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ABSTRACT 

Objective 

To evaluate the feasibility of day and night closed-loop insulin delivery in adults with 

type 1 diabetes under free-living conditions. 

 

Methods 

Seventeen adults with type 1 diabetes on insulin pump therapy [age 34±9years; 

HbA1c 7.6±0.8%; duration of diabetes 19±9years; mean±SD] participated in an open-

label multinational three-centre cross-over study. In a random order participants 

underwent two eight day periods (first day at the clinical research facility followed by 

seven days at home) of sensor augmented insulin pump therapy or automated 

closed-loop insulin delivery. The primary endpoint was the time when sensor glucose 

was in target range between 3.9 and 10.0 mmol/l during the seven day home phase.  

 

Results 

During the home phase, the percentage time when glucose was in target range was 

significantly higher during closed-loop compared to sensor augmented pump therapy 

(75 [61, 79] vs. 62 [53, 70]%, median [IQR], p=0.005). Mean glucose (8.1 vs. 8.8 

mmol/l, p=0.027) and time spent above target (p=0.013) were lower during closed-

loop while time spent below target was comparable (p=0.339). Increased time in 

target was observed during both day-time (p=0.017) and night-time (p=0.013).  
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Conclusions 

Compared to sensor augmented pump therapy, one week closed-loop insulin 

delivery at home reduces mean glucose and increases time in target without 

increasing the risk of hypoglycaemia in relatively well controlled adults with type 1 

diabetes. 

 

Keywords: type 1 diabetes, closed-loop insulin delivery, model predictive control, 

continuous subcutaneous insulin infusion, continuous glucose monitoring, artificial 

pancreas 
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Despite significant improvements in the care of type 1 diabetes, achieving 

good glycaemic control while avoiding hypoglycaemia (1) remains a challenge for 

many patients (2; 3). Insulin pump therapy and real time continuous glucose 

monitoring (CGM) have shown to improve HbA1c (4; 5) and reduce hypoglycaemia 

(6; 7) particularly when using low glucose suspend (8; 9). Closed-loop insulin delivery 

is an emerging treatment option combining these technological advances (10) to 

modulate delivery of insulin in a glucose responsive fashion. Closed-loop differs from 

conventional pump therapy, characterised by pre-programmed basal delivery, 

through the use of a control algorithm which directs subcutaneous insulin delivery 

according to sensor glucose levels. Several studies have evaluated the safety and 

efficacy of closed-loop under laboratory conditions and shown promising results. 

These include evaluations using a randomised design by our group in youths (11; 

12), adults (13), and pregnant women (14) and by others using the model predictive 

control algorithm (15; 16), the proportional-integral-derivative approach (17; 18), and 

the fuzzy logic controller (19; 20). Insulin and glucagon co-administration have also 

been applied in  studies (21-23). 

In contrast to studies conducted in the clinical research facility with carefully 

controlled conditions, closed-loop at home is exposed to considerably more varied 

meal and exercise patterns. Participants may over- or underestimate carbohydrate 

content and may undertake unplanned activity and/or exercise. Patients using insulin 

pump therapy are advised to use temporary reductions or increments of basal insulin 

delivery to meet these demands but this requires a degree of planning and user 

intuition and interaction. Since closed-loop systems modulate delivery of insulin in a 

glucose responsive fashion (10), it may be able to achieve better glucose control 

than pre-programmed basal rates of conventional pump therapy. 
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In February 2010, the European Union granted funding to the  AP@home 

consortium of European academic medical centres, biotechnology companies and 

industrial partners to carry out closed-loop glucose control research (24). The first 

major closed-loop study performed by the AP@home consortium evaluated the 

feasibility of day and night closed-loop insulin delivery using two different algorithms 

in 47 adults with type 1 diabetes (25). The present study was undertaken to evaluate 

the performance of day and night closed-loop insulin delivery with Cambridge 

algorithm over seven days at home preceded by one day control at the clinical 

research facility. 
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METHODS  

Participants and study design 

The study adopted an open-label prospective multinational three-centre 

randomised cross-over design. The study protocol was approved by respective 

research ethics committees and regulatory authorities in the UK, Germany and 

Austria. Study participants were recruited between January 2013 and August 2013 

through adult diabetes clinics and other established methods at each participating 

centre (Addenbrooke's Hospital, Cambridge, UK; Profil Institute, Neuss, Germany; 

and Medical University of Graz, Graz, Austria). Key inclusion criteria were age ≥18 

years, diagnosis of type 1 diabetes, treatment with insulin pump therapy for at least 

3 months, willingness to perform at least six finger-stick glucose measurements per 

day, and HbA1c ≤10% (86 mmol/mol). Key exclusion criteria were concurrent illness 

or medications likely to interfere with interpretation of study results, recurrent severe 

hypoglycaemia, significant hypoglycaemia unawareness, total daily insulin dose ≥ 2.0 

U/kg, clinically significant nephropathy, neuropathy, or retinopathy, severe visual or 

hearing impairment, pregnancy and breast feeding. All participants provided written 

informed consent prior to study related activities.  

 

Study procedures: 

After enrolment, participants were trained on the use of study insulin pump 

(Dana R Diabecare, Sooil, Seoul, South Korea) and continuous glucose monitoring 

device (FreeStyle Navigator, Abbott Diabetes Care, Alameda, CA, USA) (26). The 

study insulin pump was programmed with participant’s usual basal settings as well as 

usual insulin to carbohydrate ratios and correction factors. Participants were advised 
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to use the bolus calculator for all meals during the entire study period. Ability to use 

study devices was formally assessed using competency assessment and additional 

training was provided as required. After a run-in period of seven days to three weeks, 

participants underwent two eight day periods; in random order, when glucose was 

controlled either by sensor augmented insulin pump therapy (SAP) or closed-loop 

insulin delivery. The first day of each study period was conducted at a clinical 

research facility. After the first day, participants continued study interventions for the 

next seven days under free-living conditions in their home and work environment. 

The two intervention periods were separated by a one to four week washout. No 

changes were made to usual treatment parameters. Participants were advised to 

calibrate the CGM device according to manufacturer’s instructions (26) and use the 

built-in glucometer for all finger-stick measurements and to keep a diary for detailed 

documentation.  

 

Inpatient stay 

At the start of each study intervention, participants were admitted to the 

clinical research facility around 07:30 hours. On arrival, an intravenous cannula was 

inserted to allow for frequent venous sampling starting at 08:30 hours. Venous blood 

samples were collected at 30 minute intervals for the measurement of plasma 

glucose between 08:30 and 23:00 hours followed by every 60 minutes thereafter till 

07:00 hours the following morning. Closed-loop and SAP treatment commenced at 

09:00 hours with breakfast. 

Participants consumed standardized meals; breakfast 50 g, lunch 60 g and 

dinner 80 g of carbohydrates; at 09:00, 13:00 and 20:00 hours. Fifteen minutes 
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before each meal an insulin bolus was delivered, calculated according to usual 

settings and pre-meal finger-stick glucose levels. The insulin bolus was given with 

the meal if finger-stick glucose was ≤4.0 mmol/l. Meal content and bolus procedure of 

each study intervention was identical. Participants consumed optional snacks 

containing 20g carbohydrate at 16:00 hours and 15g carbohydrate at 22:00 hours. 

During the closed-loop visit, no insulin bolus was given for snacks but during the SAP 

visit participants received pre-snack bolus as per usual practice. Rapid-acting insulin 

analogue aspart (Novo Nordisk, Bagsvaerd, Denmark) was used throughout the 

study. During the closed-loop visit, participants received additional training on 

starting, stopping, and safe operation of the closed-loop system. Competency on the 

use of closed-loop system was assessed by the study team prior to discharge. 

 

Home phase 

Seven day home phase commenced at the end of the one day inpatient stay. 

Participants were provided with a custom made pouch to carry the small portable 

computer running the algorithm and CGM device (Supplemental Online Material, 

Figure S1). As a precaution, participants were advised not to drive or undertake 

strenuous physical exercise while the closed-loop system was in operation but were 

encouraged to engage in usual daily activities including going to work and moderate 

activity such as walking and daily housework. Participants were provided with a 24-

hour telephone helpline and were advised to follow usual treatment guidelines during 

inter-current illness, hyperglycaemia and hypoglycaemia. They were free to consume 

meals of choice including eating out. During closed-loop intervention, participants 

were not required to give insulin bolus for snacks below 30 g of carbohydrate and 



9 

during both study interventions participants were free to decide on alarm thresholds 

for the CGM device. 

 

Closed-loop system  

The Florence closed-loop system (University of Cambridge, Cambridge, UK) 

(27) comprises a model predictive control algorithm residing on an ultraportable 

laptop (OQO Model 02 computer, OQO, CA, USA), which is linked to the CGM 

receiver by a USB cable and controls the study pump over wireless communication. 

Every 12 minutes, the algorithm calculated a new insulin infusion rate which was 

automatically sent to the study insulin pump. The calculations utilised a compartment 

model of glucose kinetics (28) describing the effect of rapid-acting insulin analogues 

and the carbohydrate content of meals on glucose levels. Participants were required 

to count the carbohydrates and use the pump bolus calculator for pre-meal boluses 

as per usual practice. Meal bolus also included a correction bolus as calculated by 

the bolus wizard if the glucose was outside target range.   

Carbohydrate content of consumed meals and insulin delivery history 

including manually instructed bolus, were downloaded automatically from the study 

pump.  The algorithm was initialized using pre-programmed basal insulin delivery 

downloaded from the study pump. Additionally, participant’s weight and total daily 

insulin dose were entered at setup. During closed-loop operation, the algorithm 

adapted itself to a particular participant. The treat-to-target control algorithm aimed to 

achieve glucose levels between 5.8 and 7.3 mmol/l and adjusted the actual level 

depending on fasting vs. postprandial status and the accuracy of model-based 

glucose predictions. A sample 24 hour section of closed-loop study arm is shown in 
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Supplemental Online Material Figure S2 and interface of the closed-loop system is 

shown in Supplemental Online Material Figure S3. Algorithm version 0.3.24 with 

interface version 1.0.7 was used (University of Cambridge, Cambridge, UK). 

 

Safety precautions during closed-loop 

Participants were trained to perform calibration check before breakfast and 

evening meal. If sensor glucose was above finger-stick glucose by more than 3 

mmol/l, the CGM was re-calibrated. There was no re-calibration for sensor under 

reading. These instructions resulted from an in silico evaluation of hypoglycaemia 

and hyperglycaemia risk (29) using the validated Cambridge simulator (30).  

If sensor glucose became unavailable, pre-programmed insulin delivery was 

automatically restarted within 30 minutes or within 1 hour in case of other failures. 

This limited the risk of insulin under- and over-delivery (29). Safety rules limited 

maximum insulin infusion and suspended insulin delivery at sensor glucose at or 

<4.3mmol/l or when sensor glucose was rapidly decreasing.  

 

Assays  

During the in-patient stay, a YSI2300 STAT Plus Analyzer (YSI, Lynchford 

House, Farnborough, UK; intra-assay coefficient of variation (CV) 1.5% and inter-

assay CV 2.8%) was used for determination of plasma glucose.  

 

Statistical analysis  
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The analysis plan was agreed in advance. All analyses were undertaken on 

intention to treat basis. The primary outcome was the time when glucose was in the 

target range 3.9 to 10.0 mmol/l during the home study phase. Secondary outcomes 

were mean glucose, time when glucose was <3.9 mmol/l and <2.8 mmol/l 

(hypoglycaemia), time when glucose was >10.0 mmol/l and >16.7 mmol/l 

(hyperglycaemia), low and high blood glucose index and insulin delivery. We 

estimated glycaemic variability by the standard deviation of glucose and the 

coefficient of variation. The low and high blood glucose index assessing the duration 

and extent of hypo- and hyperglycaemia  was calculated as an average of 

transformed glucose measurements progressively increasing at low and high glucose 

levels (31). We corrected for bias resulting from simultaneous use of sensor glucose 

to direct insulin delivery and to assess outcomes by using adjusted glucose - a 

stochastic transformation of glucose metrics when assessing time glucose was in, 

below, and above target range (32). Other glucose metrics such as mean glucose 

and glucose variability were calculated utilising native (unadjusted) sensor glucose 

levels. 

Secondary outcomes were calculated for the one day inpatient stay, seven day home 

phase as a whole and daytime (07:00 till 23:00 hours) and overnight (23:00 till 07:00 

hours) periods. During the inpatient stay, study outcomes were calculated using both 

YSI laboratory glucose measurements and sensor glucose. Calculations were made 

using GStat software, Version 2.0 (University of Cambridge). Statistical analyses 

were conducted with the use of SPSS, Version 19 (IBM Software, Hampshire, UK). 

Normally distributed data were compared using paired t-test while non-normally 

distributed data were compared using Wilcoxon signed rank test. Values are reported 

as mean±SD or median (interquartile range: quartile 1 to quartile 3) unless stated 
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otherwise. All p-values are two-tailed and values less than 0.05 were considered 

statistically significant. 



13 

RESULTS 

From January 2013 to August 2013, 24 volunteers were screened and 21 

enrolled. Four dropouts were recorded, two during the first study period, one during 

the run-in phase, and another during the washout period leaving 17 completed 

participants [age 34±9 years; HbA1c 7.6±0.8%; duration of diabetes 19±9 years; 

duration of pump therapy 5.6±6.9 years; Supplemental Online Material Table S1].  

 

Glucose control and insulin delivery during the home phase 

The primary study outcome, the adjusted time spent in target glucose range 

3.9 to 10.0 mmol/l at home, was higher during closed-loop insulin delivery (74.5 

[61.1, 78.9] vs. 61.8 [53.3, 70.1]%, p=0.005, Table 1). Closed-loop reduced mean 

glucose (8.1±1.0 vs. 8.8±1.0 mmol/l, p=0.027) and the adjusted time spent above 

target glucose level (21.9 [16.7, 32.3] vs. 30.5 [24.3, 41.4] %, p=0.013), without 

increasing the time spent in hypoglycaemia. Measured as the standard deviation, 

variability of glucose was lower during closed-loop (2.9±0.6 vs. 3.3±0.8, p=0.034)   

but no difference was observed using the coefficient of variation (35.7±5.9 vs. 

37.7±7.6, p=0.149). Sensor glucose profiles during the two treatments periods are 

shown in Figure 1 with particularly pronounced difference during the overnight period. 

Fourteen participants (82%) showed increased time in target during closed-loop 

compared to SAP (Figure 2). Native sensor glucose levels (Supplemental Online 

Material Table S2) concurred with the assessment by adjusted values (Table 1). 

As expected, variability of basal insulin delivery was significantly higher during 

closed-loop (Table 2). Bolus and basal insulin infused during day was significantly 

different between the two interventions; during closed-loop period lower bolus 
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amount and higher basal dose were observed. Overall there was tendency towards 

lower total daily dose during closed-loop but this did not reach statistical significance 

(p=0.109).  

 

Day and night glucose control during the home phase 

Closed-loop increased time in target during both day-time (target 3.9 to 10.0 

mmol, 72.5% vs. 65.4%, p=0.017) and night-time (target 3.9 to 8.0 mmol/l, 48.4% vs. 

35.1%, p=0.013) (Table 2). In addition, mean sensor glucose was lower during night-

time period (8.3 ± 1.3 vs. 9.3 ± 1.1, p=0.015). There was no difference in the area 

under the curve for hypoglycaemia during either period (Table 2). 

 

Glucose control and insulin delivery during the one day inpatient stay 

Time spent in target glucose range 3.9 to 10.0 mmol/l was higher with closed-

loop during the inpatient stay (YSI based results Table 1 and CGM based results 

Supplemental Online Material Table S3). The number of rescue carbohydrate 

treatments required was lower during closed-loop (closed-loop 7 vs. SAP 16) but did 

not reach statistical significance (p=0.215). Closed-loop administered significantly 

lower total insulin daily dose during the inpatient stay (36.8 vs. 41.8 U, p=0.028). 

 

Sensor accuracy during inpatient stay 

Sensor performance was good with median absolute deviation of 0.8 (0.4, 1.3) 

mmol/l and median absolute relative deviation (MARD) of 10.0% (4.7, 16.3). Detailed 
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clinical and numerical sensor accuracy is shown in Supplemental Online Material 

Table S4. Eighty three percent of YSI-sensor pairs were in Clarke Error Grid Zone A.  

 

 

Adverse events 

Two severe hypoglycaemic events occurred during the study; one event 

during closed-loop arm and one event during washout period. The severe 

hypoglycaemia event during the closed-loop period occurred at a time when closed-

loop was non-operational due to sensor unavailability and insulin was being delivered 

according to participant’s usual pump settings. The second severe hypoglycaemia 

episode leading to hospital admission occurred during washout while the participant 

was using usual pump treatment in the context of inter-current illness. Both 

participants fully recovered with no clinical sequela. Both episodes most likely 

resulted from over aggressive manual insulin bolus corrections. Four episodes of 

high glucose occurred due to infusion set failure (no significant ketosis). One 

participant suffered from a transient vasovagal episode during the one day in-patient 

stay and fully recovered with intravenous fluid treatment. 

 

Utility analysis 

During the one day inpatient stay closed-loop was operational 98.4 [95.8, 100] % of 

time. During home phase closed-loop operational time was 83.0 [71.1, 92.3] %. 

Availability of CGM during home phase was 95.0 [85.2, 97.8] % during closed-loop 

and 95.1 [92.6, 97.4] % during SAP. Closed-loop operational time when CGM data 

were available was 90.9 [83.7, 96.2] %. 
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Reasons for not using closed-loop during home phase included unavailability 

of CGM data, periods of driving and strenuous exercise, non-operational laptop, and 

unreliable Bluetooth communication between pump and the computer. Detailed 

analysis of failure events is shown in Supplemental Online Material Table S5. The 

most common reason for undesired cessation of closed loop was failure of Bluetooth 

pump communication. In total there were 91 instances of pump communication 

failures giving a mean interval between failures of 25.6 hours. Out of the 91 instances 

47 instances were recorded in 3 participants. Excluding these 3 participants the 

mean interval between pump communication failures was 53 hours. 
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CONCLUSIONS  

The present study demonstrates the feasibility of unsupervised day and night 

closed-loop insulin delivery under free-living conditions in adults with type 1 diabetes. 

When applied in a relatively well controlled cohort, compared to current best therapy, 

closed-loop increased the time when glucose was in the target range while reducing 

the mean glucose. Importantly, these improvements were achieved without 

increasing the risk of hypoglycaemia  while administering similar amount of  total 

daily insulin dose. Benefits of closed-loop were more pronounced during the 

overnight period although glucose control was superior during both day and night 

time. Other benefits include  reduced glucose variability as measured by standard 

deviation and reduced high glucose excursions. In agreement with results obtained 

during the seven day home phase, participants also showed improved plasma 

glucose control with closed-loop during the one day stay at the clinical research 

facility while infusing a significantly lower amount of insulin.  

In the current study there was no statistically significant decrease in the time 

spent in hypoglycaemia. This can be explained by the study not being powered to 

detect such a difference although trend towards a lower hypoglycaemia exposure 

was observed (AUC below 3.5 mmol/l 71% lower during closed-loop; 2.9% vs 7.9%, 

CL vs SAP; p=0.14). Low levels of hypoglycaemia were observed compared to, for 

example, Juvenile Diabetes Research Foundation CGM trial (5) which recorded time 

spent in hypoglycaemia (< 3.9 mmol) of 89 and 60 minutes per day prior and after the 

use of real time CGM. Participants in the present study spent 40 and 49 minutes per 

day during closed loop and control periods; excluding subjects with significant co-
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morbidities and hypoglycaemia unawareness may have led to selection of 

participants with a lower hypoglycaemia risk.    

A smart phone based closed-loop control platform was previously evaluated in 

20 adults in four clinical centres in a non-randomised single arm study design in a 

home like environment (hotel / guest house or mixed hospital-hotel admissions) (33). 

The study duration was 42 hours with first 14 hours of operation under open loop 

control followed by 28 hours of closed-loop. In contrast, out-patient closed-loop 

duration in the present study was longer at 168 hours per participant. Two further 

randomised crossover studies have evaluated the use of overnight closed-loop 

outside clinical research facility. The first study showed reduced rates of 

hypoglycaemia during a single night at three youth diabetes camps (34). An interim 

analysis from the second study using closed-loop at home for four nights have also 

shown reduced hypoglycaemia burden (35). Feasibility of dual hormone closed-loop 

under free living conditions at home for 48 hours have been evaluated but despite 

the use of glucagon this study reported more hypoglycaemia during closed-loop arm 

(36). 

During the present proof-of-concept study, a prototype closed-loop system 

was used with the objective to assess the feasibility of day and night hybrid closed-

loop. Participants were required to carry the ultra-portable computer in a removable 

pouch. When CGM was available closed-loop was operational over 90% of time 

during the home phase. Based on encouraging results from the current study, a 

closed-loop system based on smart phone technology suitable for longer studies is 

under development. During current study, there was no dedicated treatment 

optimisation period and participants were only informed about insulin requirements in 
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each study period after completion of the study minimising any influence arising from 

the cross over study design.    

Training on closed-loop system took about 60 minutes. Closed-loop 

technology appears simple to initiate once insulin pump therapy and continuous 

glucose monitoring is established. A more comprehensive training was administered 

at study start, to familiarise participants with the study pump and continuous glucose 

monitoring. The two severe hypoglycaemic events seen during current study were 

unrelated to closed-loop insulin delivery.  

The strengths of our study are the integration of closed-loop into normal life 

including use at work, weekends, holidays, varied diet and sleeping patterns and 

randomised crossover study design in multinational multicentre settings. Participants 

started and stopped closed-loop without supervision.. Weaknesses include a small 

sample size, an early generation closed-loop system (which is not a commercially 

available product), and a relatively short study duration.  

In conclusion, day and night closed-loop can be used safely at home and its 

benefits include increased time when glucose is in target and reduced mean glucose. 

Larger and longer studies are warranted. 
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Table 1: Glucose control during closed-loop and sensor augmented pump therapy 
over the seven day home phase and one-day stay at the clinical research facility in 
17 patients with type 1 diabetes. 
 

 Closed-loop 

 

SAP 

 

P* 

Free living conditions (7 days) - based on CGM 

Mean glucose (mmol/l)** 8.1 ± 1.0 8.8 ± 1.0 0.027 

SD of glucose (mmol/l)** 2.9 ± 0.6 3.3 ± 0.8 0.034 

CV of glucose (%) ** 35.7 ± 5.9 37.7 ± 7.6 0.149 

Time spent at glucose level (%)    

 3.9 to 10.0 mmol/l≠ 74.5 (61.1, 78.9) 61.8 (53.3, 70.1) 0.005 

 3.9 to 10.0 mmol/l** 75.3 (62.1, 82.0) 62.6 (54.8, 72.4) 0.006 

 3.9 to 8.0 mmol/l≠ 54.9 (42.2, 58.3) 43.3 (33.0, 49.1) 0.017 

 >10.0 mmol/l≠ 21.9 (16.7, 32.3) 30.5 (24.3, 41.4) 0.013 

 >16.7 mmol/l≠ 1.5 (0.5, 3.5) 3.3 (1.4, 5.0) 0.049 

 <3.9 mmol/l≠ 3.7 (2.2, 7.9) 5.0 (2.3, 8.5) 0.339 

 <2.8 mmol/l≠ 0.3 (0.2, 1.1) 0.6 (0.2, 1.6) 0.124 

AUCDAY <3.5 mmol/l**   (mmol/l × 
minutes) 

2.9 (1.4, 15.8) 7.9 (1.3, 24.1) 0.149 

LBGI** 0.6 (0.5, 1.4) 0.9 (0.5, 1.5) 0.309 

HBGI** 4.5 (3.3, 7.2) 7.2(4.8, 9.1) 0.039 

Clinical research facility (one day) - based on YSI glucose 

Mean glucose (mmol/l) 8.2 ± 1.0 8.6 ± 1.6 0.292 

SD of glucose (mmol/l) 2.4 ± 0.7 2.8 ± 0.7 0.079 

CV of glucose (%) 27.5 ± 8.3 33.0 ±8.4 0.095 

Time spent at glucose level (%)    

 3.9 to 10.0 mmol/l 73.7 (63.4, 84.1) 60.7 (49.2, 76.8) 0.044 

 <3.9 mmol/l 1.8 (0, 5.8) 4.7 (0, 7.8) 0.221 

 >10.0 mmol/l 21.4 (13.6, 33.5) 24.5 (16.0, 49.1) 0.124 

 Data shown are mean ± SD or median (IQR), *Paired samples t-test or Wilcoxon signed Rank Test.  
**
 Based on native CGM, 

≠
 Adjusted for CGM measurement error assuming a relative absolute 

deviation of 15%, 
**
 Based on native CGM  

SAP= sensor augmented pump therapy; LBGI and HBGI=low and high  blood glucose index; 
CGM=continuous glucose monitoring, AUC – area under the curve calculated per day 
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Table 2: Insulin delivery and day-time and night-time glucose control during the home 

phase.   

 Closed loop 

 

SAP 

 

P* 

Insulin delivery  

Total basal (U) / day 20.1 (17.2, 24.7) 18.9 (15.4, 20.4) 0.017 

Total bolus (U) / day 18.9 (15.5, 25.5) 26.5 (20.6, 30.1) 0.002 

Total daily dose (U) 39.1 (34.7, 45.7) 44.7 (36.3, 51.0) 0.109 

SD of basal insulin  0.7 (0.6, 0.9) 0.2 (0.1, 0.2) <0.001 

Day-time and night-time glucose control  

Day-time (07:00 till 22:59 hours) 

Mean glucose 8.1 ±1.0 8.5 ± 1.2 0.147 

Time in target (3.9 to 10 

mmol/l)≠  

72.5 (63.4, 78.6) 65.4 (54.6, 71.0) 0.017 

AUCDAY below 3.5 mmol/l      

(mmol/l × minutes) 

2.3 (0.9, 19.3) 6.3(0.4, 30.1) 0.225 

Night-time (23:00 till 06:59 hours) 

Mean glucose 8.3 ± 1.3 9.3 ± 1.1 0.015 

Time in target (3.9 to 8 mmol/l) ≠  48.4 (32.5, 64.5) 35.1 (28.4, 47.5) 0.013 

AUCDAY below 3.5 mmol/l     

(mmol/l × minutes) 

3.1 (0, 17.5) 3.2 (0.1, 33.5) 0.163 

Data shown are mean ± SD or median (IQR) *Paired samples t tests or Wilcoxon signed rank test. 

AUC – area under the curve calculated per day, SD - Standard deviation, SAP - sensor augmented 

pump therapy.  

≠
 Adjusted for CGM measurement error assuming a relative absolute deviation of 15%. 

*Paired samples t-test or Wilcoxon signed rank test. 
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Figure Legends 
 
 
 
 
 

1. Figure 1: 24 h Glucose profiles during home use of closed-loop and sensor 
augmented pump therapy. The target glucose range 3.9 to 10.0 mmol/l is 
denoted by the dashed lines. Data shown are median (interquartile range). 
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2. Figure 2: Time spent in target glucose range 3.9 to 10.0 mmol/l by participants 

(N=17) at home. Fourteen (82%) participants showed increased time in target 
range during closed-loop compared to sensor augmented pump therapy 
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