501 research outputs found

    Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

    Full text link
    Malware analysis and detection techniques have been evolving during the last decade as a reflection to development of different malware techniques to evade network-based and host-based security protections. The fast growth in variety and number of malware species made it very difficult for forensics investigators to provide an on time response. Therefore, Machine Learning (ML) aided malware analysis became a necessity to automate different aspects of static and dynamic malware investigation. We believe that machine learning aided static analysis can be used as a methodological approach in technical Cyber Threats Intelligence (CTI) rather than resource-consuming dynamic malware analysis that has been thoroughly studied before. In this paper, we address this research gap by conducting an in-depth survey of different machine learning methods for classification of static characteristics of 32-bit malicious Portable Executable (PE32) Windows files and develop taxonomy for better understanding of these techniques. Afterwards, we offer a tutorial on how different machine learning techniques can be utilized in extraction and analysis of a variety of static characteristic of PE binaries and evaluate accuracy and practical generalization of these techniques. Finally, the results of experimental study of all the method using common data was given to demonstrate the accuracy and complexity. This paper may serve as a stepping stone for future researchers in cross-disciplinary field of machine learning aided malware forensics.Comment: 37 Page

    A Survey on Forensics and Compliance Auditing for Critical Infrastructure Protection

    Get PDF
    The broadening dependency and reliance that modern societies have on essential services provided by Critical Infrastructures is increasing the relevance of their trustworthiness. However, Critical Infrastructures are attractive targets for cyberattacks, due to the potential for considerable impact, not just at the economic level but also in terms of physical damage and even loss of human life. Complementing traditional security mechanisms, forensics and compliance audit processes play an important role in ensuring Critical Infrastructure trustworthiness. Compliance auditing contributes to checking if security measures are in place and compliant with standards and internal policies. Forensics assist the investigation of past security incidents. Since these two areas significantly overlap, in terms of data sources, tools and techniques, they can be merged into unified Forensics and Compliance Auditing (FCA) frameworks. In this paper, we survey the latest developments, methodologies, challenges, and solutions addressing forensics and compliance auditing in the scope of Critical Infrastructure Protection. This survey focuses on relevant contributions, capable of tackling the requirements imposed by massively distributed and complex Industrial Automation and Control Systems, in terms of handling large volumes of heterogeneous data (that can be noisy, ambiguous, and redundant) for analytic purposes, with adequate performance and reliability. The achieved results produced a taxonomy in the field of FCA whose key categories denote the relevant topics in the literature. Also, the collected knowledge resulted in the establishment of a reference FCA architecture, proposed as a generic template for a converged platform. These results are intended to guide future research on forensics and compliance auditing for Critical Infrastructure Protection.info:eu-repo/semantics/publishedVersio

    Automated Identification of Digital Evidence across Heterogeneous Data Resources

    Get PDF
    Digital forensics has become an increasingly important tool in the fight against cyber and computer-assisted crime. However, with an increasing range of technologies at people’s disposal, investigators find themselves having to process and analyse many systems with large volumes of data (e.g., PCs, laptops, tablets, and smartphones) within a single case. Unfortunately, current digital forensic tools operate in an isolated manner, investigating systems and applications individually. The heterogeneity and volume of evidence place time constraints and a significant burden on investigators. Examples of heterogeneity include applications such as messaging (e.g., iMessenger, Viber, Snapchat, and WhatsApp), web browsers (e.g., Firefox and Google Chrome), and file systems (e.g., NTFS, FAT, and HFS). Being able to analyse and investigate evidence from across devices and applications in a universal and harmonized fashion would enable investigators to query all data at once. In addition, successfully prioritizing evidence and reducing the volume of data to be analysed reduces the time taken and cognitive load on the investigator. This thesis focuses on the examination and analysis phases of the digital investigation process. It explores the feasibility of dealing with big and heterogeneous data sources in order to correlate the evidence from across these evidential sources in an automated way. Therefore, a novel approach was developed to solve the heterogeneity issues of big data using three developed algorithms. The three algorithms include the harmonising, clustering, and automated identification of evidence (AIE) algorithms. The harmonisation algorithm seeks to provide an automated framework to merge similar datasets by characterising similar metadata categories and then harmonising them in a single dataset. This algorithm overcomes heterogeneity issues and makes the examination and analysis easier by analysing and investigating the evidential artefacts across devices and applications based on the categories to query data at once. Based on the merged datasets, the clustering algorithm is used to identify the evidential files and isolate the non-related files based on their metadata. Afterwards, the AIE algorithm tries to identify the cluster holding the largest number of evidential artefacts through searching based on two methods: criminal profiling activities and some information from the criminals themselves. Then, the related clusters are identified through timeline analysis and a search of associated artefacts of the files within the first cluster. A series of experiments using real-life forensic datasets were conducted to evaluate the algorithms across five different categories of datasets (i.e., messaging, graphical files, file system, internet history, and emails), each containing data from different applications across different devices. The results of the characterisation and harmonisation process show that the algorithm can merge all fields successfully, with the exception of some binary-based data found within the messaging datasets (contained within Viber and SMS). The error occurred because of a lack of information for the characterisation process to make a useful determination. However, on further analysis, it was found that the error had a minimal impact on subsequent merged data. The results of the clustering process and AIE algorithm showed the two algorithms can collaborate and identify more than 92% of evidential files.HCED Ira

    Decision Support Elements and Enabling Techniques to Achieve a Cyber Defence Situational Awareness Capability

    Full text link
    [ES] La presente tesis doctoral realiza un análisis en detalle de los elementos de decisión necesarios para mejorar la comprensión de la situación en ciberdefensa con especial énfasis en la percepción y comprensión del analista de un centro de operaciones de ciberseguridad (SOC). Se proponen dos arquitecturas diferentes basadas en el análisis forense de flujos de datos (NF3). La primera arquitectura emplea técnicas de Ensemble Machine Learning mientras que la segunda es una variante de Machine Learning de mayor complejidad algorítmica (lambda-NF3) que ofrece un marco de defensa de mayor robustez frente a ataques adversarios. Ambas propuestas buscan automatizar de forma efectiva la detección de malware y su posterior gestión de incidentes mostrando unos resultados satisfactorios en aproximar lo que se ha denominado un SOC de próxima generación y de computación cognitiva (NGC2SOC). La supervisión y monitorización de eventos para la protección de las redes informáticas de una organización debe ir acompañada de técnicas de visualización. En este caso, la tesis aborda la generación de representaciones tridimensionales basadas en métricas orientadas a la misión y procedimientos que usan un sistema experto basado en lógica difusa. Precisamente, el estado del arte muestra serias deficiencias a la hora de implementar soluciones de ciberdefensa que reflejen la relevancia de la misión, los recursos y cometidos de una organización para una decisión mejor informada. El trabajo de investigación proporciona finalmente dos áreas claves para mejorar la toma de decisiones en ciberdefensa: un marco sólido y completo de verificación y validación para evaluar parámetros de soluciones y la elaboración de un conjunto de datos sintéticos que referencian unívocamente las fases de un ciberataque con los estándares Cyber Kill Chain y MITRE ATT & CK.[CA] La present tesi doctoral realitza una anàlisi detalladament dels elements de decisió necessaris per a millorar la comprensió de la situació en ciberdefensa amb especial èmfasi en la percepció i comprensió de l'analista d'un centre d'operacions de ciberseguretat (SOC). Es proposen dues arquitectures diferents basades en l'anàlisi forense de fluxos de dades (NF3). La primera arquitectura empra tècniques de Ensemble Machine Learning mentre que la segona és una variant de Machine Learning de major complexitat algorítmica (lambda-NF3) que ofereix un marc de defensa de major robustesa enfront d'atacs adversaris. Totes dues propostes busquen automatitzar de manera efectiva la detecció de malware i la seua posterior gestió d'incidents mostrant uns resultats satisfactoris a aproximar el que s'ha denominat un SOC de pròxima generació i de computació cognitiva (NGC2SOC). La supervisió i monitoratge d'esdeveniments per a la protecció de les xarxes informàtiques d'una organització ha d'anar acompanyada de tècniques de visualització. En aquest cas, la tesi aborda la generació de representacions tridimensionals basades en mètriques orientades a la missió i procediments que usen un sistema expert basat en lògica difusa. Precisament, l'estat de l'art mostra serioses deficiències a l'hora d'implementar solucions de ciberdefensa que reflectisquen la rellevància de la missió, els recursos i comeses d'una organització per a una decisió més ben informada. El treball de recerca proporciona finalment dues àrees claus per a millorar la presa de decisions en ciberdefensa: un marc sòlid i complet de verificació i validació per a avaluar paràmetres de solucions i l'elaboració d'un conjunt de dades sintètiques que referencien unívocament les fases d'un ciberatac amb els estàndards Cyber Kill Chain i MITRE ATT & CK.[EN] This doctoral thesis performs a detailed analysis of the decision elements necessary to improve the cyber defence situation awareness with a special emphasis on the perception and understanding of the analyst of a cybersecurity operations center (SOC). Two different architectures based on the network flow forensics of data streams (NF3) are proposed. The first architecture uses Ensemble Machine Learning techniques while the second is a variant of Machine Learning with greater algorithmic complexity (lambda-NF3) that offers a more robust defense framework against adversarial attacks. Both proposals seek to effectively automate the detection of malware and its subsequent incident management, showing satisfactory results in approximating what has been called a next generation cognitive computing SOC (NGC2SOC). The supervision and monitoring of events for the protection of an organisation's computer networks must be accompanied by visualisation techniques. In this case, the thesis addresses the representation of three-dimensional pictures based on mission oriented metrics and procedures that use an expert system based on fuzzy logic. Precisely, the state-of-the-art evidences serious deficiencies when it comes to implementing cyber defence solutions that consider the relevance of the mission, resources and tasks of an organisation for a better-informed decision. The research work finally provides two key areas to improve decision-making in cyber defence: a solid and complete verification and validation framework to evaluate solution parameters and the development of a synthetic dataset that univocally references the phases of a cyber-attack with the Cyber Kill Chain and MITRE ATT & CK standards.Llopis Sánchez, S. (2023). Decision Support Elements and Enabling Techniques to Achieve a Cyber Defence Situational Awareness Capability [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19424

    A holistic review of cybersecurity and reliability perspectives in smart airports

    Get PDF
    Advances in the Internet of Things (IoT) and aviation sector have resulted in the emergence of smart airports. Services and systems powered by the IoT enable smart airports to have enhanced robustness, efficiency and control, governed by real-time monitoring and analytics. Smart sensors control the environmental conditions inside the airport, automate passenger-related actions and support airport security. However, these augmentations and automation introduce security threats to network systems of smart airports. Cyber-attackers demonstrated the susceptibility of IoT systems and networks to Advanced Persistent Threats (APT), due to hardware constraints, software flaws or IoT misconfigurations. With the increasing complexity of attacks, it is imperative to safeguard IoT networks of smart airports and ensure reliability of services, as cyber-attacks can have tremendous consequences such as disrupting networks, cancelling travel, or stealing sensitive information. There is a need to adopt and develop new Artificial Intelligence (AI)-enabled cyber-defence techniques for smart airports, which will address the challenges brought about by the incorporation of IoT systems to the airport business processes, and the constantly evolving nature of contemporary cyber-attacks. In this study, we present a holistic review of existing smart airport applications and services enabled by IoT sensors and systems. Additionally, we investigate several types of cyber defence tools including AI and data mining techniques, and analyse their strengths and weaknesses in the context of smart airports. Furthermore, we provide a classification of smart airport sub-systems based on their purpose and criticality and address cyber threats that can affect the security of smart airport\u27s networks

    Agriculture 4.0 and beyond: Evaluating cyber threat intelligence sources and techniques in smart farming ecosystems

    Get PDF
    The digitisation of agriculture, integral to Agriculture 4.0, has brought significant benefits while simultaneously escalating cybersecurity risks. With the rapid adoption of smart farming technologies and infrastructure, the agricultural sector has become an attractive target for cyberattacks. This paper presents a systematic literature review that assesses the applicability of existing cyber threat intelligence (CTI) techniques within smart farming infrastructures (SFIs). We develop a comprehensive taxonomy of CTI techniques and sources, specifically tailored to the SFI context, addressing the unique cyber threat challenges in this domain. A crucial finding of our review is the identified need for a virtual Chief Information Security Officer (vCISO) in smart agriculture. While the concept of a vCISO is not yet established in the agricultural sector, our study highlights its potential significance. The implementation of a vCISO could play a pivotal role in enhancing cybersecurity measures by offering strategic guidance, developing robust security protocols, and facilitating real-time threat analysis and response strategies. This approach is critical for safeguarding the food supply chain against the evolving landscape of cyber threats. Our research underscores the importance of integrating a vCISO framework into smart farming practices as a vital step towards strengthening cybersecurity. This is essential for protecting the agriculture sector in the era of digital transformation, ensuring the resilience and sustainability of the food supply chain against emerging cyber risks

    Editorial

    Get PDF
    It is tradition that the Electronic Journal of Information Systems Evaluation (EJISE) publish a special issue containing the full versions of the best papers that were presented in a preliminary version during the 8th European Conference on Information Management and Evaluation (ECIME 2014). The faculty of Economics and Business Administration of the Ghent University was host for this successful conference on 11-12th of September 2014. ECIME 2014 received a submission of 86 abstracts and after the double-blind peer review process, thirty one academic research papers, nine PhD research papers, one master research paper and four work-in-progress papers were accepted and selected for presentation. ECIME 2014 hosted academics from twenty-two nationalities, amongst them: Australia, Belgium, Bosnia and Herzegovina, Brazil, Finland, France, Greece, Ireland, Lebanon, Lithuania, Macedonia (FYROM), Norway, Portugal, Romania, Russia, South Africa, South Korea, Spain, Sweden, The Netherlands, Turkey and the UK. From the thirty-one academic papers presented during the conference nine papers were selected for inclusion in this special issue of EJISE. The selected papers represent empirical work as well as theoretical research on the broad topic of management and evaluation of information systems. The papers show a wide variety of perspectives to deal with the problem

    IoT Forensics Readiness - influencing factors

    Get PDF
    The Internet of Things (IoT) is increasingly becoming a part of people’s lives and is progressively revolutionizing our lives and businesses. From a Digital Forensics (DF) point of view, this connection turns an IoT environment into a valuable source of evidence containing diverse artifacts that could significantly aid DF investigations. Therefore, DF must adapt to the characteristics of IoT Forensics (IoTF). With the increasing deployment of IoT, organizations are compelled to revise their approaches to planning, developing, and implementing Information Technology (IT) security strategies. The IoT presents new business opportunities but also simultaneously creates various challenges related to cyber-attacks and their resolution. For optimal preparedness in the face of future incidents, companies should consider implementing Forensics Readiness (FR). This paper thus examines the factors that influence IoT-FR within organizations. By systematically analyzing research efforts from 2010 to 2023, we identified the following factors influencing IoT-FR: (1) Legal Aspect, (2) Standardization Approach, (3) Technological Resource and Technique, (4) Management Process and (5) Human Factor. Furthermore, these influencing factors are not only considered individually but also in terms of the dependencies between them. This results in the creation of a holistic model including the interdependencies and influences of the factors to provide a novel overview and enhance the integrated perspective on IoT-FR. The knowledge of factors influencing the integration of IoT-FR into organizations is valuable. It thus can be of enormous importance, as it can save time and money in the event of a subsequent incident. Additionally, alongside these factors, various challenges, techniques, models, and frameworks are highlighted to offer profound insights into the relatively novel subject of IoT-FR and to inspire future research

    Advancements, challenges, and implications for navigating the autonomous vehicle revolution

    Get PDF
    The deployment of self-driving cars has significantly impacted society, offering several benefits such as better passenger safety, convenience, reduced fuel consumption, minimised traffic congestion and accidents, cost savings, and improved reliability. With the development of automated driving systems, autonomous vehicle technology has progressed from human-operated vehicles to conditional automation, utilising an array of sensors to constantly observe their surroundings for potential hazards. However, it is crucial to highlight that full autonomy has not yet been reached, and there are several problems involved with this revolutionary technology. This article explores the advancements, challenges, and implications inherent in the widespread adoption of autonomous vehicles. Recent advancements in sensor technology (cameras, RADARs, LiDARs, and ultrasonic sensors), artificial intelligence, the Internet of Things, and blockchain are just some of the topics covered in this article regarding autonomous vehicle development. These advancements are critical to evolving and incorporating autonomous vehicles into the transportation ecosystem. Furthermore, the analysis emphasises the considerable problems that must be overcome before self-driving cars can be widely adopted. These difficulties include security, safety, design, performance, and accuracy. Focused solutions such as increasing cybersecurity protections, refining safety standards, optimising vehicle design, enhancing performance capabilities, and assuring correct perception and decision-making are proposed to tackle these challenges. Lastly, autonomous cars have great promise for transforming transportation systems and improving a wide range of areas of our lives. Nevertheless, successful implementation requires overcoming existing difficulties and pushing technological innovation’s limits. By solving these problems and capitalising on artificial intelligence, the Internet of Things, and blockchain breakthroughs, we can navigate the autonomous car revolution and realise its full potential for a safer, more efficient, and sustainable future
    • …
    corecore