750 research outputs found

    Design of A Low Power Low Voltage CMOS Opamp

    Full text link
    In this paper a CMOS operational amplifier is presented which operates at 2V power supply and 1microA input bias current at 0.8 micron technology using non conventional mode of operation of MOS transistors and whose input is depended on bias current. The unique behaviour of the MOS transistors in subthreshold region not only allows a designer to work at low input bias current but also at low voltage. While operating the device at weak inversion results low power dissipation but dynamic range is degraded. Optimum balance between power dissipation and dynamic range results when the MOS transistors are operated at moderate inversion. Power is again minimised by the application of input dependant bias current using feedback loops in the input transistors of the differential pair with two current substractors. In comparison with the reported low power low voltage opamps at 0.8 micron technology, this opamp has very low standby power consumption with a high driving capability and operates at low voltage. The opamp is fairly small (0.0084 mm 2) and slew rate is more than other low power low voltage opamps reported at 0.8 um technology [1,2]. Vittoz at al [3] reported that slew rate can be improved by adaptive biasing technique and power dissipation can be reduced by operating the device in weak inversion. Though lower power dissipation is achieved the area required by the circuit is very large and speed is too small. So, operating the device in moderate inversion is a good solution. Also operating the device in subthreshold region not only allows lower power dissipation but also a lower voltage operation is achieved.Comment: 8 Pages, VLSICS Journa

    Low-power CMOS front-ends for wireless personal area networks

    Get PDF
    The potential of implementing subthreshold radio frequency circuits in deep sub-micron CMOS technology was investigated for developing low-power front-ends for wireless personal area network (WPAN) applications. It was found that the higher transconductance to bias current ratio in weak inversion could be exploited in developing low-power wireless front-ends, if circuit techniques are employed to mitigate the higher device noise in subthreshold region. The first fully integrated subthreshold low noise amplifier was demonstrated in the GHz frequency range requiring only 260 μW of power consumption. Novel subthreshold variable gain stages and down-conversion mixers were developed. A 2.4 GHz receiver, consuming 540 μW of power, was implemented using a new subthreshold mixer by replacing the conventional active low noise amplifier by a series-resonant passive network that provides both input matching and voltage amplification. The first fully monolithic subthreshold CMOS receiver was also implemented with integrated subthreshold quadrature LO (Local Oscillator) chain for 2.4 GHz WPAN applications. Subthreshold operation, passive voltage amplification, and various low-power circuit techniques such as current reuse, stacking, and differential cross coupling were combined to lower the total power consumption to 2.6 mW. Extremely compact resistive feedback CMOS low noise amplifiers were presented as a cost-effective alternative to narrow band LNAs using high-Q inductors. Techniques to improve linearity and reduce power consumption were presented. The combination of high linearity, low noise figure, high broadband gain, extremely small die area and low power consumption made the proposed LNA architecture a compelling choice for many wireless applications.Ph.D.Committee Chair: Laskar, Joy; Committee Member: Chakraborty, Sudipto; Committee Member: Chang, Jae Joon; Committee Member: Divan, Deepakraj; Committee Member: Kornegay, Kevin; Committee Member: Tentzeris, Emmanoui

    DTMOS-Based 0.4V Ultra Low-Voltage Low-Power VDTA Design and Its Application to EEG Data Processing

    Get PDF
    In this paper, an ultra low-voltage, ultra low-power voltage differencing transconductance amplifier (VDTA) is proposed. DTMOS (Dynamic Threshold Voltage MOS) transistors are employed in the design to effectively use the ultra low supply voltage. The proposed VDTA is composed of two operational transconductance amplifiers operating in the subthreshold region. Using TSMC 0.18µm process technology parameters with symmetric ±0.2V sup¬ply voltage, the total power consumption of the VDTA block is found as just 5.96 nW when the transconductances have 3.3 kHz, 3 dB bandwidth. The proposed VDTA circuit is then used in a fourth-order double-tuned band-pass filter for processing real EEG data measurements. The filter achieves close to 64 dB dynamic range at 2% THD with a total power consumption of 12.7 nW

    Low-power low-noise CMOS amplifier for neural recording applications

    Get PDF
    Journal ArticleThere is a need among scientists and clinicians for low-noise low-power biosignal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range while rejecting large dc offsets generated at the electrode-tissue interface. The advent of fully implantable multielectrode arrays has created the need for fully integrated micropower amplifiers. We designed and tested a novel bioamplifier that uses a MOS-bipolar pseudoresistor element to amplify low-frequency signals down to the millihertz range while rejecting large dc offsets. We derive the theoretical noise-power tradeoff limit-the noise efficiency factor-for this amplifier and demonstrate that our VLSI implementation approaches this limit by selectively operating MOS transistors in either weak or strong inversion. The resulting amplifier, built in a standard 1.5- m CMOS process, passes signals from 0.025 Hz to 7.2 kHz with an input-referred noise of 2.2 Vrms and a power dissipation of 80 W while consuming 0.16 mm2 of chip area. Our design technique was also used to develop an electroencephalogram amplifier having a bandwidth of 30 Hz and a power dissipation of 0.9 W while maintaining a similar noise-power tradeoff

    Performance enhancement in the desing of amplifier and amplifier-less circuits in modern CMOS technologies.

    Get PDF
    In the context of nowadays CMOS technology downscaling and the increasing demand of high performance electronics by industry and consumers, analog design has become a major challenge. On the one hand, beyond others, amplifiers have traditionally been a key cell for many analog systems whose overall performance strongly depends on those of the amplifier. Consequently, still today, achieving high performance amplifiers is essential. On the other hand, due to the increasing difficulty in achieving high performance amplifiers in downscaled modern technologies, a different research line that replaces the amplifier by other more easily achievable cells appears: the so called amplifier-less techniques. This thesis explores and contributes to both philosophies. Specifically, a lowvoltage differential input pair is proposed, with which three multistage amplifiers in the state of art are designed, analysed and tested. Moreover, a structure for the implementation of differential switched capacitor circuits, specially suitable for comparator-based circuits, that features lower distortion and less noise than the classical differential structures is proposed, an, as a proof of concept, implemented in a ΔΣ modulator

    DESIGN OF TWO STAGE BULK-DRIVEN OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) WITH A HIGH GAIN FOR LOW VOLTAGE APPLICATION

    Get PDF
    An Operational Transconductance Amplifier (further abbreviated as OTA) is a voltage controlled current source used to produce an output current proportional to the input voltage. A schematic architecture for a 180nm OTA is presented in this thesis with the goal of improving the open-loop gain for a 0.9V supply voltage with a rail-to-rail bulk-driven input stage. Results show an open loop gain 97.14 dB with a power consumption of 3.33uW. An OTA with over 90 dB open loop gain and lower power consumption is highly suitable for low-voltage applications. The slew rate of the OTA is 0.05V/uS with a unity-gain bandwidth of 8.4MHz. A 10uA ideal bias current reference is utilized for the design. The phase margin is around 49.2 degrees. The threshold voltage for a 180nm N-channel Metal Oxide Semiconductor (also known as NMOS) device is around 400mV which restricts the low voltage applications in most amplifier circuits. The fourth terminal (bulk) of the MOS device is utilized to optimize the voltage headroom (Vds). The bulk terminal uses a much lesser source to drain voltage than the gate-driven transistors, and the transistors remain ON with an input voltage as low as 0.1V. A bulk-driven input stage ensures the amplification in the subthreshold region (input signal less than the threshold voltage of the MOS device). However, even with the bulk input MOS device, a rail-to-rail input stage is employed to improve the dynamic range for the input signal from 0V to 0.9V with a supply voltage of 0.9V. The fluctuation in open loop gain concerning the change in input signal in the published research is because of the constant instability in the intrinsic transconductance of the input devices. A possible solution is presented in this thesis by adding a second dominant pole to the circuit (i.e., second stage for the OTA), which reduces the dependency of intrinsic transconductance (bulk-driven device) on the total open loop gain of the amplifier. Thus, a significant gain of 97.14 dB with minimal fluctuations is achieved. Furthermore, adding a second stage improves the gain by distributing the dependency of the gain due to the first stage to both poles in the circuit. Hence, the problem of fluctuating transconductance of the input stage is resolved by the constant intrinsic transconductance of the MOS near the second pole (M19). To improve the gain, a folded cascoded amplifier connected with the input stage results in a better impedance (in the first stage) known as the gain stage. In the second stage, a large PMOS common source amplifier gives a good output current compared to the input stage to enhance the output swing and drive a purely capacitive load of 0.5pF. Furthermore, a miller capacitance is used to compensate for the frequency between the first and the second stage and improving the unity-gain bandwidth. An additional biasing circuit in the second stage amplifies the current output of the first stage and thus improving the slew rate of the entire device. In addition, the biasing circuit resolves the biasing issues for the second-stage common-source amplifier. It improves the output swing of the device to obtain a clean/undistorted output waveform. All the simulations are carried out in the LTSpice simulation tool to test the waveforms and bode plot for open loop gain and phase margin (49.2 degrees) at different processes (slow, typical, and fast), input voltages (0-0.9V), supply voltage (0.8V, 0.9V, 1.0V) and temperatures (-10 to 100 degree C)

    Analogue micropower FET techniques review

    Get PDF
    A detailed introduction to published analogue circuit design techniques using Si and Si/SiGe FET devices for very low-power applications is presented in this review. The topics discussed include sub-threshold operation in FET devices, micro-current mirrors and cascode techniques, voltage level-shifting and class-AB operation, the bulk-drive approach, the floating-gate method, micropower transconductance-capacitance and log-domain filters and strained-channel FET technologies

    Energy-Efficient Amplifiers Based on Quasi-Floating Gate Techniques

    Get PDF
    Energy efficiency is a key requirement in the design of amplifiers for modern wireless applications. The use of quasi-floating gate (QFG) transistors is a very convenient approach to achieve such energy efficiency. We illustrate different QFG circuit design techniques aimed to implement low-voltage, energy-efficient class AB amplifiers. A new super class AB QFG amplifier is presented as a design example, including some of the techniques described. The amplifier has been fabricated in a 130 nm CMOS test chip prototype. Measurement results confirm that low-voltage, ultra-low-power amplifiers can be designed, preserving, at the same time, excellent small-signal and large-signal performance.Agencia Estatal de Investigación PID2019-107258RB-C32Unión Europea PID2019-107258RB-C3

    Energy-efficient amplifiers based on quasi-floating gate techniques

    Get PDF
    Energy efficiency is a key requirement in the design of amplifiers for modern wireless applications. The use of quasi-floating gate (QFG) transistors is a very convenient approach to achieve such energy efficiency. We illustrate different QFG circuit design techniques aimed to implement low-voltage energy-efficient class AB amplifiers. A new super class AB QFG amplifier is presented as a design example including some of the techniques described. The amplifier has been fabricated in a 130 nm CMOS test chip prototype. Measurement results confirm that low-voltage ultra low power amplifiers can be designed preserving at the same time excellent small-signal and large-signal performance.This research was funded by AEI/FEDER, grant number PID2019-107258RB-C32
    corecore