22 research outputs found

    Big Data Analytics on Large-Scale Scientific Datasets in the INDIGO-DataCloud Project

    Get PDF
    In the context of the EU H2020 INDIGO-DataCloud project several use case on large scale scientfic data analysis regarding different research communities have been implemented. All of them require the availability of large amount of data related to either output of imulations or observed data from sensors and need scientic (big) data solutions to run data analysis experiments. More specically,the paper presents the case studies related to the following research communities: (i) the European Multidisciplinary Seaoor and water column Observatory (INGV-EMSO), (ii) the Large Binocular Tele-scope, (iii) LifeWatch, and (iv) the European Network for Earth System Modelling (ENES).EGI Foundation, IBM ResearchPublishedUniversity of Siena, Palazzo del Rettorato, Banchi di Sotto, 55, 53100 Siena (SI), Italy1VV. Altr

    Orchestrating Complex Application Architectures in Heterogeneous Clouds

    Full text link
    [EN] Private cloud infrastructures are now widely deployed and adopted across technology industries and research institutions. Although cloud computing has emerged as a reality, it is now known that a single cloud provider cannot fully satisfy complex user requirements. This has resulted in a growing interest in developing hybrid cloud solutions that bind together distinct and heterogeneous cloud infrastructures. In this paper we describe the orchestration approach for heterogeneous clouds that has been implemented and used within the INDIGO-DataCloud project. This orchestration model uses existing open-source software like OpenStack and leverages the OASIS Topology and Specification for Cloud Applications (TOSCA) open standard as the modeling language. Our approach uses virtual machines and Docker containers in an homogeneous and transparent way providing consistent application deployment for the users. This approach is illustrated by means of two different use cases in different scientific communities, implemented using the INDIGO-DataCloud solutions.The authors want to acknowledge the support of the INDIGO-Datacloud (grant number 653549) project, funded by the European Commission's Horizon 2020 Framework Program.Caballer Fernández, M.; Zala, S.; López, Á.; Moltó, G.; Orviz, P.; Velten, M. (2018). Orchestrating Complex Application Architectures in Heterogeneous Clouds. Journal of Grid Computing. 16(1):3-18. https://doi.org/10.1007/s10723-017-9418-yS318161Aguilar Gómez, F., de Lucas, J.M., García, D., Monteoliva, A.: Hydrodynamics and water quality forecasting over a cloud computing environment: indigo-datacloud. In: EGU General Assembly Conference Abstracts, vol. 19, p 9684 (2017)de Alfonso, C., Caballer, M., Alvarruiz, F., Hernández, V.: An energy management system for cluster infrastructures. Comput. Electr. Eng. 39(8), 2579–2590 (2013). http://www.sciencedirect.com/science/article/pii/S0045790613001365Amazon Web Services (AWS): Amazon Web Services (AWS). https://aws.amazon.com/ (2017)Amazon Web Services (AWS): CloudFormation. https://aws.amazon.com/cloudformation/ (2017)Apache Software Foundation: Apache Mesos. http://mesos.apache.org/ (2017)ARIA, ARIA. http://ariatosca.incubator.apache.org/ (2017)Bumpus, W.: NIST Cloud Computing Standards Roadmap. Tech. rep., National Institute of Standards and Technology (NIST). https://doi.org/10.6028/NIST.SP.500-291r2 (2013)Caballer, M., Blanquer, I., Moltó, G., de Alfonso, C.: Dynamic management of virtual infrastructures. J Grid Comput. 13(1), 53–70 (2015). https://doi.org/10.1007/s10723-014-9296-5Campos Plasencia, I., Fernández-del Castillo, E., Heinemeyer, S., López García, Á., Pahlen, F., Borges, G.: Phenomenology tools on cloud infrastructures using OpenStack. Eur. Phys. J. C 73(4), 2375 (2013). https://doi.org/10.1140/epjc/s10052-013-2375-0Celar: Celar. http://www.cloudwatchhub.eu/celar (2017)Chen, Y., de Lucas, J.M., Aguilar, F., Fiore, S., Rossi, M., Ferrari, T.: Indigo: building a datacloud framework to support open science. In: EGU General Assembly Conference Abstracts, vol. 18, p 16610 (2016)Chronos: Chronos. https://mesos.github.io/chronos/ (2017)Cloudify: Cloudify. http://getcloudify.org (2017)Davidović, D., Cetinić, E., Skala, K.: European research area and digital humanitiesDistefano, S., Serazzi, G.: Performance driven WS orchestration and deployment in service oriented infrastructure. J Grid Comput. 12(2), 347–369 (2014). https://doi.org/10.1007/s10723-014-9293-8EGI FedCloud: EGI FedCloud. https://www.egi.eu/federation/egi-federated-cloud/ (2017)Eucalyptus: Eucalyptus. https://www.eucalyptus.com/ (2017)Fiore, S., D’Anca, A., Palazzo, C., Foster, I., Williams, D.N., Aloisio, G.: Ophidia: toward big data analytics for eScience. Procedia Comput. Sci. 18, 2376–2385 (2013). https://doi.org/10.1016/j.procs.2013.05.409Fiore, S., Palazzo, C., D’Anca, A., Elia, D., Londero, E., Knapic, C., Monna, S., Marcucci, N.M., Aguilar, F., Płóciennik, M., et al.: Big data analytics on large-scale scientific datasets in the indigo-datacloud project. In: Proceedings of the Computing Frontiers Conference, pp 343–348. ACM (2017)Fiore, S., Płóciennik, M., Doutriaux, C., Palazzo, C., Boutte, J., żok, T., Elia, D., Owsiak, M., D’Anca, A., Shaheen, Z., et al.: Distributed and cloud-based multi-model analytics experiments on large volumes of climate change data in the earth system grid federation eco-system. In: 2016 IEEE International Conference on Big Data (Big Data), pp 2911–2918. IEEE (2016)Galante, G., Erpen de Bona, L.C., Mury, A.R., Schulze, B., da Rosa Righi, R.: An analysis of public clouds elasticity in the execution of scientific applications: a survey. J Grid Comput.,1–24. https://doi.org/10.1007/s10723-016-9361-3 (2016)Google Cloud Platform (GCP): Google Cloud Platform (GCP). https://cloud.google.com/ (2017)Hochstein, L. (ed.): Ansible: Up and Running, Automating Configuration Management and Deployment the Easy Way. O’Reilly Media (2014)Idabc: European Interoperability Framework for pan-European eGovernment Services. European Commission version 1, 1–25. https://doi.org/10.1109/HICSS.2007.68 (2004)IM: IM. http://www.grycap.upv.es/im (2017)INDIGO-DataCloud: D1.8 - General Architecture. Tech. rep., INDIGO-DataCloud Consortium (2015)INDIGO-DataCloud: Ansible Galaxy repository for INDIGO-DataCloud. https://galaxy.ansible.com/indigo-dc/ (2017)INDIGO-DataCloud: Disvis/Powerfit Ansible Role in Ansible Galaxy. https://galaxy.ansible.com/indigo-dc/disvis-powerfit/ (2017)INDIGO-DataCloud: INDIGO-DataCloud. https://www.indigo-datacloud.eu/ (2017)INDIGO-DataCloud: INDIGO-DataCloud DockerHub application repository. https://hub.docker.com/u/indigodatacloudapps/ (2017)INDIGO-DataCloud: INDIGO-DataCloud PaaS Orchestrator. https://github.com/indigo-dc/orchestrator (2017)INDIGO-DataCloud: INDIGO-DataCloud RepoSync. https://github.com/indigo-dc/java-reposync (2017)INDIGO-DataCloud: INDIGO-DataCloud TOSCA templates. https://github.com/indigo-dc/tosca-templates (2017)INDIGO-DataCloud: TOSCA Across Clouds. https://github.com/indigo-dc/tosca-types/blob/master/examples/web_mysql_tosca_across_clouds.yaml (2017)INDIGO-DataCloud: TOSCA template for deploying an Elastic Mesos Cluster. http://github.com/indigo-dc/tosca-types/blob/master/examples/mesos_elastic_cluster.yaml (2017)INDIGO-DataCloud: TOSCA template for Powerfit application. https://github.com/indigo-dc/tosca-types/blob/master/examples/powerfit.yaml (2017)Kacsuk, P., Kecskemeti, G., Kertesz, A., Nemeth, Z., Kovȧcs, J., Farkas, Z.: Infrastructure aware scientific workflows and infrastructure aware workflow managers in science gateways. J Grid Comput., 641–654. https://doi.org/10.1007/s10723-016-9380-0 (2016)Korambath, P., Wang, J., Kumar, A., Hochstein, L., Schott, B., Graybill, R., Baldea, M., Davis, J.: Deploying kepler workflows as services on a cloud infrastructure for smart manufacturing. Procedia Comput. Sci. 29, 2254–2259 (2014)Koski, K., Hormia-Poutanen, K., Chatzopoulos, M., Legrė, Y., Day, B.: Position Paper: European Open Science Cloud for Research. Tech. Rep. october, EUDAT, LIBER, OpenAIRE, EGI, GĖANT Bari (2015)Krieger, M.T., Torreno, O., Trelles, O., Kranzlmüller, D.: Building an open source cloud environment with auto-scaling resources for executing bioinformatics and biomedical workflows. Futur. Gener. Comput. Syst. 67, 329–340 (2017). https://doi.org/10.1016/j.future.2016.02.008Kurkcuoglu Soner, Z., Bonvin, A.: Science in the clouds: virtualizing haddock powerfit and disvis using indigo-datacloud solutions (2016)Lipton, P.C.T., Moser, S.I., Palma, D.V., Spatzier, T.I.: Topology and Orchestration Specification for Cloud Applications. Tech. rep., OASIS Standard (2013)Liu, C., Mao, Y., Van der Merwe, J., Fernandez, M.: Cloud Resource Orchestration: a Data-Centric Approach. In: Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR), pp 1–8. Citeseer (2011)López García, Á., Fernández-del Castillo, E.: Analysis of scientific cloud computing requirements. In: Proceedings of the IBERGRID 2013 Conference, p 147 158 (2013)López García, Á., Fernández-del Castillo, E., Orviz Fernández, P.: Standards for enabling heterogeneous IaaS cloud federations. Comput. Standard Inter. 47, 19–23 (2016). https://doi.org/10.1016/j.csi.2016.02.002López García, Á., Zangrando, L., Sgaravatto, M., Llorens, V., Vallero, S., Zaccolo, V., Bagnasco, S., Taneja, S., Pra, S.D., Salomoni, D., Donvito G.: Improved cloud resource allocation: how INDIGO-datacloud is overcoming the current limitations in cloud schedulers. arXiv: 1707.06403 (2017)Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling techniques for elastic applications in cloud environments. J Grid Comput. 12(4), 559–592 (2014). https://doi.org/10.1007/s10723-014-9314-7Marathon: Marathon. https://mesosphere.github.io/marathon/ (2017)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-Infrastructure. Tech. rep., Open Grid Forum (2010)Metsch, T., Edmonds, A.: Open Cloud Computing Interface-RESTful HTTP Rendering. Tech. rep., Open Grid Forum (2011)Microsoft Azure: Microsoft Azure. https://azure.microsoft.com/ (2017)Moltó, G., Caballer, M., Pérez, A., Alfonso, D.C., Blanquer, I.: Coherent application delivery on hybrid distributed computing infrastructures of virtual machines and docker containers. In: 2017 25Th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). https://doi.org/10.1109/PDP.2017.29 , pp 486–490 (2017)Monna, S., Marcucci, N.M., Marinaro, G., Fiore, S., D’Anca, A., Antonacci, M., Beranzoli, L., Favali, P.: An Emso data case study within the indigo-Dc project. In: EGU General Assembly Conference Abstracts, vol. 19, p 12493 (2017)Nyrén, R., Metsch, T., Edmonds, A., Papaspyrou, A.: Open Cloud Computing Interface–Core. Tech. rep., Open Grid Forum (2010)OASIS: Organization for the Advancement of Structured Information Standards (OASIS). https://www.oasis-open.org (2015)Open Telekom Cloud (OTC): Open Telekom Cloud (OTC). https://cloud.telekom.de/en/ (2017)OpenNebula: OneFlow. http://docs.opennebula.org/5.2/advanced_components/application_flow_and_auto-scaling/index.html (2017)OpenNebula Project: OpenNebula. https://www.opennebula.org (2017)OpenStack Foundation: Heat Orchestration Template (HOT) Guide. https://docs.openstack.org/heat/latest/template_guide/hot_guide.html (2017)OpenStack Foundation: OpenStack. https://www.openstack.org (2017)OpenStack Foundation: Openstack Heat. http://wiki.openstack.org/wiki/Heat (2017)OpenStack Foundation: OpenStack Heat Translator. https://github.com/openstack/heat-translator (2017)OpenStack Foundation: OpenStack heat-translator project contribution statistics. http://stackalytics.com/?release=all&metric=commits&module=heat-translator (2017)OpenStack Foundation: OpenStack Tacker. https://wiki.openstack.org/wiki/Tacker (2017)OpenStack Foundation: OpenStack tosca-parser project contribution statistics. http://stackalytics.com/?release=all&metric=commits&module=tosca-parser (2017)OpenStack Foundation: TOSCA Parser. https://github.com/openstack/tosca-parser (2017)OpenTOSCA: OpenTOSCA. http://www.opentosca.org/ (2017)Owsiak, M., Plociennik, M., Palak, B., Zok, T., Reux, C., Di Gallo, L., Kalupin, D., Johnson, T., Schneider, M.: Running simultaneous kepler sessions for the parallelization of parametric scans and optimization studies applied to complex workflows. J Comput. Sci. 20, 103–111 (2017)Palma, D., Rutkowski, M., Spatzier T.: TOSCA Simple Profile in YAML Version 1.1. Tech. rep., OASIS Standard. http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html (2016)Petcu, D.: Consuming resources and services from multiple clouds: from terminology to cloudware support. J Grid Comput. 12(2), 321–345 (2014). https://doi.org/10.1007/s10723-013-9290-3Plóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Fargetta, M., Barbera, R., Bruno, R., Giorgio, E., Williams, D.N., Aloisio, G.: Two-level dynamic workflow orchestration in the INDIGO DataCloud for large-scale, climate change data analytics experiments. Procedia Comput. Sci. 80, 722–733 (2016). https://doi.org/10.1016/j.procs.2016.05.359Płóciennik, M., Fiore, S., Donvito, G., Owsiak, M., Fargetta, M., Barbera, R., Bruno, R., Giorgio, E., Williams, D.N., Aloisio, G.: Two-level dynamic workflow orchestration in the indigo datacloud for large-scale, climate change data analytics experiments. Procedia Comput. Sci. 80, 722–733 (2016)Python: Python Package Index (PyPI). https://pypi.python.org/pypi (2017)Ramakrishnan, L., Jackson, K.R., Canon, S., Cholia, S., Shalf, J.: Defining future platform requirements for e-Science clouds. In: Proceedings of the 1st ACM Symposium on Cloud Computing - SoCC ’10. https://doi.org/10.1145/1807128.1807145 , p 101 (2010)Ramakrishnan, L., Zbiegel, P.T.T.T.: Magellan: experiences from a science cloud. In: Proceedings of the 2Nd International Workshop on Scientific Cloud Computing. http://dl.acm.org/citation.cfm?id=1996119 , pp 49–58 (2011)Salomoni, D., Campos, I., Gaido, L., Donvito, G., Antonacci, M., Fuhrman, P., Marco, J., Lopez-Garcia, A., Orviz, P., Blanquer, I., et al.: Indigo-datacloud: foundations and architectural description of a platform as a service oriented to scientific computing. arXiv: http://arXiv.org/abs/1603.09536 (2016)Sánchez-Expósito, S., Martín, P., Ruiz, J.E., Verdes-Montenegro, L., Garrido, J., Sirvent, R., Falcó, A.R., Badia, R.M., Lezzi, D.: Web services as building blocks for science gateways in astrophysics. J Grid Comput. 14(4), 673–685 (2016). https://doi.org/10.1007/s10723-016-9382-ySlipStream: SlipStream. http://sixsq.com/products/slipstream/ (2017)Stockton, D.B., Santamaria, F.: Automating NEURON simulation deployment in cloud resources. Neuroinformatics 15(1), 51–70 (2017). https://doi.org/10.1007/s12021-016-9315-8Teckelmann, R., Reich, C., Sulistio, A.: Mapping of Cloud Standards to the Taxonomy of Interoperability in Iaas. In: 2011 IEEE Third International Conference on Cloud Computing Technology and Science (Cloudcom), pp 522–526. IEEE (2011)Toor, S., Osmani, L., Eerola, P., Kraemer, O., Lindén, T., Tarkoma, S., White, J.: A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system. J Phys.: Conf. Ser. 513(6), 062,047 (2014). https://doi.org/10.1088/1742-6596/513/6/062047 . http://stacks.iop.org/1742-6596/513/i=6/a=062047?key=crossref.84033a04265ce343371c7f38064e7143UK Government Cabinet Office: Open Standards Principles. https://www.gov.uk/government/publications/open-standards-principles/open-standards-principles (2015)Yangui, S., Marshall, I.J., Laisne, J.P., Tata, S.: Compatibleone: the open source cloud broker. J Grid Comput. 12(1), 93–109 (2014)Zhao, Y., Li, Y., Raicu, I., Lu, S., Tian, W., Liu, H.: Enabling scalable scientific workflow management in the cloud. Futur. Gener. Comput. Syst. 46, 3–16 (2015). https://doi.org/10.1016/j.future.2014.10.023van Zundert, G., Trellet, M., Schaarschmidt, J., Kurkcuoglu, Z., David, M., Verlato, M., Rosato, A., Bonvin, A.: The DisVis and PowerFit web servers: explorative and integrative modeling of biomolecular complexes. J. Mol. Biol. 429(3), 399–407 (2013). http://www.sciencedirect.com/science/article/pii/S002228361630527

    A Cloud-Edge Orchestration Platform for the Innovative Industrial Scenarios of the IoTwins Project

    Get PDF
    The concept of digital twins has growing more and more interest not only in the academic field but also among industrial environments thanks to the fact that the Internet of Things has enabled its cost-effective implementation. Digital twins (or digital models) refer to a virtual representation of a physical product or process that integrate data from various sources such as data APIs, historical data, embedded sensors and open data, giving to the manufacturers an unprecedented view into how their products are performing. The EU-funded IoTwins project plans to build testbeds for digital twins in order to run real-time computation as close to the data origin as possible (e.g., IoT Gateway or Edge nodes), and whilst batch-wise tasks such as Big Data analytics and Machine Learning model training are advised to run on the Cloud, where computing resources are abundant. In this paper, the basic concepts of the IoTwins project, its reference architecture, functionalities and components have been presented and discussed

    Proyecto Docente e Investigador, Trabajo Original de Investigación y Presentación de la Defensa, preparado por Germán Moltó para concursar a la plaza de Catedrático de Universidad, concurso 082/22, plaza 6708, área de Ciencia de la Computación e Inteligencia Artificial

    Full text link
    Este documento contiene el proyecto docente e investigador del candidato Germán Moltó Martínez presentado como requisito para el concurso de acceso a plazas de Cuerpos Docentes Universitarios. Concretamente, el documento se centra en el concurso para la plaza 6708 de Catedrático de Universidad en el área de Ciencia de la Computación en el Departamento de Sistemas Informáticos y Computación de la Universitat Politécnica de València. La plaza está adscrita a la Escola Técnica Superior d'Enginyeria Informàtica y tiene como perfil las asignaturas "Infraestructuras de Cloud Público" y "Estructuras de Datos y Algoritmos".También se incluye el Historial Académico, Docente e Investigador, así como la presentación usada durante la defensa.Germán Moltó Martínez (2022). Proyecto Docente e Investigador, Trabajo Original de Investigación y Presentación de la Defensa, preparado por Germán Moltó para concursar a la plaza de Catedrático de Universidad, concurso 082/22, plaza 6708, área de Ciencia de la Computación e Inteligencia Artificial. http://hdl.handle.net/10251/18903

    A Cloud-Based Framework for Machine Learning Workloads and Applications

    Get PDF
    [EN] In this paper we propose a distributed architecture to provide machine learning practitioners with a set of tools and cloud services that cover the whole machine learning development cycle: ranging from the models creation, training, validation and testing to the models serving as a service, sharing and publication. In such respect, the DEEP-Hybrid-DataCloud framework allows transparent access to existing e-Infrastructures, effectively exploiting distributed resources for the most compute-intensive tasks coming from the machine learning development cycle. Moreover, it provides scientists with a set of Cloud-oriented services to make their models publicly available, by adopting a serverless architecture and a DevOps approach, allowing an easy share, publish and deploy of the developed models.This work was supported by the project DEEP-Hybrid-DataCloud ``Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud'' that has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant 777435Lopez Garcia, A.; Marco De Lucas, J.; Antonacci, M.; Zu Castell, W.; David, M.; Hardt, M.; Lloret Iglesias, L.... (2020). A Cloud-Based Framework for Machine Learning Workloads and Applications. IEEE Access. 8:18681-18692. https://doi.org/10.1109/ACCESS.2020.2964386S1868118692

    Scalable Distributed Computing Hierarchy: Cloud, Fog and Dew Computing

    Get PDF
    The paper considers the conceptual approach for organization of the vertical hierarchical links between the scalable distributed computing paradigms: Cloud Computing, Fog Computing and Dew Computing. In this paper, the Dew Computing is described and recognized as a new structural layer in the existing distributed computing hierarchy. In the existing computing hierarchy, the Dew computing is positioned as the ground level for the Cloud and Fog computing paradigms. Vertical, complementary, hierarchical division from Cloud to Dew Computing satisfies the needs of high- and low-end computing demands in everyday life and work. These new computing paradigms lower the cost and improve the performance, particularly for concepts and applications such as the Internet of Things (IoT) and the Internet of Everything (IoE). In addition, the Dew computing paradigm will require new programming models that will efficiently reduce the complexity and improve the productivity and usability of scalable distributed computing, following the principles of High-Productivity computing

    Helmholtz Portfolio Theme Large-Scale Data Management and Analysis (LSDMA)

    Get PDF
    The Helmholtz Association funded the "Large-Scale Data Management and Analysis" portfolio theme from 2012-2016. Four Helmholtz centres, six universities and another research institution in Germany joined to enable data-intensive science by optimising data life cycles in selected scientific communities. In our Data Life cycle Labs, data experts performed joint R&D together with scientific communities. The Data Services Integration Team focused on generic solutions applied by several communities

    Big data analytics towards predictive maintenance at the INFN-CNAF computing centre

    Get PDF
    La Fisica delle Alte Energie (HEP) è da lungo tra i precursori nel gestire e processare enormi dataset scientifici e nell'operare alcuni tra i più grandi data centre per applicazioni scientifiche. HEP ha sviluppato una griglia computazionale (Grid) per il calcolo al Large Hadron Collider (LHC) del CERN di Ginevra, che attualmente coordina giornalmente le operazioni di calcolo su oltre 800k processori in 170 centri di calcolo e gestendo mezzo Exabyte di dati su disco distribuito in 5 continenti. Nelle prossime fasi di LHC, soprattutto in vista di Run-4, il quantitativo di dati gestiti dai centri di calcolo aumenterà notevolmente. In questo contesto, la HEP Software Foundation ha redatto un Community White Paper (CWP) che indica il percorso da seguire nell'evoluzione del software moderno e dei modelli di calcolo in preparazione alla fase cosiddetta di High Luminosity di LHC. Questo lavoro ha individuato in tecniche di Big Data Analytics un enorme potenziale per affrontare le sfide future di HEP. Uno degli sviluppi riguarda la cosiddetta Operation Intelligence, ovvero la ricerca di un aumento nel livello di automazione all'interno dei workflow. Questo genere di approcci potrebbe portare al passaggio da un sistema di manutenzione reattiva ad uno, più evoluto, di manutenzione predittiva o addirittura prescrittiva. La tesi presenta il lavoro fatto in collaborazione con il centro di calcolo dell'INFN-CNAF per introdurre un sistema di ingestione, organizzazione e processing dei log del centro su una piattaforma di Big Data Analytics unificata, al fine di prototipizzare un modello di manutenzione predittiva per il centro. Questa tesi contribuisce a tale progetto con lo sviluppo di un algoritmo di clustering dei messaggi di log basato su misure di similarità tra campi testuali, per superare il limite connesso alla verbosità ed eterogeneità dei log raccolti dai vari servizi operativi 24/7 al centro
    corecore