1,062 research outputs found

    Best wavelet packet bases in a rate-distortion sense

    Get PDF
    A fast rate-distortion (R-D) optimal scheme for coding adaptive trees whose individual nodes spawn descendents forming a disjoint and complete basis cover for the space spanned by their parent nodes is presented. The scheme guarantees operation on the convex hull of the operational R-D curve and uses a fast dynamic programing pruning algorithm to markedly reduce computational complexity. Applications for this coding technique include R. Coefman et al.'s (Yale Univ., 1990) generalized multiresolution wavelet packet decomposition, iterative subband coders, and quadtree structures. Applications to image processing involving wavelet packets as well as discrete cosine transform (DCT) quadtrees are presente

    Stack-run adaptive wavelet image compression

    Get PDF
    We report on the development of an adaptive wavelet image coder based on stack-run representation of the quantized coefficients. The coder works by selecting an optimal wavelet packet basis for the given image and encoding the quantization indices for significant coefficients and zero runs between coefficients using a 4-ary arithmetic coder. Due to the fact that our coder exploits the redundancies present within individual subbands, its addressing complexity is much lower than that of the wavelet zerotree coding algorithms. Experimental results show coding gains of up to 1:4dB over the benchmark wavelet coding algorithm

    Image fusion in the JPEG 2000 domain

    Get PDF

    Hyperspectral image compression : adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding

    Get PDF
    Hyperspectral images present some specific characteristics that should be used by an efficient compression system. In compression, wavelets have shown a good adaptability to a wide range of data, while being of reasonable complexity. Some wavelet-based compression algorithms have been successfully used for some hyperspectral space missions. This paper focuses on the optimization of a full wavelet compression system for hyperspectral images. Each step of the compression algorithm is studied and optimized. First, an algorithm to find the optimal 3-D wavelet decomposition in a rate-distortion sense is defined. Then, it is shown that a specific fixed decomposition has almost the same performance, while being more useful in terms of complexity issues. It is shown that this decomposition significantly improves the classical isotropic decomposition. One of the most useful properties of this fixed decomposition is that it allows the use of zero tree algorithms. Various tree structures, creating a relationship between coefficients, are compared. Two efficient compression methods based on zerotree coding (EZW and SPIHT) are adapted on this near-optimal decomposition with the best tree structure found. Performances are compared with the adaptation of JPEG 2000 for hyperspectral images on six different areas presenting different statistical properties

    Adaptation of Zerotrees Using Signed Binary Digit Representations for 3D Image Coding

    Get PDF
    Zerotrees of wavelet coefficients have shown a good adaptability for the compression of three-dimensional images. EZW, the original algorithm using zerotree, shows good performance and was successfully adapted to 3D image compression. This paper focuses on the adaptation of EZW for the compression of hyperspectral images. The subordinate pass is suppressed to remove the necessity to keep the significant pixels in memory. To compensate the loss due to this removal, signed binary digit representations are used to increase the efficiency of zerotrees. Contextual arithmetic coding with very limited contexts is also used. Finally, we show that this simplified version of 3D-EZW performs almost as well as the original one

    On the Efficient Broadcasting of Heterogeneous Services over Band-Limited Channels: Unequal Power Allocation for Wavelet Packet Division Multiplexing

    Get PDF
    Multiple transmission of heterogeneous services is a central aspect of broadcasting technology. Often, in this framework, the design of efficient communication systems is complicated by stringent bandwidth constraint. In wavelet packet division multiplexing (WPDM), the message signals are waveform coded onto wavelet packet basis functions. The overlapping nature of such waveforms in both time and frequency allows improving the performance over the commonly used FDM and TDM schemes, while their orthogonality properties permit to extract the message signals by a simple correlator receiver. Furthermore, the scalable structure of WPDM makes it suitable for broadcasting heterogeneous services. This work investigates unequal error protection (UEP) of data which exhibit different sensitivities to channel errors to improve the performance of WPDM for transmission over band-limited channels. To cope with bandwidth constraint, an appropriate distribution of power among waveforms is proposed which is driven by the channel error sensitivities of the carried message signals in case of Gaussian noise. We address this problem by means of the genetic algorithms (GAs), which allow flexible suboptimal solution with reduced complexity. The mean square error (MSE) between the original and the decoded message, which has a strong correlation with subjective perception, is used as an optimization criterion

    Low-latency compression of mocap data using learned spatial decorrelation transform

    Full text link
    Due to the growing needs of human motion capture (mocap) in movie, video games, sports, etc., it is highly desired to compress mocap data for efficient storage and transmission. This paper presents two efficient frameworks for compressing human mocap data with low latency. The first framework processes the data in a frame-by-frame manner so that it is ideal for mocap data streaming and time critical applications. The second one is clip-based and provides a flexible tradeoff between latency and compression performance. Since mocap data exhibits some unique spatial characteristics, we propose a very effective transform, namely learned orthogonal transform (LOT), for reducing the spatial redundancy. The LOT problem is formulated as minimizing square error regularized by orthogonality and sparsity and solved via alternating iteration. We also adopt a predictive coding and temporal DCT for temporal decorrelation in the frame- and clip-based frameworks, respectively. Experimental results show that the proposed frameworks can produce higher compression performance at lower computational cost and latency than the state-of-the-art methods.Comment: 15 pages, 9 figure

    Wavelet methods in speech recognition

    Get PDF
    In this thesis, novel wavelet techniques are developed to improve parametrization of speech signals prior to classification. It is shown that non-linear operations carried out in the wavelet domain improve the performance of a speech classifier and consistently outperform classical Fourier methods. This is because of the localised nature of the wavelet, which captures correspondingly well-localised time-frequency features within the speech signal. Furthermore, by taking advantage of the approximation ability of wavelets, efficient representation of the non-stationarity inherent in speech can be achieved in a relatively small number of expansion coefficients. This is an attractive option when faced with the so-called 'Curse of Dimensionality' problem of multivariate classifiers such as Linear Discriminant Analysis (LDA) or Artificial Neural Networks (ANNs). Conventional time-frequency analysis methods such as the Discrete Fourier Transform either miss irregular signal structures and transients due to spectral smearing or require a large number of coefficients to represent such characteristics efficiently. Wavelet theory offers an alternative insight in the representation of these types of signals. As an extension to the standard wavelet transform, adaptive libraries of wavelet and cosine packets are introduced which increase the flexibility of the transform. This approach is observed to be yet more suitable for the highly variable nature of speech signals in that it results in a time-frequency sampled grid that is well adapted to irregularities and transients. They result in a corresponding reduction in the misclassification rate of the recognition system. However, this is necessarily at the expense of added computing time. Finally, a framework based on adaptive time-frequency libraries is developed which invokes the final classifier to choose the nature of the resolution for a given classification problem. The classifier then performs dimensionaIity reduction on the transformed signal by choosing the top few features based on their discriminant power. This approach is compared and contrasted to an existing discriminant wavelet feature extractor. The overall conclusions of the thesis are that wavelets and their relatives are capable of extracting useful features for speech classification problems. The use of adaptive wavelet transforms provides the flexibility within which powerful feature extractors can be designed for these types of application

    Hierarchical quantization indexing for wavelet and wavelet packet image coding

    Get PDF
    In this paper, we introduce the quantization index hierarchy, which is used for efficient coding of quantized wavelet and wavelet packet coefficients. A hierarchical classification map is defined in each wavelet subband, which describes the quantized data through a series of index classes. Going from bottom to the top of the tree, neighboring coefficients are combined to form classes that represent some statistics of the quantization indices of these coefficients. Higher levels of the tree are constructed iteratively by repeating this class assignment to partition the coefficients into larger Subsets. The class assignments are optimized using a rate-distortion cost analysis. The optimized tree is coded hierarchically from top to bottom by coding the class membership information at each level of the tree. Context-adaptive arithmetic coding is used to improve coding efficiency. The developed algorithm produces PSNR results that are better than the state-of-art wavelet-based and wavelet packet-based coders in literature.This research was supported by Isik University BAP-05B302 GrantPublisher's Versio

    Efficient compression of motion compensated residuals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore