step we would replace “For
each rule in the other rule set that predicts the same class as r” by “For each
rule in the other rule set that provides the same forecast within s-difference as
r”.

In most application areas, accuracy is probably much more important than
consistency: the individual rules are unimportant as long as the rule set provides
the correct classification. One might even argue that algorithms with low con-
sistency are preferred as they might provide different views on the same data.
In other domains the opposite situation may be encountered: consistency plays
a pivotal role when explicatory power is the main requirement. Johansson [27]
formulates this as follows: “it is very hard to give any significance to a specific
rule set if the extracted rules vary significantly between runs.”

3.2 Independent Algorithms

The main advantage of this category of algorithms is their independence of the
underlying black box model. Although most algorithms in this category were
originally conceived to extract rules from neural networks they remain applicable
when the underlying model changes to a support vector machine or any other
black box technique.

3.2.1 Rule Learners: CN2

Many algorithms are capable of learning rules directly from a set of training
examples, e.g. CN2 [11], AQ [34], RIPPER [12]. Because of their ability to
learn rules directly from data, these algorithms are not considered to be rule
extraction techniques in the strict sense of the word. However, these algorithms
can also be used to extract a human-comprehensible description from opaque
models. When used for this purpose, the original target values of the training
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SEQUENTIAL-COVERING(Class, Attributes, Examples, Threshold)
1  RuleSet= 0

2 Rule =LEARN-ONE-RULE(Class, Attributes, Examples)

3 While (Performance(Rule)>Threshold)

4 RuleSet=RuleSet U Rule

b) Examples = Examples - {examples correctly classified by Rule}
6 Rule= LEARN-ONE-RULE(Class, Attributes, Examples)

7 End While
8 Sort RuleSet according to performance of the rules
9 Return RuleSet

Figure 4: Sequential Covering

examples are modified by the predictions made by the black box model and the
algorithm is then applied on this modified data set.

In this section, we discuss a general class of rule learners: sequential covering
algorithms. This series of algorithms extracts a rule set by learning one rule,
removing the data points covered by that rule and reiterating the algorithm on
the remainder of the data. The general outline of sequential covering algorithms
is given in Figure 4.

Starting from an empty rule set, the sequential covering algorithm first looks
for a rule that is highly accurate for predicting a certain class. If the accuracy of
this rule is above a user-specified threshold, then the rule is added to the set of
already found rules and the algorithm is repeated over the rest of the examples
that were not classified correctly by this rule. If the accuracy of the rule is
below this threshold the algorithm will terminate. Because the rules in the rule
set can be overlapping, the rules are first sorted according to their accuracy on
the training examples before they are returned to the user. New examples are
classified by the prediction of the first rule that was triggered.

It is clear that in the above algorithm, the subroutine LEARN-ONE-RULE
is of crucial importance. The rules returned by the routine must have a good
accuracy but do not necessarily have to cover a large part of the input space.
The exact implementation of LEARN-ONE-RULE will be different for each
algorithm but usually follows either a bottom-up or top-down search process. If
the bottom-up approach is followed, the routine will start from a very specific
rule and drops in each iteration the attribute that least influences the accuracy
of the rule on the set of examples. Because each dropped condition makes the
rule more general, the search process is also called specific-to-general search.
The opposite approach is the top-down or general-to-specific search: the search
starts from the most general hypothesis and adds in each iteration the attribute
that most improves accuracy of the rule on the set of examples. This approach
was followed in the CN2 algorithm [11] which is shown in Figure 5.

This LEARN-ONE-RULE implementation starts from the most general hy-
pothesis and performs a beam search with a beam width of K. At each iteration

15



LEARN-ONE-RULE(Examples,K)
1 BestHypothesis= ()
2 Candidates=BestHypothesis
3 While (Candidates not empty) do
4 AllConstraints={(A=V)| A is an attribute and V is a value of A}
5 NewCandidates=(
6 For each Candidate C in Candidates
7 For each Constraint R in AllConstraints
8 SpecializedCandidate=Specialize C by adding R
9 NewCandidates=NewCandidates U SpecializedCandidate
10 End For
11 End For
12 Remove Duplicates and Inconsistencies from NewCandidates
13 For each C in NewCandidates
14 Calculate Performance of C on Examples
15 Update BestHypothesis if performance of C is better
16 End For
17 Candidates=K best members of NewCandidates
18 End While
19 Return Rule: “If BestHypothesis then Prediction”

Figure 5: Learn-One-Rule: CN2 implementation

the best K hypotheses are remembered and used as starting point for special-
ization during the next iteration. When the algorithm terminates, it will return
the best hypothesis it has found together with the class label that corresponds
to the majority class of the examples covered by this hypothesis.

As can be observed from line 4, the algorithm assumes that the attributes
are categorical and creates tests of the form: Atribute=value. Consequently, for
continuous attributes a discretization is required. Often this discretization will
be performed once to the entire data set before the sequential covering algorithm
is executed (global discretization). The same intervals will therefore appear in
multiple rules which might be beneficial for the interpretability of the rule set.
A second option is the application of local discretization. Local discretization
is performed during the subroutine LEARN-ONE-RULE and is based on the
examples that were provided as input to this routine. The same variable will
therefore be discretized several times during execution of the algorithm and
different interval conditions will appear in the rule set.

3.2.2 Decision Trees: C4.5 and CART

Decision trees [9, 37, 29] are widely used in predictive modeling. A decision
tree is a recursive structure that contains a combination of internal and leaf
nodes. Each internal node specifies a test to be carried out on a single variable
and its branches indicate the possible outcomes of the test. An observation can

16



Goal

House Plane  Car
Income Profession
<1(ﬁ 100 DoctmDaaMiner
Gy [ ()
<100 > 100

Figure 6: An Example Decision Tree

be classified by following the path from the root towards a leaf node. At each
internal node, the corresponding test is performed and the outcome indicates
the branch to follow. With each leaf node, a value or class label is associated.
An example decision tree is shown in Figure 6. This fictious tree can be used
by financial institutions to decide whether or not to accept loan applications.

Just like the rule learners discussed in the previous section, decision trees
are usually constructed directly from the available training observations and are
therefore not considered to be rule extraction techniques in the strict sense of
the word. However, it is also possible to apply these techniques for pedagogical
rule extraction by replacing the original targets with the target values provided
by the trained black box model. The tree can then be trained on these new data
points. If trees are used as an extraction technique, the observations that were
wrongly predicted by the underlying model are usually not used during training.
Additionally, random instances can be created and added to the training set.
For example, in [6] a support vector machine is built from the original training
data. A second data set is randomly generated with class labels for each instance
provided by the support vector machine. Both data sets are then combinedly
used to train a C5 decision tree?.

In the rest of this section, we discuss briefly the two most widespread algo-
rithms for decision tree induction: C4.5 for classification problems and CART
for regression problems.

C4.5 [37] is one of the most popular algorithms for the construction of
decision trees. It uses a divide-and-conquer approach to construct a suitable

4C5 is a commercially developed variant of C4.5
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tree from a set of training examples. Let S be the set of training examples that
reach a node t. The approach will then recursively apply the following steps:

e If S contains only examples from the class C, then t is a leaf-node and it
is assigned the class C.

e If S contains no examples, then t is a leaf node. Some heuristic must
be used to provide a class label to t. C4.5 will assign this leaf the most
frequent class at the parent of this node.

e S contains examples that belong to a mixture of classes. In that case, the
algorithm must select a test, based on a single attribute, to split the set S
into smaller subsets S1,...,Sy. Each of these subsets will contain all the
examples of S that have the same outcome for this test. The algorithm is
then recursively applied to each of the new sets.

One important step is not yet clarified: the selection of the test in case
S contains observations from a mixture of classes. Ideally, we would like the
algorithm to find the optimal test, i.e. the test that provides us with the smallest
possible tree. Unfortunately, finding the optimal tree is NP-complete and in
most cases computationally infeasible. A greedy-heuristic is used to overcome
this problem. At each step, we select that attribute and test that produces
the ‘purest’ subsets. An often used measure for the impurity of a node is the
entropy. Entropy for the set S containing observations from C different classes
is defined as:

Entropy(S) = — ZpilOQZ (pi) (6)

with p; the proportion of examples of class i in the node. We can observe
that the entropy serves well as an impurity measure: it is minimal when all
observations in S belong to the same class and maximal when all classes are
equally likely. From all possible tests 7 that divide the set S into subsets
S1,...,Sn, the algorithm will select the test 7* that maximizes:

N
Gain(S,T) = Entropy(S Z
=1

(S:) (7)

with |S| representing the number of observations in S. The test 7* is thus
selected such that the weighted entropy in the subsets is minimal. Maximal-
ization of the Information Gain has however one serious deficiency: it favors
tests with many outcomes. The Gain Ratio criteria adjusts the bias by using a
normalization term

N

Info(S,T) =

(8)
- |$\
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and maximizing the following Gain Ratio

Gain(S,T)

GainRatio(S,T) = T s )

(9)

In principle, the recursive splitting can be continued until each leaf node
contains only one observation. This strategy would however lead to an overly
complex tree with many internal and leaf nodes that overfits the training data.
A more parsimonious tree can often be found that provides better generaliza-
tion performance. Earlier work tried to obtain such a parsimonious tree by
not dividing a node if the improvement achieved by the best test was smaller
than some predefined threshold [22, 37]. This approach suffers however from
the fact that the greedy approach looks only one step ahead. It is possible that
the improvement at this step is only small, while the step after it could lead
to a substantial improvement. Early stopping is therefore no longer used by
most induction algorithms, but replaced by a separate pruning phase. After
construction of the largest possible tree, the pruning phase recursively merges
leaf nodes until the best possible tree is obtained. C4.5 uses a heuristic based on
the binomial distribution to decide whether pruning will improve generalization
behavior of the tree or not.

A second very popular tree induction algorithm is CART, short for Classifi-
cation and Regression Trees [9]. We will only discuss the version of CART used
for induction of regression trees. The variant for classification trees is largely
similar to C4.5, but with a different splitting criterion (Gini Index) and pruning
procedure.

A CART regression tree [9] is a binary tree with conditions specified next to
each non-leaf node. Classifying a new observation is done by following the path
from the root towards a leaf node, choosing the left node when the condition is
satisfied and the right node otherwise, and assigning to the observation the value
below the leaf node. This value below the leaf nodes equals the average y-value
of training observations falling into this leaf node. Variants [28] of CART allow
the predictions of the leaf nodes to be linear functions of the input variables.

Similarly to a classification tree, the regression tree is constructed by iter-
atively splitting nodes, starting from only the root node, so as to minimize an
impurity measure. Often, the impurity measure for regression problems of a
node t is calculated as:

R = 3 (o~ 50)? (10)

Xn€t

with (X,,y,) the training observations and g(t) the average y-value for ob-
servations falling into node t. The best split for a leaf-node of the tree is chosen
such that it minimizes the impurity of the newly created nodes. Mathematically,
the best split s* of a node t is that split s which maximizes:

AR(s,t) = R(t) — pLR(tL) — prR(tR) (11)
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with ¢;, and tg the newly created nodes and p;, and pg the proportion of
examples sent to respectively t; and tr. Pruning of the nodes is performed
afterwards to improve generalization behavior of the constructed tree. Pruning
in CART is performed by a procedure called ‘minimal cost complexity pruning’
which assumes that there is a cost associated with each leaf-node. We will
briefly explain the basics behind this pruning mechanism, more details can be
found in [9, 29]. By assigning a cost « to each leaf node, we can consider the
total cost of a tree to consist of two terms: the error rate of the tree on the
training data and the cost associated with the leaf nodes.

Cost(Tree)= Error(Tree) + aNumberLeafNodes(Tree) (12)

For different values of «, the algorithm first looks for the tree that has a
minimal total cost. For each of these trees, the algorithm estimates the error on
a separate data set that was not used for training and remembers the value of
« that resulted in the tree with minimal error. A new tree is then constructed
from all available data and subsequently pruned based on this optimal value of
a. In case there is only limited data available, a slightly more complex cross-
validation approach is followed, for which the details are provided in [9].

3.2.3 TREPAN

TREPAN [13, 15] is a popular pedagogical rule extraction algorithm. While
it is limited to classification problems, it is able to deal with both continu-
ous and nominal input variables. TREPAN shows many similarities with the
more conventional decision-tree algorithms that learn directly from the training
observations, but differs in a number of respects.

First, when constructing conventional decision trees, a decreasing number
of training observations is available to expand nodes deeper down the tree.
TREPAN overcomes this limitation by generating additional instances. More
specifically, TREPAN ensures that at least a certain minimum number of obser-
vations are considered before assigning a class label or selecting the best split.
If fewer instances are available at a particular node, additional instances will be
generated until this user-specified threshold is met. The artificial instances must
satisfy the constraints associated with each node and are generated by taking
into account each feature’s marginal distribution. So, instead of taking uniform
samples from (part of) the input space, TREPAN first models the marginal dis-
tributions and subsequently creates instances according to these distributions
while at the same time ensuring that the constraints to reach the node are sat-
isfied. For discrete attributes, the marginal distributions can easily be obtained
from the empirical frequency distributions. For continuous attributes, TREPAN
uses a kernel density based estimation method [50] that calculates the marginal
distribution for attribute x as:

1 T2
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with m the number of training examples, p,; the value for this attribute for
example i and o the width of the gaussian kernel. TREPAN sets the value
for o to 1/y/m. One shortcoming of using the marginal distributions is that
dependencies between variables are not taken into account. TREPAN tries to
overcome this limitation by estimating new models for each node and using only
the training examples that reach that particular node. These locally estimated
models are able to capture some of the conditional dependencies between the
different features. The disadvantage of using local models is that they are based
on less data, and might therefore become less reliable. TREPAN handles this
trade-off by performing a statistical test to decide whether or not a local model
is used for a node. If the locally estimated distribution and the estimated
distribution at the parent are significantly different, then TREPAN uses the
local distributions, otherwise it uses the distributions of the parent.

Second, most decision tree algorithms, e.g. CART [9] and C4.5 [37], use
the internal (non-leaf) nodes to partition the input space based on one simple
feature. Trepan on the other hand, uses M-of-N expressions in its splits that
allow multiple features to appear in one split. Remember from Section 1.3 that
an M-of-N split is is satisfied when M of the N conditions are satisfied. 2-of-
{a,=b,c} is therefore logically equivalent to (a A —=b) V(a A ¢) V(=b A ¢). To
avoid to test all of the possible large number of M-of-N combinations, TREPAN
uses a heuristic beam search with a beam width of 2 to select its splits. The
search process is initialized by first selecting the best binary split at a given node
based on the information gain criteria([13] (or gain ratio according to [15]). This
split and its complement are then used as basis for the beam search procedure
that is halted when the beam remains unchanged during an iteration. During
each iteration, the following two operators are applied to the current splits:

e m-of-n+1: the threshold remains the same but a new literal is added to
the current set. For example, 2-of-{a,b} is converted into 2-of-{a,b,c}

e m+1-of-n+1: the threshold is incremented by one and a new literal is
added to the current set. For example, 2-of-{a,b} is converted into 3-of-

{a,b,c}

Thirdly, while most algorithms grow decision trees in a depth-first manner,
TREPAN employs the best-first principle. Expansion of a node occurs first for
those nodes that have the greatest potential to increase the fidelity of the tree
to the network.

A final difference between TREPAN and more conventional decision tree
algorithms concerns the stopping criteria used by TREPAN to decide when to
stop growing the tree. Conventional algorithms will first construct a complete
tree and prune this tree afterwards. TREPAN on the other hand uses both
local and global criteria to decide on the optimal tree. Local criteria only take
the current node into account, such as the number of training instances or their
class distribution, to decide whether or not to expand the current node. The
local criterion uses by TREPAN is based on the purity of the tree. A node will
become a leaf if, with a high probability, it only covers examples from a single
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class. TREPAN will create a confidence interval and calculate the number of
instances necessary to be able to decide whether P(prop. < 1 —¢€) < a with «
a significance level and e an indication of how tight the interval must be.

Besides such a local criterion TREPAN also employs global criteria. Unlike
local criteria, global criteria take the entire tree into account and not only the
node currently considered for expansion. TREPAN allows the user to specify a
complexity parameter, a maximum number of internal nodes, as global criterion
to limit the size of the tree returned by TREPAN. Additionally, a validation
data set can be provided. TREPAN uses this set to measure the fidelity of each
tree created and returns the tree with the highest fidelity.

3.2.4 ANN-DT and DecText

The ANN-DT (Artificial Neural Network Decision Tree) algorithm is described
by its authors as ‘an algorithm that extracts binary decision trees from a trained
neural network’ [42]. Although the name of the algorithm suggests a close inter-
twining of the extraction algorithm with the underlying neural network, ANN-
DT does not place any restrictions on the structure of this underlying model
and is therefore also applicable with other types of black box classifiers. Addi-
tionally, ANN-DT can be applied to data sets where both inputs and outputs
can be discrete or continuous. In the rest of this section, we discuss the variant
of the algorithm developed for regression problems [42].

ANN-DT shares the idea of TREPAN to sample the input space to create
additional training instances. The sampling method used is however different
from TREPAN’s that was based on the features’ marginal distributions. ANN-
DT randomly generates instances but only keeps those instances for which the
distance towards the nearest original training observation is smaller than some
predefined critical value. This ensures that only data points are created that
resemble the original training data. The critical distance is determined by select-
ing a large enough sample of the training data and taking the average distance
between these points and their 10 nearest neighbors. The new instances are
then presented to the ‘black box’, from which a predicted output is obtained.

Afterwards, a binary decision tree is constructed from these artificial in-
stances by recursively splitting the input space based on one of the input at-
tributes. Two different variants of ANN-DT exist that differ in the selection
method of the best attribute to split on and an appropriate threshold. The first
variant, ANN-DT(e), makes these choices such that the weighted variance in
the newly created branches is minimized. This is the same criterion as used in
CART’s regression trees. The second variant, ANN-DT(s), is computationally
more expensive and selects as splitting attribute the feature that has most sig-
nificance on the behavior of the underlying model. The mathematical details
can be found in [42], but the idea behind this type of feature selection is to find
the attribute a that has the largest significance o(f), for the black box function
f(x) at the current branch. For significant attributes, changes in the attribute’s
value will be related to variation in the function.

Whatever the method used to select the best splits, ANN-DT recursively
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divides the current input space in two subspaces. Growing of the tree is termi-
nated when the variance in a node becomes zero or when one of the stopping
criteria is satisfied. A first (local) stopping criteria is to expand a node only
when the mean outputs of the instances in each of the two children are signif-
icantly different from each other. This is tested with an F-test for all nodes
below a user-specified minimum depth in the tree. Similarly to TREPAN, users
can also specify a global complexity parameter: the maximum depth of the tree.
Nodes at this level will not be further expanded.

Empirical studies conclude that ANN-DT had similar or better performance
than those obtained from CART. The ANN-DTT(s) variant with significance
analysis to select the splitting attribute, was found to provide more accurate
rules.

DecText[8], short for Decision Tree Extractor, is very similar to TREPAN
and ANN-DT. It was designed specifically for the extraction of a classification
decision tree from a neural network and to obtain this goal several different
splitting criteria were proposed. We will briefly discuss one of these criteria,
SetZero, and the pruning mechanism.

The SetZero splitting method tries to find the attribute that has most effect
on the outputs of the underlying model. This is similar to the idea behind
ANN-DT(s) but differs in how the split is actually calculated. First, for all of
the observations that fall in a specific node, the underlying model is queried to
find the corresponding outputs. Then, the algorithm places the value of the first
attribute to zero in all the observations and queries the network again to find
its predictions for these mutated inputs. This process is repeated for each of
the possible attributes and the absolute difference between the original outputs
and the mutated outputs indicates how much the outcome is affected by the
attribute. The algorithm will select the attribute with the largest influence.
One can observe that the SetZero splitting mechanism can only be applied
if there is an underlying model that can provide predictions for the mutated
observations. It can therefore not be applied directly on training data.

Besides the special splitting criterion, DecText also uses a special pruning
mechanism, called Fidelity Pruning. First, a number of random observations is
created and the corresponding output is obtained from the black box. Pruning
of leaf nodes is then performed as long as it improves the fidelity on this random
data set.

3.2.5 GEX and G-REX

Various approaches based on the ubiquitous genetic algorithms have been pro-
posed to tackle the problem of rule extraction. In this section, we will discuss
GEX [31] and G-REX [25], (both abbreviations for ‘Genetic Rule EXtraction’)
as examples of this approach. In Figure 7, the basic idea behind genetic algo-
rithms is explained.

First, a random population of individuals is created. Each individual rep-
resents a possible solution to the proposed problem. For rule extraction, an
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Initialize a population of individuals

While (stopping criteria not met)
Evaluate fitness of each individual and rank them accordingly
Apply genetic operators on these individuals
Update population

End While

ST W N

Figure 7: The Basic Genetic Algorithm

individual will therefore correspond with a rule or a rule set. Afterwards, the
algorithm will calculate a level of fitness for each individual. This problem-
specific fitness function is used to measure how well an individual is able to
solve the corresponding problem. For rule extraction, the fitness measure will
incorporate elements such as accuracy and comprehensibility of the rule (set).
Consequently, two individuals will be selected to create offspring whereby in-
dividuals that are fitter than others will have a greater probability of being
selected. Their children will inherit elements from both parents and form a new
and updated population. Some of the parents will also be added directly to this
updated population: either unchanged or with slight mutations. The general
idea is Darwin’s survival of the fittest: small mutations and inheritance will give
increasingly better solutions to solve the original problem. The algorithm will
stop when a maximum number of iterations is reached or when an individual is
found that is sufficiently fit.

GEX [31] follows the general approach of a genetic algorithm, but differs on
several aspects. The first difference is that GEX does not work with one popu-
lation but with several subpopulations evolving on islands. There are as many
islands as there are classes and each subpopulation is specialized in searching
rules for one specific class.

The individuals in these populations represent rules. To allow rules with
different lengths, a special encoding is used for the representation of these rules
(Figure 8). This fixed length representation, called a chromosome, contains a
condition part and a conclusion part. The condition part is subdivided in as
many genes as there are input variables. The binary flag in each of these genes
indicates whether the conditions on the associated input variable are active or
not. When the flag is set to zero, the conditions in the rest of the gene do not
apply. The encoding of these conditions is dependent on the type of the input
variable the gene is associated with. For example, when the input variable is a
binary variable, the rest of the gene is just a zero or one, but if the associated
variable is continuous then the rest of the gene consists of an operator and two
threshold values X; and X5. The gene can then represent different conditions
such as z < X7 or X7 < z < X5 depending on the value of the operator part.
The gene of the conclusion indicates the class.

GEX uses three kinds of genetic operators: mutation, crossover and mi-

24



Gene l—Flag

S — N

Condition Conclusion

Figure 8: Rule Representation in GEX

gration. Mutation is applied on the chromosomes and randomly changes the
information encoded in the genes. Crossover is a gene exchange between two
chromosomes and results in two new individuals. Migration is a special oper-
ator that transfers weak individuals to a different island. The fitness function
to evaluate the rules is based on a weighted average of several aspects such as
accuracy, coverage and comprehensibility. By specifying the weights, the ana-
lyst can indicate the importance of each of these criteria. Finally, GEX removes
those rules that are more specific than other rules or that do not satisfy certain
criteria, such as a minimum accuracy or coverage before starting a new iteration.

One of the main drawbacks of GEX is the fact that one observation can be
covered by multiple rules. Multiple rules can be true for a certain instance and
it also not guaranteed that at least one rule will be valid.

The second genetic rule extraction algorithm that is discussed, G-REX
[25, 26] overcomes these problems and delivers exclusive and exhaustive rules.
It is also not limited to classification problems. Furthermore, G-REX can pro-
duce different types of rules, e.g. decision trees or fuzzy rules. G-REX uses
a different representation than GEX to allow the encoding of rules of various
length. G-REX is based on a subbranch of genetic algorithms that is called
genetic programming and uses S-expressions to represent the individuals. A
sample S-expression and its corresponding tree representation are given in Fig-
ure 9. Each S-expression contains elements from two sets: a function set and
a terminal set. Functions are the internal nodes of the tree and represent op-
erations that can be applied on the terminals. The analyst must define these
operations and supply the number of arguments that each function can take.
The terminals, the leaf nodes in the tree, are the variables and constants from
the problem. In the example expression, there are two functions (‘if” and ‘>’)
and 7 terminals (Xo, X1, two constants and three class labels).

S-expressions are a powerful alternative to GEX’s flag-mechanism for the
encoding of rules or rulesets with varying length. For example, the S-expression
of Figure 9 is equivalent to the following ruleset: ‘if X is larger than 27 then
classify as Class 1, else classify as Class 2 if X is larger than 27 and as Class
3 otherwise’. Whereas the above expression is equivalent to a simple decision
tree, changing the elements of the terminal and function sets allows different
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Figure 9: S-Expression and its corresponding Tree Representation

types of rules to be created. The fitness function used to select the fittest indi-
viduals is very similar to the one used by GEX and incorporates elements, such
as comprehensibility and accuracy.

In [38], an approach was proposed that is very similar to G-REX. The main
difference is that artificial examples are used to evaluate the fitness of the rules.
The algorithm is outlined in Figure 10. First the set S is initialized: the training
observations with the outputs provided by the underlying black box are inserted
in § and an initial population of rules is created. The algorithm will then create
a user-specified number of artificial examples that are also inserted into the set S.
Creation of the artificial examples is performed by taking a training observation
and mutating random attribute values. Before inserting the example into S,
a check is performed to see if the example is not already present in S and to
verify whether the output of the black box for this example is different from the
output of the current best rule. If the example passes these checks, it is added
into S. The genetic algorithm will then be executed several times. After this,
the correctly classified examples, i.e. examples for which the best rule prediction
equals the black box prediction, are removed from S and the entire process is
repeated until the algorithm finds rules that are fit enough.

The wide variety of genetic rule extraction algorithms proves that they are
a useful tool for the analysis of black box models. The main advantage of
these methods is their flexibility to changes. Altering the fitness function al-
lows the analyst to select the required accuracy-comprehensibility trade-off and
changing the function set even allows the user to change the format of the
extracted descriptions. The main drawback of all genetic algorithms are the
computational requirements for performing the successive iterations. A second
drawback concerns the consistency of the extracted descriptions. Due to the
aspect of probability during creation of the rules, we can expect the extracted
rules to be significantly different when a genetic algorithm is run several times
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Initialize the set S
Create initial population of rules R
While (rules in R are not good enough)
Create Examples and Add them to S
Evaluate fitness of rules in R
Apply genetic programming for N iterations
Remove from S the examples for which the output
of the ANN equals the output of the best rule
End While
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Figure 10: Algorithm of Rabunal et al. [38]

on the same data set.

3.2.6 BIO-RE

One of the most straightforward rule extraction algorithms is BIO-RE (Bina-
rized Input-Output Rule Extraction) [51]. As suggested by its name, the method
is only applicable when all inputs and outputs are binary variables. For other
types of variables, a transformation is required. For numerical variables, it is
suggested to use the binarization method of Equation 14.

1 i >
Ti = { 0 otherwise. (14)

with p; the mean value over all x;’s. The idea behind BIO-RE is to create
each possible input combination and to query the network for the corresponding
output decision. A truth table is generated from the samples and boolean
simplification methods are subsequently used to convert this truth table into
the corresponding boolean function.

One can observe immediately the disadvantages of this method: because
the algorithm first creates all possible input combinations, the method is only
applicable when the number of inputs N is small as the number of combinations
equals 2VV. For many real-word problems this number of combinations is very
large, making the method computationally infeasible. The required binarization
is also undesirable as it will probably deteriorate classification performance.
Because of these two shortcomings, the method seems not applicable to any
real-life problem.

3.2.7 BUR

In [10], a pedagogical algorithm for rule extraction, called Boost Unordered
Rule Learner (BUR), was proposed. Although BUR was proposed as a rule
extraction algorithm for SVM classifiers, it can also be used to learn rules di-
rectly form the data points. BUR creates non-exclusive propositional rules and
associates with each rule a weight or confidence level. New observations are
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classified by finding all rules applicable and combining them such that rules
with higher confidence are more important for the final classification decision.
BUR incorporates elements from both the rule learner CN2 [11] and ‘gradient
boosting machines’[19]. We will first provide a detailed explanation of the ‘gra-
dient boosting mechanism’ and afterwards explain how it can be combined with
CN2 to perform rule extraction.

Gradient Boosting Machines
In [19], Friedman proposes a method for function estimation coined ‘Gradient
Boosting Machines’. Given a set of training observations {x;,y; YV, the goal of
function estimation is to find a function F*(x) that minimizes a user-defined
loss function v¥(y, F'(x)). For regression problems, the most widespread loss
functions are the squared error and absolute error function.

In [19], Friedman limits the allowed format of the functions F(x) to:

M
F(x,P) =" Bnh(x;an) (15)
m=0

with P = {8, am }4! a set of parameters. The functions h(x, a,,) are called
base learners and are usually chosen to be simple functions of x with parameters
a. Possible base learners are single propositional rules, decision trees or linear
functions. Friedman refers to several other function approximation methods,
such as neural networks and Support Vector Machines, that share the format of
Equation 15.

The problem of function estimation can then be formulated as finding the
parameters P for which the loss function is minimized:

N M
{Bm» am bim—o = arg ﬁ}ni;, S v Y Bh(x;ay,)) (16)
m=0

m 9m 1

Depending on the loss function and format of the base learners, it might
be infeasible to find a solution to this problem and a greedy approach might
be required. Starting from an initial approximation Fj, the algorithm itera-
tively looks for the best step towards the optimal solution given the current
approximation. For m=1,... M do:

N
{Bm,am} = arg %{glzw(yi, Frn1(x;) + Bh(x;;a)) (17)
Fm(x) = Fm—l(x) + ﬁmh(x; am) (18)

For some loss functions and/or base learners it might be difficult to solve
Equation 17 and in those cases gradient descent can be used to find an approx-
imate solution.(Appendix A)

Assuming F,_1(x) is the approximation during the m-th iteration, gradient
descent searches for a F,(x) = F,,—1(X) — €gm—1(x) with
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Initialize Fj
For m=1 to M do

— 9y, Fm_1(X)) 1=1

gmfl(x) - OFm—1(X) X=X, N

—_

yoeeey

2 a,, = argming g Zﬁl(*gm—l(xi) — Bh(z;a))?
Bm = argming Zivzl V(Yi, Fr—1(x:) + Bh(xi; am))

Fm(x) = Fm—l(x) + Bmh(x; am)
End For

=~ w

Figure 11: Gradient Boosting

_ Wy Fna (%))

gmfl(x) - aFm,—l(X) (19)

If g;—1(x) has the same format as the base learners, and in that case can
also be written as h(x,a,,), then we can find a value for (,,, by minimizing:

N
B = arglllgnzw(yi’Fm—l(Xi) + Bh(xi;am)) (20)
i=1
However, g,,—1(x) will usually have a different format than the base learners,
and in that case we will take as h(z,a,,), the h(z,a) that is most correlated
with g,,—1(x) over the training data. Therefore, a,, is the solution of:

N
a,, = arg Igiél Z(—gm_l(xi) — Bh(x;;a))? (21)
=1
A value for 3, can again be obtained from Equation 20. A general overview
of the gradient boosting mechanism is given in Figure 11.

Integration with CN2
BUR is based on the above concept of ‘gradient boosting’ and a single proposi-
tional rule is chosen as the format of each base learner. Formally,

+1/ —1 if the rule is applicable on example x
r(x) = h(x,a) = and classifies examples as positive/negative
0 otherwise.
(22)
An overview of the basic algorithm is shown in Figure 12. We will explain
the differences with Figure 11 below.
The loss function used by BUR is the absolute error function. The calcula-
tion of gn,(x) (Step 1 in Figure 11) can therefore be simplified to:
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Initialize Fj
For m=1 to M do

1 Im—1(%;) = —sign(y; — Fno1(x3)), i=1,...,N
2a X =X — {xi|lgm-1(x;) =0}

2b Y = {gm-1(x:)|x; € X}

%  rm=LEARN — ONE — RULE(X,Y)

Bm = median{w : all x; covered by rule 7, }

T'rn(xi)
4 Fr(x) = Fpe1(x) + B h(x; am)
End For
Figure 12: Boost Rule learner
oYy, Frn—1(x .
gna () = L Emt ) G R ) (23)

OF,_1(x)

Step 2, finding the best base learner, is the place where the integration with CN2
occurs. In step 2a, the algorithm checks which points are correctly classified and
for these points that are currently misclassified, the algorithm looks for a rule
that minimizes the current approximation’s error.

Due to the format of the base learners and the absolute error function, the
third step can also be simplified to:

_ . Yi — Fm—l(xi)
Bm = median{ )

: all x; covered by rule r,,} (24)

The complete algorithm of BUR is a slightly more advanced version of the
one described in Figure 12. To overcome some problems explained in [10], rules
are learned for each class in turn. There are also some changes in step 2a-2c:
it will remove the training examples from the current class that are correctly
classified by the approximation function with a confidence that is at least as
large as the corresponding SVM and learn rules from the remaining examples.
The complete BUR algorithm with these minor improvements can be found in
[10].

After the rule learning phase, pruning of the returned rule set is done by a
greedy strategy. Until the number of rules in the rule set is smaller than some
user-specified threshold, the pruning algorithm will remove in each step the rule
that has the smallest influence on the overall performance.

While experiments show that the rules extracted by BUR are accurate, we
believe that the main disadvantage of this technique lies in the complexity of
the rules that are generated. Whereas each rule on its own is relatively easy to

5The author of [10] uses a sign function with three possible outcomes instead of the more
widespread binary sign-function: sign(z) = 1 for z > 0, sign(0) = 0 and sign(z) = —1 for
z <0
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understand, the mechanism for combining the individual predictions requires a
summation of the confidence factors of all applicable rules. This combination
mechanism degrades the comprehensibility of the extracted description.

3.2.8 REFNE and STARE

In [61], REFNE is presented as an algorithm for classification Rule Extraction
From Neural network Ensembles. While the name suggests a close intertwining
between the algorithm and underlying ensemble, the algorithm is pedagogical as
it only uses this ensemble as an oracle. The rule set extracted by REFNE con-
sists of ordered propositional rules. Rules extracted first have a higher priority
and act as implicit antecedents of the ones extracted later. To improve com-
prehensibility, the algorithm ensures that the maximum number of antecedents
in the condition part of each rule is limited to three. While this limitation can
result in a larger number of rules, the authors believe that the smaller size of
each rule improves comprehensibility. Additionally, REFNE prefers categorical
attributes as antecedents. Only if no suitable rule can be found based on the
categorical attributes, REFNE considers the use of numerical attributes for in-
sertion in the condition part. REFNE is in many aspects similar to STARE [60]
that was proposed by the same authors to extract rules from a single neural
network.

The basics behind REFNE are relatively easy to explain. Just like TREPAN
and ANN-DT, REFNE starts with the generation of artificial data examples.
Unlike TREPAN and ANN-DT, the sampling process selects completely random
instances in the value ranges of the input attributes. Once this instance set S is
created, REFNE starts extracting a rule set R. Rule creation is a straightfor-
ward breadth-first search. A random (categorical) attribute a; is picked and for
each possible value u of this attribute it is checked whether all instances of &
that have this value for the attribute belong to the same class. If this is the case
a new candidate rule is created, and otherwise another categorical attribute is
selected and the process repeats.

If no rule could be created after checking all single attributes, the algorithm
will try to create rules with two conjunctive antecedents. If this is also unsuc-
cessful, rules with three antecedents are being looked for. Failure to find a rule
after these steps, will lead to the discretization of a continuous attribute. The
above process will then be repeated over all categorical attributes and the newly
created discretized continuous attribute. When a candidate rule r is found, its
fidelity is evaluated on a newly created sample and, if above a user-specified
threshold, r is added to the rule set R. Instances covered by r are removed from
S and the entire process is iterated until S is empty or until no suitable rule
was found.

The choice of this fidelity threshold seems therefore rather important. Se-
lecting a value that is too large will result in frequent rejection of candidate
rules. It is therefore possible that not enough rules are found to obtain a rule
base that covers all possible inputs: exhaustiveness is not guaranteed. Setting
the threshold value too low results in the opposite situation: each candidate
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threshold=2

Figure 13: Subset (a,b,c= boolean inputs)

rule is accepted, even rules with low accuracy.

3.2.9 ITER

In [23], we propose an independent algorithm for regression rule extraction:
ITER. The method works by an iterative expansion of hypercubes, whereby
each hypercube represents a propositional rule. The search process corresponds
to a specific-to-general search and ensures that the extracted rules are both
exclusive and exhaustive. With minor changes, ITER is also able to extract
rules for classification problems. For more details on this algorithm, we refer to
[23].

3.3 Dependent Algorithms

All the algorithms discussed in the previous section are completely independent
of the underlying model. The black box can therefore be replaced with a dif-
ferent model without affecting the extraction algorithm. The algorithms in this
section depart from this independence: they require specific models and use
their knowledge of the underlying models during the extraction process. We
will see that most of these dependent algorithms are specifically designed for
neural network rule extraction, with only a few exceptions developed for other
models.

3.3.1 SUBSET

One of the first neural network decompositional algorithms was the Subset
method by Towell and Shavlik [56], which is however very similar to the KT-
method of Fu [20], PARTIAL-RE [51] and the approach by Saito and Nakano
[39].

The basic idea behind all of these approaches is to find combinations (sub-
sets) of inputs that guarantee activation of the output unit irrelevant of the
values of the other units. Usually a breadth-first search is performed to find
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these combinations. We will show this with the example of Figure 13 (based on
[14]). In this example, three binary inputs are connected to a single output unit
with the weights that are shown in the figure. We are looking for rules that guar-
antee activation of the output unit. First, all rules with exactly one antecedent
are evaluated. From these 6 rules: (a,—a,b,—b, ¢,~c), only one will always ensure
activation of the output unit, namely the rule having the antecedent a. This
can be checked by taking values for b and c that least support activation of the
output unit. Unit b is connected with a positive weight to the output unit. This
unit should therefore take the value of false (i.e. 0) to be minimally supportive
and similarly for unit ¢ we can deduce that this unit should take the value true
(or 1) to be minimally supportive. The input to the output unit is then equal
to (6)(a)+(3)(—b)+(-3)(c)=3 which exceeds the threshold for this unit. Thus,
whatever the choice for nodes b and ¢, the output unit will be active when node
a is active: a first rule is found ‘if a=1 then output=1’.

The breadth-first search will then check the rules that have two antecedents
and that are not more specific than already found rules. In this example, there
are eight such rules to consider with as antecedents: —a A b,—a A ¢, =a A =b, —a
A =e, b Ac,bA e, —bAc,—b A —c. Only the rule ‘if b A —¢ then output=1" will
be retained and the breadth-first algorithm will look for possible rules having
three antecedents. No such rules are found and the algorithm will terminate.

For multi-layered neural networks, the above search process will be executed
for each hidden and output unit. A rewriting procedure is then performed
afterwards to eliminate the hidden concepts and to create rules that directly
link the input variables to the output.

The above toy-problem was easy to solve. For larger real-life problems the
search involved will however become too expensive and impossibly to solve. To
face these problems, limitations on the search process must be imposed. In
[39, 51], the search is restricted to a certain depth, such that only rules with
a maximum number of antecedents can be found. Fu [20] employs information
about the weights and activation function to reduce the size of the search space.
For example, rules containing —b must not be considered for the example above
because unit b is connected with a positive weight to the output unit. Whenever
a rule is found containing —b, the same rule with —b replaced by b will also exceed
the threshold. In that case, the more general rule without the condition —b
should already be found by the search algorithm. Various other optimizations
to facilitate the search process have been proposed: PARTIAL-RE [51] uses
weight ordering to efficiently retrieve the candidate subsets, while FULL-RE
[61] employs linear programming to find suitable subsets.

The SUBSET algorithm, shown in Figure 14, also restricts the search space
by allowing the user to specify a maximum number of rules it may return.
Afterwards, a Branch-and-Bound algorithm is used to find the subsets.

After analysis of the rules extracted by SUBSET on several data sets, Towell
and Shavlik [56] noticed that the rule set could often be significantly reduced
when converted into M-of-N rules. This conclusion led to the development of
an algorithm specifically dedicated to the extraction of this type of rules.
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For each hidden and output unit
Find up to 3, subsets of positively-weighted income links whose summed weight
is greater than the bias on the unit
For each element P of the 3, subsets:
Extract up to 3, subsets of negatively weighted links whose
summed weight is greater than the sum of P less the bias on the unit
With each element A of the 3, subsets form a rule:
‘if P and not N then “name of unit”’
End For
End For

O © 00O Uk W

[t

Figure 14: Subset Algorithm [56]

For each hidden and output unit
e Cluster similarly-weighted links and set the weight value of
each member to the cluster average
e Eliminate clusters that do not affect activation of the output
e Use the backpropagation algorithm to optimize bias of the units,
while keeping the weights fixed to the cluster average
e Form a single rule for each unit
o If possible, simplify the rule to an M-of-N rule
End For

© 00 O Ui W N+

Figure 15: N-of-M [56]

3.3.2 N-of-M

N-of-M [56] is a decompositional method that analyzes weights of the neural
network to find M-of-N rules. M-of-N rules are particularly attractive to de-
scribe the behavior of a unit when there are several weights with similar values
connected to the unit. For example, assume that a unit with threshold value
of 10 is connected to three inputs with a weight of 6. Describing the activation
conditions for this unit with propositional rules requires an enumeration of all
possible scenarios, {a A b,a A ¢, b A ¢}, while only one M-of-N rule is sufficient:
2-of-{a,b,c}.

The algorithm for extraction of M-of-N rules is given in Figure 15. In the first
step, weights are clustered into a limited number of clusters and replaced by the
average weight over all members of the group. This ensures that the algorithm
does not have to consider individual links, but can work with groups of links.
In the second step, groups with small weights and few members are pruned
from the network as they have no influence on the activation of the output unit.
After removal of these irrelevant groups, a restricted version of backpropagation
is run to optimize the bias of each unit. Connection weights are not altered and
remain fixed at the average of the cluster they belong to. After optimization of
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Figure 16: Example of VIA method

the thresholds, rules are extracted for each unit. Exact details of how this is
done are not given in the paper, but a SUBSET-like approach might be feasible
because the clustering and pruning of irrelevant groups drastically reduces the
search tree. For the example of above with three weights of 6 and a threshold of
10, the extracted rule will look like ‘IF 6.NumberTrue(a,b,c)>10 THEN active’
with NumberTrue() a function that returns how many of its arguments are true.
In the final step, the algorithm tries to convert these rules into equivalent M-of-
N rules. For the above example this is relatively straightforward: dividing by
6 converts the condition of the rule into ‘IF NumberTrue(a,b,c)>1.66" which is
similar to at-least 2-of-{a,b,c}.

3.3.3 VIA

Before VIA (Validity Interval Analysis) [52, 53] was developed in 1993, most
techniques were just slightly altered variants of the SUBSET method. VIA was
one of the first methods that used a totally different approach. However, just
like the SUBSET algorithms, VIA is only applicable when the underlying model
is a neural network because it analyzes the weights of the network during the
extraction process. VIA does not place restrictive assumptions on the archi-
tecture or the training of this network. While the algorithm was proposed for
classification, we believe it to be easily extensible to regression problems as well.

VIA employs a generate-and-test procedure in its rule extraction process.
In the first step candidate rules are generated and these candidate rules are
subsequently checked for consistency with the neural network. We will first
discuss this second step, checking whether a given rule is consistent with the
network, from which the method derives its name.

The principal idea behind this consistency checking is based on the propa-
gation of validity intervals throughout the network. These validity intervals are
restrictions on the activation values that each unit in the network can take. We
will show how these validity intervals can be propagated through the network
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with an example derived from [52] and shown in Figure 16. This simple net-
work might serve as an implementation of the AND-operator. Assume that the
inputs A and B are restricted to respectively the intervals [0, 0.2] and [0.8, 1].
The minimum (and maximum) net input to the third unit can then be found
by solving a simple linear problem with following restrictions:

min (or max) Neto

sit. Netc =4x1 +425 —6
0 S T
T2 é 1
0.8 S o

Solving this problem will provide us a validity interval for the third unit:
Nete € [-2.8,-1.2], which can be converted to an output interval by applying
the transfer function of this unit. If we assume a sigmoid function then X3 €
[0.05732, 0.2314]. In this example we propagated the validity intervals forwards
through the network, but a similar approach can be followed to propagate valid-
ity intervals backwards through the network. In each propagation step, a newly
derived bound will replace an older bound only when the new interval becomes
smaller. Thus, starting from a number of initial validity intervals every itera-
tion either refines a validity interval or keeps it stable. After a finite number
of iterations, the process will therefore converge to a stable situation where no
more refinements are possible. The more interesting situation however occurs
if during the refinements an empty interval is obtained for one of the validity
intervals. Obtaining such an empty interval means that the initial intervals were
inconsistent: it is not possible to obtain a combination of activation patterns
that satisfy all initial constraints.

Testing the correctness of a conjectured rule can then be performed by negat-
ing the rule, using this negated rule to specify the initial intervals and prop-
agating these intervals through the network. If this propagation results in an
inconsistency, it is a proof that the opposite rule is false, which implies cor-
rectness of the original rule. If the propagation does not give an inconsistency,
nothing can be concluded about the original rule. This is caused by the fact
that VI-analysis is not able to detect all inconsistencies. The refinement process
considers all inputs to a node as independent of each other, but this is not the
case when the network consists of multiple layers. VI-analysis is therefore overly
conservative in its refining of the intervals. Failure of finding an inconsistency
might therefore be caused by either an incorrect original rule or just by the
inability of the VI-analysis to find the inconsistency. Therefore, nothing can be
concluded about the original rule when the algorithm converges normally.

One final aspect remains to be discussed: How does VIA generates rules
that can subsequently be tested for correctness. Two different rule-generation
methods were proposed depending on the type of inputs.

If the inputs are discrete, then a search is performed that is very similar
to the breadth-first search of the SUBSET type of algorithms. First, all rules
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with one antecedent are tested and if proven correct added to the rule base.
Afterwards, rules with an additional antecedent, and that are not more specific
than an already found rule, are provided as input to the VI-analysis. Such
generation process is fast when simple rules cover most of the input space but
becomes slow otherwise.

For continuous inputs, the above rule generation process is infeasible. There-
fore a second rule generation process, specifically designed for continuous inputs
was proposed. One starts from a single data point and its class label as predicted
by the network. This single data point already forms a rule and VI-analysis,
with validity intervals set to single points, can easily prove this rule to be cor-
rect. To find more general rules, one of the inputs is randomly chosen and a
small value is added to the bounds of its validity interval. VI-analysis is then
performed to check whether the generalized rules can still proven to be cor-
rect. This process will continue until enlarging each of the boundaries, results
in a rule that can no longer be proven correct. As shown in [23], this iterative
growing of rules is very similar to the approach of the ITER-algorithm. There
are however differences between the two methods. Whereas the above method
randomly selects an input, ITER will use a similarity criterion to find the most
appropriate interval to enlarge. Additionally, ITER ensures that extracted rules
are non-overlapping and does not rely on interval analysis to decide whether en-
largement of an interval is appropriate.

3.3.4 NeuroLinear

The decompositional technique NeuroLinear [48] is able to extract oblique clas-
sification rules from neural networks with one hidden layer. The extraction
process proceeds as follows:

Step 1 Train and prune a neural network. A penalty term is added to
the network error function to ensure small weights for irrelevant units. A
pruning algorithm is then applied to remove these irrelevant connections.

This step is essential for the creation of a network that generalizes well
and to allow the extraction of a small set of comprehensible rules.

Step 2 Discretize the hidden unit activation values. For each hidden
unit, the possible activation values are grouped into a few clusters. An
algorithm, called Chi2 [46], was developed to perform this clustering and it
ensures that the accuracy of the network is preserved as much as possible.

step 3 Extraction of Rules. The actual process of rule extraction occurs in
three phases. First, rules are created that describe the class predictions
in terms of the discretized hidden unit activation values. Second, rules
are extracted that describe the discretized hidden unit activation values
in function of the original attributes. Finally, the rules from the previous
steps are combined to find rules that predict the class labels in function
of the original attributes.
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For the first phase, the authors propose the use of the rule generator X2R
[47]. Tt is capable of learning rules with a specified level of accuracy from
a number of examples, each consisting of a set of discretized activation
values together with the corresponding class label. The result of this step
is a set of rules, each describing the class prediction in function of the
discretized hidden activation values.

The second phase, expressing the discretized activation values in terms of
the original attributes, is straightforward. Let the hidden unit activation
value for neuron j be H;. This value will fall within one of the K clusters
found by the Chi2-algorithm for which the following condition is satisfied:

TkSHj<Tk+1 kil,...,K (26)
I
i=1

and T} and Tj41 thresholds determined by the Chi2-algorithm. This con-
dition is equivalent to:

1
o N (Ty) < szjwi <o N Tyyr) k=1, K (28)

i=1

Thus conditions on the discretized activation values can be equivalently
written as conditions on the weighted input variables.

In the last phase, the rules from the two previous phases are combined to
form oblique classification rules in the original inputs.

3.3.5 FERNN

FERNN [44] is a decompositional algorithm for classification rule extraction
from feedforward neural networks. The extraction process returns oblique rules,
but under certain circumstances these rules can be simplified to M-of-N rules
or DNF-rules.

FERNN requires the underlying network to have one hidden layer with sig-
moidal activation functions. After training of this network, C4.5 is employed
to identify the relevant hidden units. The samples used for construction of the
decision tree are the hidden unit activations of the training patterns that were
correctly classified by the network together with the corresponding class labels.
Thus, from the correctly labelled examples a decision tree is created that pre-
dicts the class y* based on the vector of activation values HY',..., HY with J
the number of hidden neurons and

I
HY = o) wijal) (29)
=1
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The test associated with each internal node n of this decision tree can be
formulated as H; < threshold,. While it is relatively straightforward to convert
the tree in a number of oblique rules, the conditions will include all of the
input variables x;, even if they are irrelevant for the classification performance.
Setiono et al. [44] show that removal of inputs with small weights w;; and an
adapted threshold, can result in conditions that are equivalent to the original
conditions but that are easier to comprehend as they contain only the relevant
inputs. In a final step, it is proven that under very strict circumstances (e.g,
binary inputs and weights lying in a limited interval), the conditions can be
further simplified to M-of-N or DNF rules.

3.3.6 REFANN

REFANN (Rule Extraction from Function Approximating Neural Networks)
[45] is a decompositional rule extraction algorithm for regression problems. As
the name suggests, REFANN is limited to the extraction of rules from a specific
type of neural network. The method was designed specifically for multilayer
neural networks with one hidden layer. It assumes that the activation function
used in the hidden layer is the hyperbolic tangent function h(z) = tanh(z) =
(e” — e ")/(e®” + e~®) and that no activation function was used for the output
unit (Figure 17). The output of the network for an input sample x is therefore
equal to:

H
§=> vjtanh(&)) (30)
j=1

§ = W;x (31)

with H the number of hidden neurons, W ; the weight vector from the inputs
to hidden unit j and v; the connection weight from the hidden unit j towards
the output unit.

The principal idea behind the algorithm is to approximate the hidden layer’s
activation functions by multiple linear functions as shown in Figure 17. Sub-
sequently, these linear approximations are used to create the rules from. An
overview of all steps necessary to generate the regression rules can be summa-
rized as follows:

Step 1 Train and prune a neural network. Pruning of irrelevant input
and hidden nodes is essential to create a network that generalizes well and
to allow the extraction of a small set of comprehensible rules. The N2PFA
(Neural Network Pruning for Function Approximation) algorithm is used
for pruning the network. The main reason of selecting N2PFA over other
pruning algorithms is that it removes complete neurons instead of only
some connections. This will result in better comprehensibility because
fewer inputs remain for inclusion in the rule-conditions.
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Figure 17: REFANN network and activation function approximation

Step 2 For each hidden unit i=1,...,H, locally approximate the activation
function h(x) by a piecewise linear function L;(x). There are several
possibilities to obtain this approximation. In [45], the piecewise approxi-
mation is constructed by minimizing the area bounded by L;(z) and h(x)
on an interval centered around the origin. It is explained how this approx-
imation can be calculated when the function L;(x) consists of respectively
3 (as in Figure 17) and 5 linear functions.

In [49], a different approach was followed to derive the piecewise linear
approximation. It is ensured that the 3-piece linear approximation min-
imizes the sum of the squared errors for the training observations. This
variant of the method is called NNRULES.

Whatever the exact method used to approximate the activation functions,
the result of this step is a number of linear piecewise approximations for
each of the hidden units’ activation functions. A 3-piece approximation
looks as follows:

—a+ fix if x<—x9
Li(z) = Bx if —xo<z<uxg (32)
a+ G if x>z

Thus each approximation divides the input space to the neuron into 3
regions. Combining all the approximations of the hidden neurons therefore
results in 37 subregions.

Step 3 Generate the regression rules from the piecewise linear approximations.
For each non-empty subregion, a rule is generated as follows:

e Define a linear equation that approximates the network’s output in
this subregion as the consequence of the rule
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H
g=> vL;(&) (33)
j=1

e Create the condition for this rule: (C7 and Cy and ...and Cg) where
each Cj is either & < &0, —&o0 < & < —&o or § > & o with
& = W;x the input of hidden unit i and ;¢ a constant obtained
during the linear approximation process that represents the location
of the kink in the piecewise approximation.

Step 4 (Optional) Apply C4.5 to simplify the rule conditions. As the
conditions of the rules are based on scalar products involving the input
weights, the resulting boundaries are oblique hyperplanes in the input
space, e.g. 0.4 Input; — 0.2 Input, > 11. To facilitate interpretation by
analysts, it might be better to replace these oblique boundaries by ones
that are parallel with the axes of the input space. C4.5 can be adopted for
this task by assigning each training observation a class label corresponding
to the subregion it belongs to. C4.5 is then able to learn parallel decision
boundaries from these labelled observations that can be used to replace
the original oblique conditions.

In [45], some empirical tests were performed with REFANN and the results
show that the method is able to generate accurate results. There are however
also some drawbacks related to this method. First, the number of extracted
rules will grow exponentially with the number of hidden neurons. This means
that the method is only applicable if the problem can be solved by a neural
network that contains a limited number of hidden neurons.

The second drawback is associated with all dependent approaches. Whereas
it is rather straightforward to alter REFANN’s method for the approximation
of the hidden unit activation function, it seems much more difficult to apply the
algorithm when there are more drastic changes to the architecture of the neural
network, e.g. networks with several hidden layers.

3.3.7 SVM-+Prototypes

One of the few rule extraction methods designed specifically for support vector
machines is the SVM+Prototypes method proposed in [36]. This decomposi-
tional algorithm is not only able to extract propositional (interval) classification
rules from a trained SVM, but also rules from which the conditions are math-
ematical equations of ellipsoids. We will discuss the variant that results in
propositional rules.

The SVM+Prototypes algorithm is an iterative process that proceeds as
follows:

Step 1 Train a Support Vector Machine The SVM’s decision boundary
will divide the training data in two subsets ST and S~, containing the in-
stances for which the predicted class is respectively positive and negative.
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Initialize the variable i to 1.

Step 2 For each subset, use some clustering algorithm to find i clusters (new
subsets) and calculate the prototype or centroid of each cluster. For each
of these new subsets find the support vector that lies farthest to the pro-
totype. Use the prototype as center and the support vector as vertex to
create a hypercube in the input space.

Step 3 Do a partition test on each of the hypercubes. This partition test is
performed to minimize the level of overlapping between cubes for which
the predicted class is different. One possible method is to test whether all
of the corners of the hypercube are predicted to be of the same class. If
this is the case then we say that the partition test is positive.

Step 4 Convert the hypercubes with a negative partition test into rules. If
there are hypercubes with a positive partition test and i is smaller than a
user-specified threshold I,,,, then increase i, take the subsets from which
these cubes were created and go back to STEP 2, else go to STEP 5

Step 5 If i is equal to I,,4z, convert all of the current hypercubes into rules.

The example of Figure 18 shows the principal idea behind the algorithm.
During the first iteration (i=1), the algorithm looks for the centroid of respec-
tively the black and white instances. These prototypes are indicated by a star
sign. It will then search the support vector in that partition that lies farthest
away from the prototype and will create a cube from these two points (Step
Two). In step three, the partition test will be positive for the leftmost cube as
one of its vertices lies in the area for which the SVM predicts a different class.
The other cube has a negative partition test and will therefore become a rule
in step 4. For the first cube with a positive partition test, we will iterate the
above procedure but with i=2. This will result in the creation of two new rules.
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(a) First iteration (b) Second iteration

Figure 18: Example of SVM+Prototypes algorithm

The main drawback of this algorithm is that the extracted rules are neither
exclusive nor exhaustive which results in conflicting or missing rules for the
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classification of new data instances. Each of the extracted rules will also contain
all possible input variables in its conditions, making the approach undesirable
for larger input spaces as it will extract complex rules that lack interpretability.
In [7] and [33], another issue with the scalability of this method is observed: a
higher number of input patterns will result in more rules being extracted, which
further reduces comprehensibility.

3.3.8 RN2

RN2 (Rule Extraction from Neural Networks, version 2) was proposed in [41] by
Saito et al. as a decompositional technique for regression rule extraction. RN2
assumes that both numerical and nominal variables appear in the problem do-
main and creates regression rules where the conditional part is a logical formula
over the nominal variables and the action part is expressed as a polynomial over
the numeric variables 6. An example of such a rule is:

if Battery="A" then Current=0.006-+1.047 (Conductance)®-964

It was shown that many phenomena in physics can be explained by this kind
of equations.

RN2 assumes that the underlying neural network has a very specific archi-
tecture which severely limits the portability of this algorithm. The expected
architecture is a network with one hidden layer and product units as the hid-
den neurons. Product units use Hf L ;" to combine the inputs instead of the
more widespread summation units that calculate their input as Z —; wix;. The
expected output of such product unit network is:

H I
g):vo—l—Zijmfj” —Uo—i—Zvjexp Zw” In z;) (34)

with I and H respectively the number of inputs and hidden neurons. We can
extend the above model to allow nominal variables. Let I,,,,, and I,,,, be the
respective number of numerical and nominal variables and let ¢; be a nominal
input variable with as possible values the elements of the set @);. For each ¢, a
number of binary variables ¢, are introduced with ¢;,,,=1 if ¢; equals the m-th
value in ); and else 0. Equation 34 can then be rewritten as:

" mem g,
7 +Zv- exp( Z Z WimjGim) exp( Zw” In z;) (35)
j=1 =1 m=1

by replacing
I I
ewp(z wi; In a;) = H x) (36)
i=1 i=1

6 A preceding algorithm, RF5, was presented in [40]. Tt assumes that no nominal variables
appear in the problem domain.
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and
mem A

exp( Z Z WimjQim) = Cj (37)

=1 m=1

Equation 35 can be rewritten as:

H
?J =g + Z V;C4 H .Z’;U” (38)

j=1 i=1

It is straightforward to extract regression rules from this equation. For
example, we can create as many rules as there are training examples. For each
training example pu=1,... N, the coefficients céf can be calculated from Equation
37 and a rule with polynomial action part is obtained as follows:

nom

I H I
if /\ \/ Gim then § = vg + Z V¢ fo” (39)
j=1 i=1

=1 Qm GQ;L

with Q1" = {q}., : ¢/, = 1} a subset of @, that contains the nominal variables
qim which are true for observation p. It is however undesirable to extract a rule
for each training observation as this will result in a large number of similar rules.
Furthermore, the condition part of these rules will be very specific as they are
based on only one training example.

To overcome this problem, the creators of RN2 suggested a clustering ap-
proach to find representative vectors that allow fewer and more general rules to

be extracted. K-means clustering is performed on the vectors c# = (¢f, ..., )7
w=1,... N of the training examples to find this set of representative vectors:
ri=(ri,...,r)T :i=1,..., K with K the number of representatives. Cross-

validation is used to decide on the optimal number of representatives. For each
representative a rule can easily be extracted as follows:

H

if i(q)=k thenz}:vo—i—Zvjerx;U“,k:1,...7K (40)
j=1 i=1

with i(q) a function that returns the index of the representative vector r that
lies closest to the vector ¢ of the example. Formally, i(q) is defined as:

H
i(g") = argmin Y (¢} —7})? (41)
i =

A final step in the rule extraction process is to replace the conditional part of
Equation 40 by a formula that is easier to understand. The approach that RN2
follows is similar to how REFANN eliminates its oblique decision boundaries.
This task is performed by constructing a C4.5 decision tree from the training
samples (g*,i(g")) for p =1,..., N. From this decision tree, the conditions can
then easily be extracted as a propositional rule with conditions on the nominal
variables ¢;.
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In [41], the RN2-algorithm was applied on several artificial data sets and the
algorithm was able to extract the rules that were embedded in these data sets.
Additionally, experiments with real-life data showed that the method might also
be useful for practical applications.

However, the method also faces some serious drawbacks. First, the polyno-
mial conclusions of the rules only differ in their coefficients, while the exponents
must be the same for each rule. A second negative point is the limited porta-
bility of the algorithm: RN2 requires the hidden neurons to be product units.
This type of units are only rarely used and this requirement therefore seriously
limits the practical applicability of this algorithm.

3.3.9 Barakat et al.

In [7], a dependent method for classification rule extraction from support vector
machines was proposed. The algorithm is very similar to independent algorithms
such as [6] that train from the original data with the output values replaced by
the black box forecasts. The reason to classify this extraction method ‘depen-
dent’ is the fact that only the instances corresponding to support vectors are
used to extract rules from. In summary, in this approach we first train a sup-
port vector machine and select the instances that correspond to support vectors.
From these instances, we replace the class labels by a class label that is pre-
dicted by the trained SVM. Afterwards, these instances are used as inputs to a
‘white box” machine learning technique.

3.3.10 Fung et al.

In [21], Fung et al. present an algorithm to extract propositional classification
rules from linear classifiers. The method is considered to be decompositional be-
cause it is only applicable when the underlying model provides a linear decision
boundary. The resulting rules are parallel with the axes and non-overlapping,
but only (asymptotically) exhaustive. Completeness can however be ensured by
retrieving rules for only one of both classes and specification of a default class.

The algorithm is iterative and extracts the rules by solving a constrained
optimization problem that is computationally inexpensive to solve. While the
mathematical details are relatively complex and can be found in [21], the prin-
cipal idea is rather straightforward to explain. Figure 19 shows execution of the
algorithm when there are two inputs and when only rules for the black squares
are being extracted.

First a transformation is performed such that all inputs of the black squares
observations are in the interval [0,1]. Then the algorithm searches for an (hy-
per)cube that has one vertex on the separating hyperplane and lies completely
in the region below the separating hyperplane. There are many cubes that
satisfy these criteria, and therefore the authors added a criterion to find the
‘optimal’ cube. They developed two variants of the algorithm that differ only
in the way this optimality is defined: volume maximization and point coverage
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Figure 19: Example of algorithm of Fung et al.

maximization. The first variant retrieves the optimal cube as the cube that
covers the largest possible volume, while the second variant defines the optimal
cube as the cube that contains the largest possible number of training points.
In the example of Figure 19, this ‘optimal’ cube is the large cube that has the
origin as one of its vertices. This cube divides the region below the separating
hyperplane in two new regions: the regions above and right of the cube. In
general for an N-dimensional input space, one rule will create N new regions.
In the next iteration, a new ‘optimal’ cube is recursively retrieved for each of
the new regions that contain training observations. The algorithm stops after a
user-determined maximum number of iterations.

The proposed method faces several drawbacks. Similarly to the SVM+Proto-
types method discussed above, each rule condition involves all the input vari-
ables. This makes the method unsuitable for problems with a high-dimensional
input space. A second limitation is the restriction to linear classifiers. This
requirement considerably reduces the possible application domains.

4 QOverview

A chronological overview of all discussed algorithms (and some additional tech-
niques that were not discussed in the text) is given below in Table 4. For each
algorithm, we provide the following information:

Type (I or D): Independent or Dependent
Scope (BC, C or R): Binary Classification, Classification or Regression

Summary: A very short description of the algorithm

Table 5 contains a chronological overview of papers that discuss rule extrac-
tion, but that do not introduce a new algorithm or technique.
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Algorithm(Year) Ref. | Type | Scope | Summary

CART(1984) 19] I C+R | -decision tree induction

CN2 (1989) [11] I C -rule induction

KT (1991) [20] D C -find subsets of weights that ensure activation of
the output unit

C4.5(1993) [37] I C -decision tree induction

SUBSET(1993) [56] D C -find subsets of weights that ensure activation of
the output unit

N-0f-M(1993) [56] D (@] -create M-of-N rules, based on clustering of simi-
lar weights

VIA(1993) [52] D C(R) | -generate rules and test whether they are consis-
tent with the neural network by Interval Analysis

REAL(1994) [14] D C -create a very specific rule covering one example,
iteratively remove conditions and test whether
rule is still correct (e.g. with VIA-method)

TREPAN(1996) [15] I C -decision tree induction, M-of-N splits

NeuroLinear(1997) [48] D C -oblique rules, applicable to neural networks with
one hidden layer, discretization of hidden unit ac-
tivation values is followed by a two-phase extrac-
tion process

RF5(1997) [40] D R -predecessor of RN2, accepts only numeric inputs

BIO-RE(1999) [51] I BC -creates complete truth table, only applicable to
toy problems

PARTIAL-RE(1999) [51] D C -similar to SUBSET, uses weight ordering

FULL-RE(1999) [51] D C -similar to SUBSET, uses linear programming

ANN-DT(1999) [42] I C+R | -decision tree induction, similar to TREPAN

FERNN(2000) [44] D C -oblique rules (also M-of-N and DNF), applies
C4.5 on hidden unit activation values and their
corresponding target

DecText(2000) [8] I C -decision tree induction

RN2(2002) [41] D R -polynomial conclusions, RN2 assumes product
units in hidden units and clusters the activation
values of the hidden units

REFANN(2002) [45] R -approximation of NN activation functions by
piecewise linear functions

SVM+Prototypes(2002) | [36] D C -clustering

STARE(2003) [61] I C -breadth-first search with sampling, prefers cate-
gorical variables over continuous variables

G-REX(2003) [25] I C+R | -genetic programming: different types of rules

REX(2003) [32] I C -genetic algorithm: fuzzy rules

GEX(2004) [31] I C -genetic algorithm: propositional rules

NNRULES(2004) [49] D R -approximation of NN activation functions by
piecewise linear functions

Rabunal(2004) [38] I C -genetic programming

BUR(2004) [10] I C -based on gradient boosting machines

Barakat(2005) [7] D C -train decision tree on support vectors and their
class labels

Fung(2005) [21] D BC -only applicable to linear classifiers

ITER(2006) [23] I C+R | -iterative growing of hypercubes

Table 4: Chronological Overview of Rule Extraction Algorithms
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Lead Author (reference) | year | Algorithms Covered Comments
Andrews [3] 1995 | RULENET, SUBSET, M-of-N, REAL, VIA, RULEX, | -introduces the ADT-Taxonomy
BRAINNE
Neumann [35] 1998 | VIA, BIO-RE, RULENEG, NEUROLINEAE,PARTIAL- | -review of algorithms according to ADT-
RE, SUBSET, M-of-N, FULL-RE, RULEX, RULENET, | Taxonomy
REAL, DEDEC
Tickle [55] 1998 | COMBO, RF5, RX, TA, TREPAN, TOPGEN -refines ADT-Taxonomy and provides a
survey of algorithms
Craven [16] 1999 | TREPAN -provides recommendations and directions
for researchers on Rule Extraction
Darbari [17] 2001 | SUBSET, M-of-N, TREPAN, VIA -discusses hybrid learning, contains some
experimental results
Duch [18§] 2004 | VIA, SUBSET, M-of-N, RULENET, REAL, RULENEG, | -discusses a.o. rule types and rule opti-
BRAINNE, DEDEC, TREPAN, RULEX mization, contains short overview of algo-
rithms
Kordos [30] 2005 | VIA, TREPAN, RULENEG, BIO-RE, PARTIAL- | -PhD thesis with a chapter that describes
RE, RX, SUBSET, M-of-N, RULEX, NEURORULE, | various neural network extraction algo-
FERNN, NEFCLASS, GEX rithms
Jacobsson [24] 2005 | - -introduces a taxonomy for rule extraction
from recurrent neural networks and pro-
vides a detailed overview of algorithms
Martens [33] 2005 | SVM+Prototype, Fung et al., C4.5, TREPAN, G-REX -small benchmarking study, specifically

targets SVM rule extraction

Table 5: Overview papers of Rule Extraction




5 Conclusion

Although the success stories of opaque predictive models in research have trig-
gered interest from business practitioners, the widespread adoption of these
techniques in business applications seems to lag behind. The difficulties associ-
ated with a correct architecture and parameter selection might serve as a partial
explanation for this slow adoption rate, but the main reason is probably the lack
of interpretability of these models.

Whereas a linear model is limited in its predictive accuracy, it has the ad-
vantage that analysts can immediately see what the impact of a variable is on
the target variable. This is in sharp contrast with opaque models, such as neu-
ral networks and support vector machines, for which the relation between input
variables and the target concept is difficult to grasp. While these models can of-
fer better performance, the increase is often not enough to compensate for their
opaqueness. The ability to extract human-comprehensible descriptions from
these models might therefore facilitate their adoption for applications where
comprehensibility is a key requirement.

In this report, we provided an in-depth overview of several algorithms that
have the ability to extract such understandable descriptions from a trained black
box model. Our main conclusions after reviewing all these algorithms can be
summarized in several points.

e A first conclusion is that there are only very few methods that are devel-
oped specifically to extract rules from models other than neural networks. For
example, only two dependent algorithms [7, 36] were found that are designed
specifically for support vector machines and only a single algorithm seems to
take the characteristics of ensemble methods into account [58]. This is in deep
contrast with neural networks, for which a plethora of dependent algorithms is
available. It is therefore useful to see to what extent these dependent methods
must be altered to make them suitable for rule extraction from support vector
machines or ensembles. Due to the close intertwining of these dependent algo-
rithms with the underlying neural networks, we believe however that in most
cases such conversions will be hard or even impossible. The consequence is that
just a few algorithms remain applicable whenever the underlying model is not a
neural network. Only independent algorithms have the flexibility to deal with
a wide variety of underlying models.

e A second observation is the lack of executable code for most of the al-
gorithms. In [16], it was already expressed that availability of software is of
crucial importance to achieve a wide impact of rule extraction. However, only
few algorithms are publicly available. This makes it difficult to gain an objective
view of the algorithms’ performance or to benchmark multiple algorithms on a
data set. Furthermore, we are convinced that it is not only useful to make the
completed programs available, but also to provide code for the subroutines used
within these programs as they can often be shared. For example, the creation
of artificial observations in a constrained part of the input space is a routine
that is used by several methods, e.g. TREPAN, ANN-DT and ITER. Other
routines that can benefit from sharing and that can facilitate development of
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new techniques are procedures to query the underlying model or routines to
optimize the returned rule set.

e The last observation, but probably the most important, is that several
authors seem to have forgotten that the goal of rule extraction is dual, the
extracted description should be both accurate and comprehensible. Several
papers put the emphasis on the accuracy of the extracted rule set, but never
check whether the extracted description is really more comprehensible than the
original model. In several papers the number of extracted rules is so large that
we are afraid that the lack of interpretability of the black box is replaced by
a set of rules that is even less comprehensible. Only very limited research has
been performed on this aspect of rule extraction.

In this research report, we believe that our contributions can be summarized
as threefold:

e First, we developed a method that can be used to measure the consistency
of an extraction algorithm. The method is quite general and therefore it is
applicable to a wide range of representations. The introduction of this measure
will hopefully help in drawing attention to this often overlooked aspect.

e Second, we created a taxonomy that allows for a clear categorization of rule
extraction algorithms. Whereas, the widespread ADT-Taxonomy was specifi-
cally developed for rule extraction from neural networks, we believe that our
taxonomy is suitable for a much broader range of algorithms.

e Finally, we provided an up-to-date review of the most prominent rule
extraction algorithms. This review helped us to identify the main shortcomings
and provided us with ideas for the extraction algorithm that we present in [23].
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A Gradient Descent

Gradient Descent, also known as Steepest Descent, is an optimization algorithm
for finding the local minimum of a function. Starting from an initial position
Xy, the algorithm will move from X; to X; 1 by going in the opposite direction
of the gradient evaluated at the current point. Mathematically this can be
formulated as:

with € a small positive parameter. By replacing the above minus by a plus
sign, i.e. taking steps proportional to the gradient, one approaches a local
maximum of that function; the procedure is then known as gradient ascent.

If € is chosen sufficiently small, and if there exists a local minimum, the above
update rule will converge to this minimum after a finite number of iterations.
Often, a suitable value for ¢ will be selected in advance and remain constant
over time. Alternatively, we can select for each iteration the value of ¢; that
minimizes:

€ = argmein f(Xip1) = f(Xi — eV (X)) (43)

This optimization, also known as line search, ensures that the best value
for € is selected, but solving the optimization might be time-consuming and for
some problems it is therefore actually slower than working with a fixed value.

There are two main drawbacks associated with Gradient Descent. For func-
tions with plateaus Gradient Descent will require a large number of iterations
as the gradient will be small. Second, the solution found by the Gradient De-
scent algorithm is only a local optimum and can vary depending on the starting
location of the search.
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