35,758 research outputs found

    Inhibition of Bifidobacterium SP Isolated From Infants Feces Towards Adhesion of Salmonella Typhi on Balb/c Mice Enterocyte

    Full text link
    Diarrhea, up to the recent year remains a cause of high morbidity and mortalityworldwide, especially in developing countries including Indonesia. Research concerning ofmanagement, prevention, and medication of the disease have been continually improved. Theaim of this research is searching Bifidobacterium sp isolated from infants feces. ThisBifidobacterium was then applied as an anti-adhesion of Salmonella typhi in the hope to gain acure of diarrhea. This research employed two research designs, namely descriptive explorationand true experimental. Exploration was applied in order to obtain isolation and characterizationof Bifidobacterium isolated from infants feces. Adherence ability of this Bifidobacterium sptowards Salmonella typhi adhesion on mice entherocyte was then carried out by applyingRandomized Posttest-Only Control Group Design. In this research, average Bifidobacterium spadhesion index of 1950 on entherocyte was obtained. In simple word, there are 19.5Bifidobacteria adhere to any single entherocyte cell. This adhesion index value is highercompare to Salmonella typhi adhesion of 1504. Conclusions that can be drawn from this researchare the finding of Bifidobacterium sp isolated from infants feces. This Bifidobacterium sp has anability to inhibit adhesion of Salmonella typhi on BALB/c mice enterocyte. Future work that canbe carried out are further researches concerning whether these bacteria have an ability to inhibitadherence of other pathogen bacteria. More over, searching of cell wall adhesin ofBifidobacterium sp that can be used as a replacement of life probiotic bacteria is also a greatinterest of research to be carried out

    Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: which strains act as health players?

    Get PDF
    Introduction: Non-alcoholic fatty liver disease (NAFLD), considered the leading cause of chronic liver disease in children, can often progress from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH). It is clear that obesity is one of the main risk factors involved in NAFLD pathogenesis, even if specific mechanisms have yet to be elucidated. We investigated the distribution of intestinal bifidobacteria and lactobacilli in the stools of four groups of children: obese, obese with NAFL, obese with NASH, and healthy, age-matched controls (CTRLs). Material and methods: Sixty-one obese, NAFL and NASH children and 54 CTRLs were enrolled in the study. Anthropometric and metabolic parameters were measured for all subjects. All children with suspected NASH underwent liver biopsy. Bifidobacteria and lactobacilli were analysed in children’s faecal samples, during a broader, 16S rRNA-based pyrosequencing analysis of the gut microbiome. Results: Three Bifidobacterium spp. (Bifidobacterium longum, Bifidobacterium bifidum, and Bifidobacterium adolescentis) and five Lactobacillus spp. (L. zeae, L. vaginalis, L. brevis, L. ruminis, and L. mucosae) frequently recurred in metagenomic analyses. Lactobacillus spp. increased in NAFL, NASH, or obese children compared to CTRLs. Particularly, L. mucosae was significantly higher in obese (p = 0.02426), NAFLD (p = 0.01313) and NASH (p = 0.01079) than in CTRLs. In contrast, Bifidobacterium spp. were more abundant in CTRLs, suggesting a protective and beneficial role of these microorganisms against the aforementioned diseases. Conclusions: Bifidobacteria seem to have a protective role against the development of NAFLD and obesity, highlighting their possible use in developing novel, targeted and effective probiotics

    Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants.

    Get PDF
    Attempts to alter intestinal dysbiosis via administration of probiotics have consistently shown that colonization with the administered microbes is transient. This study sought to determine whether provision of an initial course of Bifidobacterium longum subsp. infantis (B. infantis) would lead to persistent colonization of the probiotic organism in breastfed infants. Mothers intending to breastfeed were recruited and provided with lactation support. One group of mothers fed B. infantis EVC001 to their infants from day 7 to day 28 of life (n = 34), and the second group did not administer any probiotic (n = 32). Fecal samples were collected during the first 60 postnatal days in both groups. Fecal samples were assessed by 16S rRNA gene sequencing, quantitative PCR, mass spectrometry, and endotoxin measurement. B. infantis-fed infants had significantly higher populations of fecal Bifidobacteriaceae, in particular B. infantis, while EVC001 was fed, and this difference persisted more than 30 days after EVC001 supplementation ceased. Fecal milk oligosaccharides were significantly lower in B. infantis EVC001-fed infants, demonstrating higher consumption of human milk oligosaccharides by B. infantis EVC001. Concentrations of acetate and lactate were significantly higher and fecal pH was significantly lower in infants fed EVC001, demonstrating alterations in intestinal fermentation. Infants colonized by Bifidobacteriaceae at high levels had 4-fold-lower fecal endotoxin levels, consistent with observed lower levels of Gram-negative Proteobacteria and Bacteroidetes. IMPORTANCE The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function

    Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.

    Get PDF
    Breast milk enhances the predominance of Bifidobacterium species in the infant gut, probably due to its large concentration of human milk oligosaccharides (HMO). Here we screened infant-gut isolates of Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum using individual HMO, and compared the global transcriptomes of representative isolates on major HMO by RNA-seq. While B. infantis displayed homogeneous HMO-utilization patterns, B. bifidum were more diverse and some strains did not use fucosyllactose (FL) or sialyllactose (SL). Transcriptomes of B. bifidum SC555 and B. infantis ATCC 15697 showed that utilization of pooled HMO is similar to neutral HMO, while transcriptomes for growth on FL were more similar to lactose than HMO in B. bifidum. Genes linked to HMO-utilization were upregulated by neutral HMO and SL, but not by FL in both species. In contrast, FL induced the expression of alternative gene clusters in B. infantis. Results also suggest that B. bifidum SC555 does not utilize fucose or sialic acid from HMO. Surprisingly, expression of orthologous genes differed between both bifidobacteria even when grown on identical substrates. This study highlights two major strategies found in Bifidobacterium species to process HMO, and presents detailed information on the close relationship between HMO and infant-gut bifidobacteria

    In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to Î’-Lactams

    Get PDF
    peer-reviewedBifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.Fiona Fouhy is in receipt of an Irish Research Council for Science, Engineering and Technology EMBARK scholarship and is a Teagasc Walsh fellow. Research in the PDC laboratory is supported by the Irish Government under the National Development Plan through the Science Foundation Ireland Investigator award 11/PI/1137. Research in the RPR, CS, PDC and DvS laboratories is also supported by the Science Foundation of Ireland-funded Centre for Science, Engineering and Technology, the Alimentary Pharmabiotic Centre (grant no.s 02/CE/B124 and 07/CE/B1368) and a HRB postdoctoral fellowship (Grant no. PDTM/20011/9) awarded to MOCM

    Exposure of Bifidobacterium longum subsp. infantis to Milk Oligosaccharides Increases Adhesion to Epithelial Cells and Induces a Substantial Transcriptional Response

    Get PDF
    Devon Kavanaugh is in receipt of a Teagasc Walsh Fellowship. The authors would also like to acknowledge the support of Science Foundation Ireland under Grant No. 08/SRC/B1393 and the Alimentary Glycoscience Research Cluster (AGRC).peer-reviewedIn this study, we tested the hypothesis that milk oligosaccharides may contribute not only to selective growth of bifidobacteria, but also to their specific adhesive ability. Human milk oligosaccharides (3′sialyllactose and 6′sialyllactose) and a commercial prebiotic (Beneo Orafti P95; oligofructose) were assayed for their ability to promote adhesion of Bifidobacterium longum subsp. infantis ATCC 15697 to HT-29 and Caco-2 human intestinal cells. Treatment with the commercial prebiotic or 3′sialyllactose did not enhance adhesion. However, treatment with 6′sialyllactose resulted in increased adhesion (4.7 fold), while treatment with a mixture of 3′- and 6′-sialyllactose substantially increased adhesion (9.8 fold) to HT-29 intestinal cells. Microarray analyses were subsequently employed to investigate the transcriptional response of B. longum subsp. infantis to the different oligosaccharide treatments. This data correlated strongly with the observed changes in adhesion to HT-29 cells. The combination of 3′- and 6′-sialyllactose resulted in the greatest response at the genetic level (both in diversity and magnitude) followed by 6′sialyllactose, and 3′sialyllactose alone. The microarray data was further validated by means of real-time PCR. The current findings suggest that the increased adherence phenotype of Bifidobacterium longum subsp. infantis resulting from exposure to milk oligosaccharides is multi-faceted, involving transcription factors, chaperone proteins, adhesion-related proteins, and a glycoside hydrolase. This study gives additional insight into the role of milk oligosaccharides within the human intestine and the molecular mechanisms underpinning host-microbe interactions.Science Foundation IrelandTeagasc Walsh Fellowship Programm
    • …
    corecore