230 research outputs found

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Gestion de la Sécurité pour le Cyber-Espace - Du Monitorage Intelligent à la Configuration Automatique

    Get PDF
    The Internet has become a great integration platform capable of efficiently interconnecting billions of entities, from simple sensors to large data centers. This platform provides access to multiple hardware and virtualized resources (servers, networking, storage, applications, connected objects) ranging from cloud computing to Internet-of-Things infrastructures. From these resources that may be hosted and distributed amongst different providers and tenants, the building and operation of complex and value-added networked systems is enabled. These systems arehowever exposed to a large variety of security attacks, that are also gaining in sophistication and coordination. In that context, the objective of my research work is to support security management for the cyberspace, with the elaboration of new monitoring and configuration solutionsfor these systems. A first axis of this work has focused on the investigation of smart monitoring methods capable to cope with low-resource networks. In particular, we have proposed a lightweight monitoring architecture for detecting security attacks in low-power and lossy net-works, by exploiting different features provided by a routing protocol specifically developed for them. A second axis has concerned the assessment and remediation of vulnerabilities that may occur when changes are operated on system configurations. Using standardized vulnerability descriptions, we have designed and implemented dedicated strategies for improving the coverage and efficiency of vulnerability assessment activities based on versioning and probabilistic techniques, and for preventing the occurrence of new configuration vulnerabilities during remediation operations. A third axis has been dedicated to the automated configuration of virtualized resources to support security management. In particular, we have introduced a software-defined security approach for configuring cloud infrastructures, and have analyzed to what extent programmability facilities can contribute to their protection at the earliest stage, through the dynamic generation of specialized system images that are characterized by low attack surfaces. Complementarily, we have worked on building and verification techniques for supporting the orchestration of security chains, that are composed of virtualized network functions, such as firewalls or intrusion detection systems. Finally, several research perspectives on security automation are pointed out with respect to ensemble methods, composite services and verified artificial intelligence.L’Internet est devenu une formidable plateforme d’intĂ©gration capable d’interconnecter efficacement des milliards d’entitĂ©s, de simples capteurs Ă  de grands centres de donnĂ©es. Cette plateforme fournit un accĂšs Ă  de multiples ressources physiques ou virtuelles, allant des infra-structures cloud Ă  l’internet des objets. Il est possible de construire et d’opĂ©rer des systĂšmes complexes et Ă  valeur ajoutĂ©e Ă  partir de ces ressources, qui peuvent ĂȘtre dĂ©ployĂ©es auprĂšs de diffĂ©rents fournisseurs. Ces systĂšmes sont cependant exposĂ©s Ă  une grande variĂ©tĂ© d’attaques qui sont de plus en plus sophistiquĂ©es. Dans ce contexte, l’objectif de mes travaux de recherche porte sur une meilleure gestion de la sĂ©curitĂ© pour le cyberespace, avec l’élaboration de nouvelles solutions de monitorage et de configuration pour ces systĂšmes. Un premier axe de ce travail s’est focalisĂ© sur l’investigation de mĂ©thodes de monitorage capables de rĂ©pondre aux exigences de rĂ©seaux Ă  faibles ressources. En particulier, nous avons proposĂ© une architecture de surveillance adaptĂ©e Ă  la dĂ©tection d’attaques dans les rĂ©seaux Ă  faible puissance et Ă  fort taux de perte, en exploitant diffĂ©rentes fonctionnalitĂ©s fournies par un protocole de routage spĂ©cifiquement dĂ©veloppĂ©pour ceux-ci. Un second axe a ensuite concernĂ© la dĂ©tection et le traitement des vulnĂ©rabilitĂ©s pouvant survenir lorsque des changements sont opĂ©rĂ©s sur la configuration de tels systĂšmes. En s’appuyant sur des bases de descriptions de vulnĂ©rabilitĂ©s, nous avons conçu et mis en Ɠuvre diffĂ©rentes stratĂ©gies permettant d’amĂ©liorer la couverture et l’efficacitĂ© des activitĂ©s de dĂ©tection des vulnĂ©rabilitĂ©s, et de prĂ©venir l’occurrence de nouvelles vulnĂ©rabilitĂ©s lors des activitĂ©s de traitement. Un troisiĂšme axe fut consacrĂ© Ă  la configuration automatique de ressources virtuelles pour la gestion de la sĂ©curitĂ©. En particulier, nous avons introduit une approche de programmabilitĂ© de la sĂ©curitĂ© pour les infrastructures cloud, et avons analysĂ© dans quelle mesure celle-ci contribue Ă  une protection au plus tĂŽt des ressources, Ă  travers la gĂ©nĂ©ration dynamique d’images systĂšmes spĂ©cialisĂ©es ayant une faible surface d’attaques. De façon complĂ©mentaire, nous avonstravaillĂ© sur des techniques de construction automatique et de vĂ©rification de chaĂźnes de sĂ©curitĂ©, qui sont composĂ©es de fonctions rĂ©seaux virtuelles telles que pare-feux ou systĂšmes de dĂ©tection d’intrusion. Enfin, plusieurs perspectives de recherche relatives Ă  la sĂ©curitĂ© autonome sont mises en Ă©vidence concernant l’usage de mĂ©thodes ensemblistes, la composition de services, et la vĂ©rification de techniques d’intelligence artificielle

    From security to assurance in the cloud: a survey

    Get PDF
    The cloud computing paradigm has become a mainstream solution for the deployment of business processes and applications. In the public cloud vision, infrastructure, platform, and software services are provisioned to tenants (i.e., customers and service providers) on a pay-as-you-go basis. Cloud tenants can use cloud resources at lower prices, and higher performance and flexibility, than traditional on-premises resources, without having to care about infrastructure management. Still, cloud tenants remain concerned with the cloud's level of service and the nonfunctional properties their applications can count on. In the last few years, the research community has been focusing on the nonfunctional aspects of the cloud paradigm, among which cloud security stands out. Several approaches to security have been described and summarized in general surveys on cloud security techniques. The survey in this article focuses on the interface between cloud security and cloud security assurance. First, we provide an overview of the state of the art on cloud security. Then, we introduce the notion of cloud security assurance and analyze its growing impact on cloud security approaches. Finally, we present some recommendations for the development of next-generation cloud security and assurance solutions

    Resource management in a containerized cloud : status and challenges

    Get PDF
    Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research

    Holistic Resource Management for Sustainable and Reliable Cloud Computing:An Innovative Solution to Global Challenge

    Get PDF
    Minimizing the energy consumption of servers within cloud computing systems is of upmost importance to cloud providers towards reducing operational costs and enhancing service sustainability by consolidating services onto fewer active servers. Moreover, providers must also provision high levels of availability and reliability, hence cloud services are frequently replicated across servers that subsequently increases server energy consumption and resource overhead. These two objectives can present a potential conflict within cloud resource management decision making that must balance between service consolidation and replication to minimize energy consumption whilst maximizing server availability and reliability, respectively. In this paper, we propose a cuckoo optimization-based energy-reliability aware resource scheduling technique (CRUZE) for holistic management of cloud computing resources including servers, networks, storage, and cooling systems. CRUZE clusters and executes heterogeneous workloads on provisioned cloud resources and enhances the energy-efficiency and reduces the carbon footprint in datacenters without adversely affecting cloud service reliability. We evaluate the effectiveness of CRUZE against existing state-of-the-art solutions using the CloudSim toolkit. Results indicate that our proposed technique is capable of reducing energy consumption by 20.1% whilst improving reliability and CPU utilization by 17.1% and 15.7% respectively without affecting other Quality of Service parameters

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that oïŹ€ers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and eïŹ€ective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our ïŹrst contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The ïŹrst sub-problem is the server power mode detection (sleep or active). The second sub-problem is to ïŹnd an eïŹ€ective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our ïŹfth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy eïŹƒciency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    5G-PPP Software Network Working Group:Network Applications: Opening up 5G and beyond networks 5G-PPP projects analysis, Version 2

    Get PDF
    It is expected that the communication fabric and the way network services are consumed will evolve towards 6G, building on and extending capabilities of 5G and Beyond networks. Service APIs, Operation APIs, Network APIs are different aspects of the network exposure, which provides the communication service providers a way to monetize the network capabilities. Allowing the developer community to use network capabilities via APIs is an emerging area for network monetization. Thus, it is important that network exposure caters for the needs of developers serving different markets, e.g., different vertical industry segments. The concept of “Network Applications” is introduced following this idea. It is defined as a set of services that provides certain functionalities to verticals and their associated use cases. The Network Applications is more than the introduction of new vertical applications that have interaction capabilities. It refers to the need for a separate middleware layer to simplify the implementation and deployment of vertical systems on a large scale. Specifically, third parties or network operators can contribute to Network Applications, depending on the level of interaction and trust. In practice, a Network Application uses the exposed APIs from the network and can either be integrated with (part of) a vertical application or expose its APIs (e.g., service APIs) for further consumption by vertical applications. This paper builds on the findings of the white paper released in 2022. It targets to go into details about the implementations of the two major Network Applications class: “aaS” and hybrid models. It introduces the Network Applications marketplace and put the light on technological solution like CAMARA project, as part of the standard landscape. <br/
    • 

    corecore