63 research outputs found

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    A Logic Your Typechecker Can Count On: Unordered Tree Types in Practice

    Get PDF
    Type systems featuring counting constraints are often stud- ied, but seldom implemented. We describe an efficient im- plementation of a type system for unordered, edge-labeled trees based on Presburger arithmetic constraints. We begin with a type system for unordered trees and give a compilation into counting automata. We then describe an optimized implementation that provides the fundamental operations of membership and emptiness testing. Although each operation has worst-case exponential complexity, we show how to achieve reasonable performance in practice using a combination of techniques, including syntactic translations, lazy automata unfolding, hash-consing, memoization, and incremental tree processing implemented using partial evaluation. These techniques avoid constructing and examining large structures in many cases and amortize the costs of expensive operations across many computations. To demonstrate the effectiveness of these optimizations, we present experimental data from executions on realistically sized examples drawn from the Harmony data synchronizer

    Modal logics on rational Kripke structures

    Get PDF
    This dissertation is a contribution to the study of infinite graphs which can be presented in a finitary way. In particular, the class of rational graphs is studied. The vertices of a rational graph are labeled by a regular language in some finite alphabet and the set of edges of a rational graph is a rational relation on that language. While the first-order logics of these graphs are generally not decidable, the basic modal and tense logics are. A survey on the class of rational graphs is done, whereafter rational Kripke models are studied. These models have rational graphs as underlying frames and are equipped with rational valuations. A rational valuation assigns a regular language to each propositional variable. I investigate modal languages with decidable model checking on rational Kripke models. This leads me to consider regularity preserving relations to see if the class can be generalised even further. Then the concept of a graph being rationally presentable is examined - this is analogous to a graph being automatically presentable. Furthermore, some model theoretic properties of rational Kripke models are examined. In particular, bisimulation equivalences between rational Kripke models are studied. I study three subclasses of rational Kripke models. I give a summary of the results that have been obtained for these classes, look at examples (and non-examples in the case of automatic Kripke frames) and of particular interest is finding extensions of the basic tense logic with decidable model checking on these subclasses. An extension of rational Kripke models is considered next: omega-rational Kripke models. Some of their properties are examined, and again I am particularly interested in finding modal languages with decidable model checking on these classes. Finally I discuss some applications, for example bounded model checking on rational Kripke models, and mention possible directions for further research

    Logic and Automata

    Get PDF
    Mathematical logic and automata theory are two scientific disciplines with a fundamentally close relationship. The authors of Logic and Automata take the occasion of the sixtieth birthday of Wolfgang Thomas to present a tour d'horizon of automata theory and logic. The twenty papers in this volume cover many different facets of logic and automata theory, emphasizing the connections to other disciplines such as games, algorithms, and semigroup theory, as well as discussing current challenges in the field

    Lower bounds for the state complexity of probabilistic languages and the language of prime numbers

    Full text link
    This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.Comment: Submitted to the Journal of Logic and Computation, Special Issue on LFCS'2016) (Logical Foundations of Computer Science). Guest Editors: S. Artemov and A. Nerode. This journal version extends two conference papers: the first published in the proceedings of LFCS'2016 and the second in the proceedings of LICS'2018. arXiv admin note: substantial text overlap with arXiv:1607.0025

    Towards weak bisimilarity on a class of parallel processes.

    Get PDF
    A directed labelled graph may be used, at a certain abstraction, to represent a system's behaviour. Its nodes, the possible states the system can be in; its arrows labelled by the actions required to move from one state to another. Processes are, for our purposes, synonymous with these labelled transition systems. With this view a well-studied notion of behavioural equivalence is bisimilarity, where processes are bisimilar when whatever one can do, the other can match, while maintaining bisimilarity. Weak bisimilarity accommodates a notion of silent or internal action. A natural class of labelled transition systems is given by considering the derivations of commutative context-free grammars in Greibach Normal Form: the Basic Parallel Processes (BPP), introduced by Christensen in his PhD thesis. They represent a simple model of communication-free parallel computation, and for them bisimilarity is PSPACE-complete. Weak bisimilarity is believed to be decidable, but only partial results exist. Non-bisimilarity is trivially semidecidable on BPP (each process has finitely many next states, so the state space can be explored until a mis-match is found); the research effort in proving it fully decidable centred on semideciding the positive case. Conversely, weak bisimilarity has been known to be semidecidable for a decade, but no method for semideciding inequivalence has yet been found - the presence of silent actions allows a process to have infinitely many possible successor states, so simple exploration is no longer possible. Weak bisimilarity is defined coinductively, but may be approached, and even reached, by its inductively defined approximants. Game theoretically, these change the Defender's winning condition from survival for infinitely many turns to survival for K turns, for an ordinal k, creating a hierarchy of relations successively closer to full weak bisimilarity. It can be seen that on any set of processes this approximant hierarchy collapses: there will always exist some K such that the kth approximant coincides with weak bisimilarity. One avenue towards the semidecidability of non- weak bisimilarity is the decidability of its approximants. It is a long-standing conjecture that on BPP the weak approximant hierarchy collapses at o x 2. If true, in order to semidecide inequivalence it would suffice to be able to decide the o + n approximants. Again, there exist only limited results: the finite approximants are known to be decidable, but no progress has been made on the wth approximant, and thus far the best proven lower-bound of collapse is w1CK (the least non-recursive ordinal number). We significantly improve this bound to okx2(for a k-variable BPP); a key part of the proof being a novel constructive version of Dickson's Lemma. The distances-to-disablings or DD functions were invented by Jancar in order to prove the PSPACE-completeness of bisimilarity on BPP. At the end of his paper is a conjecture that weak bisimilarity might be amenable to the theory; a suggestion we have taken up. We generalise and extend the DD functions, widening the subset of BPP on which weak bisimilarity is known to be computable, and creating a new means for testing inequivalence. The thesis ends with two conjectures. The first, that our extended DD functions in fact capture weak bisimilarity on full BPP (a corollary of which would be to take the lower bound of approximant collapse to and second, that they are computable, which would enable us to semidecide inequivalence, and hence give us the decidability of weak bisimilarity

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems
    corecore