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ABSTRACT: Diversity control is vital for effective global optimization using evolutionary computation (EC) 

techniques. This paper classifies the various diversity control policies in the EC literature. Many research works have 

attributed the high risk of premature convergence to sub-optimal solutions to the poor exploration capabilities resulting 

from diversity collapse. Also, excessive cost of convergence to optimal solution has been linked to the poor 

exploitation capabilities necessary to focus the search. To address this exploration-exploitation trade-off, this paper 

deploys diversity control policies that ensure sustained exploration of the search space without compromising effective 

exploitation of its promising regions. First, a dual-pool EC algorithm that facilitates a temporal evolution-

diversification strategy is proposed. Then a quasi-random heuristic initialisation based on search space partitioning 

(SSP) is introduced to ensure uniform sampling of the initial search space. Second, for the diversity measurement, a 

robust convergence detection mechanism that combines a spatial diversity measure; and a population evolvability 

measure is utilised. It was found that the proposed algorithm needed a pool size of only 50 samples to converge to 

optimal solutions of a variety of global optimization benchmarks. Overall, the proposed algorithm yields a 33.34% 

reduction in the cost incurred by a standard EC algorithm. The outcome justifies the efficacy of effective diversity 

control on solving complex global optimization landscapes.  
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I.  INTRODUCTION 

The notion of diversity in evolutionary computation is 

synonymous with that in other population-based search 

techniques. Diversity may be defined as the degree of entropy 

among all the sample solution points in a given pool (Squillero 

and Tonda, 2016; Cheng et al., 2015). Population diversity 

reflects the extent to which the solution pool is heterogeneous 

or homogeneous. When diversity is assessed based on the 

spread (i.e., the genotypic distance) of the sample points within 

the feasible search space, it is referred to as spatial/genotypic 

diversity (Corriveau et al., 2012). Otherwise, when measured 

in the phenotype space, diversity reflects the fitness 

distribution in the solution space and is called phenotypic 

diversity. When diversity is mentioned in the EC literature it 

often refers to spatial diversity. 

From the perspective of evolutionary optimization, the 

availability of diverse samples at any instance in a search pool 

serves as a driving force for continuous evolution. Diversity 

allows the evolutionary operators to generate newer and 

possibly higher quality solutions. By their nature, evolutionary 

algorithms (EAs) eventually converge to a region of high 

quality solutions in the search space; thus, they inevitably loose 

                                                           
1 Selection pressure describes the convergence rate and it is often defined 

as the ratio of the probability of selecting the currently best sample solution to 
that of an average sample solution (Liu et al., 2019). 

the crucial diversity in their sample pool. The convergence rate 

depends, partly on the mutation rate and crossover probability, 

and to a large extent on the selection pressure1 employed. 

In a global search, premature convergence refers to the 

collapse of evolutionary process resulting from dwindled 

exploratory capabilities. Over the last decades, a plethora of 

research works (Segura et al., 2017; Squillero and Tonda, 

2016; Sharma et al., 2013) have linked ineffective diversity 

control to high risk of premature convergence of the 

evolutionary search to sub-optimal solutions. This signifies the 

contributions of diversity in sustaining exploration and 

consequently mitigating premature convergence. In essence, 

while exploration is maintained via diversity control, effective 

exploitation is sustained through controlled selection pressure 

over successive generations. Thus, this paper views 

exploration from the perspective of diversification or spread of 

the search over the entire search space, whereas exploitation is 

viewed as intensification or steering of the search to a given 

neighbourhood. This view is consistent with the definitions of 

exploration and exploitation reported in (Yi et al., 2008; Blum 

et al., 2008; Thierens, 1998). In a slightly more general view, 

Molina et al. (2010) state that exploration plays the crucial role 
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of guiding population-based algorithms towards achieving 

global-optimality; whereas exploitation leads the algorithms to 

search around and within the neighbourhood of good solutions 

so as to produce better ones. 

As in many other population-based (Meta) heuristics 

(Reeves, 1993; Blum et al., 2008), the ability of EAs to solve 

stochastic optimization tasks is aligned to the efficacy of their 

exploration and exploitation strategies. Although exploration 

and exploitation play complementary roles for achieving a 

robust global search mechanism, establishing a suitable 

balance between the two can be a difficult and challenging task 

in the design of EAs. This might be attributed to the facts that: 

1) Simultaneous optimization of both exploration and 

exploitation needs a careful treatment, and could require a 

tradeoff, since they are sometimes-conflicting goals; and  

2) EAs are mainly applied to large scale, complex 

problems which are usually characterised with poorly 

understood objective landscapes. 

In other reviews, Corriveau et al. (2012) argued that, 

viewing exploration and exploitation as opposing forces is 

rather naive because this may only be true in some special 

cases (such as when optimizing a unimodal landscape). Thus, 

it would be fair to view them as orthogonal forces, making it 

possible to improve both simultaneously. 

Clear manifestations of qualitative features that seek to 

strike a balance between exploration and exploitation are 

inherent in the core processes of the majority of evolutionary 

paradigms. For instance, variation operators, such as crossover 

and especially mutation, are believed to enhance exploration 

by ensuring reachability of the entire search space. The 

reproduction operator (i.e., selection) mainly favours 

exploitation of the promising region(s) of the explored search 

space (Potter et al., 2003; Greenhalgh and Marshall, 2000). 

And, as demonstrated by Wen et al. (2010), the crossover 

operator has the innate tendency to simultaneously enhance 

both exploration and exploitation. Nevertheless, it seems that 

such nature inspired population-based metaheuristics are 

mainly good for exploration of the search space and 

identification (but not exploitation) of the areas with high 

quality solutions (Blum et al., 2011). 

Consequently, researchers in the EC community resort to 

formulating various techniques that can potentially 

reinvigorate the balance between exploration and exploitation. 

The aim has been to ensure optimum exploitation while 

maintaining useful level of diversity (Lozano et al., 2008)2 

throughout the search process. In this vein and to validate the 

key objective in this work, this paper seeks to verify the 

following hypothesis: 

Diversity management and control, in a global search, 

enhance the exploration-exploitation balance and improve 

maintenance of useful diversity. As a caveat to this hypothesis, 

diversity control is achieved via the use of subpopulations, 

with a separate pool for evolution and another for diversity. 

                                                           
2 Useful diversity refers to the population diversity that in some way helps 

produce good solutions. 

In order to validate the above hypothesis, as a key 

contribution, this paper proposes a dual population-based 

diversity control technique. Section II presents an overview of 

the fundamental aspects of EC methodologies, a survey of 

literature on analytic description of diversity measures and a 

classification of the various approaches to improving diversity 

management. The proposed dual-pool EC model is presented 

in Section III. Section IV presents the results and discussions 

of evaluations of the proposed method. Finally, the paper 

concludes in Section V. 

II.  LITERATURE REVIEW 

Evolution is a process that originated from the biologically 

inspired neo-Darwinian paradigm, i.e., the principle of survival 

of the fittest (Fogel, 1997). Evolutionary algorithms mimic the 

intrinsic mechanisms of natural evolution to progressively 

yield improved solutions to a wide range of optimization 

problems. Therefore, the standard EA model has been 

successfully applied on various problem types (Fleming and 

Purshouse, 2002) without any incorporation of domain specific 

information. 

While the focus in this section is to review related existing 

strategies utilised for diversity control in EC theory, we begin 

with an overview of the general concept of the standard 

evolutionary algorithm. 

A. The Standard Evolutionary Algorithms (Single-Pool) 

One of the most widely used EAs is the genetic algorithm 

(GA)3.As originally inspired by (Holland, 1975), GA is an 

iterative procedure (Algorithm 1) that evolves a pool of 

candidate solutions across generations 𝑡. It starts with an initial 

fixed sized set of candidate solutions called the population, 

𝑃(𝑡) ∶ |𝑃(𝑡) | = 𝑁 (lines 2-3). A candidate solution point 𝑥𝑖 is 

called an individual, and represents a single possible solution 

to the problem under consideration, i.e., in the phenotype space 

𝑥𝑖 ∈ 𝒫. A candidate solution, 𝑥𝑖
′ ∈ 𝒢, is a representation of an 

individual by a computational data structure called a 

chromosome in the genotype space 𝒢. Usually, a chromosome 

is encoded as a string of symbols of finite-length called genes. 

An encoded chromosome may be in the form of binary bit 

string, real-valued or any otherwise representation (Goldberg 

and Holland, 1988; Pengfei et al., 2010). Typically, the 

chromosomes in the initial population (line 3) are created 

randomly or via a simple heuristic construction. 

Following an initial evaluation that is based on some 

measure of fitness (lines 4), in every evolutionary cycle t, 
called a generation (lines 5-12), a stochastic selection process 

(line 6) is applied on the initial population to choose better 

solutions. The selected solutions Qs(t), called parent, undergo 

the evolutionary variation processes – crossover and mutation 

(lines 7-8). The evolutionary cycle (lines 5-12) repeats and the 

average fitness of the population is expected to grow with 

successive generations.  The process stops when a termination 

3 Genetic algorithm will be used in this work and unless otherwise stated, 

any subsequent mentions of EC or EA in this paper will be referring to the 
genetic algorithm. 
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condition is satisfied. Typical termination conditions enforce a 

user-defined limit on function evaluations, execution time, or 

when the solution pool, P(t), sufficiently converges to the 

optimum – or at least a suboptimal – solution. The following 

section introduces diversity measurement and analysis in EC. 

B.    Analytic Description of Evolutionary Diversity Measures 

Diversity reflects the degree of entropy among all the 

sample solution points in a given pool. It is arguably the natural 

source of power for sustainable progress in evolutionary 

search. Diversity crucially contributes to the inherent adaptive 

capabilities of EAs (Cobb and Grefenstette, 1993) which made 

them suitable for a wide range of global optimization 

problems. In the following, some parametric mathematical 

models for the diversity measures are presented. 

1.) Evaluating the Coefficient of Diversity 

At every generation 𝑡, the instantaneous diversity among 

the sample solutions {𝑥𝑖} in any search pool 𝑃(𝑡) of size 

|𝑃(𝑡) | = 𝑁 is measured using a Euclidean distance measure. 

The diversity is then expressed in terms of a coefficient of 

diversity 𝑪𝑫𝒊𝒗. However, the approach to determining a 

suitable reference sample point from which the distance of 

every sample solution is measured varies. On one hand, the 

locus of the current best sample solution has been used as the 

reference point (Herrera and Lozano, 1996). On the other hand, 

a centroid point (i.e., a hypothetical average sample point 

position), re-evaluated at every generation is often used 

(McGinley, 2011; Eshelman and Schaffer, 1991; Taejin and 

Kwang, 2010). The latter approach tends to yield an unbiased 

estimate of the true spread of the solution points; it is therefore 

adopted in this paper. Thus, in the following, 𝑪𝑫𝒊𝒗 is derived 

by evaluating the distance of every sample solution from a 

chosen reference point. 

Suppose that a search pool P(t) of size N consists of a set 

of sample solutions {Xi ∈ P(t) ∶ Xi ∈ ℝn}, where n is the 

dimensionality of the problem, then at any given dimension j 
the vertex cj of a centroid sample point is 

𝑐𝑗 =
1

𝑁
 ∑ 𝑥𝑖𝑗

𝑁
𝑖=1 .                        (1) 

Therefore, for an n-dimensional problem, the position of the 

centroid sample C at any instance is 

𝐶 =
1

𝑁
∑ [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]𝑁

𝑖=1 = 𝑐1, 𝑐2, … , 𝑐𝑛,       (2) 

where the instance is aligned to the temporal evolution of the 

pool across generations t, such that as time evolves, the 

position of the centroid is tracked through the search space. 

Consequently, the Euclidean distance σj of all the sample 

points N across any dimension j is 

𝜎𝑗 = √
1

𝑁
∑ (𝑥𝑖𝑗 − 𝑐𝑗)

2𝑁
𝑖=1 .          (3) 

Hence, the instantaneous spatial diversity across all n 

dimensions for any sample pool P(t) is expressed as a 

coefficient of diversity CDiv, such that 

𝐶𝐷𝑖𝑣 =
1

𝑛
 ∑ 𝜎𝑗

𝑛
𝑗=1 .          (4) 

And the vector of the overall temporal spatial diversity for 

all generations t = 1,2, … , k is 

𝑪𝑫𝒊𝒗 = 𝐶𝐷𝑖𝑣
1  𝐶𝐷𝑖𝑣

2 … 𝐶𝐷𝑖𝑣
𝑘 .          (5) 

It is noteworthy that majority of the conventional and 

problem dependent diversity measures suffer from either: (i) 

sensitivity to distribution of outlier samples, (ii) sensitivity to 

changes in pool sizes or (iii) changes in problem dimension. 

However, experimental findings, comparing various spatial 

diversity measures by Corriveau et al. (2012), have justified 

the suitability of the above measure (4). 

2.) Normalisation of the Coefficient of Diversity 

Normalisation helps filter out the effects of varying pool 

sizes or problem types from the true diversity dynamics of a 

given EC model. It therefore aids effective evaluation of 

diversity across populations and/or generations. 

To normalise the coefficient of diversity CDiv (5), a running 

normalisation with the maximum coefficient of diversity CDiv
max 

is utilised. The technique comes from the intuition that, since 

the initial pool is generally created from a random uniform 

distribution, unless a more diverse pool is found over the 

course of the evolution, the coefficient of diversity in the first 

generation CDiv
1  comes from the most diverse population and is 

used as the initial normalisation factor CDiv
max. Subsequently, if 

a more diverse pool is found at any generation t, then the newly 

found CDiv
t   | CDiv

t = max
i

(CDiv
i ) is used to update the 

normalised C̃Div vector as in (6): 

�̃�𝐷𝑖𝑣 =
𝐶𝐷𝑖𝑣

𝐶𝐷𝑖𝑣
𝑚𝑎𝑥 =

𝐶𝐷𝑖𝑣
1  𝐶𝐷𝑖𝑣

2 … 𝐶𝐷𝑖𝑣
𝑘

𝐶𝐷𝑖𝑣
𝑚𝑎𝑥 ,                                     (6) 

where CDiv
max = max

i
(CDiv

i ). This approach, referred to as 

normalisation with maximum diversity thus far (NMDF) 

(Corriveau et al., 2012), is immune to variations in problem 

dimensions or pool sizes. In the context of measuring 

convergence, a new technique for evaluation of a population’s 

evolvability is developed. 

 

3.) Evaluating Population Evolvability 

In order to examine the independent effect of EC operators 

while in interaction, Price (Frank, 1997) formulated a theorem 

that permits decomposition of the evolutionary process to 

separate the genetic effect (or contribution) of the selection 

operator from that of other variation operators (i.e. crossover 

and mutation). 

Algorithm 1: A Standard Model of Genetic Algorithm 

(Holland, 1975). 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 

begin 

      𝑡 ← 0; 
      initialise 𝑃(𝑡) ∶ 𝑃(𝑡) = {𝑥𝑖  | 𝑥𝑖 ∈ 𝒫}; 
      evaluate the fitness of 𝑃(𝑡); 
      while not termination do 

               𝑄𝑠(𝑡) ← select from 𝑃(𝑡); 
               𝑄𝑟(𝑡) ← recombine 𝑄𝑠(𝑡); 
               𝑄𝑚(𝑡) ←  mutate 𝑄𝑟(𝑡); 
               evaluate the fitness of 𝑄𝑚(𝑡); 
               𝑃(𝑡 + 1) ← select from {𝑄𝑚(𝑡) ∪ 𝑃(𝑡)}; 
               𝑡 ← 𝑡 + 1; 
     end while 

end 
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The population evolvability measure was derived from an 

extension to the Price’s equation originally proposed by 

Bassette et al. (2004). By using the small changes in the 

crossover’s contribution, the population evolvability measures 

the ability of the pool to generate new solutions at any instance 

during the course of the evolution. Consequently, it 

dynamically assesses convergence of a search pool by 

monitoring the contribution of the crossover operator to the 

fitness growth and diversity profile of the search pool. 

The extension to the Price’s equation proposed in (Bashir 

and Neville, 2012) separates the individual contributions of 

variation operators to fitness growth during the evolution. 

Thus, (7) has a term for selection, crossover (𝒳) and mutation 

(ℳ) operators: 

 

𝛥𝑄 = 𝑓(selection) + 𝑓(crossover) +
𝑓(mutation)  

=
Cov(𝑧, 𝑞)

𝑧̅
+

∑ 𝑧𝑖𝛥𝑞𝑖𝒳
𝑁
𝑖=1

𝑁𝑧̅
+

∑ 𝑧𝑖𝛥𝑞𝑖ℳ
𝑁
𝑖=1

𝑁𝑧̅
, 

(7) 

where ΔQ = Q2 − Q1 is the change in the fitness Q, N is the 

population size, zi is the number of offspring of parent i, 
and  z̅ = (∑ zii )/N is the average number of the offspring 

produced. The first term in (7) modelled the effect of selection 

operator in terms of the covariance between the individuals z 

and their fitness q. For the crossover and mutation, Δqi = qi
′ −

qi is the difference between the average fitness q of the 

offspring of parent i measured before and after the application 

of operator 𝒳 or ℳ. Thus, each term in (7) estimates the 

changes in the average change in population’s fitness (Δq) due 

to one of the three genetic operators.  

Suppose that the change in fitness due to crossover operator 

is: 

𝛥𝑄𝒳 =
∑ 𝑧𝑖𝛥𝑞𝑖𝒳

𝑁
𝑖=1

𝑁𝑧̅
,                                                       (8) 

then, the width of one standard deviation envelope (±σ) for 

the effect of the crossover operator on fitness growth at every 

tth generation lies within the interval: 
[𝛥𝑄𝒳𝑡 − 𝜎𝒳𝑡 , 𝛥𝑄𝒳𝑡 + 𝜎𝒳𝑡],     (9) 

where ΔQ𝒳t is the change in the average fitness of the 

population at iteration t due to the crossover operator; σ𝒳t is 

the corresponding standard deviation. Therefore, the 

population evolvability measure σXover is defined as: 

𝜎𝑋𝑜𝑣𝑒𝑟 = (𝛥𝑄𝒳𝑡 + 𝜎𝒳𝑡) − (𝛥𝑄𝒳𝑡 − 𝜎𝒳𝑡)  = 2𝜎𝒳𝑡 .  (10) 

The following section classifies some diversity control 

approaches in EC. 

C. Taxonomy of Diversity Control Policies in EC 

The presentation herein is underpinned by a classification 

of the commonly used diversity control policies in EC as 

demonstrated by the research relevance tree in Fig. 1. This 

classification permits separation of the fundamental research 

domain into a number of possible approaches. It aids in the 

design and development phases and translates into 

                                                           
4 Opposition-based learning works based on the theory of opposite 

numbers, see Melo and Botazzo (2012) for details. 

mathematical model parameters and data structures for the 

dual-pool EC model proposed in Section III. 

Generally, the diversity control approaches presented in 

Fig. 1 are based on the following frequently used methods: 

 

1) heuristic population initialisation strategies,  

2) multipopulations models, and 

3) hybrids and portfolios of algorithms. 

 

Note, however, that the classification in Fig. 1 is by no 

means exhaustive of the multitude of approaches that could be 

used in diversity control. 

1.) Heuristic Population Initialisation 

Traditionally, the initial pool in evolutionary algorithms is 

generated in a random manner, by means of a uniform 

distribution (De Jong, 1975). For any given n-dimensional 

search space 𝒟 ∈ ℝn, the sample solution points x, are 

randomly created within the feasible boundaries such that the 

initial pool is: 

𝒫 = {𝑥 ∈ ℝ𝑛 | 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖};  𝑖 = 1,2, … , 𝑛. (11) 

where ai and bi are the lower and upper bounds of the ith 

dimension. 

The random sampling described by Equation (11) yields a 

problem independent means of starting any population-based 

stochastic search process. However, from the last decade, a 

number of researchers (Maaranen et al., 2004; Tometzki and 

Engell, 2011; Rahnamayan et al., 2007) have suggested that 

using quasi-random heuristics for population initialisation can 

have a profound impact on not only the search efficiency (i.e., 

convergence speed), but also the overall quality of the resulting 

final solution. This intuition comes from the fact that, even 

with no a priori information on the nature of the final solution, 

heuristic initialisation can ease the generation of more diverse 

and probably fitter samples (Xu et al., 2019).  

In an attempt to examine the benefits of a uniformly 

distributed sample over a mere randomly generated one, 

Maaranen et al. (2004) used quasi-random sequences to 

generate initial pool. Although the distribution property of 

their quasi-random sequence seems to degrade with increase in 

dimension, they found that the pools generated using quasi-

random sequences, which try to imitate points with a perfect 

uniform distribution, tend to cover the entire feasible search 

space more optimally. Similarly, Rahnamayan et al. (2007) 

proposed a novel approach that utilised opposition-based 

learning4 to generate the initial pool for a genetic algorithm. 

The authors (Rahnamayan et al., 2007) reported acceleration 

in the algorithm’s overall convergence speed. In the same vein, 

Melo and Botazzo (2012) reported improvements in the 

evolutionary search when a smart sampling technique is used 

for creation of the initial pool. 
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Elsewhere, investigations by Morrison (2003) led to the 

conclusions that heuristic initialisations neither yield 

significant improvement in the quality of the final solution, nor 

do they reduce the required number of function evaluations. 

But as compared to random initialisation, they can minimise 

stochastic effects in the end result of the evolution by reducing 

the variance in the solution quality across independent runs. 

Further details on heuristic initialisation can be found in 

(Tometzki and Engell, 2011) where three different 

initialisation approaches are used as a pre-processing phase. 

Their results (Tometzki and Engell, 2011) suggested that 

heuristic initialisations can potentially improve convergence 

speed and solution quality. 

2.) Multipopulation Strategies 

A commonly used diversity control strategy is the 

multipopulation approach. This has its inspiration from the 

biological notion of niching and speciation (Shir, 2012) 

wherein diversity is enforced by promoting species formation 

within a population. 

Multipopulation strategies generally vary in their processes 

of subpools creation and in their adopted migration policies. In 

the majority of multipopulation strategies, subpopulations are 

run concurrently and evolve by optimizing a common 

objective. Thus, they can be classified as “synchronous”, see 

Fig. 1. In island models (Alba and Tomassini, 2002) for 

example, the search begins with two or more subpopulations 

which exchange information via periodic migrations. But the 

number and size of the subpopulations are mainly 

predetermined by the user and are then kept unchanged 

throughout the evolution (Alba and Tomassini, 2002; Branke 

et al., 1998). Other synchronous multipopulation methods 

dynamically create subpopulations and adjust their numbers 

and sizes during the course of evolution (Tenne and Armfield, 

2005; Branke, 2000). Hence, such methods avoid premature 

convergence of the evolutionary search by continuously 

evolving with multiple pools. 

The other category is the “asynchronous” operation of 

subpopulations (Fig. 1). In this case, the creation and evolution 

objectives of the subpools differ. For instance, the dual-

population GA (DPGA) proposed by Taejin and Kwang (2010) 

has a main and a reservoir population. The main pool has the 

fitness of its samples evaluated based on the problem’s original 

objective function, whereas the reservoir pool is evaluated with 

an objective that exclusively optimizes diversity. The authors 

(Taejin and Kwang, 2010) found that the DPGA excels on 

highly multimodal functions having densely populated peaks, 

but struggles on sparse landscapes. 

Other multipopulation-based EAs include the multinational 

EA (Ursem, 1999) and forking GA (Tsutsui, 1997). The next 

section reviews some recent hybrid methodologies deployed to 

enhance diversity control. 

3.) Hybrids and Portfolios of Algorithms 

In general, population-based methods are believed to be 

robust in attaining global optimality via wide exploration 

(Blum et al., 2011; Joines and Kay, 2003; Michalewicz, 1994). 

Yet, their lack of intense exploitation capabilities limits their 

effectiveness in dealing with complex global optimization 

tasks. To strengthen exploration-exploitation balance and 

optimize diversity, various approaches that combine 

algorithmic models in form of hybrids or memetic algorithms 

(Moscato, 1999; Gong, et al., 2019; Liu et al., 2019) were 

developed. Such approaches usually hybridize EAs with 

various local improvement procedures made from local search 

algorithms.  

Joines and Kay (2003) examine the behaviour of a variety 

of hybrid algorithms. They found that hybrid models, whether 

based on Baldwinian, Lamarckian frameworks, tend to achieve 

good exploration-exploitation balance as compared to their 

non-hybrid counterparts. Further theoretical analyses on 

hybrid frameworks which seek to balance exploration-

exploitation tradeoff can be found in (Jih-Yiing and Ying-Ping, 

2011; Dang et al., 2019). 

From the above reviewed methodologies, it is evident that 

the challenges in designing an effective diversity control 

policy require a multifaceted approach. In fact, other 

approaches that sought to maintain population diversity by 

dynamically controlling evolutionary parameters, such as 

mutation and crossover rates, can be found in (McGinley, 

2011; Eiben, 1999). 

 

                  Fig. 1:  A Research Relevance Tree for the Diversity Control Approaches used in Evolutionary Computation. 
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D. Prevailing Challenges in Diversity Control 

Diversity control, using Multi-pool EC models, continued 

to receive attention (Xianshun, 2011) in the EC literature. 

However, conventional approaches in the literature mostly 

involve concurrent and continuous runs of the multiple pools. 

Such synchronous approaches often lead to a severe increase 

in function evaluations, resulting in increased overall 

computational cost. In addition, traditional multipool 

approaches are generally faced with huge overhead due to 

proliferation of secondary parameters. In general, designing 

multipopulation models requires a prior decision on the 

creation and management strategies of the multiple pools. 

Thus, one has to decide on the criteria upon which the 

subpopulations evolve within themselves and communicate 

with one another, i.e., the migration policies among subpools.  

Additional parameters, such as the minimum and 

maximum pool sizes, the initial number of pools, thresholds 

for the minimum and maximum number of subpools (when 

dynamic pool creation is utilised), etc., must be decided. 

Crucially, the parameter tuning task quickly become 

intractable since the optimum settings for such additional 

parameters are problem dependent. 

III. A DUAL-POOL EC MODEL FOR EFFECTIVE 

DIVERSITY CONTROL 

This section proposes a dual-pool EC model that enjoys the 

benefits of the multipool framework combined with a heuristic 

initialisation. Specifically, as shown in the theoretic research 

relevance tree in Fig. 2, the proposed approach integrates a 

quasi-random heuristic initialisation, called search space 

partitioning (SSP), into a dual population architecture to 

facilitate temporal diversity control. The dual-pool model is 

made up of an evolution pool (i.e., the main pool), and a 

diversity pool. The evolution pool primarily undergoes the 

evolutionary optimization process, whereas the diversity pool 

is created, on-demand, to reinstate diversity into the evolution 

pool. Preliminary to the development of the proposed EC 

model, the characteristic data sets and mathematical model 

parameters for the proposed techniques (SSP initialisation and 

 

Fig. 2: Theory Research Relevance Tree: A roadmap to designing a Dual-Pool EC model with Search Space Partitioning (SSP) heuristic initialisation. 
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the dual-pool) are specified in Fig. 2. Details of each of these 

follow in turn. 

A. The Dual-Pool EC Architecture 

In contrast to the conventional multipool architectures 

which are mainly synchronous in nature, the proposal herein is 

aimed at suggesting a framework (see Fig. 2) that combines an 

asynchronous dual-pool model with a heuristic population 

initialisation. This enables robust diversity control by 

minimising the communication overhead among subpools.  

1.) The Evolution Pool – Creation and Working 

Playing the role of the main pool, the evolution pool PEvo 

serves as the initialisation point for the global search. The size 

of this is equal to the actual population size (N) for the overall 

search. In order to ensure the feasibility of the initial samples, 

PEvo is created (uniform at random) within the feasible 

boundaries of the search space, such that: 

𝑃𝐸𝑣𝑜 ← 𝒙 ∈ [𝒙, 𝒙] ∶ 𝑥 ∈ ℝ𝑛 ,   (12) 

where n is the problem dimension, x is the vector of design 

variables, x and x̅ are vectors of lower and upper bounds 

respectively. 

2.) The Diversity Pool – Creation and Working 

The proposed method is based on a Dual-pool approach that 

runs in an asynchronous mode (Fig. 2). Thus, the diversity pool 

PDiv is only occasionally used to restore useful diversity into 

the evolution pool. Consequently, PDiv is created only after and 

whenever a sufficient convergence of the evolution pool is 

detected. The following section presents a mathematical model 

that describes the creation process of the diversity pool PDiv. 

B.    Search Space Partitioning (SSP) Heuristic Initialisation 

In order to improve diversity by enforcing uniformity in the 

coverage of the entire feasible search space, a strategy that 

generates the diversity pool PDiv using a quasi-random 

heuristic called search space partitioning (SSP) is proposed. 

SSP partitions the search space into uniformly sized 

hypercubes and repeatedly creates one random sample from 

each hypercube until the required pool size (N) is reached. 

Given any n-dimensional search space 𝒟 ∈ ℝn (Algorithm 

2), let each of its dimensions be segmented into κ equal 

partitions (line 4). Suppose that ρ(κ) = {m1, m2, … , mn} is the 

set of the resulting partition sizes for each of the 𝑗 = 1, … , n 

dimensions (line 5). Then, along each dimension 𝑗, the 

partition sizes mj are assumed to be uniform. Therefore, SSP 

segments the original search space 𝒟 into ϕκ = κn equal-sized 

subspaces (hypercubes) (line 6). For each subspace ϕκ, let xi =

[xi, x̅i] ∈ ℝn be a uniformly distributed random sample 

generated within the boundaries of mi. Then, SSP applies a 

uniform distribution to generate equal number of samples 

across the entirety of the partitioned search space ϕκ (lines 7-

8). 

Thus, in the proposed SSP heuristic, the required minimum 

population size N relates to the number of partitions κ 

according to the following model: 

𝑁 = 𝜅𝑛,     (13) 

where 𝑛 is the dimensionality of the search space 𝒟. 

Equation (13) revealed that the higher the number of 

partitions 𝜅, the larger the required pool size N to achieve 

maximum spread for a given dimension n. This is because the 

two have an exponential relation with respect to the 

dimensionality n. Thus, the SSP quasi-random heuristic is 

obviously not immune to scalability problems in high 

dimensional problems, a phenomenon popularly known as 

curse of dimensionality (Shetti, 2019). Hence, for higher 

dimensionality problems, the number of partitions has to be 

regulated. 

Algorithm 2: Search Space Partitioning Quasi-random Heuristic. 

  
 Define and set search space (𝓓) parameters 

1: dimensions 𝑛; 
2: total population size 𝑁; 

3: bounds 𝒟 ∈ ℝ𝑛 = {𝑥𝑗 ∈ ℝ | 𝑥𝑗 ≤ 𝑥𝑗 ≤ �̅�𝑗  ;  𝑗 = 1, … , 𝑛} ; 

  
 Define and set partition parameters 

4: set the number of partitions to 𝜅; 

5: evaluate partition sizes 𝑚 for each dimension: 

              𝜌(𝜅) = {𝑚𝑗 =
�̅�𝑗 −𝑥𝑗

𝜅
  |  𝑗 = 1, … , 𝑛. };  

6: segment  𝒟 into 𝑛-dimensional equal-sized subspaces   

              𝜙𝜅 = {𝜅𝑛 = (∏ 𝑚𝑗
𝑛
𝑗=1 )

𝑛
};   

7: generate a random sample {𝑥𝑖 =∪ (𝜙𝜅)} from each 𝜙𝜅 with uniform 
distribution;  

8: repeat (7) until all 𝑁 samples points are generated. 

Note: Segmenting every dimension of the original search space 𝒟 into 𝜅 

partitions yields 𝜙𝜅 = 𝜅𝑛 subspaces. 

 

Algorithm 3: The Dual-Pool EC Algorithm. 

1: initialisation 

 𝑁 ← Pool size; 𝑛 ← problem dimension; 

𝑡 ← 0;   
2: initialise the evolution pool 

𝑃𝐸𝑣𝑜 (𝑡) ← {𝑋𝑖} ∶ 𝑋 ∈ [𝑥𝑗 , �̅�𝑗], 𝑖 = 1, … , 𝑁, 𝑗 = 1, … , 𝑛    

3: while not termination do 

4: run EC model and estimate convergence at every iteration 

    𝑃𝐸𝑣𝑜(𝑡), �̃�𝐷𝑖𝑣(𝑡), 𝜎𝑋𝑜𝑣𝑒𝑟(𝑡) ← invoke EC (𝑃𝐸𝑣𝑜(𝑡));  

5: check for convergence of 𝑃𝐸𝑣𝑜(𝑡) 

    if (�̃�𝐷𝑖𝑣(𝑡) < 𝐶𝐷𝑖𝑣
𝑚𝑖𝑛) and (𝜎𝑋𝑜𝑣𝑒𝑟(𝑡) < 𝜎𝑋𝑜𝑣𝑒𝑟

𝑚𝑖𝑛 )   

6:            𝑃𝐸𝑣𝑜
𝑅 (𝑡) ← rank 𝑓(𝑃𝐸𝑣𝑜(𝑡)); 

7: get the top 𝑘% best solutions (elite) in 𝑃𝐸𝑣𝑜 

           𝑃𝐸𝑣𝑜
𝐸 (𝑡) ← 𝑘%(𝑃𝐸𝑣𝑜

𝑅 (𝑡));    

8: initialise the diversity pool (𝑃𝐷𝑖𝑣) using SSP heuristics (Algorithm 2) 

           𝑃𝐷𝑖𝑣 ← {𝑋𝑖} ∶ 𝑋 ∈ [𝑥𝑗 , �̅�𝑗], 𝑖 = 1, … , 𝑁, 𝑗 = 1, … , 𝑛   

9: evaluate and rank 𝑃𝐷𝑖𝑣 by distance from the elite 

           𝑃𝐷𝑖𝑣
𝑅 ← rank ||𝑋𝐷𝑖𝑣

𝑖 − 𝑋𝐸𝑣𝑜
𝐸 || ∶ 𝑖 = 1, … , 𝑁  

10: get the farthest samples in 𝑃𝐷𝑖𝑣
𝑅  

           𝑃𝐷𝑖𝑣 ← (1 − 𝑘)(𝑃𝐷𝑖𝑣
𝑅 );   

11: merge evolution and diversity pools to form new 𝑃𝐸𝑣𝑜 

           𝑃𝐸𝑣𝑜(𝑡) ← {𝑃𝐸𝑣𝑜
𝐸 (𝑡) ∪ 𝑃𝐷𝑖𝑣};   

12:      end if 

13:    𝑃𝐸𝑣𝑜(𝑡 + 1) ← 𝑃𝐸𝑣𝑜(𝑡); 
14:    𝑡 ← 𝑡 + 1; 
15: end while 
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Fig. 4: A typical spatial diversity dynamics (�̃�𝑫𝒊𝒗) for a standard EC 

model. (a): Instantaneous 2-D view of the distribution of initial sample 

pool scattered all over the search space. (b): Distribution of the sample 

pool after several function evaluations at later stage of the evolution with 

the samples virtually converged. (c): Dynamics of �̃�𝑫𝒊𝒗 with the regions of 

high level of diversity (labelled A) and low level of diversity (labelled B) 

marking the exploration and exploitation stages, respectively. The spatial 

diversity axis in plot (c) is in log scale and normalised. 
  

C. The Proposed Dual-Pool EC Model 

The complete model for the proposed dual-pool EC 

algorithm outlined in Algorithm 3. This model closely 

resembles the standard EC model (Algorithm 1) previously 

examined in Section II. A key distinguishing feature is in the 

initialisation stage (lines 1-2) where a separate evolution pool 

PEvo is utilised. This is then later combined (line 11) with a 

diversity pool PDiv (created using the SSP heuristic 

initialisation, see line 8) whenever convergence is detected 

(line 5). The evolutionary cycle ends (line 3) when a 

termination condition – such as accuracy threshold or 

maximum evaluation limit – is reached. 

Consequently, the search process proceeds such that 

whenever PEvo converges, new samples from the diversity 

pool, PDiv, are used to restore sufficient diversity into the 

search process. For the proposed dual-pool EC model, the flow 

diagram (Fig. 3) demonstrates the dynamic merging process of 

the separate pools during the course of evolution. Fig. 3 reveals 

that most of the evolutionary cycles are run solely with the 

evolution pool (PEvo), the diversity pool (PDiv) is only 

introduced when sufficient convergence is detected. Thus, the 

model allows continuous optimization via temporal 

exploration-exploitation cycles. 

D. Visualising Diversity in EC Models 

Prior to the experimental evaluations, this section 

examines, with the aid of a visualisation, how spatial diversity 

fares under both the standard EC model and the newly 

proposed dual-pool EC architecture. 

1.) Diversity visualisation with a standard EC model 

An illustration of typical temporal dynamics of the spatial 

diversity (�̃�𝑫𝒊𝒗) in an evolutionary pool of a standard EC 

algorithm (Algorithm 1) is as shown in Fig. 4c. The result 

comes from an EA model, applied on the Schwefel benchmark 

(Section IV), having a randomly initialised real-valued sample 

pool of size 𝑁 = 100. The model uses BGA (Muhlenbein and 

Schlierkamp-Voosen, 1993)5 mutation and intermediate 

crossover operators applied at the rates of 𝑃𝑚 = 0.01 and 𝑃𝑐 =

                                                           
5 The adopted mutation strategy is based on the Breeder GA (BGA) 

mutation algorithm (Lunacek and Whitley, 2006). It is an advanced version of 
Gaussian mutation. 

1.0 respectively. A strict binary tournament selection without 

replacement is utilised. 

It was observed that the initially diverse samples in Fig. 

4(a) gradually converged towards a limited area of the search 

space over generations (Fig. 4(b)). To some extent, the spatial 

diversity falls with increasing function evaluations (Fig. 4(c)). 

Although this phenomenon could have been avoided by 

increasing the probability of mutation, it should be noted that 

high rates of mutation slow down the evolutionary progress 

and could turn the search into a random one. 

On the other hand, an EA with a converged pool (such as 

the one in Fig. 4(b)) has lower chances of yielding any 

significantly different and higher quality solutions. This is 

because the converged pool handicapped the effect of the 

evolutionary variation operators. Consequently, in this case it 

is difficult to set up a good balance in exploration and 

exploitation. 

  

 

Fig. 3:  The Dual-Pool EC model dynamically showing the merger of the distinct evolution pool (𝑷𝑬𝒗𝒐) with the SSP created diversity pool (𝑷𝑫𝒊𝒗) over 

generations 𝒕. The periodic merging process is adaptively controlled via a robust convergence detection strategy. 
  

 



182                                                               NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 17, NO.3, SEPTEMBER 2020 

 

*Corresponding author: habashir.ele@buk.edu.ng                                       doi: http://dx.doi.org/10.4314/njtd.v17i3.4 

 

Fig. 5: A typical spatial diversity dynamics (�̃�𝑫𝒊𝒗) for the proposed Dual-

Pool EC model. (a): Instantaneous 2-D view of the distribution of initial 

sample pool scattered all over the search space. (b): Distribution of the 

sample pool during the exploitation stage with the samples virtually 

converged. (c): Illustrates how the merger with Diversity Pool restores 

better coverage of the search space. (d): Diversity dynamics (�̃�𝑫𝒊𝒗) with 

the labels (A), (B) and (C) marking a high �̃�𝑫𝒊𝒗 for exploration by the 

initial evolution pool, the lowest �̃�𝑫𝒊𝒗 during exploitation, and a restored 

high level of �̃�𝑫𝒊𝒗 after merger with the diversity pool, respectively. The 

spatial diversity axis in (d) is in log scale and normalised. 
  

2.) Diversity visualisation with a dual-pool EC model 

In comparison to the diversity dynamics of the standard EC 

(Fig. 4), Fig. 5 depicts the dynamics for the proposed dual-pool 

EC model, described by Algorithm 3, on the same benchmark 

problem. The parameterisations of the dual-pool EC are as 

specified in Table 1. Notice that a smaller pool size, N = 50, 

is employed. In particular, Fig. 5(d) depicts the dynamics of 

C̃Div, while Fig. 5(a-c) show the temporal interplay of the 

evolution and diversity pools in the dual-pool EC model. 

It was found that similar to the standard EC model, the 

dual-pool EC enjoys an exploratory initialisation with the 

samples in its evolution pool PEvo scouting the entire feasible 

search space (Fig. 5a). Then, the evolution pool gradually 

converges to a high quality region (see the cluster in Fig. 5b) 

to exploit the already learned global information of the search 

space. From Fig. 5(d) it is noticed that unlike with the standard 

EC model, the rate of convergence in this model relates more 

linearly with the number of function evaluations. Also, the 

degree to which the samples converge is considerably higher 

(see Fig. 5(b) and the value of C̃Div at the point labelled B in 

Fig. 5d). As compared to a rather weak exploitation previously 

seen in the standard EC model (Fig. 4c), Fig. 5(d) indicates the 

ability of the dual-pool EC model to allow deep exploitation of 

the promising areas of the search space. Whilst the two 

algorithms share the same underlying parameterisation, the 

deep exploitation witnessed here could be a result of using 

relatively smaller sized pools (see Table 1). This was possible 

since the dual-pool framework is able to maintain sufficient 

diversity even with small sample sizes. 

Furthermore, after the merger of PEvo with diversity pool 

PDiv (Fig. 5c); the newly introduced diverse samples restore a 

full-scale spatial diversity into the previously converged 

evolution pool. It should be noted that while the new samples 

in PDiv draw the evolutionary search towards exploring other 

unexplored regions of the search space, the previously learned 

information is carried forward in the elite samples PEvo
E  

inherited from the previous evolution pool (Algorithm 3, line 

7). Hence, this sequence of exploration-exploitation phases 

guarantees continuous global searching – by preserving 

diversity – even when a small sized pool is utilised. 

IV. EVALUATION OF THE DUAL-POOL EC 

ALGORITHM 

This section evaluates and analyses the performance of the 

proposed dual-pool EC model on a set of multimodal global 

optimization benchmarks. The aim is to analyse the effect of 

effective diversity control on optimization of highly 

multimodal problems under limited population size and 

computational budget. A detailed parameterisation for the 

dual-pool EC model is presented in Table 1. Besides the 

specifications for the standard evolutionary parameters, Table 

1 specifies the types of the evolutionary operators, their rates 

                                                           
6 Multimodal functions having a convex global orientation are said to have 

global convex topology. Such functions although multimodal, appear to be 

and step sizes. It also specifies the creation mode for the dual 

populations. 

A. Benchmark Test Cases – Key Features and Significance 

The proposed dual-pool EC model is benchmarked on a set 

of global optimization test problems. The experiments 

empirically compare the performance of the dual-pool EC 

model with that of a standard EC model. The comparison is on 

the basis of the required function evaluations to attain a close 

approximation (within 10−3 accuracy level) of the true optimal 

solution. 

The test problems considered are categorised into two 

major classes. The first class is a set of three traditional global 

optimization benchmarks consisting of: (i) Rastrigin; (ii) 

Schwefel; and (iii) Easom, test problems. 

The Rastrigin and Schwefel functions have many local 

optimum solutions surrounding the global optimum, and hence 

they are highly multimodal. However, the Rastrigin function is 

symmetric and has a global convex topology (Lunacek and 

Whitley, 2006)6 whereas the Schwefel function does not.   

GA-easy due to the unique nature of their landscapes. They are also classified 
as low dispersion problems. 
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The Easom function is characterised with a single sharp 

peak situated in a wide plateau landscape. Easom function is 

quite challenging to deterministic or gradient based models 

because it yields no promising direction of descent/ascent. It is 

also popularly known as the Needle-in-Haystack (NiH) 

benchmark. 

 

The second class also constitutes three test problems, 

namely: (i) Rastrigin2; (ii) Sphere2; and (iii) the Hybrid 

benchmark. These are essentially modified versions of the 

traditional benchmarks. They remedied some key limitations 

(such as separability, global convexity, symmetry, etc.) in the 

traditional benchmarks. Thus, they have most of the attributes 

of the real-world problems (Liang, 2005; Li, et al., 2008; 

Salomon, 1996).  

In particular, the Rastrigin2 benchmark used in these 

experiments is a shifted and rotated version of the traditional 

Rastrigin function. The Sphere2 benchmark is a composition 

of 10 Sphere basis functions. The Hybrid benchmark is a 

composite of various basis functions. It consists of two basis 

functions from each of the Sphere, Ackley, Griewank, 

Rastrigin and Weierstrass benchmarks. See Table 2 in the 

Appendix for their detailed expressions. 

B. Results 

The proposed dual-pool EC model is compared with a 

standard EC algorithm on a set of global optimization 

benchmarks. The results of the evaluations of the sensitivity of 

these algorithms across six different pool sizes (20 to 1000) are 

as presented in Fig. 6; the results (detailed in the Appendix, 

Table 3) are averaged outcomes of 100 independent runs for 

statistical significance. For all the test problem types, the bar  

 

 

 

 

plots in Fig. 6 show the average number of function 

evaluations required to reach the true optimal solutions within 

an absolute error of Eabs = 10−3. 

The horizontal dashed-lines at the top of the plots in Fig. 6 

mark the limit of 105 function evaluations. This limit defines 

the maximum computational budget available for the 

algorithms to converge to the optimum solution. Consequently, 

an algorithm is considered to have converged to the true 

optimal solution of a given problem if and only if its bar graph 

has not hit the mark for the maximum function evaluation limit 

of 105. 

Furthermore, the error bars on the bar graphs (Fig. 6) 

represent the standard errors in the mean number of function 

evaluations. At the top of the bar pairs in Fig. 6, the pairs 

having statistically significant difference and those that have 

statistically insignificant difference are lablelled + and –, 

respectively. The statistical significance results reported in Fig. 

6 are based on the nonparametric Wilcoxon test. 

1.) Results Analysis 

Notice that the two algorithms are assessed on both 

robustness and efficiency; robustness of an algorithm is judged 

based on how often it converges to the true optimal solution 

within the budgeted evaluations; efficiency is rated based on 

the number of function calls needed to converge to the optimal 

solution. Thus, the efficiency is indicated by the height of the 

bar graphs (the lower the better). 

Table 1: Parameter Settings for the Dual-Pool EC Model. 

Parameter Name Symbol Description/Values/Types 

Population Size N 20 to 50 

Initial Population − SSP Heuristic initialisation 

Encoding − Real-valued 

Selection Scheme − Binary tournament 

Evolution Pool size PEvo N, i.e., the main population size 

Diversity Pool size PDiv (1 − k) × N, i.e., k%  smaller than pool size N 

Evolution Pool Elites PEvo
E  

Only k = 5% of the evolution pool will be merged with the diversity pool after 

convergence of  PEvo 

Operator type 
𝒞 

ℳ 

Crossover: Intermediate recombination operator 
Mutation: BGA mutation operator 

Crossover Probability P𝒞 1.0  
Mutation Probability Pℳ 0.01  
Recombination Parameter α Weighting parameter α = [0,1]  uniform at random 

Mutation Parameter μ Step size parameter μ = [0,1]; uniform at random 

Replacement Scheme − Generational-Elitist 

Termination Criteria 
Eabs 

Max-FEs 

Absolute Error Eabs ≤ 10−4, or 

Max. Function evaluation (10,000) 

 

 

  

 



184                                                               NIGERIAN JOURNAL OF TECHNOLOGICAL DEVELOPMENT, VOL. 17, NO.3, SEPTEMBER 2020 

 

*Corresponding author: habashir.ele@buk.edu.ng                                       doi: http://dx.doi.org/10.4314/njtd.v17i3.4 

 

The simulation results (Fig. 6) are discussed in two 

perspectives. On one hand, we consider the results for the 

traditional benchmarks (Rastrigin, Schwefel and Easom), 

shown in Fig. 6(a to c). It was observed from Fig. 6(a to c) that 

both the dual-pool and standard EC algorithms have reached 

the required accuracy within the available (105) function 

evaluations. The two algorithms are fairly robust and equally 

efficient on these benchmarks. On the other hand, for the 

modified benchmarks shown in Fig. 6(d to f), the proposed 

dual-pool EC clearly outperforms the standard EC algorithm 

on the basis of both robustness and efficiency. 

Besides the evaluation plots in Fig. 6, performance 

summary plots are shown in Fig. 7(a and b). Fig. 7(a) 

summarises the computational cost of each algorithm across all 

the test problems. Fig. 7(b) summarises the cost incurred by 

each algorithm when run with a pool of 20 to 1000 samples; its 

significance is to provide additional insight into the overall 

sensitivities of the individual algorithms to varying pool sizes. 

The summary plot in Fig. 7(a) shows that for both models, 

the computational cost on the three traditional benchmarks is 

approximately around the first 104 function evaluations; 

whereas on the modified benchmarks both models needed 

approximately 105 function evaluations. Notice also that the 

efficiency of the proposed dual-pool EC algorithm is less 

efficient on the Easom benchmark (see, the point labelled (A) 

on Fig. 7(a)). This is not unexpected because on low 

complexity problems such as the traditional benchmarks, the 

dual-population framework may not always translate to 

efficiency improvements. In fact, the central design goal is to 

enhance robustness on wide range of global optimization 

problems. Nevertheless, when summarised over all the pool 

sizes, the computational cost summary plot (Fig. 7(b)) revealed 

that the dual-pool model has always converged to the optimum 

solution with fewer function evaluations. This generally shows 

improved efficiency over the standard EC model. 

Another worth noting observation from Fig. 7(b) is that 

both algorithms converged with fewer function evaluations 

when a pool size of 50 is utilised. While this indicates the true 

convergence efficiency for the proposed dual-pool EC, it is not 

the case for the standard EC in which the pool of 50 samples 

only converged to a local optima for the modified benchmarks 

(Fig. 6 (e and f)). 

Overall, Fig. 7(a) reveals that the performance of both 

algorithms is clearly affected by the increased complexity of 

the test problems, i.e., from the simplest of the traditional 

benchmarks (Rastrigin) to the most difficult Hybrid 

composition benchmark. 

The summary of the complete results for the six 

benchmark test problems, presented in Table 3, reveals that the 

total average computational cost for the standard EC and the 

proposed Dual-Pool EC algorithms is 4.01e4 and 2.67e4 

 

Fig. 6:  Performance Comparison of the Dual-Pool EC with the Standard EC Algorithm on six global optimization benchmarks across various pool 

sizes. The vertical axes show the computational cost (function evaluations) in log scale. At the top of bar pairs, + symbol indicates a statistically significant 

difference; − symbol indicates an insignificant difference. The error bar on the bar graphs shows the standard error in the mean function evaluations. 

The horizontal dashed lines mark the maximum evaluation limit. All results are averages of 100 independent runs. 
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function evaluations respectively. This amounts to 33.34% 

reduction in computational cost by the proposed dual pool EC. 

2.) Discussions 

The earlier review on diversity control policies (Section II) 

revealed that use of multipopulation-based evolutionary 

algorithms is not entirely novel. However, the proposed 

criterion upon which the dual-pool EC model interacts with its 

separate pools suggests a new framework. Being 

asynchronous, the proposed approach harnessed the benefits of 

multipool architecture (Fig. 2) and avoided its inter-population 

communications difficulties.  

Equally, the observed improvements in diversity control 

exhibited by the dual-pool EC model (Fig. 5(d)) could partly 

be credited to the proposed SSP heuristic initialisation (Section 

III). The SSP minimized the stochastic variability in the final 

solution by ensuring optimum uniformity in the distribution of 

the randomly created samples. This agrees with a number of 

investigations (Tometzki and Engell, 2011; Morrison, 2003) in 

which heuristic initialisations improved the statistical 

significance of the final results in EAs by minimising their 

stochastic variability. 

In particular, two important points are noted. First, 

simulation results (Fig. 7) have shown that the dual-pool EC 

algorithm converges to the optimal solutions on both 

categories of benchmarks with only small to medium pool 

sizes. This justifies its ability to maintain and restore useful 

diversity into its search pool. This validates the efficacy of its 

diversity dynamics previously observed in Fig. 5(d). Second, 

since working with small sized populations often translates to 

reduced computational cost, the ability of the proposed model 

to sustain evolutionary search with small to medium sized 

pools links its potentials in improving convergence efficiency.  

The above two points corroborate the key hypothesis in 

this work, which states that a good explorative-exploitative 

model crucially improves robustness in global search without 

compromising its efficiency. 

V.  CONCLUSION 

This paper presented a new approach for diversity control 

in evolutionary computation (EC) algorithms. It addressed the 

challenges associated with balancing the exploration and 

exploitation tradeoff by using a multipopulation strategy with 

a heuristic initialisation. The insights obtained from the 

investigations in this paper have paved the way for the 

development of the newly proposed dual-pool EC architecture. 

The search space partitioning heuristic initialisation and the 

diversity control measures proposed in this paper facilitated 

effective exploration and exploitation in optimization of 

various global benchmark problems. 

In particular, the experimental results have shown that the 

proposed algorithm solves problems from both the traditional 

and modified global optimization benchmarks with pool sizes 

of only 50 to 100 samples. This feature is vital for minimising 

the cost of solving computationally expensive problems. 

Specifically, the proposed method successfully yields a 

33.34% reduction in the computational cost of optimizing the 

benchmark problems as compared to a standard EA. This 

outcome justifies the impact of effective diversity control on 

robustness and convergence efficiency of optimization 

methodologies. 

APPENDIX: TEST CASE STUDIES AND RESULT 

SUMMARY 

Table 2 outlines the formulations, domain specifications 

and the respective universal tags for the global optimization 

benchmarks used in this paper. Table 3 presents the complete 

numerical results of comparing the proposed dual-pool EC 

against the standard EC algorithm. 

 

Fig. 7:  Performance comparison summary for the standard EC and Dual-pool EC models on the basis of functions evaluations, the lower the better. 

(a): Shows the computational cost (in log scale) of the two algorithms on the individual benchmark test problems averaged over all population sizes. 

(b): Shows the collective cost (for all test problems) accrued by the standard EC and Dual-Pool EC models across varying pool sizes. 
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Table 2: Global Benchmark (Basic) Functions. 

Name Benchmark Function Range 

Rastrigin 𝑓1(𝑥) =  10 · 𝑛 + ∑ (𝑥𝑖
2 − 10 · 𝑐𝑜𝑠(2𝜋𝑥𝑖))𝑛

𝑖=1 ; 𝑛 = 100. [−5.12,5.12] 
Schwefel 𝑓2(𝑥) = ∑ 𝑥𝑖 𝑠𝑖𝑛(√|𝑥𝑖|)𝑛

𝑖=1 ;  𝑛 = 2. [−5.0,5.0] 

Easom 𝑓3(𝑥) = 𝑐𝑜𝑠(𝑥1) 𝑐𝑜𝑠(𝑥2)  𝑒𝑥𝑝(−(𝑥1 − 𝜋)2 − (𝑥2 − 𝜋)2) [−100,100] 
Sphere 𝑓4 (𝑥) = ∑ 𝑥𝑖

2𝑛
𝑖=1 ;    𝑛 = 2.  [−100,100] 

Weierstrass 𝑓5(𝑥) = ∑ (∑ [𝑎𝑘 𝑐𝑜𝑠(2𝜋𝑏𝑘(𝑥𝑖 + 0. ))]𝑘𝑚𝑎𝑥
𝑘=0 )𝑛

𝑖=1  − 𝑛 ∑ [𝑎𝑘 𝑐𝑜𝑠(𝜋𝑏𝑘)]𝑘𝑚𝑎𝑥
𝑘=0  ; 

𝑎 = 0.5, 𝑏 = 3, 𝑘𝑚𝑎𝑥 = 20, 𝑛 = 2.  

[−0.5,0.5] 

Griewank 𝑓6(𝑥) =
1

400
∑ (𝑥𝑖)2𝑛

𝑖=1  − ∏ 𝑐𝑜𝑠(𝑥𝑖/√𝑖)𝑛
𝑖=1 + 1;   𝑛 = 2.  [−100,100] 

Ackley 
𝑓7(𝑥) = −20 𝑒𝑥𝑝 (−0.2√

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) – 𝑒𝑥𝑝 (

1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)𝑛

𝑖=1 ) + 20 + 𝑒;  

 𝑛 = 2. 

[−32,32] 

 

Table 3: Computational cost in terms of function evaluations required by the Dual-pool and Standard EC algorithms to converge to a 0.1% accuracy level 

of the global optimal solution for the six different global optimization benchmarks. The table shows sensitivities of the two algorithms to varying 

population sizes. All results are averages of 100 independent runs. 

Pool 
sizes 

Traditional Benchmark Test Problems Modified Benchmark Test Problems 
Rastrigin Schwefel Easom Rastrigin2 Sphere2 Hybrid 

DP-EC Std -EC DP-EC Std-EC DP-EC Std-EC DP-EC Std-EC DP-EC Std-EC DP-EC Std-EC 

20 1.86𝑒3 𝟎. 𝟗𝟑𝒆𝟑 𝟓. 𝟓𝟒𝒆𝟑 4.43𝑒4 1.93𝑒4 𝟏. 𝟎𝟑𝒆𝟒 𝟏. 𝟒𝟏𝒆𝟑 6.17𝑒3 𝟖. 𝟑𝟓𝒆𝟒 9.71𝑒4 𝟖. 𝟕𝟒𝒆𝟒 9.82𝑒4 
50 2.07𝑒3 𝟏. 𝟎𝟕𝒆𝟑 𝟔. 𝟐𝟗𝒆𝟑 2.29𝑒4 7.44𝑒3 𝟑. 𝟐𝟕𝒆𝟑 𝟏. 𝟓𝟓𝒆𝟑 5.83𝑒3 𝟑. 𝟒𝟐𝒆𝟒 1.00𝑒5 𝟑. 𝟕𝟐𝒆𝟒 1.00𝑒5 

100 𝟏. 𝟓𝟒𝒆𝟑 𝟏. 𝟖𝟏𝒆𝟑 𝟔. 𝟏𝟕𝒆𝟑 6.80𝑒3 6.24𝑒3 𝟑. 𝟓𝟎𝒆𝟑 𝟐. 𝟔𝟎𝒆𝟑 1.37𝑒4 𝟐. 𝟖𝟒𝒆𝟒 9.99𝑒4 𝟑. 𝟕𝟕𝒆𝟒 1.00𝑒5 
200 𝟐. 𝟒𝟕𝒆𝟑 2.98𝑒3 4.23𝑒3 𝟑. 𝟖𝟓𝒆𝟑 1.15𝑒4 𝟔. 𝟐𝟕𝒆𝟑 𝟒. 𝟒𝟖𝒆𝟑 1.25𝑒4 𝟒. 𝟏𝟏𝒆𝟒 9.95𝑒4 𝟕. 𝟔𝟑𝒆𝟒 9.99𝑒4 
500 𝟓. 𝟓𝟗𝒆𝟑 6.45𝑒3 9.46𝑒3 𝟖. 𝟐𝟕𝒆𝟑 2.69𝑒4 𝟏. 𝟐𝟒𝒆𝟒 𝟗. 𝟔𝟗𝒆𝟑 1.08𝑒4 𝟓. 𝟏𝟑𝒆𝟒 9.88𝑒4 𝟗. 𝟒𝟐𝒆𝟒 1.00𝑒5 

1000 𝟗. 𝟖𝟒𝒆𝟑 1.10𝑒4 1.75𝑒4 𝟏. 𝟓𝟏𝒆𝟒 4.69𝑒4 𝟐. 𝟐𝟖𝒆𝟒 1.78𝑒4 𝟏. 𝟕𝟎𝒆𝟒 𝟔. 𝟑𝟔𝒆𝟒 1.00𝑒5 𝟗. 𝟖𝟕𝒆𝟒 1.00𝑒5 
Avg. 

Cost 
𝟑. 𝟗𝟎𝒆𝟑 4.04𝑒3 𝟖. 𝟐𝟎𝒆𝟑 1.69𝑒4 1.97𝑒4 𝟗. 𝟕𝟔𝒆𝟑 𝟔. 𝟐𝟔𝒆𝟑 1.10𝑒4 𝟓. 𝟎𝟒𝒆𝟒 9.92𝑒4 𝟕. 𝟏𝟗𝒆𝟒 9.97𝑒4 

Notation: DP-EC = Dual-Pool EC algorithm, Std-EC = Standard EC algorithm, Avg. Cost = Average computational cost in terms of number of function evaluations. 

The bold face items indicate where an algorithm outperforms its counterpart. 
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