8,058 research outputs found

    Contraction analysis of nonlinear systems and its application

    Get PDF
    The thesis addresses various issues concerning the convergence properties of switched systems and differential algebraic equation (DAE) systems. Specifically, we focus on contraction analysis problem, as well as tackling problems related to stabilization and synchronization. We consider the contraction analysis of switched systems and DAE systems. To address this, a transformation is employed to convert the contraction analysis problem into a stabilization analysis problem. This transformation involves the introduction of virtual systems, which exhibit a strong connection with the Jacobian matrix of the vector field. Analyzing these systems poses a significant challenge due to the distinctive structure of their Jacobian matrices. Regarding the switched systems, a time-dependent switching law is established to guarantee uniform global exponential stability (UGES). As for the DAE system, we begin by embedding it into an ODE system. Subsequently, the UGES property is ensured by analyzing its matrix measure. As our first application, we utilize our approach to stabilize time-invariant switched systems and time-invariant DAE systems, respectively. This involves designing control laws to achieve system contractivity, thereby ensuring that the trajectory set encompasses the equilibrium point. In oursecond application, we propose the design of a time-varying observer by treating the system’s output as an algebraic equation of the DAE system. In our study on synchronization problems, we investigate two types of synchronization issues: the trajectory tracking of switched oscillators and the pinning state synchronization. In the case of switched oscillators, we devise a time-dependent switching law to ensure that these oscillators effectively follow the trajectory of a time-varying system. As for the pinning synchronization problem, we define solvable conditions and, building upon these conditions, we utilize contraction theory to design dynamic controllers that guarantee synchronization is achieved among the agents

    Authentication enhancement in command and control networks: (a study in Vehicular Ad-Hoc Networks)

    Get PDF
    Intelligent transportation systems contribute to improved traffic safety by facilitating real time communication between vehicles. By using wireless channels for communication, vehicular networks are susceptible to a wide range of attacks, such as impersonation, modification, and replay. In this context, securing data exchange between intercommunicating terminals, e.g., vehicle-to-everything (V2X) communication, constitutes a technological challenge that needs to be addressed. Hence, message authentication is crucial to safeguard vehicular ad-hoc networks (VANETs) from malicious attacks. The current state-of-the-art for authentication in VANETs relies on conventional cryptographic primitives, introducing significant computation and communication overheads. In this challenging scenario, physical (PHY)-layer authentication has gained popularity, which involves leveraging the inherent characteristics of wireless channels and the hardware imperfections to discriminate between wireless devices. However, PHY-layerbased authentication cannot be an alternative to crypto-based methods as the initial legitimacy detection must be conducted using cryptographic methods to extract the communicating terminal secret features. Nevertheless, it can be a promising complementary solution for the reauthentication problem in VANETs, introducing what is known as “cross-layer authentication.” This thesis focuses on designing efficient cross-layer authentication schemes for VANETs, reducing the communication and computation overheads associated with transmitting and verifying a crypto-based signature for each transmission. The following provides an overview of the proposed methodologies employed in various contributions presented in this thesis. 1. The first cross-layer authentication scheme: A four-step process represents this approach: initial crypto-based authentication, shared key extraction, re-authentication via a PHY challenge-response algorithm, and adaptive adjustments based on channel conditions. Simulation results validate its efficacy, especially in low signal-to-noise ratio (SNR) scenarios while proving its resilience against active and passive attacks. 2. The second cross-layer authentication scheme: Leveraging the spatially and temporally correlated wireless channel features, this scheme extracts high entropy shared keys that can be used to create dynamic PHY-layer signatures for authentication. A 3-Dimensional (3D) scattering Doppler emulator is designed to investigate the scheme’s performance at different speeds of a moving vehicle and SNRs. Theoretical and hardware implementation analyses prove the scheme’s capability to support high detection probability for an acceptable false alarm value ≤ 0.1 at SNR ≥ 0 dB and speed ≤ 45 m/s. 3. The third proposal: Reconfigurable intelligent surfaces (RIS) integration for improved authentication: Focusing on enhancing PHY-layer re-authentication, this proposal explores integrating RIS technology to improve SNR directed at designated vehicles. Theoretical analysis and practical implementation of the proposed scheme are conducted using a 1-bit RIS, consisting of 64 × 64 reflective units. Experimental results show a significant improvement in the Pd, increasing from 0.82 to 0.96 at SNR = − 6 dB for multicarrier communications. 4. The fourth proposal: RIS-enhanced vehicular communication security: Tailored for challenging SNR in non-line-of-sight (NLoS) scenarios, this proposal optimises key extraction and defends against denial-of-service (DoS) attacks through selective signal strengthening. Hardware implementation studies prove its effectiveness, showcasing improved key extraction performance and resilience against potential threats. 5. The fifth cross-layer authentication scheme: Integrating PKI-based initial legitimacy detection and blockchain-based reconciliation techniques, this scheme ensures secure data exchange. Rigorous security analyses and performance evaluations using network simulators and computation metrics showcase its effectiveness, ensuring its resistance against common attacks and time efficiency in message verification. 6. The final proposal: Group key distribution: Employing smart contract-based blockchain technology alongside PKI-based authentication, this proposal distributes group session keys securely. Its lightweight symmetric key cryptography-based method maintains privacy in VANETs, validated via Ethereum’s main network (MainNet) and comprehensive computation and communication evaluations. The analysis shows that the proposed methods yield a noteworthy reduction, approximately ranging from 70% to 99%, in both computation and communication overheads, as compared to the conventional approaches. This reduction pertains to the verification and transmission of 1000 messages in total

    Contraction analysis of nonlinear systems and its application

    Get PDF
    The thesis addresses various issues concerning the convergence properties of switched systems and differential algebraic equation (DAE) systems. Specifically, we focus on contraction analysis problem, as well as tackling problems related to stabilization and synchronization. We consider the contraction analysis of switched systems and DAE systems. To address this, a transformation is employed to convert the contraction analysis problem into a stabilization analysis problem. This transformation involves the introduction of virtual systems, which exhibit a strong connection with the Jacobian matrix of the vector field. Analyzing these systems poses a significant challenge due to the distinctive structure of their Jacobian matrices. Regarding the switched systems, a time-dependent switching law is established to guarantee uniform global exponential stability (UGES). As for the DAE system, we begin by embedding it into an ODE system. Subsequently, the UGES property is ensured by analyzing its matrix measure. As our first application, we utilize our approach to stabilize time-invariant switched systems and time-invariant DAE systems, respectively. This involves designing control laws to achieve system contractivity, thereby ensuring that the trajectory set encompasses the equilibrium point. In oursecond application, we propose the design of a time-varying observer by treating the system’s output as an algebraic equation of the DAE system. In our study on synchronization problems, we investigate two types of synchronization issues: the trajectory tracking of switched oscillators and the pinning state synchronization. In the case of switched oscillators, we devise a time-dependent switching law to ensure that these oscillators effectively follow the trajectory of a time-varying system. As for the pinning synchronization problem, we define solvable conditions and, building upon these conditions, we utilize contraction theory to design dynamic controllers that guarantee synchronization is achieved among the agents

    The use of proxies in designing for and with autistic children: supporting friendship as a case study

    Get PDF
    Participatory Design (PD) is an approach for designing new technologies which involves end users in the design process. It is generally accepted that involving users in the design process gives them a sense of ownership over the final product which enhances its usability and acceptance by the target population. Employing a PD approach can introduce multiple challenges especially when working with autistic children. Many approaches for involving autistic children and children with special needs were developed to address these challenges. However, these frameworks introduce their own limitations as well. There is an ethical dilemma to consider in the involvement of autistic children in the design process. Although we established the ethical benefit of involving children, we did not address the ethical issues that will result from involving them in these research projects. Among other issues, the nature of design workshops we as a community currently run require working with unfamiliar researchers and communicating with them while social and communication differences are one of the main diagnostic criteria for autism. When designing for autistic children and other vulnerable populations an alternative (or most often an additional) approach is designing with proxies. Proxies for the child can be one of several groups of other stakeholders, such as: teachers, parents and siblings. Each of these groups may inform the design process, from their particular perspective, and as proxies for the target group of autistic children. Decisions need to be made about what stages in the design process are suited to their participation, and the role they play in each case. For this reason, we explore the role of teachers, parents, autistic adults and neurotypical children as proxies in the design process. To explore the roles of proxies we chose friendship between autistic and neurotypical children as the context we are designing for. We are interested in understanding the nature of children's friendships and the potential for technology to support them. Although children themselves are the ones who experience friendship and challenges around its development and peer interaction, they might find it difficult to articulate the challenges they face. Furthermore, it is unrealistic to expect children to identify strategies to help them overcome the challenges with friendship development that they are facing as it assumes children have the social skills to come up with these strategies in the first place. Hence, it is necessary in this context to consider proxies who can identify challenges and suggest ways to overcome them

    Auditable and performant Byzantine consensus for permissioned ledgers

    Get PDF
    Permissioned ledgers allow users to execute transactions against a data store, and retain proof of their execution in a replicated ledger. Each replica verifies the transactions’ execution and ensures that, in perpetuity, a committed transaction cannot be removed from the ledger. Unfortunately, this is not guaranteed by today’s permissioned ledgers, which can be re-written if an arbitrary number of replicas collude. In addition, the transaction throughput of permissioned ledgers is low, hampering real-world deployments, by not taking advantage of multi-core CPUs and hardware accelerators. This thesis explores how permissioned ledgers and their consensus protocols can be made auditable in perpetuity; even when all replicas collude and re-write the ledger. It also addresses how Byzantine consensus protocols can be changed to increase the execution throughput of complex transactions. This thesis makes the following contributions: 1. Always auditable Byzantine consensus protocols. We present a permissioned ledger system that can assign blame to individual replicas regardless of how many of them misbehave. This is achieved by signing and storing consensus protocol messages in the ledger and providing clients with signed, universally-verifiable receipts. 2. Performant transaction execution with hardware accelerators. Next, we describe a cloud-based ML inference service that provides strong integrity guarantees, while staying compatible with current inference APIs. We change the Byzantine consensus protocol to execute machine learning (ML) inference computation on GPUs to optimize throughput and latency of ML inference computation. 3. Parallel transactions execution on multi-core CPUs. Finally, we introduce a permissioned ledger that executes transactions, in parallel, on multi-core CPUs. We separate the execution of transactions between the primary and secondary replicas. The primary replica executes transactions on multiple CPU cores and creates a dependency graph of the transactions that the backup replicas utilize to execute transactions in parallel.Open Acces

    Sociotechnical Imaginaries, the Future and the Third Offset Strategy

    Get PDF

    Secure storage systems for untrusted cloud environments

    Get PDF
    The cloud has become established for applications that need to be scalable and highly available. However, moving data to data centers owned and operated by a third party, i.e., the cloud provider, raises security concerns because a cloud provider could easily access and manipulate the data or program flow, preventing the cloud from being used for certain applications, like medical or financial. Hardware vendors are addressing these concerns by developing Trusted Execution Environments (TEEs) that make the CPU state and parts of memory inaccessible from the host software. While TEEs protect the current execution state, they do not provide security guarantees for data which does not fit nor reside in the protected memory area, like network and persistent storage. In this work, we aim to address TEEs’ limitations in three different ways, first we provide the trust of TEEs to persistent storage, second we extend the trust to multiple nodes in a network, and third we propose a compiler-based solution for accessing heterogeneous memory regions. More specifically, • SPEICHER extends the trust provided by TEEs to persistent storage. SPEICHER implements a key-value interface. Its design is based on LSM data structures, but extends them to provide confidentiality, integrity, and freshness for the stored data. Thus, SPEICHER can prove to the client that the data has not been tampered with by an attacker. • AVOCADO is a distributed in-memory key-value store (KVS) that extends the trust that TEEs provide across the network to multiple nodes, allowing KVSs to scale beyond the boundaries of a single node. On each node, AVOCADO carefully divides data between trusted memory and untrusted host memory, to maximize the amount of data that can be stored on each node. AVOCADO leverages the fact that we can model network attacks as crash-faults to trust other nodes with a hardened ABD replication protocol. • TOAST is based on the observation that modern high-performance systems often use several different heterogeneous memory regions that are not easily distinguishable by the programmer. The number of regions is increased by the fact that TEEs divide memory into trusted and untrusted regions. TOAST is a compiler-based approach to unify access to different heterogeneous memory regions and provides programmability and portability. TOAST uses a load/store interface to abstract most library interfaces for different memory regions

    2023-2024 Catalog

    Get PDF
    The 2023-2024 Governors State University Undergraduate and Graduate Catalog is a comprehensive listing of current information regarding:Degree RequirementsCourse OfferingsUndergraduate and Graduate Rules and Regulation

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    ABC: Adaptive, Biomimetic, Configurable Robots for Smart Farms - From Cereal Phenotyping to Soft Fruit Harvesting

    Get PDF
    Currently, numerous factors, such as demographics, migration patterns, and economics, are leading to the critical labour shortage in low-skilled and physically demanding parts of agriculture. Thus, robotics can be developed for the agricultural sector to address these shortages. This study aims to develop an adaptive, biomimetic, and configurable modular robotics architecture that can be applied to multiple tasks (e.g., phenotyping, cutting, and picking), various crop varieties (e.g., wheat, strawberry, and tomato) and growing conditions. These robotic solutions cover the entire perception–action–decision-making loop targeting the phenotyping of cereals and harvesting fruits in a natural environment. The primary contributions of this thesis are as follows. a) A high-throughput method for imaging field-grown wheat in three dimensions, along with an accompanying unsupervised measuring method for obtaining individual wheat spike data are presented. The unsupervised method analyses the 3D point cloud of each trial plot, containing hundreds of wheat spikes, and calculates the average size of the wheat spike and total spike volume per plot. Experimental results reveal that the proposed algorithm can effectively identify spikes from wheat crops and individual spikes. b) Unlike cereal, soft fruit is typically harvested by manual selection and picking. To enable robotic harvesting, the initial perception system uses conditional generative adversarial networks to identify ripe fruits using synthetic data. To determine whether the strawberry is surrounded by obstacles, a cluster complexity-based perception system is further developed to classify the harvesting complexity of ripe strawberries. c) Once the harvest-ready fruit is localised using point cloud data generated by a stereo camera, the platform’s action system can coordinate the arm to reach/cut the stem using the passive motion paradigm framework, as inspired by studies on neural control of movement in the brain. Results from field trials for strawberry detection, reaching/cutting the stem of the fruit with a mean error of less than 3 mm, and extension to analysing complex canopy structures/bimanual coordination (searching/picking) are presented. Although this thesis focuses on strawberry harvesting, ongoing research is heading toward adapting the architecture to other crops. The agricultural food industry remains a labour-intensive sector with a low margin, and cost- and time-efficiency business model. The concepts presented herein can serve as a reference for future agricultural robots that are adaptive, biomimetic, and configurable
    • …
    corecore