
j /

/y

/,p_J _/7--_: <.

, . w ?

• .I ,_/

PARALLEL ARCltITECTURES FOR P_Y E_PI_RATION REQ_S

(P.A.P.E.R)

(InterimReport)

Principal Investigators

Ruknet Cezzar and Ranjan K. Sen

Department of Computer Science

Hampton University

Hampton, Virginia

Technical Officer

Wayne H. Bryant, Head

Systems Architectures Branch

NASA Langley Research Center

ISD M/S 478

Hampton, Virginia 23665

Grant Number: NAG-I-949

Grant Period: January 12, 1989 - December 31, 1989

June 25, 1989

(NASA-CR-185370) PARALLEL ARCHITECTURES FOB

PLANETARY EXPLOR&TION REQUIREMENTS {PAPER)

Interim Report {Hampton Inst.) 57 p
CSCL 03B

G3/91

N89-28475

Unclas

0217444

https://ntrs.nasa.gov/search.jsp?R=19890019104 2020-03-20T00:37:52+00:00Z

TABLE OF CONTENTS

I °

II.

III.

OVERVIEW

ACTIVITIES

2.1 Getting Started

2.2 Conferences, Seminars, and Presentations

PAPER CLASS ARCHITECTURES

3.1 Review of Requirements Data

3.2 Experimental Architectures

4

5

IV.

V.

VI.

VII.

AREAS OF FOCUS

4.1 Reconfiguration for Distributed

Fault Tolerance

4.2 Applicative Caching for Avoiding
recomputation of Functions

4.3 Software fault-tolerance involving

design diversity and N-version

programming

4.4 Distributed neural computations

on parallel systems

PROPOSED FUTURE ACTIVITIES

5.1 Trip to Jet Propulsion Laboratory

5.2 Trip to Charles Stark Draper Laboratory

5.3 Attendance at HBCU Symposium

CONCLUSION

REFERENCES

15

34

35

36

VIII. FIGURES 42

7.1

7.2

7.3

7.4

7.5

The AIPS Configuration

AIPS Intercomputer Network

MAX Hierarchy and Module Concept

MAX Interconnections and Cluster/Domain Example

MAX Data Flow and Large Grain Implementation

APPENDICES 47

Appendix I:

Appendix II:

Task Assignments

Neural Computing Bibliography

I. OVERVIEW

The Department of Computer Science at Hampton University, historically a

minority institution, was established in 1985. This fairly new department

offers B.S. degree in Computer Science and Computer Information System.

The department is accredited by the National Board and both the programs

mentioned above closely adheres to the Association for Computing Machinery

(ACM) guidelines.

In the department a considerable research effort is being made through

projects funded by organizations like NASA Langley Research Center,

Department of Defense (DoD), and the National Science Foundation (NSF).

Some of these projects, such as the planning project with NSF (coined

HELPAR), aims to develop a long-term research infrastructure. The existing

research emphasis emanates from the interested faculty and also from the

desire for establishment of a graduate program in computer science, which is

presently absent.

Parallel Architectures for Planetary Exploration Requirements (PAPER)

project is essentially research oriented towards technology insertion

issues for NASA's unmanned planetary probes. This has been initiated to

complement and augment the long-term efforts for space exploration with

particular reference to NASA/LaRC's (NASA Langley Research Center) research

needs for planetary exploration missions of mid and late 1990s. The

rationale in this project includes the prospect of building research

expertise involving minority faculty and students in this department.

This report is organized as follows. Section II essentially covers the

activities of the project personnel carried out since January 1989. These

include initial efforts in setting up the administrative and related

mechanisms for smooth functioning. This section also includes the

discussions of our participation in technical seminars, conferences,

literature surveys.

Section III presents our basic review of the requirements data for the

"PAPER Class architectures". We review the old AIPS (Advanced Information

Processing Systems) requirements that were the result of a survey conducted

in 1983 by CSDL, and more recent requirements data involving planetary

rovers from Jet Propulsion Laboratory. The discussion includes review of

experimental fault-tolerant architectures proposed by Charles Stark Draper

Laboratory (CSDL) and Jet Propulsion Laboratory/California Institute of

Technology (JPL/Caltech). Specifically, these include CSDL's AIPS

Configuration based on Fault Tolerant Processor (FTP) building blocks,

JPL's MAX Fault-Tolerant Dataflow Multiprocessor, and a Large-Scale Fault-

Tolerant Snooping-Cache Multiprocessor also developed at JPL/Caltech.

Section IV presents the areas of research focus for the investigators. It

is felt that, while the requirements data is being analyzed, these will be

major impact items for designing computational support for planetary

exploration missions. Specifically, we cover the problem of reconfiguration

for distributed fault tolerance, applicative caching for reccursive

computations, software fault-tolerance and artificial intelligence support
for reliability. In addition, as an early preparation for Phase II, we
review the promising new area of neural computing and its possible use in
space explorations. A bibliography of recent publications along with a
survey is provided. In addition, ways of implementing neural networks on
distribute systems, such as the planetary rover [64] is discussed.

Section V outlines the plans for the remainder of Phase I. This includes
the planned activities involving on-the-spot study CSDLand JPLrs work in
the area of computer architectures for unmanneddeep space probes. This
section concludes by defining our research directions for the remainder of
the current phase. These research directions will lead us into the
continuation of the project into subsequent phases.

Section VI concludes by stating the additional work to be done in the
remainder of Phase i, and potential research areas for subsequent phases
with renewed funding. It was possible only to look into two different
systems in somewhatdetails. Related architectures that are current
projects in NASAResearch Laboratories and other National Laboratories need
to be examined.

II. ACTIVITIES

As already mentioned a major part of our activities in the interim period
have been administrative. The purpose was the building of the faculty
research team with task assignments and enlisting the participation of
graduate and undergraduate minority students. For LaRCside, we have
gathered information regarding the requirements for computational support,
and possible parallel architectures for, the unmannedplanetary exploration
missions.

In this period the efforts have been focused upon AIPS work being done at
Charles Stark Draper Laboratory, and the various JPL initiatives that
involve novel fault tolerance concepts and specification of requirements of
a planetary rover.

2.1 Getting Started

One of our first steps in planning was to provide details of our travel

plans for visits to NASA sites in order to collect direct information

regarding requirement and evaluation process. Upon funding for Phase 1 of

the project for the period from January 12 to December 31, 1989, we had

solicited the participation of graduate and undergraduate students in

Hampton University. Once we obtained such support we provided, generally in

writing, task assignments for both the student assistants and research

faculty of the project. The details of task assignments, shown in Appendix

I, present the nature of involvement of such people.

With the help of the student assistants, and through partial effort by the
co°principal investigators, we have collected the relevant articles,
proceedings, and textbooks. In particular, we have organized the
references included in our original proposal. Moreover, as a preparation
for future research on neural computing, we have collected various tutorial
and investigative material for survey and identification of problem areas.
This included a tutorial series of articles that appeared in AI Expert, and
a bibliography of the most recent books and articles shown in Appendix II.

Another major effort in this interim period was the building of a multiple
processor performance simulator for testing out various process management
policies for parallel machines [23,24]. This work was carried out by two
student assistants using HamptonUniversity's Academic Computer Center VAX
facilities. The simulator is being developed in VMSPascal. So far we had a
modest success because of slowing downdue to change in personnel. When
completed this simulator will flexibly test out process managementpolicies
for efficient distributed computations. At the sametime, we have obtained
and installed the iPSC/2 simulator for hypercube programming experiments on
the VAX8350 ULTRIXsystem [50].

Another effort was in the researching of applicative caching on list
oriented dataflow machines [92]. Moreover, research in the area of graph-
theoretic computation were conducted [93]. Theseworks have been presented
to seperate International conferences.

2.2 Conferences, Seminars, and Presentations

The co°investigators, with funding from an NSF grant, attended the Fourth

Hypercube Concurrent Computer and Applications Conference (HCCA4), Monterey,

California, March 6-8, 1989. Since this conference was sponsored, in part,

by JPL/Caltech, we had a chance to meet with JPL research staff and discuss

related work. For example, a poster presentation [49] was of some interest.

We have also met with other JPL technical staff [84] who has participated in

the conference as session organizers [66] or presenters and discussed our

project.

Dr. Ranjan K. Sen, co-investigator, presented his two seperate works

respectively at the 20 Southeastern Conf. Combinatorics Grpah Theory

Computing, Boca Rotan, Florida, Feb 1989 and at the International Conference

on Computers and Information, May 23-27, Toronto, Canada. These works

[92,93] concerns graph embedding and applicative caching for avoiding

recomputation in highly computational jobs. We feel that these work has

potential application in problems of embedding and avoiding recomputation

for dataflow systems with particular reference to the MAX architectural

concept [81].

We have submitted the work entitled "An Algorithm for Optimal Communication

in a Distributed System with Limited Number of Ports per Node," for

conference presentation. This work has relevance in terms of increasing the

communication efficiency of distributed computations in a fully-connected

tightly-coupled parallel architectures.

III. PAPERCLASSARCHITECTURES

The "PAPERClass Architecture" stands for a computing system that is most
suitable for unmannedplanetary and deep-space explorations. Generally,
this involves the three mission modules: Spacecraft (fly-by or orbiter),
lander, and rovers. An important consideration, as with all other types of
missions mannedor unmanned,is the reliability of the computational

support. This, in fact, has made the computational support of space

missions more specialized and expensive. Unfortunately, there is no

standard and agreed-upon terminology in this area. In general, as is the

case with the discussion of AIPS and MAX systems, the terms fault-tolerance,

availability, and maintainability are used to characterize the reliability

of computational support. In order to clarify terminology, we first provide

the following definitions.

Reliability:

The conditional probability that a system has survived the interval (0,t)

provided that it was correctly operating at time t=O. Informally, this

means the system is still providing the acceptable level of service at time

t, after possibly undergoing faults and recoveries.

This measure is a probability usually expressed as a percentage. For

example, in [83], the reliability of one VLSI chip is assumed to be .9948

(or 99.48 %) over a 10-year mission duration.

Failure Rate:

The probability of failures per unit time, where time is usually measured in

hours or seconds.

For example, the failure rate of the above VLSI chip is .6 x 10 .7 per

second. Another example is that, in AIPS one mission requirement is the

failure probability of 10 .9 per hour.

Availability:

The probability the system is operational (not necessarily providing the

expected functionality) at a given instant of time, independently of

previous faults.

Fault tolerance:

The ability to maintain an acceptable level of system functionality with

high probability over the duration of the mission in the presence of faults.

Fault tolerance is expressed in terms of the types of faults covered in a

qualitative manner (e.g. Byzantine resilience means protection from

malicious faults, as opposed to other types of tolerance), and also in terms

of the percentage of coverage of possible multiple faults. As can be seen,

it is difficult to measure and compare one "fault tolerance" with any other

"fault tolerance"

Maintainability:

The extent to which the system can continue operating through replacement of

modules and parts as necessary with least amount of effort.

As can be seen this is an entirely qualitative (subjective) measure that

depends on the manner of module repair and/or replacement.

Dependability:

The quality of the delivered service such that reliance can justifiably be

placed on this service.

As can be seen, this is a highly circular definition from [65] based on the

term "reliance".

An objective of Phase 1 of our project is the specification of a PAPER

class architecture (or a family of such architectures) as the basis for

more focused research in subsequent phases.

In the original proposal, we have articulated and stressed the need for a

systematic top-down approach for derivation of PAPER class through the

following steps:

Mission requirements

Functional requirements

Architectural features

Architectural design specifications

Although, at that time, we were less familiar with the early studies on

AIPS [1,2,62], it turns out that our approach is similar to this valuable

but now dated work. The CSDL follow-up work on AIPS as reported in [34,82]

aims to continue and extend the same approach using more recent technology

in hardware and software.

Briefly, in that work, the basic approach consists of the following steps

that relate to our aforementioned approach.

- Requirements: This is the same as the mission requirements

above except for broader scope that encompass not only the

unmanned planetary explorations but many other types of space

missions.

- Attributes: We referred to these as architectural features.

- Architectural design rules and specification guidelines:

In our case, this is simply the specification of the PAPER

architecture using different techniques.

In [34], the last step involves "AIPS Knowledge Base Methodology", where

well-defined design rules (in small chunks) are derived and incorporated

into a comprehensive knowledge database. Presumably, this database can then

be intelligently analyzed by a rule-based expert system, to arrive at system

architectures that adhere to predefined reliability requirements. Although

some flexibility, in terms of different architectures for different

missions, exists; the overall computing system is confined to AIPS

technology. AIPS technology, in turn, is based upon the FTP concepts [61].

There have been various work in similar direction elsewhere that utilizes

different technologies to achieve same level of reliability. Thus, there is

no need to rely exclusively upon a specific methods such as those used in

FTP to build sufficiently reliable systems. We need the kinds of methods

that allows utilization of various differently types of technologies to

achieve the reliability as well other system requirements.

3.1 Review of Requirements Data

One of the important source materials for requirements data in connection

with space missions is the AIPs study [i]. This study includes some

relevant requirements data on "Unmanned Deep Space Probes" that is of

interest to us. The other most important sources is the work based at

JPL/Caltech involving the requirements for Planetary Rover [64] along with

the fault-tolerance requirements for Spaceborne Parallel Computers [25].

We first cover the requirements data for planetary explorations in general.

Then, we review of AlP Requirements Study as it pertains to unmanned deep-

space probes. Finally, we briefly review the more recent work at JPL/

Caltech on computational and data storage requirements for planetary rovers

and fault tolerance requirements for space borne parallel computers.

For unmanned planetary explorations, we have the following categories of

requirements as listed in our proposal:

I. Ultra-high reliability

2. Availability

3. Real-time response

4. High-performance

5. Adaptability

6. Extendibility

7. Intelligence

8. Compactness

9. Robustness

i0° Communication interfaces

The early work conducted in 1983-84 on Advanced Information Processing

System (AIPS) requirements by Charles Stark Draper Laboratory (CSDL),

although a very worthwhile effort in this direction, does not address all

the requirement categories mentioned above for the unmanned planetary and

deep space probes. This study attempted to determine widely-differing and

sometimes conflicting demandsof seven different types of missions, with
results pertaining to unmanneddeep space probes not sufficiently detailed.
This summaryis restated below:

Allowable mission
failure probability
Mission duration
Mean-time-to-repair:

On-board
Ground

10-2

5 years

Not Applicable
Not Applicable

Throughput (MIPS)
On-line Memory(Bytes)
Massmemory(Bytes)
Peak I/O Rate (bits/sec)

0.5
300K
IM (long pole I00 M)
1.5 M

Maximumcycle rate (Hz) 20
Minimumtransport lag (ms) i0

As is quite obvious, these are rather modest requirements that can easily be
met by today's computing technology. Even whenwe consider the "long pole"
massmemoryrequirement of I00 MB), we see that the 32-bit high-end PC_s
(let alone 64-bit super high end PCsas in [68], meets and even exceeds the
stated requirements, with the possible exception of ultra reliability
through fault-tolerance. However, the reliability requirements for mission
class involving planetary and deep-space probes is not very stringent. This
raises the possibility a multitude of different system configurations,
hardware and software, equally capable of supporting this mission class.
Thus, the current hardware and software technologies seemto provide
support for a wider spectrum of mission requirements. The question then
becomesone of economy, efficiency, and sophistication in carrying out the
typical functions.

More stringent requirements have arisen as a result of technological
advancementsin the following areas:

o Sensor data capture and analysis.

100s of MIPS, even GFLOPSare required for real-time capture
and quick (on-board) analysis of vast amount of data to be
collected.

o Robotic systems

The requirements are demanding, such as 10-20 MIPS for various
sophisticated robotic functions (vision and cognition, locomotion,
voice analysis, etc.). These requirements are especially relevant
to missions where the rovers on planetary surface are used.

I0

The JPL/Caltech work reflects the above-mentioned trends in requirements.
The following is a functional breakdown for a planetary rover in terms of
storage and performance requirements.

ii

Function Storage Mopsper Cycles per Mopsper
(Mbits) cycle meter meter

Structured Light Vision 109 6.5
Stereo Imaging 337 i000
Laser Scanner 8.2 118
Radar Sensor 1.95 I0
Path Planner 80 5
Geometric Hazard Detection 121 27
Vehicle/Mobility Control 215 2.2
Articulation & Wheel Control 228 0.0661
Pointing Control 0.008 0.006
Manipulator Control 421 2.25
Telemetry Handling 634 0.75
System Fault Protection > i000 34
Commandand Data Handling 8 i
Power& Thermal Management 0.004 0.001
Science 54000 ?

5 32.5
0.5 500

5 590
0.2 2

0.01 0.05
5 135
5 ii
5 0.330

N/A N/A
N/A N/A
N/A N/A

5 170
N/A N/A
N/A N/A
N/A N/A

Based upon the above metrics, one can determine the Mops (Megaoperations
per second) for each function, and then combine these judiciously to get
the overall storage and efficiency requirements for an operational scenario
involving a planetary rover. An example in [83] gives the total numberof
operations for 30-second traverse of a typical application as 848.9 Mops.
An estimate of processing rate is 28.3 Mops/second. Since it is assumed
that an operation on the average can be carried out by a 32-bit machine
instruction, we can have a rough idea of performance requirements in the
range from 20 to 30 MIPS (e.g. 28.3 for this scenario). This agrees with
the above-mentioned requirements for robotics system support for rovers.

For more demandingapplications, such as a laser scanner that raster scans a
scene and measures range through phase modulation, the computational
requirements can be as high as 118 MFLOPSper cycle for a total of 590 Mops
per meter [64]. This agrees with the above data capture requirements.

3.2 Experimental Architectures

We have looked at three experimental architectures that aims to meet the

above mentioned requirements, with primary focus on reliability through

fault tolerance:

o AIPS Proof of Concept Configuration

o MAX Fault-Tolerant Multiprocessor Configuration

o Fault-Tolerant Snooping-Cache Multiprocessor

12

The last experimental architecture [83] uses a cost-effective approach to

the design of a fault-tolerant parallel system for ground and satellite

applications. The basic approach is to add fault tolerance capability to a

snooping-cache multiprocessor that already possess other desired

characteristics such as high performance. This is a cost-effective solution

since the parallel machine is commercially available. Specifically,

Multimax/Ultramax reliability modeling is used to achieve the desired fault

tolerance in Encore's Multimax parallel computer. This work is useful in

providing insight into the issues of fault tolerance in a shared-memory

system that has desired performance but is not fault tolerant. However, as

explicitly stated in [83], this experimental system is intended as ground-

based or satellite-based system, and therefore not suitable for planetary

and deep space probes. One important contribution of this work is the ball

park fault-tolerance requirement of 95 % reliability over a i0 year period

for all space missions. Such a reliability objective is applicable to

planetary exploration and deep-space probes whose mission period range from

5 to 15 years.

The last experimental system thus eliminated, either one of the first two

system is a good candidate for a PAPER class. Since the design approaches

for these systems mimic the proposed systematic approach from requirements

to features to design, these systems can be adopted as platforms for the

future planetary explorations. The advantage will be in not repeating the

steps for specification of a PAPER class architecture that meet all of the

ten requirement categories.

AIPS Proof of Concept Configuration

We have already mentioned the early work done in 1983 for requirements and

system definition of Advanced Information Processing System. The recent

presentation of AIPS Activities [34] has stated the overall objective to be

the development of a knowledge base that will allow validated fault

tolerance on distributed system architectures. This is to apply towards a

broad range of situations including those which has a failure probability

requirement as low as 10 .9 at i0 hours.

Toward the stated aim of Proof of Concept (POC)design that is verifiable
for ultra reliability and is distributed, the status of work completion has
been reported in [34] as:

Distributed Hardware

The centralized AIPS configuration is shown in Figure i. It is a 15°node

configuration that consists of five triplex FTP sites, and can be configured

in various redundancy formulations. As shown in Figure 2, the basic AIPS

Intercomputer Network may be configured as four processing sites that

consists of two triplex, one duplex, and one simplex FTP sites. The AIPS

architecture consists of the following hardware building blocks:

o Fault Tolerant Processor (FTP)

Input/Output Network that consists of up to 30 circuit-switched

nodes.

o GPC-Network Interfaces consisting of Input/Output Sequencers.

Centralized Software

Consists of the Operating System and Network Services Software. The

software building blocks are:

o Local System Services

o Input/Output System Services

The work on distributed software has not yet been reported.

currently under way for Fiscal Year 1989.

The main characteristics of the AIPS IC Network are:

O

O

O

O

O

O

This work is

Triple redundancy of intercomputer links (layers)

Support of mixed redundancy of subscribing sites

Dynamic mastership contention; arbitration distributed

Asynchronous operation (no common clock)

Reconfigurable switching nodes in layers

Standard bit-oriented communication protocol

13

The design objectives for the FY88tasks have been summarized in two main
categories as:

Quantitative -- Function reliability
Function throughput
Transport delay
I/O Rate

Qualitative Adaptability and growth
Maintainability
Validability

Since someof the terms above have not been adequately defined, it is
difficult to assess whether all these objectives have been met. However,
in terms of someof the requirement items, this work has significant
contribution towards definition of the PAPERclass architectures. In
particular, the proposed architecture integrates the fault-tolerance
requirements to the computing architecture in a robust manner. This means
that it meets or even exceeds the modest reliability requirements of
planetary explorations

Thus, while CSDLrsDistributed AIPS Configuration meets the reliability
requirements, the proposed design is complex, specialized, and expensive
because of stringent fault-tolerance requirements. The implementation
mechanismare elaborate and usually entails great deal of hardware
redundancy and software reconfiguration overhead.

14

MAXFault-Tolerant Multiprocessor Configuration

At this time, we have only sketchy information from [81] regarding this
experimental system that appears to be very promising for computational
support of planetary explorations. As will be discussed in Section 5.1, we
intend to visit JPL/Caltech in order to obtain more direct data regarding
this system as well as other experimental systems that are candidates for
PAPERClass.

MAXprovides a great deal of flexibility in its hierarchial architecture
shown in Figure 3, and meshworkconfiguration shown in Figure 4. Figure 3
shows the basic fault-tolerance concept at the node module, where "A MAX
Module" is a duplex configuration with backup capability. As we interpret
it, a programmingmodel that consists of a mixture of data flow graph and
sequential program segments is provided for maximal software reliability.
This approach shown in Figure 3 allows large grain implementations of
functions, data segments, and high level language constructs as tokens of a
well-defined dataflow graph thereby avoiding side effects. Except for the
drawback of programmingcomplexity that must be faced in any type of data
flow model, this approach is ideal for reliability above hardware levels.
In addition, a hierarchial fault coverage is provided where each level
protects the one beneath it. Maxhas someother attractive features such as
efficient sparing techniques for redundant hardware componentsand software
modules. The architecture does not claim to be ultra reliable with

Byzantine resilience and source congruency as is the case with AIPS
configuration. However, it is quite capable of acceptable levels of
reliability. This is accomplished by just the required degree of redundancy
with respect to both hardware and software. Moreover, through partitioned
resources on modules executing critical functions, mixed coverage in shared
hardware is provided.

In conclusion, if we take the view that unmannedplanetary missions do not
necessarily require ultra reliability, the MAXarchitectural concept appears
to be promising. Wewould like to obtain details of this work during our
visit to see if it can adequately meet all of the ten requirement items
(e.g. including size, wiring, etc.) mentioned in the previous section. We
would like to investigate the addition of neurocomputing capability to this
architecture as discussed in Section 4.4. If MAXarchitecture has neural
computing capability, it can meet (or exceed) the demandingcognition task
of a planetary rover as exemplified with a scene analysis in [64].

15

IV. AREASOFFOCUS

It appears that there is no easy solution to the complete specification of
the PAPERclass architectures. This is due to the diverse nature of the
requirements and inter-dependence between requirements and rapid
technological advancements. In other words, requirements keep changing as
the new technologies offers functional capabilities not envisaged earlier.
The examples involving early AIPS requirements work (very modest computing
resources) versus the recent JPL studies (extensive data acquisition
requirements for scene analysis) attest to this viewpoint.

Therefore, rather than limiting our work to specific computational models,
we feel it is important to focus our attention towards somecrucial i__act
issues involving design of computing systems for planetary explorations.
This motivated us to look at a wide range of relevant topics that will have
significant impact on the future approaches to such designs.

Wepresent below such topics in the format of research projects that can be
supervised and conducted within a reasonable time period under the current
funding level. Wehave chosen these projects in such a way that they can
be integrated within the overall objective of the project.

The key tasks to be undertaken as impact items in this project has
identified by us as:

i) Reconfigurability for distributed fault-tolerance,
2) Applicative caching for efficiency,
3) Software fault-tolerance involving design diversity and N-version

programming,
4) Distributed neural computations on parallel systems,

Weintend to carry out the initial work on the above topics during the
remainder of Phase I. With renewed funding in subsequent phases, further
works can be conducted. Westrongly believe that these will greatly affect
the definition of the PAPERclass of architectures.

4.1 Reconfiguration for Distributed Fault Tolerance

16

Background

Significant research in the last two decades in the design of fault-

tolerant systems for spacecraft control resulted in the development of

several systems like FTMP[61], SIFT[99], and FTP[34,41,42,47]. Both the

aspects of centralized and distributed computation and control have been

used in these systems. In all these fault-tolerant systems once a fault has

been detected and diagnosed, the step of reconfiguration is of utmost

importance. This becomes all the more important in space mission

applications where the aspects of physical dimensions, weight, response time

and fault tolerance becomes pertinent.

An unified approach for hardware and software fault tolerance[61], has been

taken up in building FTP fault-tolerant system at the Draper Laboratory in

Cambridge, Massachusetts. Ongoing research and development is focusing

attention to building a distribute version of that system. An earlier work

on designing an ultra-reliable fault-tolerant system used a design approach

termed Software Implemented Fault Tolerance(SIFT) [99]. It had the

objective of constructing a flexible system that can easily adapt to changes

in problem specification. Fault detection and diagnosis and subsequent

system reconfiguration are performed by software. Loose synchronization, in

contrast to tight in FTP, is used for independent execution of tasks by

separate processing units. The reliability of SIFT was proved by

mathematical methods.

The software based fault-tolerance provides a more flexible system. A task

is replicated and run on a varying number of processors, scheduled in a more

loose manner, depending upon its degree of criticality. A global executive

reconfigure the system in case a fault is diagnosed by appropriately

changing the task allocation.

At the Jet Propulsion Laboratory, Pasadena, California, efforts in designing

distributed fault-tolerant system started in 1973. Recently, interesting

results have been obtained in distributed space-craft sequencing application

using the JPL/Caltech Mark III hypercube concurrent computer. Speedup of

1.9 with two and of 3.1 with four processors have been recently reported in

spacecraft sequencing application for the Mark III hypercube system[55].

The hypercube concurrent system is highly attractive because of its regular

structure and upgradability. Considerable research has already taken place

in designing fault-tolerant hypercube concurrent system for highly critical

fault-tolerant applications[84,85,86]. As can be seen in all these works the

question of efficient reconfiguration strategy in highly important.

An earlier research work on implementing fault-tolerance on hypercube
concurrent systems the need for self-checking design of high-performance
processors, partitioning to provide redundant sparing, and hierarchic design
approaches to achieve long unmaintained life that is typical of unmanned
space-crafts were observed.

The inherent redundancy of the hypercube allows the system to degrade and
operate with failed processors by redistributing the computing load and
redirecting information around failed nodes. It is attractive because it
requires no additional hardware modifications, it is application-specific
and is effective for someapplications (in particular, cases which are not
constrained by timing of intercommunications and where a periodic
maintenance is available).

According to [85] the approach to allocate processors as spares within the
existing network has someserious limitation in that recovery from permanent
faults changes the topology of the machine. In the case of long-life
unmaintained applications manynodes and links will fail thus making this
approach impractical. A solution that is based on increasing the dimension
of the hypercube by augmenting it with an additional port to make it
possible to have fault-tolerance was suggested. Each of the several spare
processors has a set of associated VLSI crossbar circuits attached.

A hypercube with 2N processors can be viewed as a set of 2s sub-cubes, each
with 2m processors (where s+m_N). It is possible to provide one spare for
each subcube reachable, as before, through the N+ith dimension. If any
processor fails in the subcube, the spare will have to be connected to m
neighboring processors in that subcube, and one processor in each of s
external subcubes to which it is connected.

The overall schemeprovides simple reconfiguration algorithm and low
communication delays when a failure occurs. They are suitable for
applications where periodic maintenance is possible but are not recommended
for long life unmaintained systems.

In long life unmaintained systems one must have methods of fine
partitioning so that no single module has a high failure rate, and a typical
redundant spare part is capable of backing up a large number of working
parts. Typical system requirements are a 95%or greater probability of
surviving five years or more. According to current technology a space
computer with several megabytesof memorywould have a five year reliability
of less than a few percent[73].

In pursuance of constructing such systems it was proposed that the inherent
multi-level redundancy of hypercube be utilized. Also better sharing of bus
line, code and data will improve system reliability while maintaining
hypercube structure logically.
An approach of spare allocation and reconfiguration using parameterized data
distribution on fault-free subcubes and shifting workload on a faulty
processor to other fault-free ones have been reported[88]. An uniform
partitioning of tasks is attempted where several tasks scheduled for several
virtual processors are actually distributed almost evenly onto physical

17

processor whose number is less that of the virtual processors. Whena fault
disables a processor all virtual processors are shifted to the neighboring
processors evenly. This increases the communication cost (but minimally).

Recently, two schemesfor reconfiguration in a hypercube concurrent computer
in the presence of faults have been reported[14,15,16]. The first schemeis
a hardware modification where a set of spare processors are distributed in
the hypercube and the problem reduces to finding a way of allocating the
spares efficiently. The second schemeof reconfiguration uses no spare
processors and is software based.

Considering the throughput requirements of someof the applications in
space-craft control it appears that in future distributed computation on
concurrent systems with fail-safe and fail-operational features would have
considerable attention. With the present trends based on VLSI based hardware
technology the importance for methods of task partitioning, distribution,
and system reconfiguration in the case of designing fault-tolerant system is
our present challenge.

Reconfiguration for distributed fault-tolerance

An analysis and design method for distributed fault-tolerance(DTF) based on
graph theoretic results has been reported in [31]. The vertices of a graph
represent processing elements and the edges represent channels or direct
links between processor. It is assumedthat the channels are not sharable.

Although distributed systems have manydefinitions, most of them possess
three commonproperties, viz. modularity, parallelism and autonomy. The
designing goal of the DTFsystem is to guarantee the correct execution of
critical tasks. Due to the modularity and parallelism properties of
distributed system, a critical task can be replicated on three similar units
called a rep-set, and be processed concurrently by this set. The result

obtained by each replicator is transmitted through different paths of the

communication network to other replicators. By voting these results the

rep-set can obtain the correct answer and locate the possible faulty

replicator. Since all the units of the system are autonomous, i.e., there

is no central host unit or hard core of the system, each unit having been

faulty can be isolated from the system by the other tow normal units of the

same rep-set. The DTF system takes care of both processor and channel

failures. It assumes total autonomy of the independent processing modules in

the system. Each faulty processor can be isolated from the system by the

other two normal unit of the same rep-set in an autonomous manner.

Thereafter, the two fault-free units select an appropriate unit to form a

new rep-set and thus reconfigure the system.

The set of replicators (rep°set) is modeled by three vertices

(interchangeably used with processors) of the graph. Since the vertices in

the rep-set represent processors that should be able to check the results of

the others in the set, it is necessary that they should be connected by

paths. The detection and diagnosis of a fault isolates a vertex from this

set. This produces a degenerate graph with the vertex deleted.

18

In order that the system remains a fault-tolerant one need to find a new
rep-set in the system. This is the step of reconfiguration and is the
essential basis of fail-operational behavior of the system.

The problem of designing a DFTthen is equivalent to finding sequence of
rep-sets corresponding to the sequenceof degenerate graph that follows due
to possible failures of vertices (processors) of the original graph. Given
a graph topology, along with an initial distribution of the tasks, one
problem in designing a distributed fault tolerant system is to find how many
successive faults can be tolerated by such a system. In other words, how
manysuccessive times will it be possible to have a rep-set in the graph of
the system under the possibility of a vertex (failed processor) from the
rep°sets being deleted. This is termed as the degree of fault-tolerance of
the graph. Based on an analysis to produce a graph topology that is most
amenable to providing a high degree of fault-tolerance simple topologies
have been suggested.

A relationship between the architecture and the fault-tolerance degree of a
system has been established. Experiments were reported on a ring of
single-board computers. Similar to the SIFT fault-tolerant computers, all
fault-tolerance facilities including detection, diagnosis, isolation,
reconfiguration and clock synchronization etc.were implemented by software

Embeddingtechniques for efficient computation on Hypercubes:

One of the crucial problem of efficiently utilizing a highly distributed

system is that of assigning the tasks (load balancing) to achieve optimal

resource management. This is called the problem of mapping or embedding.

In a distributed computation a set of tasks are related to each other by the

need for communicating for accessing data and code. In a distributed

computer where the different tasks communicate over non-shared bus the role

of assignment of the tasks affects the cost of such communication. As the

cost of communication may become more than that of processing [38] it is

necessary that an optimal assignment of the tasks to processors in the

system is made.

An hypercube concurrent computer is a distributed system of this type. It is

based on the interconnection topology given by the Boolean n-cube[20]. With

the development of VLSI technology and the regularity of the n-cube

structure the cost of such systems with considerable number of processors

have become manageable. In many of the works on hypercube embedding the

problem has been treated as that of mapping a graph that corresponds to the

application program to the n-cube graph structure of the hypercube[87].

The constrains used in such embedding are the length of the path (dilation)

that connects pairs of vertices of the hypercube that are the associated to

the end-vertices of an edge of the application graph. The length of the path

in the hypercube gives the communication cost associated to the interaction

of the two processes located at the two processors corresponding to the end

vertices.

19

Considerable research has been reported [26,27,28,29,30,39,40,43,69,
71,78,79] in hypercube embeddingand mapping methods. Significant research
is also ongoing in the area of improving the communication and related
issues in the hypercube machine[90].

As already mentioned above, the main objective of mapping is load balancing.
Several methods for load balancing has been suggested in the literature
[I00,i01]. However, the basic problem of hypercube embeddingbeing NPC[87]
researchers have to limit only to obtain near-optimal methods that are
acceptable. The main strategy in obtaining such embedding is to obtain a
near-optimal load assignment without increasing the over-head considerably.
It is possible to have either static (where the structure of computation
does not vary very much) mapping or dynamic mapping. Heuristic algorithms
for load balancing based on internal structure of the application as well
as someother criteria (e.g. measureof load imbalance) have been
suggested. Existing reports based on graph theoretic properties of the
hypercube is of great importance[87]. An automated problem mapping system
called Crystal runtime system has been reported[88]. Several operating
system are designed on hypercube that considers the communication topologies
of applications (that are currently recorded for program monitoring and
exception handling) for use in the implementation of the object model on the
hypercube.

Research in embeddingmethods for the hypercube concurrent computing
machines and the growing interest in using distributed fault-tolerant
computers for critical applications in space missions raises a natural
interest to look into finding ways of devising embeddingmethods that will
provide high degree of fault-tolerance in such systems. The graph based
definitions used for designing DFT, mentioned earlier, gives us a way to
relate fault-tolerance to different aspects of graph embedding.

20

Reconfiguration as a graph problem based on a rooted tree

It can nowbe noted that the requirement of fault-tolerance as in [31] is
the capability of building a rep-set with at least 3 vertices. When
replicated processes run on 3 processors each checking the other for fault,
it is necessary that on the occasion of a fault in one of the processors a
different fault-free processor need to replaces it to form a new successor
rep-set.

In terms of the graph that models the distributed system this meansthat in
the degenerate graph that has been obtained after deleting the vertex
corresponding to the faulty processor one has a vertex other than the
remaining two (corresponding to the fault-free ones) that remains
connected. The need for having disjoint paths connecting the vertices in the
degenerate graph, this demandsexistence of a cycle containing the three
vertices under consideration.

As observed in [85] in case of the regular structure of the hypercube, the
other requirements for reconfigurability; that of the ability to
reconfigure the system using minimumdelay, taking advantage of the

structure of the system, needs to be considered for effective fault-
tolerance.

The hypercube graph is a bipartite graph. Onecan find a maximal bipartite
subgraph of the given graph of the distributed system in order to look for
an embedding. Efforts to find a maximal bipartite subgraph of any graph is
also limited as this problem is also in the NPCclass. However, a recent
work reports a simple and efficient approximate algorithm for detecting a
maximal bipartite subgraph of a graph by a straightforward breadth-first
search[93]. In this work it has been shownthat a bipartite subgraph of a
graph can be obtained by deleting a nearly minimal number of edges of the
graph. It has been proved there that the numberof edges deleted can not
exceed twice the number of edges that is required to get the exact solution
subgraph (the subgraph resulting from the minimumnumberof edge deletion).
A breadth-first spanning tree (BFST) has been used to find the nearly
maximal bipartite subgraph in the above work. The complexity of obtaining a
BFSTis only O(e), where e is the numberof edges in the graph.

A BFSTis a rooted tree where each vertex (including the root) are
partitioned into disjoint levels according to its distance from the root. An
edge lying between a pair of vertices in the samelevel represents a chord
(called a link-edge as opposed to a tree-edge) of the fundamental cycle with
respect to the BFST. The technique of using the BFSTand the associated
cycles that are fundamental can be used dynamically as the computation
proceeds and reconfiguration can be achieved.

As an exampleconsider a simple graph showing the processing nodes and the
communication links shownbelow. It can be seen that a rep-set {i,2,3} can
tolerate at least two successive faulty units. This is because it is
possible to obtain new (successor rep-sets) rep-sets representing vertices
that can test each other using disjoint paths.

21

2O] 0

3_ u4

i

3

When vertex 2 fails a degenerate graph obtained by removing the vertex as

shown is obtained. A new rep-set given by {1,3,4}. This can proceed if

when a vertex in this new rep-set fails by reconfiguring in a similar

manner.

A BFST of the new graph is given below.

4

The BFSTclearly shows the shortest cycles (by definition a BFSTgives tree
levels that are minimally distant from the root) can be identified. The
question of determining a rep-set then is to find a set of vertices that are
connected with each other by disjoint paths. As long as there is at least a
cycle containing the vertices in a rep-set this process is possible. The
existence of a link-edge in the BFSTgives a cycle connecting the vertices
including the root and all vertices in the path from it to the two end
vertices of the link-edge of the graph. One can use the BFSTcycles
(cycles for each link-edge) for this purpose.

In the above figure, if vertex 3 fails now, one can easily form a successor
rep-set by using the cycle corresponding to the link-edge (4,5). The new
rep-set is {1,4,51. Note, if vertex 1 fails then it is not possible to form
a successor rep-set because there is no cycle containing the remaining
vertices in the old rep-set and a vertex in the graph.

It can be observed that if all the nodes in a level of a BFSTfails then it
is impossible to construct a new rep-set. By simple techniques a BFSTwith a
certain root can be changed to another with a different root. This gives a
method to obtain a layer that has at least some fault-free vertices. The
rep-set can then be obtained from the BFSTinduced graph.

A simple schemeas described below can be used.

Algorithm reconfig

i. input the tasks and mark the critical tasks

2. find a BFSTfor arbitrary root.

. compute rep-sets for each of the critical tasks with 3

vertices each. If this is not possible due to

nonavailability of cycles then reorient the BFST by

using a different root.

4. if a vertex fails then recompute a BFST of the

degenerated graph (this can be done from the BFST of

the original graph). Compute new rep-sets that are

successors of the corresponding old rep-sets.

. continue step 4 as long as possible, if not possible to

obtain a successor rep-set for a failed vertex for the

BFST, other BFSTs are constructed and the search is

made. when no rep-set can be built then the system is

unable to reconfigure.

22

Relationship of Algorithm reconf to hypercube embedding:

The algorithm reconfig that is based on BFST can be used for hypercube load

balancing and mapping with reference to reconfiguration for fault-tolerant

behavior. The properties of the cycles can be used to obtain new rep-sets by

relatively simple algorithms. There is, as already noted earlier, numerous

interesting research reports available for mapping and load balancing in the

hypercube. It seems there is sufficient results available to support

investigations into how reconfiguration can be added onto the process of

mapping.

General network topologies and dynamic distribution of processes over a

distributed system can therefore be studied in this viewpoint. The subcube

to subcube linkage in the case of hypercubes[14,85] and the schemes for

designing fault-tolerant hypercube systems based on load-balancing and

redistribution can also be studied in this point of view.

23

Plan of research:

The study of graph embedding methods for distributed computing system (in

particular the hypercube concurrent computer systems) and the design of

distributed fault-tolerant system have been done. In has been observed that

graph theoretic study of reconfigurability gives a way of looking at the

problem of building fault-operational system more systematic. At the same

it has been seen that the various mapping methods for hypercube might

possibly be combined with the requirement of reconfigurability to suggest

new integrated ways of tackling the problem.

Breadth-first spanning trees can be used for formulating rep-sets for

designing reconfiguration strategies for fault-tolerant systems.

Strategies for reconfiguration in distributed systems will be studies with

reference to breadth-first spanning trees and the associated cycles. Graph

theoretic methodologies will be studied for obtaining optimal

reconfiguration strategies for hypercube interconnection topology.

An embedding program that embeds any distributed computation onto the

hypercube structure has been developed. This program uses the BFST based

mapping followed by an A* algorithm (written in Interlisp) based on a

heuristic defined over Hamming distance will be first converted to Common

Lisp and suitably modified to be tested for adaptation to the above

reconfiguration scheme.

At the end of the above development the complexity estimation in terms of

the real time computing and reliability requirements for spacecraft control

computers will be verified and tested.

4.2 Applicative Caching for Avoiding reamputation of Functions

An implementation of applicative caching for stream based computation on a

data flow machine suggested by Amamiya has been reported[92]. The

construction and maintenance of the directory for caching of functional

values have been treated and a caching paradigm suggested.

The problem of eliminating recomputation may help in controlling redundant

computation and thereby improve efficiency of computation.

The problem can be illustrated by a function computing Fibonacci numbers as

above :

fib(n) = if n <=i then i

else fib(n-l) + fib(n-2) f i

As we build the sequence we come to a situation of the form"

fib(102) = fib(101) + fib(100) (1)

Here, fib(101) and fib(100) are called in an environment. But

fib(101) = fib(100) + fib(99) (2)

Now,

fib(102) = [fib(100) + fib(99)] + fib(100)
...... (3)

Note, fib(100) appears twice which will go unnoticed during compilation

because of static code generation by the compiler. Since the run-time

system finds fib(100), written inside the square bracket, in the new

environment, it will be recomputed.

While computing fib(100) in (I), if we had some storing mechanism to store

the value of fib(100), we do not have to invoke the function for n = i00

again during the evaluation of fib(101). Instead, the value of fib(100)

will be read from the store. This reduces enormous computing time and

hence results in reduction of resource demand.

The applicative languages (or functional) have the nice property of

"referential transparency" meaning that, within the given context, all the

multiple occurrences of an expression have the same value and thereby

guaranteeing the freedom from side-effects of the expressions. This has the

following implications:

a. Singular evaluation and code optimization;

b. Parallel evaluation.

Usually the extent of context is not known at compile time. It develops

during the computation process. This leads to different instanciations of

24

the sameexpression not being aware of each other's existence as can be seen
from equations (i) and (2). Recomputation is avoided by saving associations
of argument value and the corresponding function value (i.e. [n,f(n)] if f
is a function of a single variable n). Keller and Sleep call such a
collection of associations a cach_______e,the function whosevalues are to be
saved a cached function and the associations that are saved the cached

values.

Keller and Sleep[56] suggest an applicative implementation by defining an

applicative definition of a data structure called directory that contains

every cached value that could conceivably be requested. Their computational

model is demand driven as it makes it possible to define a directory out of

data constructors without causing a priori evaluation of the entire

structure. Through the use of a construct called "suicidal suspensions" an

application is evaluated when it is first demanded. After this the

expression is effectively replaced by its value. Stream directory and Array

directory are explained in detail. The special features of applicative

caching are (a) allowing the programmer to specify that the recomputation of

a function is to be avoided; (b) permitting selective control of the amount

of recomputation and programmer's control over purging (the programmer can

give a guess value of the reference count): (c) providing a set of

applicative building block_ (d) even if the value of the function is removed

from the cache, it is not fatal--- the value is recomputed.

Keller's work deals with the abstraction of caching at the functional

language level, hence has a sound denotational semantics. He also gives

caching pragmas which relieves the programmer of the burden of coding proper

caching functionals. The compiler translates the pragmas into proper

functionals.

In [3] special operators had been introduced to accomplish caching in

Amamiya°s dataflow machine.

The following special operators have been used to accomplish caching.

tcons(n,y,r) : This has three arguments, tcons negotiates with the resource

manager and gets three nodes, sets reference counts to one in all the nodes,

writes the attribute field of the car of the first node with repetition

could of the function value (given by the programmer), car of the first node

with the argument n of the function, the car of the second node with the

value y-f(n) computed leniently and the car of the third node with zero and

returns the address of the list. The remaining fields are filled as given

in [56]. This operator has a side effect of allocating a tnode[ll], decr

rep(cf) : This is an operator when called into action decrements the

attribute field of the car of the first tnode, ccopy(t,cf) : This macro

operator has two inputs and one output and is designed using a machine

instruction co__o_p__.

The semantics of the copy operator is as follows.

copy(t,undefined,cf') = cf _

copy(t,cf,cf °) = cf

25

where cf is the address of the new cache, cf' is the address of the old
cache and t is the trigger signal.

copy is strict in its first argument t.

An operator -- fby, which is a nonpointwise[ll] operator with the following
semantics:

fby(x0,xl xn,..),(y0,yl ym,..)) -(x0,y0,yl,y2)

The output of ccopy is triplicated and sent to the function body, select

operator and Cache Handler respectively.

select(cf,cf') • This is a two input operator. The first input is the

output of the ccopy and the second is supplied by the function body. The

semantics of this operator is as follows"

select(undefined, cf') = cf'

select(cf,cf') = cf

set zero • This is an operator that sets the reference count to zero.

The operators copy, select, decr_rep and set_zero are to be introduced into

Amamiya°s architecture. We have included these to construct and manipulate

the data structure for cache. These are semantically sound in that these are

the additional operations we are including in the continuous algebra

E(A)[II].

The caching mechanism works by using the inherent list processing

capabilities of the dataflow machine and a VALID like language has been used

to write the programs. For uniformity of the structure of the cache the

directory header is also a tnode with a signature field. It can be noted

that for the header, n and f(n) remain undefined.

A LISP based simulator has been written to estimate performance figures of

the system. Garbage collection in the system seems to be a crucial task.

The problem is all the more complicated because of the need to construct an

altogether new cache, whenever there is an appending of a new list z

containing the value [n,f(n)] to the old cache.

In Amamiya's proposal once the reference count of a node is reduced to zero

it will be garbage collected. However, a number of problems arise while

caching because several caches will be generated during a computation and it

is necessary that an appropriate memory reclamation should be made for a

bounded use of the structure memory. The bound in this context is determined

by the user supplied value of the repetition count. This count will help us

in maintaining a cache of minimum size. This repetition count will be

reduced by one every time there is an access to a value in the cache. To

reduce the complexity we use the following technique.

Whenever there is a call to the Cache_Handler (while appending a new list)

the cache handler will first check whether the repetition count of a tnode

26

of an old cache has becomezero. If the repetition count has becomezero
then the cache handler sets the reference counts of all the three cons nodes
used in the tnode to zero. The underlying system garbage collector will
reclaim these nodes in due course. If the repetition count is not zero then
the cache handler gets a new tnode and writes signature _s' which is the
number of tnodes deleted after the tnode in question, in the signature field
of the corresponding new tnode leniently. It copies the remaining fields of
the old tcons node into the new one.

Search is done reccursively over the cache in a linear pipelined fashion.
But a problem arises if there is an invocation of cache handler during a
search, i.e. whena new cache is being created while somesearch is pending
on the old cache. Also, as the search is invoked reccursively, we must have
a mechanismto switch from old cache to the new one whensuch a new cache is
generated. Weresolve this by introducing the operator select, which outputs
either (1)the address of the part of the old cache in the absence of a new
one, or (2)the address of a new cache, if a new cache has been generated.

About the problem of the searches on old caches the following maybe noted.
If argument expression of such a search is already evaluated completely then
the old cache is used. This meansa part of the cache is not garbage
collected while a new cache is being generated. This is because the
repetition count of the tnodes of that part of the old cache is nonzero. The
new directory mayhave been defined by the cache handler before the
complete evaluation of the argument of the search. In that case the tcdr
macro operator will use the signature field of the tcons nodes and the
proper reference is madein the cache automatically.

The part of the old directory which has not been garbage collected remains a
burden to the system. Wesuggest that a signal maybe sent to a secondary
process which scans this part of the old directory checking the repetition
count for zero and setting reference count properly for garbage collection
as soon as search completes. This ensures that no unusednodes remain in the
system.

27

Plan of research:

The aspects of applicative caching programming paradigm has interesting

applications in digital signal processing, image processing and numerical

computing where many recurrence computations are involved. However, it has

been observed that in dataflow type machines, if the rate of input stream is

high, then there will be too many caches being constructed. This is not

desirable. A check on the stream of argument values by a mechanism similar

to that of throttling[9,10] will be useful. This ensures that only a few

caches will be present at a point in time and the garbage collection

overhead may be manageable. The garbage collection complexity for caching

should certainly be less than the recomputation complexity in order that

this is useful. Our feeling is that saving of resources will be more than

offset when compared to the resource requirement of garbage collection.

It has been observed that the possibility of avoiding recomputation in a
distributed system leads to lesser numberof processes and less probability
of deadlock. It however does this at the expense of creating processes that
does cache management. However, code sharing and dictionary sharing can
reduce this overhead. It is necessary to verify the performance for
applicative caching in distributed systems. It is interesting to conduct
experimental studies to study the efficiency of caching in distributed
systems.

A simulator (written in Interlisp) has been developed for simulating the
Amamiyatsdataflow architecture and implementing the applicative caching.
It will be changed over to CommonLisp and will be suitably modified to
take into account performance attributes important for distributed
computing with particular reference to space mission applications.

28

4.3 Software fault-tolerance involving design diversity and N-version

programming

Introduction

Software Fault Tolerance is an area of study which began to receive real

attention in the mid to late 70's. The number of researchers active in this

field, has been and still is, relatively low, although there has been a

flurry of research activity in the past few years.

Early research projects attempted to mirror engineering's use of redundant

hardware modules to ensure fault tolerance. The fallacy of using redundant

software modules is that, hardware and software component failures are not

at all similar. Hardware errors are not usually coincident (errors which

occur at the same time), whereas many software errors are [36,37]. Also

identical software units will produce identical errors, this is not normally

true for hardware components. There were, and are, established methods of

assuring hardware reliability_ metrics to assure software reliability were,

and still are, abysmally few.

Taxonomy: Design Diversity

Later, and much of today's, research attempted to adjust for coincident

errors through the use of design diversity and/or N-version programming

[4,5,6,13,18,91]. N (N > i) designers receive the same software

requirements specification and must produce a detailed system design. The

designers are expected to perform their task while in complete isolation

from the other system designers. The detailed designs are then forwarded to

the programmers. The end products (software modules) should be equivalent.

N-version programming is the production of multiple software modules, each

module having been independently programmed using the same design.

Practically, very little distinction is made between design diversity and N-

version programming. In most of the literature these terms are

interchangeable.

After these modules have been produced and independently tested they are
assembled into a system and run concurrently. At selected inspection
points, during execution, results are collected and evaluated. The results
are expected to be "similar". Any "non-similar" results are rejected.

The design diversity paradigm [58,59] assumesthat faults exhibited by
individual modules will be non-coincident. Different (but equivalent)
designs will produce software modules which fail non-coincidentally (none of
the N modules will produce the sameerror at the sametime).

Results: Design Diversity

Almost all of the research activities involving these methods have produced
prototypes which exhibit high degrees of fault tolerance. Onepaper
produced results which are critical of this paradigm. The primary criticism
is that the assumption of independence is not always valid. Nevertheless,
where this assumption of independence is valid N-version programming is a
superior fault tolerance paradigm.

Problems: Design Diversity

The most significant problem I find with this methodology is that humansare
responsible for producing the modules. Wehave similar training, use
similar equipment, therefore we will produce similar errors in our designs
and code. This fact tends to weakenany assumption of independence, which
weakens the argument for design diversity.

Another problem is the assumption of equivalence of the different designs.
This is probably why most of the experiments really employ N-version
programminginstead of design diversity. The entire requirements-to-
detailed design phase needs to automated: and to really produce diverse
designs the automation tools should be different. After the detailed
designs have been created, another automated tool must be used to determined
to prove equivalence. Humanscan not perform this task! Once the designs
have been proven to be diverse yet functionally equivalent, then the code
can be produced by programmers. The resulting modules should be truly
diverse. Present research attempts to create diversity by coding the
separate in different languages, or using different non-automated methods to
specify the problem, these are not sufficient.

The most important papers found in the reference materials are by Eckhardt
and Lee. They focus on the coincident error problem and attempt to produce
a metric by which the probability of the numbersof coincident errors can be
predicted. Using this metric, one can determine when the use of multiple
modules (created using design diversity or N-version programming) is
preferable to the use of a single software module.

Taxonomy:Others

Other taxonomies (these need further study) are Exception handling [33],
recovery blocks [80], and synchronization graphing [6]. None of these
methods seemsto be as promising as design diversity, however, these

29

research areas mayprovide constructs which can alleviate the independence
problem.

Very little research has been expended in these areas. I feel that these
are directions which should be investigated further.

Future Directions

Fault tolerance is an area of research which has seen few real advances in

the past ten years. Most efforts are channeled into one of the theories

described above. There may not, in fact, be a better method to assure

software fault tolerance than through design diversity or some combination

of all of these methods. There should at least be a effort to find one, if

it exists. I propose that some time be expended to explore alternatives to

design diversity. This effort need not have high priority, but this type of

investigation needs to continue.

Since design diversity/N-version programming seem to be the method of

choice, an major effort needs to be made to "pull all of the pieces

together". A review of the pertinent literature reveals that there in a

majority of projects there seems to be a needless duplication of effort.

short term study should be made with the sole purpose of illuminating the

real differences in past research efforts and explaining how these

differences effect the issue.

A

Particularly disappointing is the general strategy most researchers have

been using to produce fault tolerant systems. There seems to be an unspoken

consensus that true design diversity (the use of different but equivalent

designs) is extremely difficult to achieve given today's technology.

Therefore, N-version programming is utilized in the preponderance of

experiments. N-version programming is not the answer, we must explore means

to easily achieve and implement design diversity. In the short term a

taxonomy for the implementation of the "front end" of design diversity

should be investigated. Can some N versions of automated design tools be

created which will produce equivalent designs? More importantly, can an

automated equivalence prover be implemented? If the process can not be

automated, at this time (or ever), what manual methods could be performed to

replace automation? What is an optimum value for N? Supposedly, 3 is too

small but anything greater than 5 may be prohibitively expensive (these

numbers are used merely to illustrate the argument no research has gone into

determining whether of not they are valid limits) and unnecessary. These

questions need to be answered.

4.4 Distributed neural computations on parallel systems

30

Background:

Neurocomputing (also called neural networks, connectionist systems,

artificial neural systems, associative models of computation, etc.) has

received a great deal of attention in the technical literature. This field

is one of the fastest growing and most innovative areas of computing, and
have even been called "more important than the atomic bomb". However, due
to rapid growth and proliferation of publications, it is difficult to
provide a clear concept of what the field is all about and put it to
practical use. Generally, the neural networks have potential to solve
complex non-deterministic problems such as speech and pattern recognition at
high speeds.

A brief overview and taxonomy can be found in [96], where McCulloough-Pitts
neuron model, perceptions (and their limitations that have retarded the
growth of this field for two decades), Hopfield Nets, and the current models
(Hinton's BolzmanMachine, Rumelhart's back propagation learning rule, etc.)
are mentioned. A more comprehensive review of literature and recent
developments in this field can be found in NASAJSCNeural Network Survey
Results [21]. Since the field is rapidly changing, in addition to 142
references cited in the NASA Survey, we have compiled an even more up-to-

date bibliography that list books and articles separately in Appendix II.

In order to gain insight into this new field, we have compiled Neural

Network Primer series Part I through Part VII [21] in a binder and made it

available to the interested minority faculty and students including the

research assistants for the PAPER project. The primer series covers a wide

range of learning systems from very simple bin sorter to the more advanced

unsupervised systems based on drive-reinforcement theory [57].

31

Multiple Neural Components Working on Subtasks

Our research interest in this area is to put the theoretical results of

neural computing to practical use, and as such, can be characterized as

applied. As was discussed in Phase I proposal, we would like to add neural

computation capability to multicomputer systems that otherwise support the

intended conventional supercomputing functions.

We intend to do this for large-scale neural computations with unacceptably

long learning times. The neural computing capability for a parallel system

will be realized at the architectural level by addition of neural components

(either implemented in VLSI boards or simulated by software) to the

processing nodes. On the side of the application, large-scale neural

computations such as training methods for cognition problems that involve a

large number of complicated categories will need to be decomposed into

subtasks. The decomposition is made in such a way as to allow uniform and

quick learning periods with rapid convergence for each subtask. The overall

computation will then involve the learning subtasks assigned to the

processing nodes that implement the neural sub-networks.

As is discussed in [52], a problem such as recognition of Japanese Kanji

character set that has almost 3000 categories (2970 categories) may require

unacceptably long times with too many learning cycles for convergence This

is due to uneven learning for "simple" and "complicated" categories, and the

tendency of the large neural net to first learn the easy categories before

trying to learn the difficult ones. The problem facing the constructions of

large scale networks is that the requirements for computational resources
increase as the numberof categories increase. Thus a monolithic network on
recognizing one thousand or more categories would soon run up against the
limitations of currently available compute resources. Furthermore, the
networks recognition performance is poorer for large numberof categories
[52]. This suggests that a large-scale neural network for character
categorization should be divided into independent subnetworks, each of which
focuses on appropriate sub-set of characters.

Learning Methods for Large-Scale Hierarehial Neural Networks

After the problem is decomposed,simple application of backpropagation
methods on multi-layered neural networks will not be sufficient. Novel
learning methods, such as those given in [52], are required for neural
computations that are broken up into sub-networks. Finally, once the
subtasks are learned in reasonable periods, there is a need for appropriate
interation.

Implementation on Parallel Machines

There are various decomposition methods for implementing neural networks on
parallel machines. An example involving the decomposition by samples is
given in the above-mentioned article. There, 7100 input samples (71
categories times i00 sample per category) for Hirangana set have been
divided into 2n subsets and run on a hypercube machine. However, the
easiest and most effective way to decomposea large-scale hierarchial
network is to implement the sub-networks in parallel. For example, if a
large scale hierarchial neural network consists of M sub-networks and a
super-network (used to integrate the sub-results), the sub-networks can work
simultaneously.

Plan of Research

As discussed, a large-scale neural learning task can be broken up into
autonomoussubtasks, where somecare needs to be taken in devising balanced
learning periods for each subtask. The sub-networks can then
simultaneously work on the subtasks. Wefeel that, regardless of the
specific learning method (e.g. back-propagation drive-reinforcement, etc.),
this is an ideal application for a parallel computing where the processing
nodes contain entire neural networks.

Thus, our first task is to find a way to add neural computing capability to
the processing nodes of a parallel machine that is PAPERclass, meaning that
it is particularly suitable for computational support of a, say, planetary
rover. This can be done by inclusion of neural computing boards, such
commercial product offerings as HNCAnza+, Anza 2500, or TRWMark-Ill.
Theseneural componentsare offered as extensions 32-bit high-end PCs [8],
and there are various other VLSI implementations for Von Neumanntype
processing nodes [9,10,11,12].

As was mentioned in Section 3.2, further enhancementof the MAXModule shown
in Figure 3 with neurocomputing capability is important for demanding

32

cognition functions that must be performed in a planetary exploration
mission. This can be done through addition of neural VLSI componentsto the
nodes. Wedo not envision any obstacle, since this will be accomplished in
a way similar to the addition of vector or floating point extensions to a
commercial parallel machine at processing node level [51].

Wewould like to collaborate with research staff at JPL/Caltech involved in
MAXproject in order t first conduct a system-level feasibility study, and
subsequently investigate the design issues. After neural computing
capability is added to a parallel system such as MAX, the next step will be
construction of appropriate learning methods such as those in [54].
Finally, additional research needs to be done on identifications of large-
scale neural computations, and decomposition of the computational supertask
into parallel subtasks.

33

V. PROPOSEDFUTUREACTIVITIES

Wehave plans to pursue the examination of the two architectures, viz. AIPS,
CSDLand the MAX,JPL/Caltech. For this we have plans to visit JPL/Caltech
in July followed by a visit to CSDLin next Fall. Weshall also start our
study of similar work, like VHSICmultiprocessor being developed at
NASA/LaRCand the CHRPsystem of The Goddard SpaceFlight Center.

5.1 Trip to Jet Propulsion Laboratory

We have contacted JPL/Caltech Historically Black Colleges and Universities

(HBCU) office for arranging a visit to get direct information regarding

experimental computer architectures for NASAts future space missions. In

addition, we have contacted JPL research staff (Dave Eisenman, David A.

Nichols) to obtain preliminary information on experimental architectures.

Our conversations with staff involved in the MAX project and Mars Rover

project were useful and productive.

The cooinvestigators plan a three-day visit to JPL/Caltech some time in July

15 time frame. The purpose of the trip will be to meet with key research

staff in order to get direct information regarding:

O Experimental architectures such as MAX, Snooping-Cache

Multiprocessor, JPLoStar, Mark III Hypercube, etc.

o Collect requirements information on Mars Rover project

o Gather fault tolerance requirements data for space missions

o Obtain direct information on software fault tolerance

34

5.2. Trip to Charles Stark Draper Laboratory

We have met with Jay Lala of Charles Stark Draper Laboratory during the CSDL

Program Presentation at NASA Langley Research Center on March 1,2. At this

meeting, we have obtained the relevant material on AIPS studies, including

the AIPS System Requirements and AIPS Technology Surveys.

We plan a visit to CSDL sometime in Fall 1989 in order to obtain more up to

date information regarding the distributed software for AIPS Proof of

Concept Configuration. This work will be nearly complete at that time, and

may provide useful information on distributed software for fault tolerant

systems. Our main contact person for this information is Linda Alger.

In addition, Dr. Ranjan Sen will obtain more detailed information that is

relevant to his project on "Reconfiguration for Distributed Fault Tolerance"

from the work carried out in regards to intercomputer communication user

services. The main contact in this area is Laura Burkhardt.

5.3. Attendance at HBCU Symposium

In addition to the trips above, we plan to attend the HBCU Symposium to be

held in Atlanta, Georgia in Fall 1989. This will be a three-day trip, and

will also include the student research assistants.

VI. CONCLUSION

In this report we have looked at the requirements for space missions as

given in the somewhat dated AIPS System Requirements document and

contrasted those with the new requirements from JPL/Caltech involving

sensor data capture and scene analysis. It shows that the requirements

change with the changing technology.

Additional work needs to be done in the remainder of Phase 1 and in

subsequent phases of the project in order to gather more detailed

requirements data, extract the components relevant to planetary probes and

organize these in a way to ascertain and establish the required

architectural features of computing systems.

Presently, we have evaluated two possible architectures, namely AIPS POC

Configuration and MAX Fault-tolerant Dataflow Multiprocessor. The main

observation was that the AIPS Design is biased towards fault tolerance and

may not be an ideal architecture for planetary and deep space probes due to

high cost and complexity. The MAX concepts appears to be a promising

candidate, except that detailed information is required. We intend to

pursue the evaluation of MAX with a visit to JPL/Caltech and explore the

feasibility of research for adding neural computation capability to this

architecture.

We have identified key impact issues for architectural design of computing

systems meant for planetary missions. We have described these in detail as

focus areas. We would like to conduct research in the aforementioned focus

areas. We shall also continue to use the funding for Phase 1 to provide

research experiences for minority faculty and students.

A few areas of research which we feel can be taken up in subsequent phases

of the project are:

O Reliability models, similar to in AIPS Study, using probabilistic

Markov chain analysis. The models need to be far simpler taking

into account fewer factors and assumptions and should be able to

predict reliabilities with or without any fault-tolerance.

O Architectural tradeoff studies, especially in regards to the

degree of fault tolerance, and the associated overhead.

Checkpointing and rollback techniques as recovery methods from

faults in the absence of software or hardware redundancies.

o Uniform approaches to hardware and software fault tolerance.

35

VII.

1

.

3.

.

.

.

7 .

°

.

10.

13.

14.

15.

REFERENCES

AIPS System Requirements, NASA Report No. AIPS-83-50, Charles Stark

Draper Laboratory, Cambridge, Ma., August 30, 1983.

AIPS Technology Survey Report, NASA Report No. CSDL-C-5691, Document

No. 43-315, February 1984.

Amamiya,M,Hasegawa,R,Nakamura,O and Mikami,H "List Processing Oriented

Dataflow Machine" Proc.NCC, VoI.No.157,AFIPS 1982.

Anderson, T and J.C. Knight, A Framework for Software Fault Tolerance

in Real-Time Systems, IEEE Trans Software Eng., Vol. SE-9, No. 3, May

1983, pp 355-364

Anderson,T, P.A. Barrett, D.N. Halliwell, and M.R. Moulding, Software

Fault Tolerance: An Evaluation, IEEE Transactions of Software Eng., Vol

SE-II(12), Dec 1985, pp 1502-1510.

Anderson,T, P.A. Barrett, D.N. Halliwell, M.R. Moulding, An Evaluation

of Software Fault Tolerance in a Practical System, 15th IEEE Int. Symp.

Fault-Tolerant Computing, 1985, pp 140-145.

Andre F, et al, "Experiments with mapping algorithms on a hypercube",

4th Hypercube Conf. Monterey, CA, Mar 1989.

Anza-Plus turns PC-AT into a Neurocomputer, Computer,Vol. 21, No. 3

(March 1988), pp. 134.

Arvind and Culler,D.E. "Managing resources in parallel machines",Fifth

Gen. Comp. Arch., Woods,(ed),Elsevier Sci.Pub., North-Holland IFIP

1986.

Arvind and Nikhil,R.S.,"Executing a program on MIT tagged token

dataflow architecture", Comp. Struc. Grp. Memo.271, Mar 1987.

Ashcroft,J "Eazyflow", LNCS 224, pp 1-50, Springer-Verlag 1985.

Avizienis, A, J.P. Kelly, Fault Tolerance by Design Diversity: Concepts

and Experiments, IEEE, 1984.

Avizienis,A., M.R. Lyu, and W Schutz, In Search of Effective

Diversity" A Six-Language Study of Fault-Tolerant Flight Control

Software, IEEE, 1988.

Banerjee, P, "Reconfiguring a hypercube multiprocessor in the presecne

of faults", 4th Hypercube Conference, Monterey, CA, 1989.

Banerjee, P, "Reconfigurable cube-connected cycles architectures", FTCS

1986, pp 286-291.

36

16.

17.

18.

21.

22.

23.

24.

25.

26

27

28

29

30

31

Banerjee, Pet al, "An Evaluation of System-level Fault Tolerance on

the Hypercube Multiprocessor", FTCS 1988, pp 362-367.

Berman, F et al "On mapping parallel algorithms into parallel

architectures", Journal of Parallel and Distributed Computing, 4,431-

458(1987).

Bishop,P.G., D.G. Esp, M. Barnes, P Humphreys, G. Dahll, and J. Lahti,

PODS A Project of Diverse Software, IEEE Trans. Software Eng., Vol

SE-12(9), Sept 1986, pp 929-940.

Bollobas, Bela, "Extremal graph theory", Academic Press, 1978.

Bondy J.A. and U.S°R. Murty, "Graph Theory with Applications", Americal

Elsevier, 1976.

Caudill, M., "Neural Networks Primer -- Part I thru Part VII", AI-

Expert, Dec, 1987; Feb/Jun/Aug/Nov, 1988; and Feb/May 1988.

Cezzar, R. et. al. "Parallel Architectures for Planetary Exploration

Requirements," NASA Project Grant No. NAG-I-949, 1989.

Cezzar, R. nad Klappholz D., "Process Management Overhead in A Speed-up

Oriented MIMD System," Proc. of 1983 Int°l Conf. on Par. Proc., August

23-26, 1983.

Cezzar, R. "Simulation of Process Management Policies on an MIMD

System," Paper abstract submitted to Frontiers '88,

Fairfax,Virginia, October 10-12, 1988.

Chau, S. N. et. al. "Fault-Tolerance Requirements for High Performance

Spaceborne Parallel Computers," JPL Task Plan 81-2984, March 31,1989.

Chen, Bethany M.Y, "Dilation-2 embeddings of grids into hypercube",

Int. Conf. on Parallel Processing, August, 1988.

Chen, Bethany M.Y, "Embedding of 3-dimensional grids into hypercubes",

4th Hypercube Conf. Monterey, CA, Mar 1989.

Chen, Bethany M.Y, "Embedding of d-dimensional grids into optimal

hypercubes", Symp. Parallel Algorithms and Architectures, June 1989.

Chen, Ming-Syan et al, "Embedding of Interacting Task Modules into a

Hypercube", Hypercube Multiprocessors 1987, SIAM Philadelphia 1987.

Chen, S.K. et al "An Efficient Multi-Dimensional Grids Reconfiguration

Algorithm on Hypercubes", FTCS 1988, pp 368-373.

Chen, Yet al , "DFT: Distributed Fault Tolerance

Design", pp 280-285.

Analysis and

37

32.

33.

Chor Benny and Brian A. Coan, "A simple and efficient randomized
byzantine agreement algorithm", IEEE Tran. Software Engg. SE-II, 6,
June 1985.

Cristian,F Exception Handling and Software Fault Tolerance, IEEETrans.
Computers, Vol. C-31, No. 6, June 1982, pp 531-539.

38

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

CSDL Completion of AIPS Tasks (FY 88 Tasks), Program presentation at

NASA LaRC Building 1202, Hampton, Va., March 1-2, 1989.

DeVegvar, P.G. and Graf, H. P., "Studies of Associative Memory and

Sequence Analyzer Circuits on a Programmable Neural Network Chip,"(to

be published, the author may be contacted for preprint).

Eckhardt, D.E and L.D. Lee, Fundamental Differences in the Reliability

of N-Modular Redundancy and N-Version Programming, The Journal of

Systems and Software, Vol 8, 1988, pp 313-318.

Eckhardt,D.E. and L.D. Lee, A Theoretical Basis for the Analysis of

Multiversion Software Subject to Coincident Errors, IEEE Trans.

Software Eng., Vol Se-ll(12), Dec 1985, pp 1511-1517.

Fox, G.C. and J.G. Koller, "A Dynamic load Balancer on the Intel

Hypercube", #rd Conf. Hypercube Concurrent Computers and Applications,

Pasadena, CA, Jan 1988.

Fox, G.C. et al, "The Implementation of a dynamic load balancer",

Hypercube Multiprocessors 1987, SIAM Philadelphia 1987.

Ghafoor, A et al, "An interconnection topology for fault-tolerant

Multiprocessor system", Supercomputing 88, pp136-143.

Gilley, G. "The fault-tolerant spaceborne computer (FTSC), Americal

Astronautical Society AAS 79-615, Feb 24-28, 1979, Keystone, Colorado,

Annual Rocky Mountain Guidance & control Conference.

Gluch David P, Paul M.J., "Fault-tolerance in distributed digital fly-

by-wire flight control systems", IEEE, CH2359-8/86/0000-0507 , 1986.

Graf, H. P. et. al. "VLSI Implementation of Neural Network Model,"

Computer, Vol. 21, No. 3 (March 1988).

Graf, H.P. and deVegvar, P°G. "A CMOS Implementation of a Neural

Network Model," Advanced Research in VLSI, MIT Press, Cambridge, Ma.,

c. 1987, pp. 381-385.

Greenwood, D., "NASA JSC Neural Network Survey Results," First Annual

Workshop on Space Automation and Robotics, pp. 97-110, August 1987.

46. Gustafson, John L, et al "Development of parallel methods for a 1024-

processor hypercube", SIAM Journal on Sci and Stat Computing, 9, 4,

July 1988, pp 609-638.

47. Harper, Richard et al, "Fault Tolerant Parallel Processor Architecture

Overview", FTCS 1988.

48. Hartmann Robert L, "Interconnection Topology and the Active Graph

Parallel Processor", 20 Hawaii Int. Conf. System Sciences, 1987.

49. Horvath, J. C. "Spacecraft Sequencing on the Hypercube Concurrent

Processor," HCCA4, Monterey, Califonia, March 6-8, 1989.

50. INTEL, iPSC/2 Simulator, Release 2,1, Intel Corporation, April 1989.

51. iPSC/2, A Product Summary by Intel Scientific Computers, 15201

N.W.Greenbriar Pkwy, Beaverton, Or. 97006.

52. Joe, et al. "Simulation of a Large-Scale Neural Network on a Parallel

Computer," Character recognition by subtasks.

53. Johnsson S. Lennart, "Communication Efficient Basic Linear algebra

computations on hypercube architectures", Journal of Parallel and

Distributed Processing, 4, 133.172 (1987).

54. Jones, M. A. , "Programming Connectionist Architectures," AT&T

Technical Journal (January/February 1988).

55. JPL 85 "Hypercube Research Project Mark III Core Engineering

Notebook," Report # JPL D-2431, Jet Propulsion Laboratory, Pasadena, CA

June 3, 1985.

56. Keller,R.M.and Sleep,M.R. "Applicative caching", ACM TOPLAS,

Vol.8,No.l, Jan 1986.

57. Klopf, A. H., Drive-Reinforcement Learning: A Real-Time Learning

Mechanism for Unsupervised Learning, IEEE First Annual Int_l Conf. on

Neural Networks, San Diego, Ca., 21-24 June 1987.

58. Knight, J.C, N.G. Leveson, L.D. St. Jean, A Large Scale Experiment in N-

Version Programming, 15th IEEE Int. Symp. Fault-Tolerant Computing,

1985. pp135-139.

59. KnightJ.C. and N.G. Leveson, An Experimental Evaluation of the

Assumption of Independence in Multiversion Programming, IEEE Trans.

Software Eng., Vol SE 12(I), Jan 1986, pp 96-109.

60. Kramer O and H. Muhlenbein, "Mapping strategies in message-based

multiprocessor systems", Parallel Computing 9(1988) 213-225.

61. Lala, J. H., "Hardware and Software Fault Tolerance: A Unified

Architectural Approach," FTCS-88, June 27-30, 1988, Tokyo, Japan.

39

62

63

64.

65

66

67

68

69.

70.

71.

Lala, J. H., "Advanced Information Processing System," AIAA/ IEEE

Digital Avionics Conference, Baltimore, Md., December 3-6, 1984.

Lala, J "A Bizantine Resilient Fault Tolerant Computer for Nuclear

Power Plant Applications" , FTCS 1986, pp 338-343.

Lambert, K. et. al., "Planetary Rover Computational and Data Storage

Requirements, Version i.i.," Draft Report, JPL, 4/6/89.

Laprie, J., "Dependable Computing and Fault Tolerance: Concepts and

Terminology," FTCS°85, pp. 2-11, 1985.

Lee, R. A., Session Chair for Fault-Tolerance Mini-Symposium, HCCA4,

Monterey, California, March 6-8, 1989.

Lee Soo-young et al, "A mapping strategy for parallel processing", IEEE

Trans Comp. C-36, 4, April, 1987.

Lewnes, A. "INTEL's i860 Microprocessor: Putting Out-of-This-World

Performance Within Reach," Microcomputer Solutions, A Publication of

Intel Corporation, (May/June 1989).

Li C.C. and W.K.Fuchs, "Graceful degradation on hypercube

multiprocessors using data redistribution," Int. Conf. Parallel

Processing, Aug 1989 (submitted).

Littlewood,B, Theories of Software Reliability: How good are they and

how can they be improved, IEEE Trans. Software Eng., Vol SE -6, 1980,

pp 489-500

Livingston, M. and Quentin F. Stout, "Parallel allocation algorithms

for hypercube and meshes", 4th Hypercube Conf. Monterey, CA, Mar 1989.

72. Maehle, E et al, "A graph model for diagnosis and reconfiguration and

its application to a fault tolerant multiprocessor system",FTCS 1986,

pp 292-297.

73. MIL 217D Military Handbook, "Reliability Prediction of Electronic

Equipment", MIL-HDBK-217D, DoD, Washington, D.C. Jan 1982.

74.

75.

76.

77.

Miller, Russ and Quentin F. Stout, "Some graph- and image-processing

algorithms for the hypercube, Hypercube Multiprocessors 1987, SIAM

Philadelphia 1987.

Nagel,P.M. and J.A. Skrivan, Software Reliability: Repetitive Run

Experimentation and Modeling, NASA Rep. CR-165036, 1982.

Nagel,P°M., F.W. Scholz, and J.A. Skrivan, Software reliability:

Additional investigations into modeling with replicate experiments,

NASA Rep CR-172378, 1984.

Parberry lan, "Parallel Complexity Theory", Research Notes in

Theoretical Computer Science, John Wiley and Pitman, 1987.

40

78.

79.

80.

81

82

83

84

85

86

87

88

89

90

91

92.

93.

Plaxton, C.G, "Load Balancing, Selection and Sorting on the
hypercube", 4th Hypercube Conf. Monterey, CA, Mar 1989.

Quentin F.S and B. Wagar, "Passing massagesin link-based hypercubes",
3 Conf. on hypercube multiprocessors, Pasadena,CA1987.

Randell,B System Structure For Software Fault Tolerance, IEEETrans
Software Eng, Vol SE-I, June 1975, pp 220-232.

Rasmussen,R. D., "MAXFault Tolerance Slide Presentation," April 27,
1989, JPL, Pasadena, California.

Recent AIPS Technology Survey Review, Program presentation at NASA

LaRC Building 1202, Hampton, Va., March 1-2, 1989.

Rennels, D. A. et. al. "Fault Tolerance in A Large Snooping-Cache

Multiprocessor," JPL Task Plan 81-2590, March 31, 1989.

Rennels, D. A. "Architectures for Fault-Tolerant Spacecraft

Computers," Proc. IEEE, Vol. 66, No. I0 (October 1978).

Rennels David A, "On Implementing Fault-Tolerance in Binary

Hypercubes", FTCS 86, 1986.

Rennels, D. A. "On implementing fault-tolerance in binary hypercubes",

FTCS 1986, pp 344-349.

Saad,Y and M.H. Schultz, "Topological properties of Hypercubes",

Research Report YALEU/DCS/RR-389, Yale University, June 1985.

Saltz Joel Het al, "Automated Problem Mapping : The Crystal Runtime

System", Hypercube Multiprocessors 1987, SIAM Philadelphia 1987.

Sammur N.M et al, "Mapping signal processing algorithms on the

hypercube", 4th Hypercube Conf. Monterey, CA, Mar 1989.

Schwan Karsten et al, "Mapping parallel applications to a hypercube",

Hypercube Multiprocessors 1987, SIAM Philadelphia 1987.

Scott, R.K., J.W. Gualt, D.Fo McAllister, and J. Wiggs, Experimental

Validation of Six Fault-Tolerant Software Reliability Models, Proc.

IEEE Conf. Fault-Tolerant Computing, 1984, pp 102-107.

Sen, Ranjan K, "On the implementation of caching in a Data Flow

Computer", ICCIr89, Computing and Information, Vol.ll, Canadian

Scholarrs Press Inc., Toronto, 1989.

Sen, Ranjan K, "An approximate algorithm for minimum edge deletion

bipartite subgraph problem", 20 Southeastern Conf. Combinatorics Grpah

Theory Computing, Boca Rotan, Florida, Feb 1989.

41

94. Sivilotti, M.A., et. al. "VLSI Architectures for Implementation of

Neural Networks," Proc. Conf. Neural Networks for Computing,Denker, J.

S. ed. 1986, American Institute of Physics Conf. Proc.151, pp. 408-413.

95. Sklaroff,J.R., "Redundancy management technique for space shuttle

computers", IBM J. Res. Develop., Jan 1976.

96. Sondak, N. E. and Sondak V. K., "Neural Networks and Artificial

Intelligence," ACM SIGCSE Bulletin, Vol. 21, No. i, February 1989,pp.

241-245.

97. Stenstrom P, "Reducing Contention in Shared-Memory Multiprocessors",

IEEE Computer, Nov 1988.

98. Tombolian, S. "Introduction to a System for Implementing Neural Net

Connections on SIMD Architectures," ICASE Report No. 88-3, NASA

Contractor Report 181612.

99. Wensley John H, et al, "SIFT: Design and analysis of a fault-tolerant

computer for aircraft control", Proc. IEEE, 66, I0, Oct, 1978.

i00. Williams, Winifred I, "Load balancing and Hypercubes", Hypercube

Multiprocessors 1987, SIAM Philadelphia 1987.

i01° Zubair M and S.N. Gupta, "Embeddings on a Boolean Cube", Col.

presentation, Old Dominion University, Norfolk, Virginia, January 19,

1989.

42

rill. FIGURES

CENTRALIZED AIPS CONFIGURATION
..- 15 NODE

CONFIGURATION

43

TRIPLEX FTP

o Node

--- .Active Link

-.-- Spare Link
_U Device Interface Unit

lOS GPC/Network Interface (1/O Sequencer)

Figure l.

!

|

l

Figure 2.

MAX Fault Tolerance 45

:. :..

i_!ii!iiiiiil;:

• : ;T:",i'!:i_;_

i: !/i:_i!'

: 2i_.
I : ::2 :::.

E_! R_Ua II II RAm II'_e

_

.++ .,> ++
m,,m,,,o ;_:ii:__ii

ri;]" /

ii • ;

_llmmm _IBIi llm_ Imml

Figure 3.

""'++"__'+++'+- ;+ _. :L

OF POOR QC,'ALIT¥

OF rv__r..'_'_QLj_*LIT_/.

MAX Fault Tolerance
46

".: !:::-'i_',

Figure 4.

OF POG_ (_UALITY

MAX Fault Tolerance 47

FiEure 5.

Appendix I: Task Assignments

I. Task Assignments for the Graduate Assistants

Name: Myung-Hee Kim Period: Jan. 15 thru May 31, 1989

Mrs. Kim, supervised by Dr. Cezzar, assisted in research aspects by

collecting articles and brochures in parallel processing/artificial

intelligence areas mentioned in the proposal. She used Hampton University's

Huntington Library and its CDROM facilities, the libraries of ODU and

William and Mary, and NASA LaRC Technical Library. As needed, she wrote

letters and make phone calls to collect the information. She had, in

addition assisted Dr. Cezzar in developing a simulator (written in C or

Pascal) for testing various process management strategies in shared-memory

and message-passing (e.g. hypercube) machines. She used the opportunity to

develop skills in programming and gain knowledge in computer sciences.

48

Name: Seema Farhat Period: Jan 15 thru Feb 30, 1989

Mrs. Farhat, supervised by Dr. Sen, assisted in research aspects by

handling periodicals and subscriptions as needed, and other material such

as textbooks and conference proceedings relevant to research areas

mentioned in the proposal. In addition, she assisted Dr. Sen in implementing

graph-mapping/optimization software on IBM PC's in the microprocessor

lab. She used the opportunity to develop skills in programming and gain

knowledge in computer sciences.

Name: Nelson Mygina Period: May 1 thru August 30, 1989

Nelson D. Mygina's main responsibility was to develop a simulator program

for testing various process management policies in parallel operating

systems. He used VMS Pascal to accomplish the task on the computer accounts

provided in Hampton University Academic Computer Center VAX 8350 VMS

machine.

2. Task Assignments for the Undergraduate Assistants

Name: Sherman White, Jr. Period: May 1 thru July 31, 1989

We have hired Sherman White as an undergraduate assistant to replace Nelson

Mgcina who left the project and returned to his native country. Sherman

will conduct the multiprocessor performance simulator under Dr. Cezzar's

supervision. His work will contribute to the PAPER project's Phase 3 in

determining efficiency of system software for parallel machines.

Name: Marletta Snowden Period: June 1 thru July 31, 1989

As of June i, 1989, Mrs. Myung-Hee Kim has taken a research position at the

Mathematics Department. Wehave hired Marietta Snowdento replace her and
work throughout the Summeron the PAPERproject. Marietta will be
supervised by Dr. Sen in carrying out tasks such as developing the LISP-
based simulator for applicative caching and graph embedding.

3. Task Assignments for the Research Faculty

Ranjan K. Sen, Co-principal Investigator

i) Study of AIPS Systems t Intercomputer Communication

User Services.

The problem of reconfigurability in the presence of faults in the

system will be studied. The AIPS model (15-node, each node made

up of 3-triplex and l-simplex FTMPS) and Hypercube systems will be

the focus.

2) Plans for Distributed Redundancy Management for FY 89

The main idea is to get a feedback from Rich Harper, CSDL

regarding distributed redundancy management for AIPS system. Most

of this would be covered during our planned visit.

3) Programming Paradigms for Applicative Caching on Multiprocesors

This work is related to the development of programming

for applicative caching on dataflow machines. Presently, the

simulator in LISP of the Amamiya's dataflow system will be

installed. Later, the problem will be studied in multiprocessor

systems. The basis of such investigation lies in the effectivity

of applicative caching in reducing computational cost when

recomputations of functions due to reccursive referencing are
involved.

Robert A. Willis, Jr., Advisory/Consulting Faculty

I) Software Implemented Fault Tolerance (SIFT)

The reliability and verifiability of software used for recovery

and reconfiguration of fault-tolerant systems. Usually, this

involves the operating system used for systems that have hardware

fault-tolerance built-in.

2) Software Fault Tolerance Through Redundant Modules

These usually follow hardware concepts for software and use design

diversity or N-version software modules

3) Self-Testing and Repairing Computer -Software Issues

This is another concept in reliability (really availability) of

systems using both hardware fault tolerance and software methods

49

Ruknet Cezzar, Principal Investigator

i) Extract relevant parts of AIPS requirements study for
unmannedplanetary and deep-space probes.

This will involve cross-checking about technology survey and the
suggested AIPS architecture in 1984. An analysis should be made
about AIPS trends then (1984) and now (1989).

2) Identify JPL experimental architectures that can be

used for unmanned planetary explorations involving

fly-bys, landers, or rovers.

This will involve looking into possible JPL architectures such as

JPL-Star, JPL/Caltech Mark III Hypercube with 32-nodes, etc...

3) As a focus area for detailed work on a related topic (Phase i or

Phase 2).

This will involve specific papers in neural computing and a

thorough review of what neural computing is all about.

50

Appendix II: Neural Computing Bibliography

Articles from Books and Proceedings:

[i] Grossberg, S., "Neural Networks And Natural Intelligence", MIT Press,

May 1988, 544 pp.

[2] Anderson, J. A., and Rosenfeld, E., "Neurocomputing", MIT Press, 1988,

800 pp.

[3] Vemuri, V., "Artificial Neural Networks: TheoreticalConcepts", IEEE

computer Society Press, July 1988, 160 pp.

[4] Caudill, M., and Butler, C., "Proceedings of the First International

Conference on Neural Networks", IEEE Service center, Piscataway, N.J.,

June 1987, 300 pp.

[5] Widrow, B., and Baxter, R°A., "Learning Phenomena inLayered Neural

Networks", IEEE-ICNN, Vol° II

[6] Hinton, G., McClelland, J., and Goodhill, G., "Learning Representationa

by Recirculation", IEEE Service Center, Nov. 1987

[7] Anderson, J., "Neurocomputing", MIT Press, 1988

[8] Babcock, K.L., and Westervelt, R.M., "Stability andDynamics of Simple

Electronic Neural Networks with Added Inertia" ,Physica 23D , 1986,

464-469, Notyh-Holland, Amsterdam

[9] Babcock, K.L., and Westervelt, R.M., "Complex Dynamics in Simple

Neural Circuits", Harvard University

[i0] Baldi, P., "Neural Networks, Orientations of the Hypercube and

Algebraic Threshold Functions", IEEE Transactions on Information

Theory, Dept. of Mathematics, University of California, San Diego, La

Jolla, CA 92093

[II] Burr, D.J., "A Neural Network Digit Recognizer", Bell Comm. Res. ,1987

[12] Castelaz, P., Angus, J., and Mahoney, J., "Application of Neural

Networks to Expert System and Command and Control Systems", Hughes

Aircraft, Fullerton, CA

[13] Crawford, W., Myers, M., and Kuczewski, R., "Application of New

Artificial Neural System Information Processing Principles to Patern

classification", TRW, Rancho Carmel, San Diego, CA

[14] Cruz, C., Hanson, W.A., and Tam, J.Y., "Neural Network Emulation

Hardware Design Considerations, Proceedings of 1987 IEEE First Annual

International Conference on Neural Networks IBM Palo Alto Scientific

Center, Palo Alto, CA 94304

51

[15] Denker, J., "Neural Network Models of Learning and Adaptation, AT&T
Bell, Laboratories, Holmdel, NJ 07733, Phycia D, Vol. 22D, 1986, pp.
216-232

[16] Egecioglu, O., Smith, T.R., and Moody, J., "Computable Functions and
Complexity in Neural Networks", ComputerScience Dept., University of
California, Santa Barbara, CA

[17] Feldman, J.A., "Neural Representation of Conceptual Knowledge", TR 189,
June 1986, University of Rochester

[18] Graf, H.P., Jackel, L.D., Howard, R.E., Straughn, B., Denker, J.S.,
Hubbard, W., Tennat, D.M., and Schwartz, D., "VLSI Implementstion of a
Neural Network Memorywith Several Hundreds of Neurons", AT&TBell
Laboratories, Holmdel, NJ 07733

[19] Grossberg, S., and Gutowski, W.E., "Neural Dynamicsof Decision Making
Under Risk" Affective Balance and Cognitive-Emotional Interactions
Source", Psychological Review, in press, 1986

[20] Grossberg, S., "Cooperative Self-Organization of Multiple Neural
Systems During Adaptive Systems", BostonUniversity, Boston, MA02215

[21] Hammerstrom,D., Bailey, J., and Rudnick, M., "Interconnect
Architectures for WSI Neurocomputers", Oregon Graduate Research Center,
1987

[22] Hecht-Nielsoen, R., "Performance Limits of Optical,Electro-Optical, and
Electronic Neurocomputers", HNC5893 Oberlin Dr., SanDiego, CA92121,
SPIE Optical and Hybrid Computing, Vol. 634, 1986

[23] Hirsch, M.W., "Convergence in Neural Nets", Dept. ofMathematics,
University of California, Berkeley, CA94720

[24] Hoffmann, G., "A Neural Network Model Based on the Analogy with the
ImmuneSystems", Dept. of Physics and Microbiology, University of
British Columbia, Vancouver, B.C.,Canada V6T 2A6

[25] Hubbard, W., et. al. "Electronic Neural Networks", AT&TBell
Laboratories, Holmdel, NJ 07733

[26] Hutchinson, J., and Koch, C., "Simple Analog and Hybrid Networks for
Surface Interpolation: Neural Nrtworks for Computing" ed. T.S. Denber,
pp. 235-239, AmericanInstitute of Physics, NewYork, 1986

[27] Kawamoto,A., and Andersen, J.A., "A Neural Network Model of
Multistable Perception", Acta Phychologica 59 (1985), 35-65, North-
Holland

[28] Keeler, J.D., "Comparison BetweenSparsely Distributed Memoryand
Hopfield-Type Neural Network Models", summited to J. Cog Sci also
RIAESTech. Report 86.31

52

129] Keeler, J.D., "Information Capacity of Hebbian Neural Networks",
summited to Phys. Rev. Letters PACSNumbers:87.30, 89.70

[30] Lapedes, A., and Farber, Ro, "A Self-Optimizing,Nonsymmetrical Neural
Net for Content Addressable Memoryand Pattern Recognition", Physica
22D (1986), pp. 247-259

[31] Levine, D°S., "Neural Network Model of Temporal Order Effects in
Classical Conditioning Modelling of Biomedical Systems", Elsevier
Science Pub., 1986

[32] Levine, D.S., "A Neural Network Theory of Frontal Lobe Function", Proc.
of the Eighth Annual Conf. of the Cognitive Science Soc., (Amherst, MA,
1986), Erlbaum

[33] Linsker, R., "From Basic Network Principles to Neural Architecture:
Emergenceof Spatial-Opponent Cells", Proc. Natl. Acad. Scio USAVol.
83, pp 7508-7512, October 1986

[34] Myers, M.H., "SomeSpeculations on Artificial NeuralSystem Technology",
NAECON1986 Proc.

[35] Omohundro,S.M., "Efficient Algorithms with Neural Network Behavior",
Dept. of Comp.Sci., University of Illinois at Urbana-Champaign

[36] Pellionisz, A.J., "Sensorimotor Operations: A Ground for the Co-
Evolution of Brain Theory with Neurobotics and Neurocomputers", Proc.
IEEE ist Ann. Intl. Conf. on Neural Networks, San Diego, CA, 1987 June

[37] Penz, P.A., "The Closeness Code: An Integer to Binary Vector
Transformation Suitable for Neural Network Algorithms", Texas
Instruments Inc., Dallas, TX TomasoPoggio

[38] Reeke, G.N. Jr., and Edelman, G.M., "Selective Neural Networks and
Their Implications for Recognition Automata", The Rockerfeller
University

[39] Sage, J.P., Thompson,J., and Wither, R.S., "An Artificial Neural
Network Integrated Circuit Based on MNOS/CCDPrinciples", MIT Lincoln
Lab.

[40] Tank, D.W., and Hopfield J.J., "Neural Computation by Concentrating
Information in Time", AT&TBell Labs, 1987

[41] Venkatesh, S.S., and Psaltis, D., "Linear and Logarithmic Capacities
in Associative Neural Networks", Preprint Sumitted March 1985 to IEEE
Transactions on Information Theory, Revised Nov. 1986

[42] Voevodsky, J., "A Neural-Based KnowledgeProcessor",Neuraltech,
Mountain View, CA

53

[43] Zipser, D., "ProgrammingNeural Nets to Do SpatialComputations", ICS
Report 8608, UCSD

[44] Anderson, J.A., and Rosenfeld, E., "Neurocomputing, A Reader", MIT
Press, Cambridge, Mass., 1988

[45] Fukushima, K., Miyake, S., and Ito, T., "Neocognition: A Neural
Network Model for a Mechanismof Visual Pattern Recognition", IEEE
Trans. Syst. Mancybern. SMC-13,5(Sept.-Oct. 1983), pp. 826-834

[46] Hopfield, J.J., "Neural Networks and Physical Systems with Emergent
Collective Computational Abilities", Proc. of the National Academyof
Sciences USA. National Academyof Sciences, Washington, D.C., 1982,
Vol. 79, pp. 2554-2558

[47] Widrow, B., "Generalization and Information Storage in Networks of
Adaline _Neuronsf'', in Self-Organizing Systems 1962, Yovitz, M.C.,
Jacobi, G.T., and Goldstein, G., eds., Spartan Books, Washington, D,
1962, pp. 435-461

[48] Sivilotti, M.A., Emerling, M.R., and Mead, C.A., "VLSI Architectures
for Implementation of Neural Networks", Proc. Conf. Neural Networks for
Computing, Denker, J.S., ed., 1986, American Institute of Physics Conf.
Proc. 151, pp. 408-413

[49] Graf, H.P., and deVegvar, P.G.N., "A CMOSImplementation of a Neural
Network Model", AdvancedResearch in VLSI, Proc. Stanford Conf. 1987,
Losleben, P., ed., MIT Press, Cambridge, Mass., 1987, pp. 351-367

[50] Sage, J.P., Thompson,K., and Withers, R.S., "An Artificial Neural
Network Integrated Circuit Basedon MNOS/CCDPrinciples", Proc. Conf.
Neural Networks for Computing, 1986, Denker, J.S., ed., American
Institute of Physics Conf. Proc. 151, pp. 381-385

[51] Hopfield, J.J., "Neurons with Graded ResponseHaveCollective
Computational Properties Like Those of TwoState Neurons ",Proc.
Academyof Science USA, Vol. 81, 1984, pp.3088-3092

[52] Tank, D.W., and Hopfield, J.J., "Simple _Neural'Optimization Networks:
An A/D Converter, Signal Decision Circuit, and Linear Programming
Circuit", IEEETran. Circuits and Systems, Vol. CAS-33, 1986, pp.
533-541

[53] Lippmann, R.P., "An Introduction to Computingwith Neural Nets", IEEE
Acoustics, Speech, and Signal Processing, Vol. 4, April 1987, pp. 4-22

[54] deVegvar, P.G.N., and Graf, H.P., "Studies of Associative Memoryand
SequenceAnalyzer Circuits on a ProgrammableNeural Network chip" to be
published. Contact Graf for preprint copies.

54

[55] Linsker, R., "From Basic Network Principles to Neural Architecture",
Proc. Natl. Academyof Sciences USA, Vol. 83, Oct.-Nov. 1986, pp.
7508-7512, 8390-8394, 8779-8783

[56] Linsker, R., "Towards an Organizing Principle for a Layered Perceptual
Network", in Anderson, D., ed., "Neural Information Processing
Systems-Natural and Synthetic", Amer. Inst. of Physics (NY), to appear

[57] Willows, A.O.D., Dorsett, D.A., and Hoyle, G.,"Neurobiol", 1973, 4,
207-237, 255-285

[58] Harmon, L.D., "Neural Theory and Modeling", Reiss, R.F., ed., Stanford
University Press, Stanford, CA, pp. 23-24

[59] Cowan,J.D., and Sharp, D.H., "Neural Nets and Artificial
Intelligence", Daedauls 1988; 117:85-122

[60] Castelaz, P.F., "Application of Neural Network Solution to Battle
ManagementProcessing Functions", 55th Military Operations Research
Society Symposium,Huntsville AL, May 1987

[61] Denker, J.S., ed., "Neural Networks for Computing",American Institute
for Physics (NY), 1986

[62] Brown, N.H. Jr., "Neural Network Implementation Approaches for the
Connection Machine", Conf. on Neural Information Proc. Systems-Natural
and Synthetic, 1987

[63] Hastings, H.M., and Waner, S., " 'Neural Nets on the MPP', Frontiers

of Massively Parallel Scientific Computation", NASA Conference

Publication 2478, NASA Goddard Space Flight Center, Greenbelt Maryland,
1986

55

Articles from Technical Journals:

[i] Kohonen, T., "Adaptive, Associative, and Self-Organizing Functions in

Neural Computing", Applied Optics 26(23): Dec. I, 1987

E2] Baldi, P., and Venkatesh, S.S., "Number of Stable Points for Spin-

Glasses and Neural Networks of Higher Orders", Physical Review Letters

Vol. 58, Number 9, 1 March 1987

C3] Fukushima, K., and Ito, T., "A Neural Network Model Extracting

Features from Speech Signals", The Transactions of the Institute of

information and Communication Engineers, Japan, Vol. J70-D, No. 2, pp.
451-462

[4] Golden, R.M., "A Developmental Neural Model of Visual Word Perception",

Cognitive Science I0, 1986, pp. 241-276

C5] Golden, R.M., "The 'Brain-State-in-a-Box t Neural Model Is a Gradient

Descent Algorithm", Journal of Mathematical Psychology Vol° 30, No. I,

March 1986

[6] Grossberg, S., and Mingolla, E., "Computer Simulation of Neural

Networks for Perceptual Psychology", Behavior Research Methods,

Instruments, and Computers 1986, 18(6), pp. 601-6-7

[7] Sasiela, R., "Forgetting as a Way to Improve Neural-Net Behavior",

American Inst. of Physics, Neural Networks for Computing 1986

18] Shaw, G.L., and Roney, K.J°, "Analytic Solution of a Neural Network

Theory Based on an Ising Spin System Analogy", Physics Letters, Vol.

74A, Number 1,2, 29 Oct. 1979

[9] Sompolinsky, H., "Neural Networks with Nonlinear Synapses and a Static

Noise", Physical Review, Vol. 34, No. 3, Sept. 1986

[I0] Abu-Mostafa, Y.S., and Psaltis,D., "Optical Neural Computers",

Scientific American, March 1987, pp. 88-95

[II] Fukushima, K., "A Neural Network Model for Selective Attention in

Visual Pattern Recognition", BiologicalCybernetics, Vol. 55, No. I,

Oct. 1986, pp. 5-15

[12] Fukushima, K., "A Neural Network Model for Selective Attention in

Visual Pattern Recognition and Associative Recall", Applied Optics,

Vol. 26, No. 23, Nov. 1987, pp. 4985-4992

[13] Fukushima, K., "Cognitron: A Self-Organizing Multilayered Neural

Network", Biological Cybernetics, Vol. 20, No. 3/4, Nov. 1975, pp.
121-136

[14] Fukushima, K., "Neocognitron: A Self-Organizing Neural Network Model

for a Mechanism of Pattern Recognition Unaffected by Shift in

Position", Biological Cybernetics, Vol. 36, No. 4, April 1980, pp.
193-202

I15] Bruce, C., Desimone, R., and Gross, C.G., "Visual Properties of Neurons

in a Polysentory Area in the Superior Temporal Sulcus of the Macaque",

J° Neurophysiology, Vol. 46, No.2, Aug. 1981, pp. 369-384

[16] Carpenter, G.A., and Grossberg, S., "A Massively Parallel Architecture

for a Self-Organizing Neural Pattern Recognition Machine", Computer

Vision, Graphics and Image Processing, Vol° 37, No. i, Jan. 1987, pp.
54-115

[17] Fukushima, K., "Neocognitron: A Hierarthical Neural Network Capable of

Visual Pattern Recognition", Neural Networks, Vol. I, No. 2, April
1988

56

[18] Hopfield, J.J., and Tank, D.W., "Computing with Neural Circuits: A
Model", Science, Aug. 8, 1986

[19] Feldman, J.A., "DynamicConnections in Neural Networks", Biological
Cybernetics, Vol. 46, 1982, pp. 27-39

[20] Oja, E., "A Simplified NeuronModel as a Principal ComponentAnalyzer",
J. Math. Biology, Vol. 15, 1982, pp. 267-273

[21] Woods,W. A., "Transition Network Grammarsfor Natural Language
Analysis", Comm.ACM,Vol. 13, No. I0, Oct. 1970, pp. 591-606

57

