109 research outputs found

    Coming of age: the artificial pancreas for type 1 diabetes.

    Get PDF
    The artificial pancreas (closed-loop system) addresses the unmet clinical need for improved glucose control whilst reducing the burden of diabetes self-care in type 1 diabetes. Glucose-responsive insulin delivery above and below a preset insulin amount informed by sensor glucose readings differentiates closed-loop systems from conventional, threshold-suspend and predictive-suspend insulin pump therapy. Insulin requirements in type 1 diabetes can vary between one-third-threefold on a daily basis. Closed-loop systems accommodate these variations and mitigate the risk of hypoglycaemia associated with tight glucose control. In this review we focus on the progress being made in the development and evaluation of closed-loop systems in outpatient settings. Randomised transitional studies have shown feasibility and efficacy of closed-loop systems under supervision or remote monitoring. Closed-loop application during free-living, unsupervised conditions by children, adolescents and adults compared with sensor-augmented pumps have shown improved glucose outcomes, reduced hypoglycaemia and positive user acceptance. Innovative approaches to enhance closed-loop performance are discussed and we also present the outlook and strategies used to ease clinical adoption of closed-loop systems.Supported by National Institute of Health Research Cambridge Biomedical Research Centre, Efficacy and Mechanism Evaluation National Institute for Health Research (#14/23/09), The Leona M. & Harry B. Helmsley Charitable Trust (#2016PG-T1D045), JDRF (#2-SRA-2014-256-M-R), National Institute of Diabetes and Digestive and Kidney Diseases (1UC4DK108520-01), and Diabetes UK (#14/0004878).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00125-016-4022-

    Optimal Regulation of Blood Glucose Level in Type I Diabetes using Insulin and Glucagon

    Full text link
    The Glucose-Insulin-Glucagon nonlinear model [1-4] accurately describes how the body responds to exogenously supplied insulin and glucagon in patients affected by Type I diabetes. Based on this model, we design infusion rates of either insulin (monotherapy) or insulin and glucagon (dual therapy) that can optimally maintain the blood glucose level within desired limits after consumption of a meal and prevent the onset of both hypoglycemia and hyperglycemia. This problem is formulated as a nonlinear optimal control problem, which we solve using the numerical optimal control package PSOPT. Interestingly, in the case of monotherapy, we find the optimal solution is close to the standard method of insulin based glucose regulation, which is to assume a variable amount of insulin half an hour before each meal. We also find that the optimal dual therapy (that uses both insulin and glucagon) is better able to regulate glucose as compared to using insulin alone. We also propose an ad-hoc rule for both the dosage and the time of delivery of insulin and glucagon.Comment: Accepted for publication in PLOS ON

    Low-Order Nonlinear Animal Model of Glucose Dynamics for a Bihormonal Intraperitoneal Artificial Pancreas

    Full text link
    Objective: The design of an Artificial Pancreas to regulate blood glucose levels requires reliable control methods. Model Predictive Control has emerged as a promising approach for glycemia control. However, model-based control methods require computationally simple and identifiable mathematical models that represent glucose dynamics accurately, which is challenging due to the complexity of glucose homeostasis. Methods: In this work, a simple model is deduced to estimate blood glucose concentration in subjects with Type 1 Diabetes Mellitus. Novel features in the model are power-law kinetics for intraperitoneal insulin absorption and a separate glucagon sensitivity state. Profile likelihood and a method based on singular value decomposition of the sensitivity matrix are carried out to assess parameter identifiability and guide a model reduction for improving the identification of parameters. Results: A reduced model with 10 parameters is obtained and calibrated, showing good fit to experimental data from pigs where insulin and glucagon boluses were delivered in the intraperitoneal cavity. Conclusion: A simple model with power-law kinetics can accurately represent glucose dynamics submitted to intraperitoneal insulin and glucagon injections. Importance: The parameters of the reduced model were not found to lack of local practical or structural identifiability

    Challenges and Opportunities in Design of Control Algorithm for Artificial Pancreas

    Get PDF
    With discovery of the insulin, Type-1 diabetes converted from a fatal and acute to a chronic disease which includes micro-vascular complications which range from Kidney disease to stroke and micro-vascular complications such as retinopathy, nephropathy and neuropathy. Artificial pancreas is a solution to improve the quality of life for people with this very fast growing disease in the world and to reduce the costs. Despite technological advances e.g., in subcutaneous sensors and actuators for insulin injection, modeling of blood glucose dynamics and control algorithms still need significant improvement. In this paper, we investigate challenges and opportunities for development of efficient algorithm for designing robust artificial pancreas. We discuss the state of the art and summarize clinical and in silico assessment results. We contrast conventional integer order system approach with a newly proposed fractal control and summarize its benefits

    A nonparametric approach for model individualization in an artificial pancreas

    Get PDF
    The identification of patient-tailored linear time invariant glucose-insulin models is investigated for type 1 diabetic patients, that are characterized by a substantial inter-subject variability. The individualized linear models are identified by considering a novel kernel-based nonparametric approach and are compared with a linear time invariant average model in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean squared error. Model identification and validation are based on in-silico data collected from the adult virtual population of the UVA/Padova simulator. The data generation involves a protocol designed to produce a sufficient input excitation without compromising patient safety, compatible also with real life scenarios. The identified models are exploited to synthesize an individualized Model Predictive Controller (MPC) for each patient, which is used in an Artificial Pancreas to maintain the blood glucose concentration within an euglycemic range. The MPC used in several clinical studies, synthesized on the basis of a non-individualized average linear time invariant model, is also considered as reference. The closed-loop control performance is evaluated in an in-silico study on the adult virtual population of the UVA/Padova simulator in a perturbed scenario, in which the MPC is blind to random variations of insulin sensitivity in each virtual patient. © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    The bio-inspired artificial pancreas for type 1 diabetes control in the home: System architecture and preliminary results

    Get PDF
    BACKGROUND: Artificial pancreas (AP) technology has been proven to improve glucose and patient-centered outcomes for people with type 1 diabetes (T1D). Several approaches to implement the AP have been described, clinically evaluated, and in one case, commercialized. However, none of these approaches has shown a clear superiority with respect to others. In addition, several challenges still need to be solved before achieving a fully automated AP that fulfills the users' expectations. We have introduced the Bio-inspired Artificial Pancreas (BiAP), a hybrid adaptive closed-loop control system based on beta-cell physiology and implemented directly in hardware to provide an embedded low-power solution in a dedicated handheld device. In coordination with the closed-loop controller, the BiAP system incorporates a novel adaptive bolus calculator which aims at improving postprandial glycemic control. This paper focuses on the latest developments of the BiAP system for its utilization in the home environment. METHODS: The hardware and software architectures of the BiAP system designed to be used in the home environment are described. Then, the clinical trial design proposed to evaluate the BiAP system in an ambulatory setting is introduced. Finally, preliminary results corresponding to two participants enrolled in the trial are presented. RESULTS: Apart from minor technical issues, mainly due to wireless communications between devices, the BiAP system performed well (~88% of the time in closed-loop) during the clinical trials conducted so far. Preliminary results show that the BiAP system might achieve comparable glycemic outcomes to the existing AP systems (~73% time in target range 70-180 mg/dL). CONCLUSION: The BiAP system is a viable platform to conduct ambulatory clinical trials and a potential solution for people with T1D to control their glucose control in a home environment

    A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes

    Get PDF
    Type 1 diabetes is an autoimmune condition characterised by a pancreatic insulin secretion deficit, resulting in high blood glucose concentrations, which can lead to micro- and macrovascular complications. Type 1 diabetes also leads to impaired glucagon production by the pancreatic α-cells, which acts as a counter-regulatory hormone to insulin. A closed-loop system for automatic insulin and glucagon delivery, also referred to as an artificial pancreas, has the potential to reduce the self-management burden of type 1 diabetes and reduce the risk of hypo- and hyperglycemia. To date, bihormonal closed-loop systems for glucagon and insulin delivery have been based on two independent controllers. However, in physiology, the secretion of insulin and glucagon in the body is closely interconnected by paracrine and endocrine associations. In this work, we present a novel biologically-inspired glucose control strategy that accounts for such coordination. An in silico study using an FDA-accepted type 1 simulator was performed to evaluate the proposed coordinated control strategy compared to its non-coordinated counterpart, as well as an insulin-only version of the controller. The proposed coordinated strategy achieves a reduction of hyperglycemia without increasing hypoglycemia, when compared to its non-coordinated counterpart

    Day and night home closed-loop insulin delivery in adults with type 1 diabetes: three-center randomized crossover study.

    Get PDF
    OBJECTIVE: To evaluate the feasibility of day and night closed-loop insulin delivery in adults with type 1 diabetes under free-living conditions. RESEARCH DESIGN AND METHODS: Seventeen adults with type 1 diabetes on insulin pump therapy (means ± SD age 34 ± 9 years, HbA1c 7.6 ± 0.8%, and duration of diabetes 19 ± 9 years) participated in an open-label multinational three-center crossover study. In a random order, participants underwent two 8-day periods (first day at the clinical research facility followed by 7 days at home) of sensor-augmented insulin pump therapy (SAP) or automated closed-loop insulin delivery. The primary end point was the time when sensor glucose was in target range between 3.9 and 10.0 mmol/L during the 7-day home phase. RESULTS: During the home phase, the percentage of time when glucose was in target range was significantly higher during closed-loop compared with SAP (median 75% [interquartile range 61-79] vs. 62% [53-70], P = 0.005). Mean glucose (8.1 vs. 8.8 mmol/L, P = 0.027) and time spent above target (P = 0.013) were lower during closed loop, while time spent below target was comparable (P = 0.339). Increased time in target was observed during both daytime (P = 0.017) and nighttime (P = 0.013). CONCLUSIONS: Compared with SAP, 1 week of closed-loop insulin delivery at home reduces mean glucose and increases time in target without increasing the risk of hypoglycemia in adults with relatively well-controlled type 1 diabetes.This is the author accepted manuscript. The final version can be found published here: http://care.diabetesjournals.org/content/37/7/1931.abstract
    • …
    corecore