240 research outputs found

    Design and Implementation of a Framework for the Interconnection of Cellular Automata in Software and Hardware

    Get PDF
    There has been a move recently in academia, industry, and the consumer space towards the use of unsupervised parallel computation and distributed networks (i.e., networks of computing elements working together to achieve a global outcome with only local knowledge). To fully understand the types of problems that these systems are applied to regularly, a representative member of this group of unsupervised parallel and distributed systems is needed to allow the development of generalizable results. Although not the only potential candidate, the field of cellular automata is an excellent choice for analyzing how these systems work as it is one of the simplest members of this group in terms of design specification. The current ability of the field of cellular automata to represent the realm of unsupervised parallel and distributed systems is limited to only a subset of the possible systems, which leads to the main goal of this work of finding a method of allowing cellular automata to represent a much larger range of systems. To achieve this goal, a conceptual framework has been developed that allows the definition of interconnected systems of cellular automata that can represent most, if not all, unsupervised parallel and distributed systems. The framework introduces the concept of allowing the boundary conditions of a cellular automaton to be defined by a separately specified system, which can be any system that is capable of producing the information needed, including another cellular automaton. Using this interconnection concept, two forms of computational simplification are enabled: the deconstruction of a large system into smaller, modular pieces; and the construction of a large system built from a heterogeneous set of smaller pieces. This framework is formally defined using an interconnection graph, where edges signify the flow of information from one node to the next and the nodes are the various systems involved. A library has been designed which implements the interconnection graphs defined by the framework for a subset of the possible nodes, primarily to allow an exploration of the field of cellular automata as a potential representational member of unsupervised parallel and distributed systems. This library has been developed with a number of criteria in mind that will allow it to be instantiated on both hardware and software using an open and extendable architecture to enable interaction with external systems and future expansion to take into account novel research. This extendability is discussed in terms of combining the library with genetic algorithms to find an interconnected system that will satisfy a specific computational goal. There are also a number of novel components of the library that further enhance the capabilities of potential research, including methods for automatically building interconnection graphs from sets of cellular automata and the ability to skip over static regions of a given cellular automaton in an intelligent way to reduce computation time. With a particular set of cellular automaton parameters, the use of this feature reduced the computation time by 75%. As a demonstration of the usefulness of both the library and the framework that it implements, a hardware application has been developed which makes use of many of the novel aspects that have been introduced to produce an interactive art installation named 'Aurora'. This application has a number of design requirements that are directly achieved through the use of library components and framework definitions. These design requirements included a lack of centralized control or data storage, a need for visibly dynamic behaviour in the installation, and the desire for the visitors to the installation to be able to affect the visible movement of patterns across the surface of the piece. The success of the library in this application was heavily dependent on its instantiation on a mixture of hardware and software, as well as the ability to extend the library to suit particular needs and aspects of the specific application requirements. The main goal of this thesis research, finding a method that allows cellular automata to represent a much larger range of unsupervised parallel and distributed systems, has been partially achieved in the creation of a novel framework which defines the concept of interconnection, and the design of an interconnection graph using this concept. This allows the field of cellular automata, in combination with the framework, to be an excellent representational member of an extended set of unsupervised parallel and distributed systems when compared to the field alone. A library has been developed that satisfies a broad set of design criteria that allow it to be used in any future research built on the use of cellular automata as this representational member. A hardware application was successfully created that makes use of a number of novel aspects of both the framework and the library to demonstrate their applicability in a real world situation

    A new hybrid deep neural networks (DNN) algorithm for Lorenz chaotic system parameter estimation in image encryption

    Get PDF
    One of the greatest discoveries of the 20th century was the chaotic phenomenon, which has been a popular area of study up to this point. The Lorenz Attractor is a mathematical model that describes a chaotic system. It is a solution to a set of differential equations known as the Lorenz Equations, which Edward N. Lorenz originally introduced. Hybridizing the Deep Neural Network (DNN) with the K-Means Clustering algorithm will increase the accuracy and reduce the data complexity of the Lorenz dataset. Then, hyperparameters of DNN must be tuned to get the best setting for a given problem, and it becomes crucial to evaluate them to verify whether the model can accurately categorize the data. Furthermore, conventional encryption methods such as Data Encryption Standards (DES) are not adapted to image data because of their high redundancy and big capacity. The first research objective is to develop a new deep learning algorithm by a hybrid of DNN and K-Means Clustering algorithms for estimating the Lorenz chaotic system. Then, this study aims to optimize the hyperparameters of the developed DNN model using the Arithmetic Optimization Algorithm (AOA) and, lastly, to evaluate the performance of the newly proposed deep learning model with Simulated Kalman Filter (SKF) algorithm in solving image encryption application. This work uses a Lorenz dataset from Professor Roberto Barrio of the University of Zaragoza in Spain and focuses on multi-class classification. The dataset was split into training, testing, and validation datasets, comprising 70%, 15%, and 15% of the total. The research starts with developing the hybrid deep learning model consisting of DNN and a K-Means Clustering Algorithm. Then, the developed algorithm is implemented to estimate the parameters of the Lorenz system. In addition, the hyperparameter tuning problem is considered in this research to improve the developed hybrid model by using the AOA algorithm. Lastly, a new hybrid technique suggests tackling the current image encryption application problem by using the estimated parameters of chaotic systems with an optimization algorithm, the SKF algorithm. The fitness function used is the correlation function in the SKF algorithm to optimize the cipher image produced using the Lorenz system. Next, the thesis will be discussed about the findings of this study. As for accuracy, the developed model obtained 72.27% compared to 66.47% for the baseline model. Besides, the baseline model's loss value is 0.3661, while the developed model is 0.1712, lower than the standalone model. Hence, the clustering algorithm is performed well to enhance the accuracy of the model performances, as mentioned in the first objective. The combination of the first two objectives obtained the R2 value of 0.8054 and ρ value of 0.9912, which are higher than the standalone DNN model. Then, for the hybrid model, the Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values are 0.1964 and 0.0045, respectively. Both error values are lower than the baseline model, 0.2913 and 0.1976. The findings showed that the model improved the model’s effectiveness and could predict the outcome accurately. This study also discusses the detailed analysis of the developed combined image encryption, including the statistical, security, and robustness analysis related to the third objective. The comparisons between seven image encryption schemes were discussed at the end of the subtopic. Based on the cropping attack’s findings, the proposed technique obtained higher Peak Signal Noise Ratio (PSNR) values for two conditions, which are 1/16 and 1/4 cropping ratios. At the same time, Zhou et al. performed a higher PSNR value for a 1/2 cropping ratio only. In conclusion, hybrid DNN with the K-Means Clustering Algorithm is proven to resolve parameter estimations of the chaotic system by developing an accurate prediction model

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    Image encryption techniques: A comprehensive review

    Get PDF
    This paper presents an exhaustive review of research within the field of image encryption techniques. It commences with a general introduction to image encryption, providing an overview of the fundamentals. Subsequently, it explores a comprehensive exploration of chaos-based image encryption, encompassing various methods and approaches within this domain. These methods include full encryption techniques as well as selective encryption strategies, offering insights into their principles and applications. The authors place significant emphasis on surveying prior research contributions, shedding light on noteworthy developments within the field. Additionally, the paper addresses emerging challenges and issues that have arisen as a consequence of these advancements

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Whole brain emulation: a roadmap

    Get PDF

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications
    • 

    corecore