UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

UNIVERSITAT POLITECNICA DE CATALUNYA

FACULTAT D’INFORMATICA DE BARCELONA

FINAL MASTER THESIS

Data Locality in Hadoop

Justyna Katuzka

supervised by

Dr. Oscar ROMERO MORAL
Petar JovaNOVIC

July 2016

Abstract

Current market tendencies show the need of storing and processing rapidly
growing amounts of data. Therefore, it implies the demand for distributed
storage and data processing systems. The Apache Hadoop is an open-source
framework for managing such computing clusters in an effective, fault-tolerant
way.

Dealing with large volumes of data, Hadoop, and its storage system HDFS
(Hadoop Distributed File System), face challenges to keep the high efficiency
with computing in a reasonable time. The typical Hadoop implementation
transfers computation to the data, rather than shipping data across the cluster.
Otherwise, moving the big quantities of data through the network could signif-
icantly delay data processing tasks. However, while a task is already running,
Hadoop favours local data access and chooses blocks from the nearest nodes.
Next, the necessary blocks are moved just when they are needed in the given
ask.

For supporting the Hadoop’s data locality preferences, in this thesis, we propose
adding an innovative functionality to its distributed file system (HDFS), that
enables moving data blocks on request. In-advance shipping of data makes it
possible to forcedly redistribute data between nodes in order to easily adapt it to
the given processing tasks. New functionality enables the instructed movement
of data blocks within the cluster. Data can be shifted either by user running
the proper HDF'S shell command or programmatically by other module like an
appropriate scheduler.

In order to develop such functionality, the detailed analysis of Apache Hadoop
source code and its components (specifically HDFS) was conducted. Research
resulted in a deep understanding of internal architecture, what made it possible
to compare the possible approaches to achieve the desired solution, and develop
the chosen one.

Acknowledgements

Foremost, I would like to express my gratitude to my thesis supervisors Dr.
Oscar Romero and Petar Jovanovic from Department of Service and Information
System Engineering at Universitat Politecnica de Catalunya. I thank them for
giving me opportunity to work with them on this innovative project, and then
for their help, patience and advices.

I am also very thankful to my coordinator at L6dz University of Technology Dr.
Malgorzata Napieralska and director of Department of Microelectronics and
Computer Science Prof. Andrzej Napieralski for their help and encouragement.
Without their involvement my exchange stay at UPC would not be possible.

My thanks also go to all my friends for cheering me up after long days in front
of computer.

Finally, I would like to thank my parents for their support through almost twenty
years of my education, for unconditional believing in me and encouraging to
reach higher, and my boyfriend Rui for his understanding, being always for me
during the tough moments, and not letting me to give up on the way to achieve
my goals.

Contents

I1.1.1 Big Data Applications|

I1.1.2 Big Data Technologies|

1.2 Contribution to open-source project|

[3 Studies on Data Locality|

[4 Code analysis|

4.1 Software preparation|

4.1.1 Building Hadoop source code]

4.1.2 Setting up a

single node cluster|

4.1.3 Hadoop Cluster Setup|

4.2 Different approaches within HDES|

4.2.1 Moditying DFSOutputStream|.

4.2.2 Mover functionality]

[Tmplementation|

.1 The implementation architecture]

b.2 Forced replication functionality|

(6 Conclusions|

6.1 Future perspectives|

|A Bash scripts|

[B_Code

|[List of Figures|

Nelo B0 BNo JEEN I ep i«

10
11
12
13
14

16

18
18
18
20
21
21
22
22

24
24
26

28
28

29

31

35

36

Chapter 1

Introduction

According to the deﬁnitiorEI data is the general term specifying facts and infor-
mation which can be transmitted or processed in order to be used for calcula-
tions or analysis. Also, data can refer to both useful and irrelevant, as well as
the redundant information. One can say that overall data transferred through
the media of communication is the way people exchange facts, memories, and
knowledge.

The amount of data generated by people but especially computers is rapidly
growing last years because of the development of modern technologies and there-
fore the digitalization of everyday life. In addition, professional sectors like
health care, business and social sciences require storing and analysing loads of
data. Nowadays one can talk about the quantity which was impossible to store
so also proceed even few years ago, mainly because of the hardware limitations.
Moreover, the current trends do not seem to stop the next years. This is why
there is a need for creating and continuous development of technologies which
enable managing and analyzing these large data quantities. Therefore, also the
right terms for naming the whole phenomenon appeared and nowadays, we are
talking about so called Big Data.

1.1 Big Data

Term Big Data intuitively refers to the large datasets of size exceeding the
storage ability of the typical relational databases. However, it is not possible
to define the threshold limit of the data size beyond which one can talk about
“big” data. Definition varies amongst the sectors but particularly shifts along
with appearance of new technologies and as a result - storage capabilities [13].

The popular idea to describe the whole phenomenon is the concept of “Vs”,
which was the first time introduced in 2011 by Doug Laney. This American
researcher and analyst initially proposed the wolume, velocity, and variety as
features describing the exploding data management challenge [12].

LSource: Merriam-Webster http://www.merriam-webster.com/

http://www.merriam-webster.com/

e Volume as the very first aspect refers to the obvious issue of the data
quantity and its massive growth last years. Originally, Laney was referring
mainly to the e-commerce getting popular that time 15 years ago. Thence
he underlined the impact of the online trading in the increasing amount
of data generated by machines, not only humans.

e Velocity refers to the speed at which data is generated. In order to make
these bigger amounts of data more efficiently used, the increased velocity
of data transmission was needed. Caching provides the instant access
and live analysis of streaming data, whereas point-to-point data routing
enables the massive and continuous flow.

e Variety describes one of the main problems of Big Data, i.e., common lack
of structure. Many companies store data without preliminary knowing its
purpose, different formats and sources complicate later data mining and
analysing.

Original concept of 3 Vs has been extended during years by two more terms:

e Veracity refers to the poor quality of stored data due to its inconsistency
and incompleteness. Referred as the big challenge for data scientists, lack
of accuracy and noise raise the need of cleaning data before any further
analysis.

e Value is specified as the most important of the Vs features |14]. Marr
underlines the usefulness of collected information and ability to turn it
into desired value. Value is sometimes also called Validity paying even
more attention to its relativeness [17].

There appears other terms (authors seems to diligently follow the rule of V’s)
like Variability which is often mistaken with Variety, but specifies not formats
of collected data but its attributes which are especially relevant in data analy-
sis. Even Visualization is sometimes specified as a Big Data feature. Being
extremely crucial to make huge amounts of data easily comprehensible, it can
also involve User Experience Design [18].

1.1.1 Big Data Applications

The term Big Data is sometimes criticized as too general - as “all talk, no
action” together with other “trendy” terms as Data Science, Cloud Computing
or Internet of Things, which appear nowadays in many aspects of modern world
12].

The best example are health care centers. Integrating data from medical
records enables hospitals and other institutions to store patients’ health history.
Moreover the medical research centers are continuously working on new treat-
ment methods and vaccines. Results of these experiments are stored very often
without preliminary defined purpose and used in later tests.

The obvious way how all internet users are generating zetabytes of data are so-
cial media and content shared online by everyday users. Such data is of special
interest for business and social sciences. Companies use new technologies

as the main promotion channel and analyze all stored information in order to
target their customers.

Both public and private sectors, as well as the general industry, are benefiting
from storing and processing data. Current trends show that this tendency will
be growing during the next years.

1.1.2 Big Data Technologies

When it comes to the big volumes of data, the next question is how to handle it
in an efficient, and at the same time cost-effective, manner. Therefore, increasing
need of storage and processing implies the development of new technologies. The
reasonable consequence was that the top companies in the technological world
got involved in creating necessary solutions. This is how the project now known
as the Apache Hadoop and licensed as the open-source software was created.

This framework enables the distribution of storage and data processing across
the computers cluster - set of connected machines, called also nodes. Files are
divided into smaller parts (chunks, blocks) and can be replicated on more than
one machine for providing more reliable and fault-tolerant data processing. One
of the Hadoop’s principles states “Moving Computation is Cheaper than Moving
Data”. It states that it is more efficient to execute tasks close to the node with
needed data rather than moving the data itself, especially in case of huge blocks
14].

Chapter [2] elaborates further the architecture of framework focusing on its com-
ponents as well.

1.2 Contribution to open-source project

What is worth to mention - Hadoop is a free and fully open-source framework
under license of Apache Software Foundation, i.e., available to be modified and
enhanced by anyone. The Apache projects are identified as developed in col-
laborative process by volunteers (often referred as the open-source community)
and with open and pragmatic software license.

Open source community is very varied but always helpful and open to new con-
tributions. Informations about Hadoop and its components are always free and
available online - not only documentation but also numerous tutorials, scien-
tific papers and other studies. New functionalities developed with this thesis
will be also shared with the community in order to make it available for other
contributors.

1.3 Motivation

Although Hadoop is an effective way to store and process huge amounts of data
in a reasonable time, it obviously has some bottlenecks. One of them refers to
so called Data Locality. After a new task from user is recognized by the system,

it is processed and system recognizes which of data blocks are needed for that
task. By default the local data access is favored over this from the remote nodes.

Although one of the Hadoop’s basic concepts is to move computation to data,
framework handles data shipping with its built-in scheduler. Blocks of data
are transferred just before they are needed. An alternative way, which would
significantly increase the system performance, is to transfer data in-advance.

Moving data blocks between nodes would enable studies on more advanced
scheduling algorithms. So called in-advance data shipping could allow user
to manually relocate data, rather than rely on default arrangement, and take
advantage later from its locality. Currently, Hadoop automatically organizes
blocks across cluster without user interference. Therefore designing and devel-
oping functionality, so called forced or instructed replication, is very challenging
and innovative [10].

This thesis contains the analysis of possible approaches which could make it
possible to develop the desired functionality. Later the proposed solution is
elaborated in more detail and with the description of how extra replication
functionality was developed.

1.4 Outline

This thesis is the extract and description of research about the Apache Hadoop
and is aimed to explain the studies on Data Locality as the framework’s bot-
tleneck. The following chapter introduces Hadoop and its components together
with the brief history of development focusing especially on HDFS as it is later
put to the further analysis.

Chapter [4 focuses on code analysis and possible approaches to the desired solu-
tion. There is also the detailed description of compiling the binary source code
of Hadoop, as well as setting single- and multi-node clusters. In the end, the
chosen approach is elaborated with view of code which is going to be altered.

Chapter [5| contains class diagrams of enhanced code and explains the modifi-
cations (which are enclosed in full version in Appendices). In the end there
is chapter [6] with summary and possible path of future development, and all
Appendices.

Chapter 2

Background - Hadoop
framework

This chapter briefly outlines the development history and the general architec-
ture and then elaborates the individual components, in view of their role in the
whole framework, paying special attention to Hadoop Distributed File System
(HDFS).

2.1 History

Few years before the first ,,Big Data” popularity peaks, Google, at that time
already fast expanding technological company, had to tackle the problem of
rapidly growing volume of web content, in order to index it and provide search
engine users with desired results in a reasonable time.

First revolutionary paper was by Ghemawat et al. from 2003 which presented
a scalable distributed file system with high aggregate performance meeting the
Google’s data processing needs [5]. The general concept was similar to other
systems - data is split into chunks and stored inside the cluster of commodity
machines. The given solution treated components failures as something antic-
ipated rather than the exception and therefore provided the fault tolerance by
monitoring, replication of crucial data and recoveries.

One year later, Dean and Ghemawat presented a new model of data processing
across large clusters, called MapReduce. Article was the first introduction of this
currently very popular programming model, MapReduce, it introduced the new
way of computation in terms of separated map and reduce functions. Authors
proposed that programs written in that way are automatically parallelized and
executed across the large-scale clusters. Despite small changes, MapReduce
remained in the same form, which shows how big success the concept was in
2004 [3].

In parallel to Google research, Doug Cutting and Mike Cafarella later known
as the co-founders of Hadoop, were working on improved open-source search

10

engine - project called Nutch, which was aimed to crawl and index hundreds of
millions of webpages. After adding the underlying file systems, the open-source
version of MapReduce with Nutch on the top, the project got the new name
Hadoop (after Cutting’s son yellow plush toy elephant) [7].

The next stages of Hadoop development were connected with company Yahoo
where Cutting started to work in 2006. The Nutch web crawler remained as
a separate project whereas Hadoop as an open-source Apache Software Foun-
dation project. The first official version 0.1 was released in April 2006 [4] and
firstly was deployed on Yahoo servers. Even though it was being developed in-
side Yahoo, Hadoop stayed an open-source project maintained and licensed by
Apache Software Foundation - non-profit corporation which can be described as
decentralized community of developers.

2.2 Architecture

After the first official release Hadoop authors were continuously working on its
development and finally Hadoop 1.0.0 was released in December 2011. This
major release Apache Hadoop consisted of so called ,,Two Pillars” of Hadoop
1.x - file storage HDFS and MapReduce on top of it. It considerably popularized
MapReduce concept and presented the potential of distributed data processing.

From the architecture point of view, Hadoop uses so called master/slave archi-
tecture where one device has control over others. As shown on Fig. both in
MapReduce and HDFS components one can distinguish masters and slaves [8,
1.

Hadoop Server Roles

17 Clients —l

Distributed Data Processing Distributed Data Storage
Map Reduce HDFS
| |
I | |
Secondary ‘
- Job Tracker Name Node ~—masters
Name Node ’

< TaskcTracker > Task Tracker \
- o © © — slaves
DataNode &
|

DataNode &
Task Tracker

Data Node &
Task Tracker

BRAD HEDLUND .com

Figure 2.1: Hadoop master-slave architecture|8]

11

Alongside maintaining Hadoop 1 (which was enhanced only till version 1.2.1)
authors were working on different branch which was released in May 2012 as
Hadoop 2.0.0. Being continuously in development project’s newest available sta-
ble version is 2.7.2 announced in January 2016. Following releases are published
every few months.

With switching to the next major release Hadoop’s primary components were
re-written to add new functionalities. Fig.[2.2] presents architecture changes be-
tween Hadoop 1 and 2. The main difference was dividing MapReduce functional-
ities and decoupling separate module YARN (sometimes called also MapReduce
2.0), which took place of managing resources task. Also HDFS architecture was
slightly improved. These changes eliminated such limitations of Hadoop 1 like
problems with horizontal scalability and cluster restrictions (only 4000 nodes)

[4].

HADOOP 1.0 HADOOP 2.0

MapReduce /J Others

(data processing) (data processing)

MapReduce = L
(cluster resource management YARN
& data processing) (cluster resource management)

Figure 2.2: Hadoop 1 vs Hadoop 2 architectureEl

2.2.1 MapReduce

MapReduce is the programming paradigm enabling the massive scalability across
the cluster nodes. The whole concept assumes the same data flow and stages
since its introduction in 2004 .

Although the Apache Hadoop project is just one of the MapReduce implemen-
tations, MapReduce plays the key role in the framework. Using it, users can
write applications to process big amounts of raw data on large clusters with a
parallel, distributed algorithm what improves speed and reliability of the system
. Jobs submitted to the cluster are called map and reduce tasks.

Fig.[2-3] presents the high-level model of MapReduce algorithm consisting of two
stages @ﬂ:

e Map stage
Input data is read from HDF'S and divided into data blocks. Each block is

ISource: Hortonworks http://hortonworks.com/
2Source: IBM http://www.ibm.com/

12

http://hortonworks.com/
http://www.ibm.com/

Map Tasks Reduce Tasks

[split 1 —>@<I i :
\\ —)@D—) Out 1

) —>69—) Out 2
| Split 3 —)@< 7

| Input Intefmediate Data Output
<K1, V1> <K2, V2> <K2, list(Vz)> <K3, V3>

Figure 2.3: MapReduce architectureﬂ

is processed by a map task line by line. Then the map function submitted
by user generates the output data (in form of key-value pairs). Interme-
diate data collected in buffer is sorted, written to local disk as many file
spills and merged into a single map output file.

e Reduce stage
After transferring data to the proper node, outputs of different mappers
are grouped by the previously defined key. User reduce function produces
the final data which is later compressed and written as output to HDFS.

MapReduce is broadly discussed and analyzed in many papers and online sources
what facilitates studies on it. It is widely popular because it is scalable allowing
processing huge amount of data stored in one cluster and relatively easy to use
- developers can write applications in any of popular programming languages
(like Java, Python, or Ruby) to run them as MapReduce jobs.

2.2.2 YARN

Apache Hadoop YARN (Yet Another Resource Negotiator) is also called MapRe-
duce 2.0 as it was introduced with Hadoop 2 and took some of the MapRe-
duce functionalities. This cluster management technology can be described as
a large-scale, distributed operating system used in Apache Hadoop framework
and separates resources and scheduling management from data processing.

In Hadoop 1 so called JobTracker in MapReduce was responsible for resource
management, tracking resource consumption and job life-cycle management.
The fundamental idea of YARN is based on splitting these functionalities into

13

global ResourceManager (responsible for resources) and per-application Appli-
cationMaster (job scheduling/monitoring).

—_

MapReduce Status ————

Job Submission ~----- -
Node Status —— »-
Resource Request ..----..-- >

Figure 2.4: YARN architecturd’]

Fig. illustrates the YARN architecture. The main ResourceMananger and
per-node slave NodeManager are aimed to manage applications in a distributed
manner. The per-application ApplicationMaster negotiates resources with the
ResourceManager and collaborates with NodeMaanger in order to execute and
monitor the tasks.

The ResourceManager is responsible for handling all available cluster resources
among applications using two components - Scheduler and ApplicationsMan-
ager. The first one allocates resources based on the applications needs without
monitoring, tracking status or restarting the failed tasks, the latter - accepts
job-submissions directing them to the specific per-application ApplicationMas-
ters.

The per-machine NodeManagers are responsible for monitoring their resources
usage, tracking and reporting this information to the ResourceManager .

2.2.3 HDFS

Hadoop Distributed File System is the primary distributed storage used in
Hadoop - scalable and reliable, designed especially for large clusters of com-
modity servers, aiming to be fault-tolerant and running on low-cost hardware.

The HDFS architecture is presented on Fig. Cluster with HDFS deployed
over it consists of one main NameNode and DataNodes in the master-slave
architecture (respectively NameNode and DataNodes in Fig. .

3Source: [Hortonworks

14

http://hortonworks.com/

HDFS Architecture

Metadata (Name, replicas, ...):
/homeffoo/data, 3, ...

Namenode

Metadata ops

Read Datanodes Datanodes

J | |
0 A8 = = Replication 0 —
A

B = Blocks

\ Y y,
~ v

Rack 1 Write Rack 2

Figure 2.5: HDFS architecture[4]

System containing NameNode behaves as a master server. A single NameNode
is responsible for managing the file system namespace and regulating user’s
access to files. Also, it performs the typical file system operations (like copying,
moving) on stored files.

Every node in a cluster has (typically one) DataNode responsible for its data
storage where files divided into one or more blocks are kept. They perform
reading and writing requests as well as the operations on blocks ordered by
NameNode.

Apart from the typical distributed file system features, HDFS is designed and
developed to fulfill high efficiency goals. Hardware failure is not treated as ex-
ception but rather as a norm. Blocks are by default stored in more than one node
in order to be easily recovered in case of the partial breakdown. Also, possible
faults are monitored and quickly detected, so that nodes can be recovered.

15

Chapter 3

Studies on Data Locality

This chapter brings examples of studies on Data Locality in Hadoop, specifically,
on MapReduce.

As very popular and having various implementations, parallel programming
model MapReduce is also often discussed and widely elaborated in different
scientific papers. Its open-source implementation - the Apache Hadoop frame-
work has many contributors. During the years, there appeared many problems
stopping them from improving the project performance.

Kalavri and Vlassov discus existing problems and limitations of MapReduce
paradigm implemented in Hadoop. However, it leaves them open, without the
proposed solutions |11]. Authors pay especially a lot of attention to the per-
formance issues referring to the execution time and optimization techniques, as
well as the complexity of the typical MapReduce jobs. Also, programming the
MaprReduce jobs can be sometimes too low-level and require deep understand-
ing of the system architecture.

Main subject of this study - Data Locality as the significant bottleneck in
MapReduce implementations was also the topic of many articles investigat-
ing the different approaches and possible improvements in order to tackle the
similar issues. Guo et al elaborate influence of cluster configuration on data lo-
cality and proposes new scheduling algorithm [6]. However, authors were more
focused on distribution of blocks between nodes, rather than later impact of
that on running tasks. Good distribution of data across nodes may help to
reduce later cross-switch network traffic which is the common problem in data-
intensive computing systems. Authors of this paper were analyzing the default
Hadoop scheduling in terms of its optimality in comparison to their proposed
called Linear Sum Assignment Problem.

Wang et al. focuse on data locality from the stochastic network perspective
and balance between locality and load-balancing [21]. Next, it presents the new
queueing architecture and map task scheduling algorithm. Their solution is
aimed to asymptotically minimize the number of backlogged tasks.

Indeed the first idea was to base extra replication and moving data on MapRe-
duce. As an older module, MapReduce is very well documented, also on other

16

sources than official documentation [1]. However, modifications of MapReduce
cause only different assigning resources to jobs so the solution is not to move the
computation closer to data but opposite - to modify HDFS instead of MapRe-
duce. It also implies the possibility to use the added feature in other applications
build on to of HDFS, like Spark, Pig or Hive.

Currently, tasks which are going to be executed require data which is down-
loaded from remote clusters. The process of collecting data needed for current
task starts just before that execution. Instead transferring data could be done
in parallel to the previous tasks. As HDFS actively uses replication of data,
the additional transferring could be done executing replication with specified
favoured nodes.

The main task of this thesis is to design and develop solution which enables the
force replication which can be used by scheduler for HDF'S as well as for forcing
more balanced data distribution across the cluster.

17

Chapter 4

Code analysis

This chapter firstly presents how to build Hadoop source code and how to pre-
pare cluster in order to start development and contribution process. Next it
compares the possible approaches aiming to achieve the desired solution of on-
request moving blocks between nodes.

4.1 Software preparation

In order to study HDFS, there was a need to work with the Hadoop source code.

Apache Software Distribution provides numerous releases of Hadoop Software,
starting from 0.10.1 up to the newest 2.7.2 released in January 2016. Every
version after 2.0 can be downloaded both as binary and source code archives.
Apache also provides the detailed instruction how to contribute to the project
- starting from possible improvements which could be implemented, through
setting environment up to actual changes, testing them and sharing with the
community [4].

Every contributor should start from compiling the available source code before
changing it. Although there are numerous tutorials apart from the official one,
including blogs and technical forums, it turned out to be very challenging due
to many requirements and specific configuration of operation systems. Also,
apparently it was a common problem as many people were looking for help.

During the whole process of working on this master thesis, all the involved
machines were running a Debian-based Linux operating system Linux in version
14.04 LTS (Long Term Support). Therefore, the compilation process is described
specifically for Linux system.

4.1.1 Building Hadoop source code

Required software
Hadoop is prepared to be built with the build automation tool Apache Maven.

18

There are plenty of dependencies to be installed:
- Java JDK (1.7 or later)
- ProtocolBuffer 2.5.0

- native Linux libraries - cmake, zlib, openssl, ssh and many others

Source code content
Unpacked archive (on Fig. [4.1)with source code contains many folders with
specific modules.

j@j-vostro:~/hadoop-2.7.2-s5rc$ 1s -1
BUILDING. txt

dev-support
hadoop-assemblies
hadoop-client
hadoop-common-project
hadoop-dist
hadoop-hdfs-project
hadoop-mapreduce-project
hadoop-maven-plugins
hadoop-minicluster
hadoop-project
hadoop-project-dist
hadoop-tools
hadoop-yarn-project
LICENSE. txt

NOTICE.txt

pom.xml

README. txt

Figure 4.1: Structure of Hadoop source code

Apart from the most siginificant ones in this case hadoop-hdfs-project and
hadoop-common-project (which contains common utilities and libraries used
within the whole project), archive ready to be built contains source code of
remaining components - YARN and MapReduce - as well as the other elements
used in compilation.

Compiling source code

Firstly, maven plugins need to be installed in order to generate the snapshot
(an actual copy of the state) version of them. It should be done with standard
command install which installs plugins to package to be used in other local
projects:

$ cd hadoop-maven-plugins/
$ mv clean install

Then, the proper project with right parameters can be compiled from the main
folder containing pom.xml file. The final command used here was created after
combining many suggested solutions and arduous studying the maven documen-
tation.

$ mvn clean install -Pdist -Dtar -Dmaven.javadoc.skip=true
— -DskipTests

19

It contains the following parameters:

clean handles project cleaning

install installs the package into the local repository

-Pdist creates binary distribution

-Dtar creates a TAR archive with distribution

-Dmaven. javadoc.skip=true omits generating JavaDoc

-DskipTests skips tests as they are not the priority currently and execution
time would be much longer

As a result, folder hadoop-dist/target/ contains expected archive hadoop
-X.Y.Z.tar.gz, folder with Hadoop distribution hadoop-X.Y.Z as well as hadoop
-dist-X.Y.Z. jar package.

A appendix [A] shows the whole code used to extract and compile the Hadoop
source code archive.

The next step was to set up a single Hadoop node.

4.1.2 Setting up a single node cluster

The Apache Hadoop framework can be used on a cluster with one or more
nodes. The most basic configuration allows already to perform simple operations
using Hadoop MapReduce and Hadoop HDFS. In order to work on the source-
code, the multi-node configuration should be set up. However, the first step
to get familiarized with Hadoop from the client-user point of view, can be to
experiment with the simple installation.

Pseudo-distributed, single-node Hadoop cluster can be set up using one of avail-
able Hadoop releases or, like here, from the previously compiled source code [4,
16].

Some tutorials suggest to create a special group and user in order not to interfere
with the existing users permissions. In simple version it is not needed.

The basic configuration includes modifying three files:

- etc/hadoop/hadoop-env.sh where variable JAVA_HOME should be set ac-
cording to the system configuration (e.g. to /usr/1ib/jvm/java-8-oracle)

- etc/hadoop/core-site.xml where address of the default file system fs.default.
name is specified

- etc/hadoop/hdfs-site.xml indicates the replication factor dfs.replication
(on how many nodes every block should be replicated, by default 1)

Then, a new distributed-file system can be formatted and started.

$ bin/hadoop namenode -format
$ sbin/start-dfs.sh

20

4.1.3 Hadoop Cluster Setup

After setting up a single node cluster the next step was to prepare multi node
network. Configuration of cluster looks similar in case of few nodes like thou-
sands of nodes.

Fig. shows the simplest case with one node acting as a master and one as
a slave. As both MapReduce and HDFS have the master-slave architecture,
one can separate the particular components (Job- and TaskTrackers are here
indicated as MapReduce, in Hadoop 2 they are already included in YARN).
The master machine deploys as NameNode and JobTracker (these roles can be
also split up in two masters) while slaves - “worker nodes” as both DataNodes
and TaskTrackers.

master slave
task task
tracker tracker
T .
—_ 1
MapReduce job
layer tracker
HOFS name
layer node
¥ B P—
data data
node node
multi-node cluster

Figure 4.2: Structure of multi node cluster|15]

All machines should be connected to the same network and accessible from each
other by SSH.

Configuration is the same like in case of the single node cluster apart from files
conf/masters and conf/slaves on master indicating respectively the proper
roles. dfs.replication parameter can be now set higher than 1 as files can be
finally replicated on more nodes. All commands managing cluster have to be
run from the NameNode [15].

Such configuration (of master and two slaves) was used through the whole de-
velopment and testing process.

4.2 Different approaches within HDFS

The first step in preparing the desired solution described earlier was to broadly
analyse structure of the whole Apache Hadoop project and more deeply - the

21

HDFS part. It was especially challenging part as being developed as an open-
source software, framework lacks in some parts the detailed documentation.
It makes familiarizing with particular components really difficult. The whole
project is very complex containing many modules with more than 11 000 classes
and almost 2 millions lines of code (with not even 400 000 lines of comments)lﬂ

During studies on the Apache framework, there appeared different approaches
how to solve the problem of in-advance data shipping. The ideal way, according
to the reusability principle, was to take advantage of existing code and reuse
it. It aimed to identify parts of source code where the necessary changes should
be made to provide the desired solution but also to make it reusable later for
further improvements.

4.2.1 Modifying DFSOutputStream

DFSOutputStream. java is the file which contains direct output stream to the
datanodes. First attempts to modify the source code included interference with
this class. However, it is used by every HDF'S writing module and therefore also
changing it would influence many other components.

DFSOutputStreanm is a very low-level class, while the idea was rather to work to
re-use some of higher classes. Then they invoke not only direct connection to
the datanode but also take care of nodes policy, checksums of files and others.

4.2.2 Mover functionality

Mover is described as a new data migration tool since Hadoop 2.6.0 (November
2014). It officially supports the Storage Policies - specific rules in which storage
type (ARCHIVE, DISK, SSD or RAM_DISK) files are allowed to be saved.
However, here the most important is that Mover class apart from moving blocks
between different storage types, transfer them between datanodes.

As visible in Fig. the whole module starting from Mover contains also other
tools like Dispatcher. In the end the DataOutputStream class is running in
order to move single blocks of data.

n June 2016, source: OpenHub |https://www.openhub.net/p/Hadoop

22

https://www.openhub.net/p/Hadoop

org.apache.hadoop.hdfs.server.mover.
TestMowver

!

org.apache.hadoop.hdfs.server.mover.
Mowver

!

org.apache.hadoop.hdfs.server.mover.
Processor

v

org.apache.hadoop.hdfs.server.balancer.
Dispatcher

v
v

‘ java.io.DataOutputStream |

Figure 4.3: Mover class diagram

23

Chapter 5

Implementation

As described in the previous chapter the idea was to base a new functionality
on the existing class Mover. It is more efficient to take and advantage an reuse
the existing code than to re-implement the whole functionality from the scratch
like described in different approaches (based on DFSOutputStream).

Mover was designed in order to support storage policy requirements but its
basic tool works on single blocks of data. Therefore, it supplements the new
functionality called here the forced replication. Replication specifies rather how
many instances of the given block should be stored across the cluster. However,
user can here force the replica to be stored in the exact datanode. Then, the
forced replication was chosen as the working name.

Firstly, wWe will describe the architecture of our solution. The class diagram
Fig. is divided into components which were significant in this implementa-
tion. Then, the activity diagram Fig. [5.4] presents how the command is pro-
cessed. The source code is shown in Appendix

5.1 The implementation architecture

Fig. [5.1] shows classes used in the implementation. These marked yellow are
the new ones. The other ones were modified by adding new methods if needed.
Analysis should be started from the the ForceReplication class which allows
user to execute the command and specify parameters of force replication.

The basic way user can manage the cluster is through commands executed on
the NameNode. These shell-like commands directly interact with HDFS and
allow user manipulate files, analogously to the UNIX commands.

Main class supporting all commands operating on files is FSCommand. Then also
class ForceReplication invoking the force replication extends it. FSCommand
provides common functions for all commands like operations on extra parame-
ters and checking whether file exists.

Command to call the force replication:

24

1
org.apache.hadoop.fs. { org.apache.hadoop.is.shell. org.apache.hadoop.fs.shell.
ForcedReplicationParams ForceReplication FsCommand

3

!

org.apache.hadoop.fs.

DistributedFileSystem FileSystem

org.apache.hadoop.fs.

4

¥

org.apache.hadoop.hdfs.server.mover.
ForcedMover

5
v

org.apache. hadoop.hdfs.server.mover.
Mower

6
¥

org.apache.hadoop.hdfs.server.balancer.
Dispatcher

Figure 5.1: ForceReplication architecture diagram

$ bin/hadoop -forceReplication <blockID> <srcDatanode>
« <destDatanode> <path>

User has to determine the specific parameters:
- blockID - every block is defined by its parameters, including ID
- srcDatanode - DataNode where currently the block is located
- dstDatanoce - DataNode where block should be moved

All these informations can be obtained from HDFS, e.g. from command fsck
(Fig. where blockID and datanodes are marked).

In case user tries to execute forceReplication without proper parameters he gets
the warning (like in Fig. |5.3)

If parameters are specified correctly they are passed as istance of class Forced
ReplicationParms (steps 1 and 2 in Fig. [5.1). It is a simple file containing
parameters of the given force replication job, i.e. blockld, srcDatanode and
dstDatanode. Its instance is called later whenever these parameters must be
used.

Step 3 in Fig. shows that HDFS uses implementation of FileSystem called
DistributedFileSystem. forceReplication calls it directly to proceed with
the operations.

25

The filesystem under path '/fuser/hduser/SMB.zip' is HEALTHY

hduser@ubuntul: fusr/local/hadoop$ bin/hdfs fsck fuser/hduser/SMB.zip -files -blocks -1
ocations

Connecting to namenode via http://ubuntul:see7e/fsck?ugi=hduser&files=1&blocks=1&locat|
ions=1&path=%2Fuser%2Fhduser%2FsMB.zip

FSCK started by hduser (auth:SIMPLE) from /192.168.56.101 for path fuser/hduser/5MB.zi
p at Thu Jun 38 87:23:41 CEST 2016

Juser fhduser /SMB.zip 5242880 bytes, 1 block(s): OK

0. BP—1462600969—192.168.56.131—146?2643?968:b1.|-:1001 len=5242880 repl=1 [
DatanodeInfoHithStorageDS-f332 370- 78C1-4544-9062 -de2d1782e434,D
IsK]1]

Status: HEALTHY

Total size: 5242880 B
Total dirs: i}

Total files: 1

Total symlinks:

Total blocks (validated):
Minimally replicated blocks:
Over-replicated blocks:
Under-replicated blocks:
Mis-replicated blocks:
Default replication factor:
Average block replication:
Corrupt blocks:

Missing replicas:

Number of data-nodes:

Number of racks:
FSCK ended at Thu Jun 30 87:23:4

vg. block size 5242880 B)
%)

[N NN N W N - -]

CEST 2016 in 16 milliseconds

The filesystem under path '/fuser/hduser/SMB.zip' is HEALTHY
hduser@ubuntul: /usr{local/hadoop$ [

Figure 5.2: DFS Command fsck

hduser@ubuntul: fusr/lecal/hadoop$ binfhdfs dfs -forceReplication

-forceReplication: Mot enough arguments: expected 4 but got @

Usage: hadoop fs [generic options] -forceReplication <blockID> «srcDatanode> <dstData
ode> <srcDatanodes <paths>

hdnzar@uhnntnt * fner M aral Thadanns

Figure 5.3: forceReplication command warning

In case force replication should be used not through HDFS command, class
Forced Mover plays the role of connector. It is designed based on existing tests
using the class Mover

5.2 Forced replication functionality

Fig. [5.4] shows the flow diagram.

Firstly users specifies the parameters of forced replication. forceReplication
class as F'S shell command provides checking whether file exists and if param-
eters were defined properly, otherwise it throws the exception. Then inside
DistributedFileSystem it is analysed if given block is a part of specified file,
as well as whether both datanodes exist. In case any of these tests is not passed,

26

o

(blockID, srcDatanode, destDatanode >

!

FSShell femeeeoemomooeans » Exception

<N

Is blockID corect for this file?
Is blocklD corect for this file?

forcedReplication

Figure 5.4: ForceReplication activity diagram

the whole command fails and user is notified why. After, the ForcedMover is
involved.

27

Chapter 6

Conclusions

This master thesis considered firstly the theoretical part, which included studies
on data locality in the open-source framework, Apache Hadoop, and analysis of
its architecture. As an outcome of this research, we developed a new function-
ality for the Hadoop Distributed File System for instructing the redistribution
of data across cluster nodes and improving the performance of running applica-
tions. Intuitively, the functionality we have added allows to move single blocks
between datanodes in order to redistribute data in cluster and bring data in
advance closer to tasks that need them.

This project involved working with the open-source software. Therefore, apart
from the official documentation, framework is broadly studied in different sources,
like academic papers, but also online magazines and private blogs. Also, techni-
cal forums and mailing lists give the opportunity to communicate and contact
with other contributors. On the other hand, working on open-source projects
can cause struggling with complex source code, developed simultaneously by
many volunteers. Although it is rather challenging and requires more patience,
contributing to open-source community and engagement in the community give
lot of satisfaction.

6.1 Future perspectives

Even though the developed solution may have some limitations, it can be a
great basis for future Hadoop enhancements. It would be enough to connect
it programmatically with any further modifications working with instructed
redistribution of data, such as in-advance scheduler. Then, it could significantly
improve the built-in data locality solution and therefore, the resource utilization
and the whole system performance.

28

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Appendix A

Bash scripts

Compilation Bash script used to compile Hadoop from source the source
code. It support both local (on a single node cluster) and cluster installation -
prepares files to automate and speed up later configuration.

#!/bin/bash

if [[$1 = "cluster"]]; then
MODE="cluster"
elif [[$1 = "local"]]; then

MODE="1local"

else
echo -e "Usage:\nsudo compile.sh locall|cluster"
exit

fi

VERSION="2.7.1"
MODIFIED_FOLDER=hadoop-$VERSION-src_modification

echo -e "Starting maven compilation for "$MODE"\n"

cd $MODIFIED_FOLDER

cd hadoop-maven-plugins/

mvn clean install

cd ..

mvn clean install -Pdist,native -Dtar -Dmaven.javadoc.skip=true -DskipTests
cd ..

echo -e "Hadoop"$VERSION" compiled\n"

echo -e "Backing up...\n"
COMMON=$MODIFIED_FOLDER/hadoop-common-project/hadoop-common/src/main/java/org/
— apache/hadoop/fs
HDFS=$MODIFIED_FOLDER/hadoop-hdfs-project/hadoop-hdfs/src/main/java/org/apache/
— hadoop/hdfs

BACKUP=modified

29

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

CLOUD="/Dropbox/IFE_CSIT/mgr/files_backup/

cp $COMMON/shell/ForceReplication.java $BACKUP

cp $COMMON/ForcedReplicationParams.java $BACKUP

cp $COMMON/shell/CommandWithDestination.java $BACKUP
cp $COMMON/FileSystem.java $BACKUP

cp $HDFS/DistributedFileSystem.java $BACKUP

cp $HDFS/server/mover/ForcedTestMover. java $BACKUP
cp $HDFS/server/balancer/Dispatcher.java $BACKUP

cp $HDFS/protocol/datatransfer/Sender.java $BACKUP
cp compile.sh $BACKUP

cp $BACKUP/* $CLOUD

echo -e "All modified files backed up in "$BACKUP" and "$CLOUD"\n"

#locally

if [[$MODE = "local"]]; then

LOCALLY=/usr/local

cp -r £MODIFIED_FOLDER/hadoop-dist/target/hadoop-£VERSION. tar. gz

rm -r $LOCALLY/hadoop

sudo rm -r /tmp/h*

cp -r $MODIFIED_FOLDER/hadoop-dist/target/hadoop-$VERSION $LOCALLY/hadoop
cp local_tobechanged/* $LOCALLY/hadoop/etc/hadoop/

sudo chown -R hduser $LOCALLY/hadoop

sudo subl $LOCALLY/hadoop/

echo -e "Hadoop"$VERSION" available in folder "$LOCALLY"/hadoop\n"

#cluster

else

CLUSTER="/shared_VB

rm -r $CLUSTER/hadoop

cp -r $MODIFIED_FOLDER/hadoop-dist/target/hadoop-$VERSION $CLUSTER/hadoop
sudo chown -R j $CLUSTER/hadoop

cp $CLUSTER/tobechanged/* $CLUSTER/hadoop/etc/hadoop/

subl $CLUSTER/hadoop/

echo -e "Hadoop"$VERSION" available in folder "$CLUSTER"/hadoop\n"

30

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

Appendix B

Code

ForcedReplication.java

package org.apache.hadoop.fs.shell;

import java.io.IOException;
import java.util.LinkedList;
import java.util.List;

import java.util.Arrays;

import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.fs.FSDataOutputStream;

import org.apache.hadoop.fs.ForcedReplicationParams;

import org.apache.hadoop.fs.PathIsDirectoryException;
import org.apache.hadoop.fs.PathNotFoundException;

Vit
* Forces replication of one block
*/
@InterfaceAudience.Private
@InterfaceStability.Unstable

public class ForceReplication extends FsCommand {
public static void registerCommands(CommandFactory factory) {

factory.addClass(ForceReplication.class, "-forceReplication");

public static final String NAME = "forceReplication";
public static final String USAGE = "<blockID> <srcDatanode> <dstDatanode>
— <srcDatanode> <path>";
public static final String DESCRIPTION =
"Moves one block of the given file from from one datanode to another

— one.\n";

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

53

54

55

56

57

58

59

60

61

62

11

12

private long blockId = 0;
private String srcDatanode = "";
private String dstDatanode =

nn.,
s

@0verride

protected void processOptions(LinkedList<String> args) throws IOException {

CommandFormat cf = new CommandFormat(4, 4);

cf .parse(args) ;

try {

blockId = Long.parselLong(args.removeFirst());

} catch (NumberFormatException
throw nfe;

}

nfe) {

srcDatanode = args.removeFirst().toString();

dstDatanode = args.removeFirst().toString();

displayWarning("blockID " + blockId + "; srcDatanode " + srcDatanode + ";

< dstDatanode " + dstDatanode) ;

super.processOptions(args) ;

@0verride

protected void processPath(PathData item) throws IOException {

if (item.stat.isDirectory()) {

throw new PathIsDirectoryException(item.toString());

}

item.fs.setVerifyChecksum(true)

ForcedReplicationParams params
«s srcDatanode, dstDatanode);

B

= new ForcedReplicationParams(blockId,

displayWarning("forceReplication - " + params);

item.fs.setWriteChecksum(true);
item.fs.forcedReplication(item,

params) ;

ForcedReplicationParams.java

package org.apache.hadoop.fs;

import org.apache.hadoop.classification.InterfaceAudience;

import org.apache.hadoop.classification.InterfaceStability;

@InterfaceAudience.Public

@InterfaceStability.Evolving

public class ForcedReplicationParams {
private long blockId;
private String srcDatanode;
private String dstDatanode;

32

public ForcedReplicationParams(long blockId, String srcDatanode, String
< dstDatanode) {
this.blockId = blockId;

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

this.srcDatanode = srcDatanode;
this.dstDatanode = dstDatanode;

public long getBlockId() {
return blockId;

public String getSrcDatanode() {
return srcDatanode;

public String getDstDatanode() {
return dstDatanode;

public String toString() {
return "ForcedReplicationParams-" + blockId + "-" + srcDatanode + "->" +
dstDatanode;

DistributedFileSystem.java

public boolean forcedReplication(PathData f, final ForcedReplicationParams
< params) throws IOException {
DatanodeStorageReport[] storageReport =
— dfs.namenode.getDatanodeStorageReport (DatanodeReportType.LIVE) ;
LocatedBlocks blocks = dfs.namenode.getBlockLocations(f.toString(), O,
— Long.MAX_VALUE) ;

LocatedBlock forcedBlock = null;
DatanodeInfo forcedSrcDatanode = null;

DatanodeInfo forcedDstDatanode = null;

for (LocatedBlock block: blocks.getLocatedBlocks())

10

11

12

13

14

15

16

17

if (block.getBlock().getBlockId() == params.getBlockId())
forcedBlock = block;

if (forcedBlock

DFSClient.LOG.

return false;

info("Wrong blockID");

for (DatanodeStorageReport report: storageReport) {
DatanodeInfo datanodeInfo = report.getDatanodelnfo();

33

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

if (datanodeInfo.getXferAddr().equals(params.getSrcDatanode()))

forcedSrcDatanode = datanodeInfo;

if (datanodelInfo.getXferAddr().equals(params.getDstDatanode()))

forcedDstDatanode = datanodeInfo;

if (forcedSrcDatanode == null || forcedDstDatanode == null ||
—» forcedSrcDatanode == forcedDstDatanode) {
DFSClient.L0G.info("Wrong datanodes");

return false;

DFSClient.L0G.info(f.toString() + ": " + forcedSrcDatanode + "->" +

—» forcedDstDatanode) ;

ForcedMover mover = new ForcedMover (this, f.toString());

boolean result = mover.scheduleMovingBlock(forcedBlock, forcedSrcDatanode,

—» forcedDstDatanode) ;

return result;

ForcedMover.java

package org.apache.hadoop.hdfs.server.mover;

import com.google.common.collect.Maps;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FSDataOutputStream;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.fs.StorageType;

import org.apache.hadoop.hdfs.*;

import org.apache.hadoop.hdfs.protocol.DatanodelInfo;

import org.apache.hadoop.hdfs.protocol.LocatedBlock;

import org.apache.hadoop.hdfs.protocol.LocatedBlocks;

import org.apache.hadoop.hdfs.server.balancer.Dispatcher.DBlock;
import org.apache.hadoop.hdfs.server.balancer.NameNodeConnector;
import org.apache.hadoop.hdfs.server.mover.Mover.MLocation;

import java.io.IOException;
import java.net.URI;
import java.util.*;

import java.util.concurrent.atomic.AtomicInteger;

public class ForcedMover {

private static DistributedFileSystem dfs;

private static String file;
public ForcedMover (DistributedFileSystem dfs, String file) {

this.dfs = dfs;
this.file = file;

34

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

66

static Mover newMover(Configuration conf) throws IOException {
final Collection<URI> namenodes = DFSUtil.getNsServiceRpcUris(conf) ;
Map<URI, List<Path>> nnMap = Maps.newHashMap();
for (URI nn : namenodes) {
nnMap. put (nn, null);

final List<NameNodeConnector> nncs = NameNodeConnector.newNameNodeConnectors(
nnMap, Mover.class.getSimpleName(), Mover.MOVER_ID_PATH, conf,
NameNodeConnector .DEFAULT_MAX_IDLE_ITERATIONS);

return new Mover(nncs.get(0), conf, new AtomicInteger(0));

public static boolean scheduleMovingBlock(LocatedBlock block, DatanodeInfo
— srcDatanode, DatanodeInfo dstDatanode)
throws IOException {
dfs.L0G.info("start TEST");
final Configuration conf = new HdfsConfiguration();

final Mover mover = newMover (conf);
mover.init();

final Mover.Processor processor = mover.new Processor();

final LocatedBlock 1b = block;
final List<MLocation> locations = MLocation.toLocations(1b);
final MLocation mlS = new MLocation(srcDatanode, 1lb.getStorageTypes() [0],
— 1b.getBlockSize());
final MLocation ml = new MLocation(dstDatanode, lb.getStorageTypes()[0],
— 1b.getBlockSize());
final DBlock db = mover.newDBlock(lb.getBlock().getLocalBlock(), locations);

final List<StorageType> storageTypes = new ArrayList<StorageType>(

Arrays.asList (StorageType.DEFAULT, StorageType.DEFAULT)) ;
processor.scheduleMoveForcedReplica(db, ml, mlS, 1b.getStorageTypes() [0]);
dfs.L0G.info("finish TEST");

return true;

35

List of Figures

2.1 Hadoop master-slave architecture| 11
2.2 Hadoop 1 vs Hadoop 2 architecturel. 12
2.3 MapReduce architecture|o oo 13
2.4 YARN architecturefo o oo 14
2.5 _HDES architecturel L. 15
4.1 Structure of Hadoop source code| 19
4.2 Structure of multi node clusterd00 21
4.3 Mover class diagram| L. 23
.1 ForceReplication architecture diagram| 25
5.2 DFES Command fsckl 26
[5.3 forceReplication command warning| 26
5. orceReplication activity diagram|. 27

36

Bibliography

[1] Apache Hadoop (MapReduce) Internals - Diagrams. http://ercoppa.
github.io/HadoopInternals/.

[2] David Bollier. The Promise and Peril of Big Data. Tech. rep. The Aspen
Institute, 2010.

[3] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters”. In: Commun. ACM 51.1 (2008), pp. 107-113.
DOI: 10.1145/1327452.1327492. URL: http://doi.acm.org/10.1145/
1327452.1327492.

[4] Apache Software Foundation. Apache Hadoop. URL: http : / /hadoop .
apache.org/docs/current/.

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google
file system”. In: Proceedings of the 19th ACM Symposium on Operating
Systems Principles 2003, SOSP 2003, Bolton Landing, NY, USA, October
19-22, 2003. 2003, pp. 29-43. DOI: |10.1145/945445.945450. URL: http:
//doi.acm.org/10.1145/945445.945450.

[6] Zhenhua Guo, Geoffrey Fox, and Mo Zhou. “Investigation of Data Locality
in MapReduce”. In: 12th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, CCGrid 2012, Ottawa, Canada, May
13-16, 2012. 2012, pp. 419-426. por1: |10.1109/CCGrid . 2012 .42. URL:
http://dx.doi.org/10.1109/CCGrid.2012.42,

[7] Derrick Harris. The history of Hadoop: From 4 nodes to the future of data.
URL: https://gigaom.com/2013/03/04/the-history-of -hadoop-
from-4-nodes-to-the-future-of-data/l

[8] Brad Hedlund. Understanding Hadoop Clusters and the Network. Sept.
2011. URL: http://bradhedlund. com/2011/09/10/understanding-
hadoop-clusters-and-the-network/.

[9] Herodotos Herodotou. “Hadoop Performance Models”. In: CoRR abs/1106.0940
(2011). URL: http://arxiv.org/abs/1106.0940.

[10] Petar Jovanovic et al. “H-WorD: Supporting Job Scheduling in Hadoop
with Workload-driven Data Redistribution”. In: Advances in Databases
and Information Systems - 20th East Furopean Conference, ADBIS 2016,
Prague, Czech Republic, August 28 — 31, 2016, Proceedings. 2016.

[11] Vasiliki Kalavri and Vladimir Vlassov. “MapReduce: Limitations, Opti-
mizations and Open Issues”. In: 12th IEEFE International Conference on
Trust, Security and Privacy in Computing and Communications, Trust-
Com 2013 / 11th IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications, ISPA-13 / 12th IEEE International

37

http://ercoppa.github.io/HadoopInternals/
http://ercoppa.github.io/HadoopInternals/
http://dx.doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://hadoop.apache.org/docs/current/
http://hadoop.apache.org/docs/current/
http://dx.doi.org/10.1145/945445.945450
http://doi.acm.org/10.1145/945445.945450
http://doi.acm.org/10.1145/945445.945450
http://dx.doi.org/10.1109/CCGrid.2012.42
http://dx.doi.org/10.1109/CCGrid.2012.42
https://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-nodes-to-the-future-of-data/
https://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-nodes-to-the-future-of-data/
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
http://arxiv.org/abs/1106.0940

Conference on Ubiquitous Computing and Communications, IUCC-2013,
Melbourne, Australia, July 16-18, 2013. 2013, pp. 1031-1038. DOI: [10 .
1109 / TrustCom . 2013 . 126, URL: http://dx .doi.org/10.1109/
TrustCom.2013.126.

Douglas Laney. 8D Data Management: Controlling Data Volume, Veloc-
ity, and Variety. Tech. rep. META Group, Feb. 2001. URL: http: //
blogs . gartner.com/doug-laney/files/2012/01/ad949-3D-Data-
Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.
James Manyika et al. Big Data: The Next Frontier for Innovation, Com-
petition, and Productivity. Tech. rep. McKinsey Global Institute, June
2011.

Bernard Marr. Why only one of the 5 Vs of big data really matters. Mar.
2015. URL: http://www.ibmbigdatahub.com/blog/why-only-one-5-
vs—big-data-really-matters.

Michael G. Noll. Running Hadoop on Ubuntu Linuz (Multi-Node Cluster).
URL: http://www.michael-noll.com/tutorials/running-hadoop-on-
ubuntu-linux-multi-node-cluster/.

Michael G. Noll. Running Hadoop on Ubuntu Linuz (Single-Node Cluster).
URL: http://www.michael-noll.com/tutorials/running-hadoop-on-
ubuntu-linux-single-node-cluster/.

Kevin Normandeau. Beyond Volume, Variety and Velocity is the Issue
of Big Data Veracity. Sept. 2013. URL: http://insidebigdata . com/
2013/09/12/beyond-volume-variety-velocity-issue-big-data-
veracity/|

Mark van Rijmenam. Why The 8V’s Are Not Sufficient To Describe Big
Data. Aug. 2007. URL: https://datafloq.com/read/3vs-sufficient-
describe-big-data/166.

Konstantin Shvachko et al. “The Hadoop Distributed File System”. In:
IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST
2012, Lake Tahoe, Nevada, USA, May 3-7, 2010. 2010, pp. 1-10. poI:
10.1109/MSST . 2010 . 5496972. URL: http://dx.doi.org/10.1109/
MSST.2010.5496972.

Vinod Kumar Vavilapalli et al. “Apache Hadoop YARN: yet another re-
source negotiator”. In: (2013), 5:1-5:16. DOI: |10.1145/2523616 . 2523633.
URL: http://doi.acm.org/10.1145/2523616.2523633|

Weina Wang et al. “MapTask Scheduling in MapReduce With Data Lo-
cality: Throughput and Heavy-Traffic Optimality”. In: vol. 24. 1. 2016,
pp- 190-203. pOI1: 10.1109/TNET.2014.2362745. URL: http://dx.doi.
org/10.1109/TNET.2014.2362745.

38

http://dx.doi.org/10.1109/TrustCom.2013.126
http://dx.doi.org/10.1109/TrustCom.2013.126
http://dx.doi.org/10.1109/TrustCom.2013.126
http://dx.doi.org/10.1109/TrustCom.2013.126
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://www.ibmbigdatahub.com/blog/why-only-one-5-vs-big-data-really-matters
http://www.ibmbigdatahub.com/blog/why-only-one-5-vs-big-data-really-matters
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://insidebigdata.com/2013/09/12/beyond-volume-variety-velocity-issue-big-data-veracity/
http://insidebigdata.com/2013/09/12/beyond-volume-variety-velocity-issue-big-data-veracity/
http://insidebigdata.com/2013/09/12/beyond-volume-variety-velocity-issue-big-data-veracity/
https://datafloq.com/read/3vs-sufficient-describe-big-data/166
https://datafloq.com/read/3vs-sufficient-describe-big-data/166
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/2523616.2523633
http://dx.doi.org/10.1109/TNET.2014.2362745
http://dx.doi.org/10.1109/TNET.2014.2362745
http://dx.doi.org/10.1109/TNET.2014.2362745

	Introduction
	Big Data
	Big Data Applications
	Big Data Technologies

	Contribution to open-source project
	Motivation
	Outline

	Background - Hadoop framework
	History
	Architecture
	MapReduce
	YARN
	HDFS

	Studies on Data Locality
	Code analysis
	Software preparation
	Building Hadoop source code
	Setting up a single node cluster
	Hadoop Cluster Setup

	Different approaches within HDFS
	Modifying DFSOutputStream
	Mover functionality

	Implementation
	The implementation architecture
	Forced replication functionality

	Conclusions
	Future perspectives

	Bash scripts
	Code
	List of Figures
	Bibliography

