69 research outputs found

    Diversity Control in Evolutionary Computation using Asynchronous Dual-Populations with Search Space Partitioning

    Get PDF
    Diversity control is vital for effective global optimization using evolutionary computation (EC) techniques. This paper classifies the various diversity control policies in the EC literature. Many research works have attributed the high risk of premature convergence to sub-optimal solutions to the poor exploration capabilities resulting from diversity collapse. Also, excessive cost of convergence to optimal solution has been linked to the poor exploitation capabilities necessary to focus the search. To address this exploration-exploitation trade-off, this paper deploys diversity control policies that ensure sustained exploration of the search space without compromising effective exploitation of its promising regions. First, a dual-pool EC algorithm that facilitates a temporal evolution-diversification strategy is proposed. Then a quasi-random heuristic initialisation based on search space partitioning (SSP) is introduced to ensure uniform sampling of the initial search space. Second, for the diversity measurement, a robust convergence detection mechanism that combines a spatial diversity measure; and a population evolvability measure is utilised. It was found that the proposed algorithm needed a pool size of only 50 samples to converge to optimal solutions of a variety of global optimization benchmarks. Overall, the proposed algorithm yields a 33.34% reduction in the cost incurred by a standard EC algorithm. The outcome justifies the efficacy of effective diversity control on solving complex global optimization landscapes. Keywords: Diversity, exploration-exploitation tradeoff, evolutionary algorithms, heuristic initialisation, taxonomy

    A Partition-Based Random Search Method for Multimodal Optimization

    Get PDF
    Practical optimization problems are often too complex to be formulated exactly. Knowing multiple good alternatives can help decision-makers easily switch solutions when needed, such as when faced with unforeseen constraints. A multimodal optimization task aims to find multiple global optima as well as high-quality local optima of an optimization problem. Evolutionary algorithms with niching techniques are commonly used for such problems, where a rough estimate of the optima number is required to determine the population size. In this paper, a partition-based random search method is proposed, in which the entire feasible domain is partitioned into smaller and smaller subregions iteratively. Promising regions are partitioned faster than unpromising regions, thus, promising areas will be exploited earlier than unpromising areas. All promising areas are exploited in parallel, which allows multiple good solutions to be found in a single run. The proposed method does not require prior knowledge about the optima number and it is not sensitive to the distance parameter. By cooperating with local search to refine the obtained solutions, the proposed method demonstrates good performance in many benchmark functions with multiple global optima. In addition, in problems with numerous local optima, high-quality local optima are captured earlier than low-quality local optima

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima

    Adaptive multimodal continuous ant colony optimization

    Get PDF
    Seeking multiple optima simultaneously, which multimodal optimization aims at, has attracted increasing attention but remains challenging. Taking advantage of ant colony optimization algorithms in preserving high diversity, this paper intends to extend ant colony optimization algorithms to deal with multimodal optimization. First, combined with current niching methods, an adaptive multimodal continuous ant colony optimization algorithm is introduced. In this algorithm, an adaptive parameter adjustment is developed, which takes the difference among niches into consideration. Second, to accelerate convergence, a differential evolution mutation operator is alternatively utilized to build base vectors for ants to construct new solutions. Then, to enhance the exploitation, a local search scheme based on Gaussian distribution is self-adaptively performed around the seeds of niches. Together, the proposed algorithm affords a good balance between exploration and exploitation. Extensive experiments on 20 widely used benchmark multimodal functions are conducted to investigate the influence of each algorithmic component and results are compared with several state-of-the-art multimodal algorithms and winners of competitions on multimodal optimization. These comparisons demonstrate the competitive efficiency and effectiveness of the proposed algorithm, especially in dealing with complex problems with high numbers of local optima

    Differential evolution with an evolution path: a DEEP evolutionary algorithm

    Get PDF
    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs

    A Novel Parametric benchmark generator for dynamic multimodal optimization

    Get PDF
    In most existing studies on dynamic multimodal optimization (DMMO), numerical simulations have been performed using the Moving Peaks Benchmark (MPB), which is a two-decade-old test suite that cannot simulate some critical aspects of DMMO problems. This study proposes the Deterministic Distortion and Rotation Benchmark (DDRB), a method to generate deterministic DMMO test problems that can simulate more diverse types of challenges when compared to existing benchmark generators for DMMO. DDRB allows for controlling the intensity of each type of challenge independently, enabling the user to pinpoint the pros and cons of a DMMO method. DDRB first develops an existing approach for generation of static multimodal functions in which the difficulty of global optimization can be controlled. Then, it proposes a scaling function to dynamically change the relative distribution, shapes, and sizes of the basins. A deterministic technique to control the regularity of the pattern in the change is also proposed. Using these components, a parametric test suite consisting of ten test problems is developed for DMMO. Mean Robust Peak Ratio for measuring the performance of DMMO methods is formulated to overcome the sensitivity of the conventional peak ratio indicator to the predefined threshold and niche radius. Numerical results of a successful multimodal optimization method, when augmented with a simple strategy to utilize previous information, are provided on the proposed test problems in different scenarios with the aim of serving as a reference for future studies

    Adaptive distributed differential evolution

    Get PDF
    Due to the increasing complexity of optimization problems, distributed differential evolution (DDE) has become a promising approach for global optimization. However, similar to the centralized algorithms, DDE also faces the difficulty of strategies' selection and parameters' setting. To deal with such problems effectively, this article proposes an adaptive DDE (ADDE) to relieve the sensitivity of strategies and parameters. In ADDE, three populations called exploration population, exploitation population, and balance population are co-evolved concurrently by using the master-slave multipopulation distributed framework. Different populations will adaptively choose their suitable mutation strategies based on the evolutionary state estimation to make full use of the feedback information from both individuals and the whole corresponding population. Besides, the historical successful experience and best solution improvement are collected and used to adaptively update the individual parameters (amplification factor F and crossover rate CR) and population parameter (population size N), respectively. The performance of ADDE is evaluated on all 30 widely used benchmark functions from the CEC 2014 test suite and all 22 widely used real-world application problems from the CEC 2011 test suite. The experimental results show that ADDE has great superiority compared with the other state-of-the-art DDE and adaptive differential evolution variants

    Evolutionary Multitask Optimization: Fundamental research questions, practices, and directions for the future

    Get PDF
    Transfer Optimization has gained a remarkable attention from the Swarm and Evolutionary Computation community in the recent years. It is undeniable that the concepts underlying Transfer Optimization are formulated on solid grounds. However, evidences observed in recent contributions confirm that there are critical aspects that are not properly addressed to date. This short communication aims to engage the readership around a reflection on these issues, and to provide rationale why they remain unsolved. Specifically, we emphasize on three critical points of Evolutionary Multitasking Optimization: (i) the plausibility and practical applicability of this paradigm; (ii) the novelty of some proposed multitasking methods; and (iii) the methodologies used for evaluating newly proposed multitasking algorithms. As a result of this research, we conclude that some important efforts should be directed by the community in order to keep the future of this promising field on the right track. Our ultimate purpose is to unveil gaps in the current literature, so that prospective works can attempt to fix these gaps, avoiding to stumble on the same stones and eventually achieve valuable advances in the area
    • …
    corecore