9,314 research outputs found

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    On the engineering of crucial software

    Get PDF
    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described

    A bibliography on formal methods for system specification, design and validation

    Get PDF
    Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed

    Self-stabilizing tree algorithms

    Full text link
    Designers of distributed algorithms have to contend with the problem of making the algorithms tolerant to several forms of coordination loss, primarily faulty initialization. The processes in a distributed system do not share a global memory and can only get a partial view of the global state. Transient failures in one part of the system may go unnoticed in other parts and thus cause the system to go into an illegal state. If the system were self-stabilizing, however, it is guaranteed that it will return to a legal state after a finite number of state transitions. This thesis presents and proves self-stabilizing algorithms for calculating tree metrics and for achieving mutual exclusion on a tree structured distributed system

    Data locality in Hadoop

    Get PDF
    Current market tendencies show the need of storing and processing rapidly growing amounts of data. Therefore, it implies the demand for distributed storage and data processing systems. The Apache Hadoop is an open-source framework for managing such computing clusters in an effective, fault-tolerant way. Dealing with large volumes of data, Hadoop, and its storage system HDFS (Hadoop Distributed File System), face challenges to keep the high efficiency with computing in a reasonable time. The typical Hadoop implementation transfers computation to the data, rather than shipping data across the cluster. Otherwise, moving the big quantities of data through the network could significantly delay data processing tasks. However, while a task is already running, Hadoop favours local data access and chooses blocks from the nearest nodes. Next, the necessary blocks are moved just when they are needed in the given ask. For supporting the Hadoop’s data locality preferences, in this thesis, we propose adding an innovative functionality to its distributed file system (HDFS), that enables moving data blocks on request. In-advance shipping of data makes it possible to forcedly redistribute data between nodes in order to easily adapt it to the given processing tasks. New functionality enables the instructed movement of data blocks within the cluster. Data can be shifted either by user running the proper HDFS shell command or programmatically by other module like an appropriate scheduler. In order to develop such functionality, the detailed analysis of Apache Hadoop source code and its components (specifically HDFS) was conducted. Research resulted in a deep understanding of internal architecture, what made it possible to compare the possible approaches to achieve the desired solution, and develop the chosen one

    A general graphical user interface for automatic reliability modeling

    Get PDF
    Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given

    Subcube embeddability and fault tolerance of augmented hypercubes

    Full text link
    Hypercube networks have received much attention from both parallel processing and communications areas over the years since they offer a rich interconnection structure with high bandwidth, logarithmic diameter, and high degree of fault tolerance. They are easily partitionable and exhibit a high degree of fault tolerance. Fault-tolerance in hypercube and hypercube-based networks received the attention of several researchers in recent years; The primary idea of this study is to address and analyze the reliability issues in hypercube networks. It is well known that the hypercube can be augmented with one dimension to replace any of the existing dimensions should any dimension fail. In this research, it is shown that it is possible to add i dimensions to the standard hypercube, Qn to tolerate (i - 1) dimension failures, where 0 \u3c i ≤ n. An augmented hypercube, Qn +(n) with n additional dimensions is introduced and compared with two other hypercube networks with the same amount of redundancy. Reliability analysis for the three hypercube networks is done using the combinatorial and Markov modeling. The MTTF values are calculated and compared for all three networks. Comparison between similar size hypercube networks show that the augmented hypercube is more robust than the standard hypercube; As a related problem, we also look at the subcube embeddability. Subcube embeddability of the hypercube can be enhanced by introducing an additional dimension. A set of new dimensions, characterized by the Hamming distance between the pairs of nodes it connects, is introduced using a measure defined as the magnitude of a dimension. An enumeration of subcubes of various sizes is presented for a dimension parameterized by its magnitude. It is shown that the maximum number of subcubes for a Qn can only be attained when the magnitude of dimension is n - 1 or n. It is further shown that the latter two dimensions can optimally increase the number of subcubes among all possible choices
    • …
    corecore