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Abstract
With discovery of the insulin, Type-1 diabetes converted from a fatal and acute to a chronic
disease which includes micro-vascular complications which range from Kidney disease to stroke
and micro-vascular complications such as retinopathy, nephropathy and neuropathy. Artificial
pancreas is a solution to improve the quality of life for people with this very fast growing disease
in the world and to reduce the costs. Despite technological advances e.g., in subcutaneous sensors
and actuators for insulin injection, modeling of blood glucose dynamics and control algorithms
still need significant improvement. In this paper, we investigate challenges and opportunities for
development of efficient algorithm for designing robust artificial pancreas. We discuss the state of
the art and summarize clinical and in silico assessment results. We contrast conventional integer
order system approach with a newly proposed fractal control and summarize its benefits.
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1 Introduction

In healthy individuals, the alpha and beta cells of the pancreas regulate the blood glucose
concentration to around 80 mg/dl. For people suffering from Type-1 diabetes mellitus
(T1DM), which is one of the fastest growing diseases globally, there is little or no endogenous
insulin production, leaving the body unable to lower blood glucose without exogenous insulin.
The impact of the intensive insulin therapy was not revealed up until the publication of results
of Diabetes Control and Complication Trial (DCCT) in 1993 [26]. The CDDT involved a
comparison of conventional therapy (one or two daily insulin injections and a daily monitoring
of blood glucose or urine) and intensive insulin therapy and concluded that intensive therapy
resulted in lower mean blood glucose values and significantly reduced complications (retino-
pathy, nephropathy and macro-vascular disease). The risk of complication is directly related
to glycated hemoglobin known as HbA1c. OGrady et al. find that tighter blood glucose
levels achievable with a closed-loop artificial pancreas (AP) results in Medicare savings of
1.9 billion over 25 years with improved quality of life (QOL) [24]. A schematic view of a
closed-loop artificial pancreas is shown in Fig. 1, which is mainly composed of three parts:

Continuous time blood glucose measurement (CGM): The knowledge of glucose concen-
tration in blood is a key aspect in the quantitative understanding of the glucose-insulin
system and in diagnosis and treatment of diabetes. By the ability of CGM devices to provide
glucose readings in real time, engineers can exploit signal processing and control theory to
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be used in designing efficient artificial pancreas. Besides the improvement of hardware part
of CGM devices, a vast amount of research has devoted to address denoising, prediction and
alert generation [13, 1, 5, 22, 17, 3, 6].

Figure 1 Systematic view of artificial pan-
creas [23].

Control algorithm and safety layer: The main
component of AP is the control algorithm that
determines the right insulin injection rate based
on CGM data to prevent hyperglycemia and
hypoglycemia. Design of a QOL-aware AP is
a challenging task since it requires building ac-
curate mathematical model of glucose-insulin
kinetics. Algorithms often include a safety layer
as a supervisory module that constraints insulin
delivery. This layer may monitor and limit in-
sulin on board (the insulin delivered but yet
to exert its action) or maximum insulin rate
or may suspend insulin delivery at low glucose
levels or when glucose is decreasing rapidly. In
this paper, we overview these challenges and control strategies employed so far.

Insulin injection device: The essential function of AP is the Insulin delivery. Insulin pumps,
if inserted in a proper closed-loop system allow automatic insulin delivery. There are several
technologies that can perform this task: an intra-venous route, subcutaneous insulin infusion
(SCII) or intaperitoneal insulin delivery. Continuous subcutaneous insulin infusion (CSII)
uses a portable electromechanical pump to mimic nondiabetic insulin delivery as it infuses at
preselected rates normally a slow basal rate with patient-activated boosts at mealtime.

2 Control related challenges and constraints

Blood glucose (BG) regulation requires control algorithm to determine the best insulin
injection over time. They have been tested in-silico and clinically over time and improved
over the years. In this section, we first address the main challenges and constraints in
designing efficient control algorithm. Next, we explain different control algorithms proposed
so far and compare their performance.

Non-negligible delay in glucose measurement and between insulin injection and absorp-
tion: After administration of a subcutaneous bolus of rapid acting insulin analogues, the
maximum BG lowering effect may occur after up to 90–120 min. This time lag is often not
accounted for design of control algorithm. Patients treated with insulin pump are warned
against stacking caused by the administration of a series of correction boluses. The same
principle applies to closed-loop systems. In order to prevent hypoglycemia, high glucose
levels have to be brought within normal range slowly during closed-loop delivery. Methods to
assess the impact of injecting insulin (e.g. the one proposed in [7]) are highly needed in order
to protect against insulin overdosing. Two alternative insulin delivery routes, intraperitoneal
(IP) and technosphere insulin (TI) showed faster pharmacokinetic characteristics that can
improve the design of future AP systems. Design of the AP using these fast acting alternative
routes may enhance BG regulation by reducing actuation delays, especially during mealtime.
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Asymmetric risk for low and high BG levels: The ultimate objective of any AP is to
improve QOL and minimize complications resulting from poor blood glucose control. Toward
this end, one should note to the asymmetric risk associated to high BG levels. Low BG levels
are acutely risky as they can result in altered mental state, seizures and coma. Meanwhile,
high BG levels increase the risk of chronic complications such as retinopathy, nephropathy
and cardiovascular disease.

Irreversible action of insulin: Only positive amount of the injected insulin is possible and
it cannot be collected back from the patients blood. An alternative to deal with this problem
is to use bihormonal treatment [12] consisting of injecting glucagon and insulin. However,
this also increases the problem space and complexity.

Meal detection/estimation: Meal dynamics can have a significant disturbance effect on
BG level. In a fully closed-loop mode, insulin is delivered on the basis of glucose excursions
only, without information about timing or meal size. In a less ambitious configuration that
uses meal announcement, the closed-loop system is informed about meal size, and may
generate advice on prandial insulin bolus.

Alternatively, control algorithms can automatically increase insulin delivery based on the
carbohydrate content of the meal. A hybrid approach is characterized by administration of a
small pre-meal priming bolus or administration of a fixed bolus and delivering the remaining
insulin through the closed-loop operation [9].

Time dependency of control requirements: An important challenge in development of
artificial pancreas is that overnight treatment requires slow acting insulin injection while
post-prandial control requires rapid and aggressive insulin delivery to control BG.

On the other hand, exercise of moderate intensity increases the risk of hypoglycemia
[32]. Exercise announcement or heart rate monitoring to suspend insulin during closed-loop
delivery may be another effective method to control glucose levels during exercise. Pre-
emptive carbohydrate intake or dual hormone treatment with glucagon might be needed to
fully eliminate the risk of exercise-related hypoglycemia as responses to exercise are highly
variable. To sum up, BG control is a time dependent process and this should be taken into
account in order to have a safe and efficient AP.

Variability of model parameters: Up to 4 times inter-subject variability in rapid-acting
insulin analogue pharmacokinetics has suggested with occasionally as much as 50 % intra-
subject variability [12]. Within subject variability of insulin needs includes both day-to-day
and hour-to-hour variations in insulin sensitivity owning to circadian and diurnal cycles,
dawn phenomenon (an abnormal early morning increase in BG concentration), acute illness,
stress and a delayed effect of alcohol intake. Basal insulin needs are generally lower in
young individuals compared with older ones. Also, since overnight control requires regulation
based on mild control actions while postprandial regulation is characterized by prompt and
energetic correction, timely control effect should take place.

3 Control algorithms for BG level regulation

In this section we present two main groups of controller for BG level regulation namely
proportional-integral-derivative and model predictive controller.

MCPS’14
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3.1 Proportional-Integral-Derivative (PID) controller

PID controller is a generic control loop feedback mechanism widely used in industrial control.
The PID control algorithm for artificial pancreas adjusts the insulin delivery rate by assessing
glucose excursions from three viewpoints: the departure from the target glucose level (the
proportional component), the area under the curve between measured and target glucose
levels (the integral component) and the rate of change in measured glucose levels (the
derivative component). Some controllers include only a subset of the components (e.g. a
proportional-derivative [27]).

To better understand the intuition behind using PID controller in the control algorithm for
artificial pancreas, one should note that dose of insulin is directly related to the proportional
error (P) (current glucose minus target glucose) since a patient with higher glucose level
needs more insulin rather than one with lower glucose level. Moreover, in two patients with
the same glucose level but with different rate of glucose increase, the one with higher increase
rate should get a higher dose of insulin and this justifies the derivative element (D). To
understand the role of Integral element (I), it should be noted that for two patients with
the same current glucose level and no change in the very recent minutes, the one with more
hours spending in high BG level (thus, having more integral error) needs more insulin due to
the fact that this is a sign on insulin resistivity. Steil et al. have shown the normal healthy
pancreas displays proportional, derivative and integral dynamics [14]. They argue that the
abrupt step increase in glucose causes a rapid rise in pancreatic insulin release, which is
called first phase response and is related primarily to the derivative component. Slower rise
in insulin is called the second phase response, which corresponds to proportional term and
persists as long as glucose is elevated. There is also an integral component employed in the
second phase since insulin secretion after 3 hours of elevated glucose at a fixed level is greater
than insulin secretion after only 1 hour at the same glucose level.

Equation 1 shows the the components of control signal (u(t)) that is the amount of insulin
injection rate as a function of e(t) which is the difference between BG level and the reference
value. The Kp, Ki and Kd parameters can be assigned by learning algorithms that have
been discussed in control related textbooks. Optimizing using PID controller needs tuning of
the controller by some methods, like the ones proposed in [16] and [2].

u(t) = Kpe(t) +Ki

t∫
0
e(τ)dτ +Kd

de(t)
dt (1)

PID approach has inherent limitations due to time lags in glucose sensing and insulin
action. Several studies have investigated this approach and achieved some improvement
over conventional PID approach. For example, Weinzimer et al. in [29] have tested PID
algorithm for insulin injection in 17 adolescences. They have tested both fully closed-loop
and hybrid closed-loop (with pre-meal priming bolus) and show the addition of small manual
priming bolus doses of insulin given 15 min before meals improves glycemic excursions. A
different study by Renard et al. in [10] proved the feasibility of intraperitoneal insulin delivery
for artificial beta cell and supported the need for further study since subcutaneous insulin
delivery from a portable pump encountered delays and variability in insulin absorption. They
evaluated their proposed method in a clinical study on eight T1DM patients while the time
spent in 4.4–6.6 mmol/l was the primary end point. Another study in [12] uses both insulin
and glucagon to prevent hypoglycemia encountered in PID algorithm with only insulin as
the treatment.
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3.2 Model Predictive Controller
Model Predictive Control (MPC) is a general optimization framework that can involve many
different types of models and objective functions. The MPC approach is at the front of
current research into closed-loop systems. It acceptably accommodates delays associated
with insulin absorption and can also easily account for meal intake and prandial insulin
boluses by the patient. The other advantage of model predictive control paradigm is the
fact that it can account for variability since the model parameters can be personalized. The
main advantage of MPC is the fact that it allows the current timeslot to be optimized, while
keeping future timeslots into account. This is achieved by optimizing a finite time-horizon,
but only implementing the current timeslot. MPC has the ability to anticipate future events
and can take control actions accordingly.

The vital ingredient of MPC is a model that links insulin delivery and meal ingestion to
glucose excursions. This model can be physiological and account for fundamental processes
regulating glucose levels or a black box model that disregards insights but learns the insulin
glucose relationship via formal pattern recognition technique. They both can benefit from a
wide range of mathematical models of glucoregulatory system. It is therefore clear that proper
models of glucose and insulin kinetics as well as models that can be used to predict near-
future metabolic behavior are mandatory. Minimal models (describing the key components
of system functionality) and maximal models (nonlinear, high order models) are reviewed by
Cobelli in [6].

A general MPC problem formulation, which includes optimization objective (Equation 2),
glucose-insulin dynamical model (Equation 3) and initial value, glucose state and insulin
control constraints (Equation 4) can be written as follows.

minu(t)

tf∫
0

F (g(t), u(t)) dt (2)

dg(t)
dt

= aG g(t) + bG u(t) (3)

g(t = 0) = g0, umin ≤ u(t) ≤ umax , gmin ≤ g(t) ≤ gmax (4)

where g(t) denotes the BG level and u(t) denotes the amount of insulin injected at time t
which should be determined by solving the optimization problem; aG and bG are coefficients
representing the impact of injected insulin on the BG dynamics. Also, tf represents the finite
horizon of the control problem which is usually 2h to 4h prediction window that corresponds
to the bulk duration of action of a rapid acting insulin analogue such as aspart, lispro and
glulisine. gref (t) is the time dependent glucose reference value that can be chosen depending
on the current state to avoid hypoglycemia or hyperglycemia. Initial condition is addressed
by including g0 which is the initial glucose level. Finally, umin and umax are the minimum
and maximum allowed insulin amounts to be injected and gmin and gmax are the lower and
upper bounds on the glucose level. F (g(t) is a generic form for all possible cost functions.
But, it is usually desired to minimize a summation form including both the distance to
the reference glucose value and insulin injection effort. MPC has shown to be suitable for
multivariate nonlinear systems such as the human body and it significantly gives better
performance than PID control with patient-specific tuning. Several variations of MPC have
been proposed in the literature. We briefly categorize them as follows:

Linear model predictive control (LMPC): There are several research studies that use
linear model predictive controller. The work presented in [21] was the first in silico trial for
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linear model predictive approach which also showed better performance of MPC rather than
PID controller in terms of limiting the oscillation of glucose levels. Research efforts presented
in [31] and [9] were the first clinical investigations of linear model predictive algorithms in
artificial pancreas that reported the superiority of using this approach over PID controller.
in [21] Magni et al. in present an unconstrained MPC where the model is a linearization of a
nonlinear parameters.

Researchers extend the MPC by defining new types of objective function and additional
features to the problem formulation. Heusden et al. proposed using a priori patient charac-
terization and fitting a linear control relevant model around the control point [20]. They also
defined a new cost function named zone model predictive in contrast to previous studies in
which only the distance to a target reference point is considered as the cost function. They
consider a range for the BG level as the objective of the optimization and define the cost
function as the minimum distant to the preferred zone. They have verified the robustness of
the algorithm in silico and showed that the hypoglycemia is completely avoided even after
meal disturbance. Lee et al. in [15] use new meal size estimation algorithm to the integrated
AP and show how its performance is better than MPC-only case.

Non-linear model predictive (NMPC): Hovorka et al. in [28] present a nonlinear model
and Bayesian techniques to estimate parameters in simulation studies. Clinical studies were
performed under fasting conditions based on measurements that were delayed by 30 min to
mimic the time lag associated with a sensor. The authors performed overnight studies using
an algorithm and transferring results to a pump at 15 min intervals. The major result was a
reduction in nocturnal hypoglycemia compared to standard pump treatment. Zarkogianni et
al. also use a nonlinear model-predictive control for prediction of BG and control algorithm
[19]. They have shown the usefulness of using this nonlinear MPC in silico for different meal
profiles, fasting conditions, inter-patient variability and intraday variation.

Fractal model predictive control (FMPC): In spite of significant amount of work in PID
and MPC, the complexity of BG dynamics has not been fully addressed. For instance BG is
time dependent process that is influenced by various factors (meal size, exercise, psychological
state, etc.). This has prompted a comprehensive multifractal investigation of BG dynamics
[23] from publicly available data set [33]. The authors have shown how using fractional order
controller leads more robust control over conventional integer order model predictive controller.

Figure 2 Performance of fractal and
non-fractal MPC.

They formulate the BG dynamics as a time depend-
ent fractional order control problem and report the
feasibility of implementation of fractional controller
in hardware and report their results in terms of area
and speed in field programmable gate array (FPGA).
We compare the impact of applying fractional order
controller to the conventional first order derivative
controller. Fig 2 shows the outcome of applying both
types of controllers to bring to some reference value
which is 100mg/dL in this case. Unlike the expecta-
tion of integer order controller the final glucose value
at the end of control horizon is much lower than the
one expected.
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3.3 Assessment of Control performance
The ultimate goal of any closed-loop artificial pancreas controller is to minimize the com-
plications resulting from poor BG control. Research studies that have evaluated closed-loop
systems lasted at most several days. In these studies, time when glucose is in the target range
is the most widely used metric to assess closed-loop performance. On the other hand, target
glucose range differs in overnight and fasting condition (3.9–8.0 mmol/l) versus post-prandial
condition (up to 10 mmol/l). The low BG index can be helpful in quantifying the duration
and extent of hypoglycemia and other measures to assess severity of hypoglycemia and
hyperglycemia have been proposed such as Grade score [25]. To sum up, in spite of existence
of some FDA approved simulation environments ([4] and [8]), there is still significant need for
establishing unified simulation sequences and defining precise criteria to compare different
control algorithms. The same problem exists with the clinical studies in which there are no
unified clinical conditions to be able to compare performance of different control algorithm.

4 Conclusions and future work

The ultimate goal of any medical cyber physical system is to use technology to increase the
QOL for people. In type-1 diabetes mellitus, which is one of the fastest growing diseases
globally, the patient’s pancreas is not able to release insulin endogenously. As a result,
the patient needs exogenous insulin in order to control BG to reduce acute and chronic
complications. Recent technological advances have led to a paradigmatic shift in diabetes
treatment by offering automatic and semi-automatic systems to replace traditional procedures
to improve the QOL for diabetic people and let them forget about their disease.

Despite very advanced technologies in sensing and actuation technology, there is still a
huge gap to fill for designing a robust AP, which comes from lack of accurate mathematical
models and robust control algorithm. In this paper, we present main challenges and problems
to be addressed in design of AP. Then, we present the state of the art control algorithms for
closed-loop AP, which is mainly, composed of PID and model predictive control groups. As
discussed in the paper, even with application of model predictive controller, which is proved
to perform better than PID controller, clinical tests only prove simple situations e.g. over
night or after meal conditions and more sophisticated glycemic control during meals and
exercise is still challenging.

Future directions in research for developing more accurate mathematical models and
control algorithm include investigation and application of the recently investigated time
dependent fractional model for BG on more comprehensive data set for control purpose and
also investigating this state of the art model for hormone levels e.g. insulin and glucagon.
This is especially valuable for dual hormone closed-loop system [12, 11, 18], which is proven
to be effective only when the predictions of the hormone levels are accurate [30]. More
importantly, incorporating this mathematical model in state of the art software simulations,
which are reference for evaluation of several control algorithms.
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