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Stack-Run Adaptive Wavelet Image Compression

A. Majid Awan∗ Nasir M. Rajpoot† S. Afaq Husain‡

Abstract

We report on the development of an adaptive wavelet image coder based
on stack-run representation of the quantized coefficients. The coder works by
selecting an optimal wavelet packet basis for the given image and encoding the
quantization indices for significant coefficients and zero runs between coeffi-
cients using a 4-ary arithmetic coder. Due to the fact that our coder exploits
the redundancies present within individual subbands, its addressing complexity
is much lower than that of the wavelet zerotree coding algorithms. Experimen-
tal results show coding gains of up to 1.4dB over the benchmark wavelet coding
algorithm.

1 Introduction

Wavelet transform based image coding methods have gained popularity during the
last decade or so [11, 10, 5, 14, 15]. This is mainly due to localization properties
of wavelets in both time (space) and frequency resulting in a sparse representation
with redundancies in and across subbands that can be exploited. Wavelets, however,
are not well-suited [6] to represent oscillatory patterns, a special form of texture.
Oscillatory variations of intensity can only be described by the small scale wavelet
coefficients. Unfortunately, those small scale coefficients carry very little energy, and
are often quantized to zero, even at high bit rates. Fingerprints or seismic signals are
a few examples of non-wavelet-friendly signals. Wavelet packets [2] were developed
in order to adapt the underlying wavelet bases to the contents of a signal. The basic
idea is to allow nonoctave subband decomposition to adaptively select the best basis
for a particular signal. Results from various image coding methods based on wavelet
packets [6, 8] show that they are particularly good in coding images with oscillatory
patterns. There has, however, been relatively much less research on wavelet packet
image coding.

The zerotree quantization, proposed first by Shapiro [11], is an effective way of
exploiting the self-similarities among high-frequency subbands at various resolutions.
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The success of wavelet based image coding methods has widely been perceived to be
due to across-scale similarities which could enable encoding of a set of wavelet coef-
ficients by a single codeword, called a zerotree. However, it has become increasingly
clear [14, 6] that exploitation of redundancies present within subbands can also result
in coding gains comparable to those of the state-of-the-art in image compression.

In this paper, we present an adaptive wavelet transform based image coder which
employs a stack-run representation [14] for quantized transform coefficients in order
to benefit from the intra-subband redundancies. Our compression algorithm can be
divided into four parts: In the first part, an adaptive wavelet packet basis is selected
for representing the given image using certain entropy-based cost function. We found
that the Coifman-Wickerhauser (CW) entropy cost function [3] does not often result
in the best wavelet packet basis yielding the highest compression performance for
our coding algorithm. Next, the wavelet packet coefficients are quantized using an
optimal scalar quantizer for Laplacian distribution [13]. In the third part, we represent
the quantized coefficients with stack-run coding using 4-symbol set of [14] which
generates a redundant symbol stream. Finally, this symbol stream is entropy coded
using a high order arithmetic coder. We use a symbol set for the arithmetic coding
of run/level values in which context information is used to enable multiple uses of
a single symbol. Our coder offers the following advantages: (a) a relatively simple
and therefore fast coding algorithm, (b) capable of progressive transmission, and (c)
coding performance consistently comparable with and often outperforming two state-
of-the-art image coders [10, 6].

This paper is organized as follows. In the next section, a brief review of wavelet
packet transform is presented. The coder algorithm is described in further detail in
Section 3. Experimental results of the new coder are presented in Section 4. Finally,
the paper concludes with some remarks on coder’s nature and performance.

2 Adaptive Wavelet Transform

Adaptive wavelet transform, also known as the wavelet packet transform, for images
can be regarded as an adaptive wavelet subband decomposition that lifts the limi-
tation of only decomposing the lowpass subband. This adaptation of representation
basis to the image contents can be achieved in practical applications if a fast basis
selection algorithm is employed to select the best basis from among the huge library
of possible bases.

2.1 Best Basis Selection

Coifman and Wickerhauser [3] suggested to use a fast dynamic programming algo-
rithm with a time complexity of O(N log N), where N is the number of pixels in the
image, to select the best basis according to a given cost function C. A key criterion
must be met in order to invoke a dynamic programming strategy [4]: the cost-function
should be separable or additive; ie, C(x) =

∑
k µ(xk), where xk, k = 0, 1, . . . , N − 1,

are the elements of wavelet packet decomposed image x, and µ is a positive function
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such that µ(0) = 0.

2.2 Role of a Cost Function

The notion of the best wavelet packet basis is limited to the cost function based
on which the full wavelet packet tree is pruned to obtain an optimal tree. It is,
therefore, crucial that an appropriate cost function is chosen taking into consideration
the quantization strategy employed by the coder. Initially, Coifman and Wickerhauser
[3] used

h(x) = −∑

k

( |xk|2
||x||2 log

|xk|2
||x||2

)
(1)

as a cost function. Ramchandran and Vetterli [9] used the optimal bit allocation
algorithm of Shoham and Gersho [12] to distribute the budget across the nodes of
the wavelet packet tree, and they select the best basis according to the following
rate-distortion criterion

C(x, Q, λ) = D(x, Q) + λR(x, Q). (2)

Given a set of quantizers Q, the rate R(x, Q) is estimated with the first-order ap-
proximation of the entropy H(Q(x)), and the distortion D(x, Q) is defined as the
mean square error (MSE). The selection of the best basis involves three embedded
nonlinear optimization problems. The overall complexity of the approach in [9] is,
therefore, quite high.

Since a scalar quantizer is used to quantize the transform coefficients, we chose
to select the best wavelet packet basis by simply using entropy as a criterion for the
split/merge decisions. This also enables to reduce substantially the computational
complexity of the algorithm. We experimented with three additive entropy-based cost
functions: the CW-entropy h(x), the lp-norm (where p = 1) given by

C1(x) =
∑

k

|xk| (3)

and the energy entropy given by

C2(x) =
∑

k

log(x2
k). (4)

3 The Coder Algorithm

3.1 Quantization

Within each subband, distribution of the wavelet packet coefficients can be approx-
imated by a Laplacian distribution [1]. We used the optimal entropy constrained
scalar quantizer for Laplacian distribution presented in [13]. It is a uniform scalar
quantizer with a symmetric dead-zone [−∆+δ, ∆−δ] and a step size ∆. The optimal
reconstruction offset in the sense of MSE is: δ = 1−∆(e−∆/(1−e−∆)). A dichotomic
search is employed to find the optimal value of ∆ that uses up the bit budget.
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3.2 Stack-Run Representation

The stack-run representation of [14] partitions the quantized transform coefficients
into two groups containing zero valued and nonzero valued, referred to as significant,
coefficients. Each significant coefficient is represented in binary notation as a stack
or a column of bits with the MSB at the top and the LSB at the bottom. A subband
is encoded by starting in one corner of the subband and performing a raster scan
described in terms of stack and run representations, where ‘stack’ is the magnitude
and sign of the significant coefficient and ‘run’ is the number of zerovalued coefficients
encountered before the next significant coefficient.

The symbol set S consists of four symbols; S = {0, 1, +,−}, with the symbols
having following meanings: ‘0’ is used to signify a binary bit value of 0 in encoding of
significant coefficients, ‘1’ is used for binary 1 in significant coefficients, but it is not
used for the MSB, ‘+’ is used to represent the MSB of a significant positive coefficient;
in addition ‘+’ is used for binary 1 in representing run lengths, and ‘−’ is used for the
MSB of negative significant coefficients, and for binary 0 in representing run lengths.
Since all binary run lengths start with 1, one can omit the final (eg, MSB) ‘+’ from
most runlength representations without loss of information. A potential problem
occurs in representation of a run of length of one which would not be representable
if all MSB ‘+’ symbols were eliminated. For tackling this, it is necessary to retain
the MSB ‘+’ symbol for all runs of length 2j − 1, where j is an integer. Because
the symbols ‘+’ and ‘−’ are used to code both runs and levels, a level of magnitude
one, which would be represented only by the ‘+’ or ‘−’ that is its MSB, would be
indistinguishable from a run. This is handled by simply incrementing by one the
absolute value of all levels prior to performing the symbol mapping.

3.3 Entropy Coding

Both the geometry of the best wavelet packet basis selected and the quantized coeffi-
cients are converted into a stream of symbols from S using stack-run representation
described above. This symbol stream is entropy coded using an order-3 arithmetic
coder [7] to give actual bitstream.

4 Experimental Results

We implemented the stack-run wavelet packet (SRWP) image coder, generating an
actual bitstream, and decoder. Nine different variations of the SRWP coder were
tested on six standard 256-level greyscale images each having a resolution of 512×512:
Barbara, Houses, Lighthouse, Fingerprints, Goldhill, and Lena. The coder variations
were based on three different filters: symmlet-8, biorthogonal 17/11, and biorthogonal
9/7 filters. Each of these variations employed three cost functions given in equations
(1), (3), and (4) – denoted respectively by CW, log, and lp – for basis selection
purposes. Compression results in terms of the peak-signal-to-noise-ratio (PSNR) in
decibels (dB) are given in Tables 1–6. Comparisons are provided for two state-of-
the-art image coders: the wavelet based SPIHT coder [10] and the fast adaptive
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wavelet packet (FAWP) coder [6]; results for these algorithms were not available for
last two images used for evaluating SRWP. The experimental results show that the
compression performance of our SRWP coder is comparable to and often better than
that of SPIHT and FAWP. Coding gains achieved by the SRWP coder over both
other coders are noticeable, especially for Barbara (1.2dB over SPIHT and 0.4dB
over FAWP) and Fingerprints (1.1dB over SPIHT and nearly 0.2dB over FAWP).
Empirical rate-distortion curves for the best SRWP coder variation, SPIHT, and
FAWP are given in Figure 1. Visual results for four test images compressed at 0.25
bits per pixel (bpp.) are provided in Figure 2.

5 Conclusions

An adaptive wavelet packet image coding algorithm based on stack-run representation
of the quantized transform coefficients is presented. Our coder is relatively simple
and does not need to maintain any list of coefficients, as is the case with EZW
[11] and SPIHT. Decent coding gains over SPIHT and FAWP coders demonstrate
the successful exploitation of intra-subband redundancies. Experimental results also
show that the l1-norm and energy cost functions typically result in the best wavelet
packet basis whose coefficients are more efficiently encoded by our algorithm. Another
interesting result is the consistently better performance of the symmlet-8 filters over
filters in popular use. Future work on this coder may focus on the development of
a cost function that takes into account the Laplacian distribution of wavelet packet
coefficients.
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(a) (b)

(c) (d)

Figure 1: Comparative rate-distortion curves
(a) Barbara, (b) Houses, (c) Lighthouse, and (d) Fingerprints
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(a) (b)

(c) (d)

Figure 2: Decoded images compressed by SRWP at 0.25 bpp.
(a) Barbara, (b) Houses, (c) Lighthouse, and (d) Fingerprints
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