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Abstract  

Minimizing the energy consumption of servers within cloud computing systems is of upmost importance to cloud 

providers towards reducing operational costs and enhancing service sustainability by consolidating services onto fewer 

active servers. Moreover, providers must also provision high levels of availability and reliability, hence cloud services 

are frequently replicated across servers that subsequently increases server energy consumption and resource overhead. 

These two objectives can present a potential conflict within cloud resource management decision making that must 

balance between service consolidation and replication to minimize energy consumption whilst maximizing server 

availability and reliability, respectively. In this paper, we propose a cuckoo optimization-based energy-reliability 

aware resource scheduling technique (CRUZE) for holistic management of cloud computing resources including 

servers, networks, storage, and cooling systems. CRUZE clusters and executes heterogeneous workloads on 

provisioned cloud resources and enhances the energy-efficiency and reduces the carbon footprint in datacenters 

without adversely affecting cloud service reliability. We evaluate the effectiveness of CRUZE against existing state-

of-the-art solutions using the CloudSim toolkit. Results indicate that our proposed technique is capable of reducing 

energy consumption by 20.1% whilst improving reliability and CPU utilization by 17.1% and 15.7% respectively 

without affecting other Quality of Service parameters.  
 

Keywords: Cloud Computing, Energy Consumption, Sustainability, Reliability, Holistic Management, Cloud 

Datacenters  

 

1. Introduction 
 

Commercial cloud providers such as Microsoft, Google, and Amazon heavily depend on datacenters to support the 

ever-increasing demand for computational requirements of their services. Such demand has subsequently increased 

operational costs of running large infrastructures, as well as producing substantial carbon emissions that negatively 

impact the environmental sustainability of cloud services [1]. Existing efforts to tackle this problem primarily focus 

on minimizing the energy consumption of servers via service consolidation to reduce the number of active servers and 

increase datacenter resource utilization [1] [2] [3]. However, such approaches typically do not consider other core 

datacenter components, including the network, storage, and cooling systems, which constitute significant amount 

(32% approximately) of total Cloud DataCentres (CDC) power consumption [41]. Server consolidation unaware of 

the cooling system may increase the number of hot spots in the datacenter which subsequently increases the 

requirement of cooling capacity and reduces cooling efficiency [43]. Hotspot mitigation is performed via load 

balancing. However, load balancing can widely spread communicating Virtual Machines (VMs) across multiple hosts 

without considering their pairwise network traffic, increasing network cost and energy consumption [50]. Thus, to 

create cloud platforms that are energy efficient, a resource management approach capable of managing all these 

resources (network, storage, servers, memory and cooling components) in a holistic manner is required [2]. 

While energy efficiency is critical, cloud providers must also provide highly available and reliable cloud services [2]. 

However, with the growing adoption of cloud, CDCs are rapidly expanding in terms of scale and system complexity, 

which has subsequently increased the frequency and diversity of failures [42]. These failures range across Service 

Level Agreement (SLA) violation, data corruption, loss/premature execution termination, degrading cloud service 
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performance and availability [3]. In order to address this problem, one of the most common practices is to replicate 

cloud services frequently to minimize the risk of simultaneous failure [46]. However, replicas require additional 

resource usage from servers within the CDC leading to extra resource usage which increases their respective power 

consumption [42]. It has been reported that a huge quantity of base-load energy is consumed even when actual cloud 

resource usage is very low or even idle [4] [5]. This results in a potential conflict in resource management decision 

making within the CDC to balance between energy consumption and reliability [57] [58]. In order to minimize server 

power usage, it would be preferable to consolidate servers and power down idle machines [59]. On the other hand, in 

order to maximize cloud service availability and reliability, replicas across additional machines are required [44]. 

Therefore, a holistic resource management is not only required for managing all aforementioned components, but 

must also consider replication and coordination of services to enable reliable delivery of cloud services in a cost-

efficient manner.  

 

Heuristic methods such as evolutionary algorithm are a suitable candidate to tackle the complexity of this problem. Li 

et al. [6] suggested that scheduling algorithms equipped with a Cuckoo Optimization (CO) algorithm can be used in 

this regard because CO algorithm performs better than Particle Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO) in terms of accuracy, speed and convergence [29] for solving batch process and job scheduling 

problems [28] [29].The main motivation of this research work is to extend a conceptual model proposed in [2] [44] to 

develop a Cuckoo optimization based efficient Resource UtiliZation techniquE called CRUZE for holistic 

management of all resources (servers, network, storage, cooling systems) to improve the energy efficiency and reduce 

carbon footprint while minimizing service failure within hardware, service, and software to maintain required cloud 

service reliability. Our approach clusters the workloads based on their Quality of Service (QoS) parameters for 

provisioning of cloud resources and schedules the provisioned resources for workload execution using a Cuckoo 

optimization-based scheduling algorithm. 

The rest of the article is structured as follows. Section 2 presents the related work of existing holistic resource 

management approaches. Section 3 presents the system model and design model of CRUZE. Section 4 proposes the 

resource provisioning and scheduling strategy. Section 5 describes the experimental setup and presents the results and 

analysis. Section 6 summarizes the paper and offers future research directions. 

2. Related Work 

Holistic management of cloud resources is a challenging task due to dynamic requirements of cloud users [53]. The 

majority of existing works study the energy management of servers alone without omitting other components, which 

consume substantial energy [9] [55]. This section describes the existing resource management techniques and their 

comparison with our proposed approach. 

2.1 Energy-aware Cloud Resource Scheduling  

Li et al. [6] proposed an Energy-Aware Resource Scheduling (EARS) technique to execute workloads within virtual 

cloud environments. EARS technique models the power and failure profiles for CDC and implements them using 

event-based cloud simulator, and is an effective in reducing energy cost of cloud data center and improving task 

completion rate, however only considers homogeneous workloads. Similarly, Li et al. [8] proposed a VM Scheduling 

(VMS) technique to reduce energy consumption of servers and identifies the effect of energy consumption on SLA 

violation rate to improve user satisfaction. Balis et al. [7] proposed a Holistic Approach (HA) for management of IT 

infrastructure to reduce execution cost and energy consumption. Perez et al. [10] proposed a Holistic Workload Scaling 

(HWS) technique to enable scaling of resources vertically as well as horizontally simultaneously and aids to reduce 

latency using multi-scaling approach without considering energy consumption of cloud resources. Luo et al. [11] 

formulates energy consumption as a task-core assignment and scheduling problem and proposed a Holistic Energy 

Optimization Framework (HEOF) to reduce thermal effect as well as cooling cost simultaneously and HEOF 

framework focuses on powerful computation capability. Liu et al. [12] proposed a Server-based Cloud-enabled 

Architecture (SCA) to improve the energy-efficiency of different hardware components such as memory, storage and 

processors. Furthermore, the performance of SCA is evaluated using a case study of video tracking application and 

experimental results show that SCA performs better in terms of memory utilization. Guzek et al. [13] proposed a 

Holistic Model for Resource Management (HMRM) in virtualization based cloud datacenter to reduce the energy 

consumption of different resources such as memory, storage and networking. Ferrer et al. [14] proposed a Holistic 

Approach for Cloud Service Provisioning (HACSP) to meet predicted and unforeseen changes in resource 

requirements dynamically and optimizes energy cost. Feller et al. [15] proposed a Holistic approach for Energy 
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Management (HEM) technique for effective management of virtual cloud resources using dynamic web workloads 

and saves the substantial amount of energy. Dinkar et al. [60] proposed Energy Efficient Data Center Management 

(EEDCM) technique under availability constraints and outlines the importance of availability and designs a hill 

climbing algorithm to prevent failure zone. The experimental result shows that EEDCM technique reduces the energy 

consumption by the datacenter, but the trade-off between energy consumption and other important QoS parameters 

such as reliability, cost and execution time are omitted.   

2.2 Reliability-aware Cloud Resource Scheduling  

Zhou et al. [16] presented a Cloud Service Reliability Enhancement (CSRE) approach to utilization of network and 

storage resources. This approach stores the state of VM using service checkpointing, which is in executing state. 

Further, node failure predicator is designed to optimize the use of network resources. Li et al. [17] developed a 

convergent dispersal based multi-cloud storage (CDStore) solution to offer reliable, secure and cost-efficient cloud 

service. The proposed solution offers deterministic-based deduplication approach to save network bandwidth and 

storage space. Moreover, CDStore uses two-stage deduplication to protect the system from malicious attacks. 

Azimzadeh et al. [18] proposed a Multi-Objective Resource Scheduling (MORS) approach to increase the reliability 

of cloud service and optimize the execution time. Further, authors identify a trade-off between reliability and execution 

time for efficient execution of HPC (High Performance Computing) workloads. Poola et al. [19] proposed an Adaptive 

and Just-In-Time (AJIT) scheduling approach using spot and on-demand instances to provide fault management 

mechanism. This approach uses resource consolidation to optimize execution time and cost and experimental results 

indicates that AJIT is efficient for execution of deadline-oriented workloads. Qu et al. [20] proposed a Heterogeneous 

Spot Instances-based Auto-scaling (HSIA) approach to execute web applications in a reliable manager. Further, HSIA 

approach designed a fault tolerant system to improve the availability and reduce the execution cost and response time 

of cloud service. Liu et al. [21] proposed a replication-based state management (E-Storm) approach actively maintains 

multiple state backups on different VMs during the execution of real-world and synthetic streaming applications. The 

performance of E-Storm is evaluated against checkpointing method and experimental results indicates that E-Storm 

achieves effective results in terms of latency and throughput. Abdulhamid et al. [22] proposed a Dynamic Clustering 

League Championship Approach (DCLCA) to minimize fault reduction in task failure during resource scheduling for 

workload execution. Liang et al. [61] proposed a Resource Optimization method for Cloud Data Center (ROCDC), 

which designs a conceptual model to optimize the performance parameters reliability and energy while scheduling 

resources. However, this approach was not validated via simulation or experimentation. 

2.3 Cuckoo Optimization based Energy-aware Cloud Resource Scheduling  

Shahdi-Pashaki et al. [23] proposed a Group Technology-based model and Cuckoo Optimization (GTCO) algorithm 

to allocate resources for effective mapping of VMs to cloud workloads. GTCO reduces energy cost during execution 

of VMs and performs better than round robin based resource scheduling. Sundarrajan and Vasudevan [24] proposed 

a Cuckoo Optimization based Task Scheduling (COTC) algorithm to schedule the tasks in cloud processing and 

improves the energy utilization for the execution of homogeneous workloads. Abbasi and Mohri [25] proposed a 

Cuckoo Optimization based Resource Management (CORM) mechanism for task scheduling, which improves load 

balancing to reduce energy cost. CORM improves energy-efficiency during execution of cloud resources and performs 

better than round robin based resource scheduling. Navimipour and Milani [26] proposed a Cuckoo Search Algorithm 

based Task Scheduling (CSATS) technique for effective utilization of cloud resources. Authors just measured the 

fitness value (execution time) of CSATS with different values of probability to find the cloud resource for execution 

of workloads.  Madni et al. [27] proposed a Cuckoo Search Meta-Heuristic (CSMH) algorithm, which optimizes 

energy consumption of cloud workloads. The performance of COTC [24] and CSMH [27] have been evaluated using 

CloudSim [30] and both reduces energy cost of servers without focusing on other components of the cloud datacenter.   

2.4 Comparison of CRUZE with Existing Resource Scheduling Techniques  

Table 1 compares our proposed technique (CRUZE) with existing resource scheduling approaches discussed above. 

We identified that existing approaches for holistic resource management only consider one or two components 

simultaneously. The majority of existing work schedule resources for the execution of homogeneous workloads while 

others like EARS [6], HEOF [11] and AJIT [19] schedule resources for the execution of heterogeneous workloads as 

well. None of the existing works considers clustering of workloads for resource provisioning. Provisioning based 

resource scheduling is only considered in CSRE [16]. Cuckoo Optimization (CO) based scheduling is performed in 
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GTCO [23], COTC [24], CORM [25], CSATS [26] and CSMH [27], but scheduled resources only for homogenous 

cloud workload without any provisioning of resources. GTCO [23] optimizes energy cost and latency but COTC [24], 

CORM [25], CSATS [26] and CSMH [27] only optimizes energy cost and execution time. This is the first research 

paper which focuses on holistic management of core CDC components towards providing reliable and sustainable 

cloud services. The proposed technique (CRUZE) schedules the provisioned resources for the execution of clustered 

and heterogeneous workloads to enable reliable and sustainable cloud services.   

Table 1: Comparison of CRUZE with existing holistic resource management techniques 

Technique 

 

Components of Holistic Resource Management for Cloud Computing  

1 2 3 4 
Sustainability-aware and Reliability-aware Holistic Management 

5 6 7 8 9 10 11 12 13 

EARS [6]      ✔  ✔  ✔    

HA [7]      ✔  ✔      

VMS [8]        ✔   ✔   

HWS [10]      ✔        

HEOF [11] ✔       ✔ ✔ ✔  ✔ ✔ 

SCA [12]        ✔      

HMRM [13]        ✔   ✔   

HACSP [14]        ✔      

HEM [15]        ✔   ✔   

CSRE [16]   ✔  ✔      ✔   

CDStore [17]     ✔ ✔        

MORS [18]     ✔ ✔        

AJIT [19] ✔    ✔ ✔        

HSIA [20]     ✔ ✔        

E-storm [21]     ✔ ✔        

DCLCA [22]     ✔ ✔        

GTCO [23]    ✔    ✔   ✔   

COTC [24]    ✔    ✔      

CORM [25]    ✔  ✔  ✔      

CSATS [26]    ✔  ✔        

CSMH [27]    ✔  ✔        

EEDCM [60]        ✔      

ROCDC [61]     ✔   ✔      

CRUZE (proposed) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Abbreviations: 1 – Heterogeneous Workloads, 2 - Workload Clustering, 3 - Provisioning based Scheduling, 4 - Cuckoo Optimization Scheduling, 

5 – Failures, 6 - Application QoS, 7 - Capacity Planning, 8 - Energy Management, 9 – Thermal-aware Scheduling, 10 – Cooling, 11 - Virtualization, 

12 - Renewable Energy and 13 - Waste Heat Utilization.  

3. System Model  

As our proposed approach operates within a holistic CDC [2], we present and describe all core components within the 

system as shown in Figure 1.Our approach considers components within all levels of cloud service provisioning.  

1. Software as a Service (SaaS): This layer handles the incoming user workloads (batch style or interactive) and 

forward those workloads (requests or user sessions) to workload manager as discussed in Section 4.1. Based on 

their QoS requirements such as deadlines and budget constraints, workload manager maintains the queue of 

workloads in a specific order based on their priorities.  

 

2. Platform as a Service (PaaS): This layer deploys a controller to handle the different functions of the system.  

Controller schedules the provisioned cloud resources efficiently with three main objectives: 1) maximize resource 

utilization, 2) minimize energy consumption and 3) improve the reliability and sustainability of cloud datacenters. 

Further, a controller (middleware) has five sub modules: cooling manager, energy manager, fault manager, 

VM/resource manager and workload manager and roles of sub modules is described below:  
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a) Workload manager maintains the queue of arriving user workloads from the application manager and 

recognizes their QoS constraints and forwards the QoS information to the next module i.e. VM/resource 

manager for provisioning and scheduling of resources. 

b) VM/resource manager schedules the provisioned resources for their execution using virtual or physical 

machines based on QoS requirements of workload. 

c) Fault manager performs fault detection and correction with the minimal performance degradation. We have 

considered three types of faults for this research work: VM creation failures, host failures (Processing 

Elements failure and memory failure) and high-level failures like cloudlets failures (which are caused by 

any networking problem) [44]. FIM-SIM [45] is integrated with CloudSim toolkit [30] to simulate failures 

as discussed in Section 5. 

d) Data Center (DC) Manager acts as a broker to handle other modules such as cooling manager and energy 

manager for cooling and energy management respectively.  

The working of controller (CRUZE) is discussed in Section 4 in detail.  

 

Figure 1: System Model 

3. Infrastructure as a Service (IaaS): IaaS layer comprises of information related to cloud infrastructure such as 

VMs and CDCs. Furthermore, the virtualization layer enables workload balancing via VM migration. The 

variations of the temperature of different VMs running at different cores is measured, monitored and controlled 

by proactive temperature-aware scheduler. Power Management Unit (PMU) is deployed to provide and control 

the power for different components of cloud data centers. Check-pointing mechanism is provided by Dynamic 

Random-Access Memory (DRAM) by storing the current states of VMs [46]. Thermal sensors monitor the value 
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of temperature and forward to the Thermal profiling and monitoring module to analyze the temperature variations 

of cloud datacenters. When system generates thermal alert then heat controller takes a required action to control 

the temperature if it is higher than its threshold value and maintains the performance of datacenter. Uninterruptible 

Power Supply (UPS) is deployed to continue the power in case of power failure from main sources. For cooling 

management, the district heating management uses water economizer, outside air economizer and chiller plant to 

control the temperature of CDC. Energy manager manages the energy produced from renewable and non-

renewable sources. Sustainable CDCs focuses more on renewable energy sources (solar and wind) [2] [52]. To 

provide reliable services, CDC can prefer grid energy for the execution of deadline-aware workloads. Automatic 

Transfer Switch (ATS) manages the electricity producing from renewable as well as non-renewable sources. 

Moreover, Power Distribution Unit (PDU) transfers the energy to all the devices of cloud datacenters and cooling 

components.  

3.1. Design Models  

We have used following design models for holistic management of cloud resources:  

 

a) Energy Model: The energy model is developed on the basis that resource utilization has a linear 

relationship with energy consumption [6] [7] [39] [46] [67] [68]. Energy Consumption (𝐸) of a CDC can be 

expressed as [Eq. 1]: 
   

𝐸 =  𝐸𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 + 𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒 + 𝐸𝑀𝑒𝑚𝑜𝑟𝑦 +  𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘+ 𝐸𝐶𝑜𝑜𝑙𝑖𝑛𝑔 + 𝐸𝐸𝑥𝑡𝑟𝑎                                    (1)                            

𝐸𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟  represents the processor’s energy consumption, which is calculated using [Eq. 2]:  

𝐸𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 =  ∑ (𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐸𝑆𝐶 + 𝐸𝐿𝑒𝑎𝑘𝑎𝑔𝑒 + 𝐸𝑖𝑑𝑙𝑒)   

𝑟=𝑐𝑜𝑟𝑒𝑠

𝑟=1

                          (2) 

where 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 represents dynamic energy consumption and calculated using [Eq. 3], 𝐸𝑆𝐶  represents short-

circuit energy consumption, 𝐸𝐿𝑒𝑎𝑘𝑎𝑔𝑒  represents power loss due to transistor leakage current and 𝐸𝑖𝑑𝑙𝑒  

represents the energy consumption when processor component is idle.  

𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝑉2 𝑓               (3) 

where C is capacitance, f is frequency, and V is voltage. 

𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒  represents the energy consumption of storage device, which performs data read and write oper ations 

and it is calculated using [Eq. 4]: 

𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒 =  𝐸𝑅𝑒𝑎𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑊𝑟𝑖𝑡𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑖𝑑𝑙𝑒                                  (4) 

where 𝐸𝑖𝑑𝑙𝑒  represents the energy consumption when storage component is idle.  

 𝐸𝑀𝑒𝑚𝑜𝑟𝑦 represents the energy consumption of the main memory (RAM/DRAM) and cache memory (SRAM), 

which is calculated using [Eq. 5]: 

𝐸𝑀𝑒𝑚𝑜𝑟𝑦 =   𝐸𝑆𝑅𝐴𝑀 + 𝐸𝐷𝑅𝐴𝑀                       (5) 

𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘 represents the energy consumption of networking equipment such as routers, switches and gateways, 

LAN cards, which is calculated using [Eq. 6]: 

𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘 =  𝐸𝑅𝑜𝑢𝑡𝑒𝑟 + 𝐸𝐺𝑎𝑡𝑒𝑤𝑎𝑦 + 𝐸𝐿𝐴𝑁𝑐𝑎𝑟𝑑   + 𝐸𝑆𝑤𝑖𝑡𝑐ℎ                            (6) 

𝐸𝐶𝑜𝑜𝑙𝑖𝑛𝑔 represents the energy is consumed by cooling devices (air conditioners, compressors and fans) to 

maintain the temperature of cloud datacenter [6], which is calculated using [Eq. 7]:.  

 𝐸𝐶𝑜𝑜𝑙𝑖𝑛𝑔 =  𝐸𝐴𝐶 + 𝐸𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 +  𝐸𝐹𝑎𝑛                            (7) 

𝐸𝐸𝑥𝑡𝑟𝑎 represents the energy consumption of other parts, including the current conversion loss and others, 

which is calculated using [Eq. 8]:  

𝐸𝐸𝑥𝑡𝑟𝑎 =    𝐸𝑀𝑜𝑡ℎ𝑒𝑟𝑏𝑜𝑎𝑟𝑑 + ∑ 𝐸𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟,𝑓

𝐹

𝑓=0

                       (8) 
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where 𝐸𝑀𝑜𝑡ℎ𝑒𝑟𝑏𝑜𝑎𝑟𝑑  is energy consumed by motherboard (s) and ∑ 𝐸𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟,𝑓
𝐹

𝑓=0
 is energy consumed by a 

connector (port) running at the frequency f. 

For a resource 𝑟𝑘 at given time 𝑡, the resource utilization 𝑅𝐸𝑆𝑈𝑡,𝑘 is defined as [Eq. 9]: 

𝑅𝐸𝑆𝑈𝑡,𝑘 = ∑ 𝑟𝑢𝑡,𝑘,𝑖

𝑚

𝑖=1

                                                   (9) 

where m is the number of cloud workloads running at time t, 𝑟𝑢𝑡,𝑘,𝑖 is the resource (VMs) usage of workload 𝑤𝑖  on 

resource 𝑟𝑘  at given time 𝑡. The actual energy consumption (𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) is 𝐸𝐶𝑂𝑁𝑡,𝑘 of a resource 𝑟𝑘 at given time t 

is defined as [Eq. 10]: 
𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  𝐸𝐶𝑂𝑁𝑡,𝑘  = (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) × 𝑅𝐸𝑆𝑈𝑡,𝑘 + 𝐸𝑚𝑖𝑛               (10)           

where 𝐸𝑚𝑎𝑥 is the energy consumption at the peak load (or 100% utilization) and 𝐸𝑚𝑖𝑛 is the minimum 

consumption of energy in the idle/active mode (or as low as 1% utilization), which can be calculated using 

[Eq. 1] through profiling.   

 
b) Reliability Model: Reliability of cloud services is the ability to provision correct service [44] [46], and is calculated 

as [Eq. 11]:  

𝑅𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝑒−λt                     (11) 

where t is time for the resource to deal with its request for any workload execution and λ is the failure rate of the 

resource at the given time, which is calculated using [Eq. 13].  

The list of available SLAs = <𝑚1,𝑚2……………..𝑚𝑛 >, where n is the total number of SLAs. 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 (𝑚) =  {
1,           𝑚 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑              

0,             𝑚 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑,                     
                              (12) 

Failure rate (λ) is computed as a ratio of the summation of all the SLA violated to the total number of SLAs [46].  

λ = ∑ (
Failure (𝑚𝑖)

𝑛
)                           (13)

𝑛

𝑖=1

 

c) Capacity Planning Model: The capacity model is defined in terms of memory utilization, disk utilization 

and network utilization at given time 𝑡 [33]. The formula for calculating memory utilization (𝑀𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) in 

percentage is as follows [Eq. 14]: 

 

𝑀𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
Total Physical Memory − (Memory Free + Memory Buffers + Cache Memory)

Total Physical Memory
 × 100                (14) 

 

The formula for calculating disk utilization (𝐷𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) in percentage is as follows [Eq. 16]: 

 

𝐷𝑈𝑠𝑎𝑔𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑈𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐻𝐷 𝑠𝑖𝑧𝑒
 × 100              (15)                    

 

𝐷𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡𝑠 × 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑈𝑠𝑒𝑑

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑡𝑠 × 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 × 100                     (16) 

 

The formula for calculating network utilization (𝑁𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) in percentage is as follows [Eq. 17]: 
 

𝑁𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠 

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ × 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 × 100                     (17) 

 

d) Temperature Model: We used Computer Room Air Conditioning (CRAC) model and RC (where R and C 

are thermal resistance (k/w) and heat capacity (j/k) of the host respectively) thermal model [34] [64] [65] [66] 

to design temperature model for calculation of datacenter temperature (𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑇𝑒𝑚𝑝). The following 

formula is used to calculate the temperature of datacenter [Eq. 18].     
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𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑇𝑒𝑚𝑝 =  𝑇𝑒𝑚𝑝𝑖𝑛𝑙𝑒𝑡 + ∑ (
𝑇𝑒𝑚𝑝𝐶𝑃𝑈𝑖

𝑛
)  +  𝑇initial ×𝑒−RC                         (18)

𝑛

𝑖=1

 

where CRAC model is used to calculate inlet temperature (𝑇𝑒𝑚𝑝𝑖𝑛𝑙𝑒𝑡) and RC model is used to calculate CPU 

temperature (𝑇𝑒𝑚𝑝𝐶𝑃𝑈). 𝑇initial  is the initial temperature of the CPU. 1 ≤ i ≤ n, n is the number of CPUs.    

 

e) Renewable Energy Model: A renewable energy model [35] is used in terms of Energy Reuse Effectiveness 

(ERE) and [Eq. 19] is used to calculate its value. 

  

ERE =  
𝐸−𝐸𝑛𝑒𝑟𝑔𝑦𝑅𝑒𝑢𝑠𝑒𝑑

𝐸
                 (19) 

 

The value of 𝐸 is calculated using [Eq. 1]. 𝐸𝑛𝑒𝑟𝑔𝑦𝑅𝑒𝑢𝑠𝑒𝑑 is amount of energy reused by different IT equipment.  

 

f) Waste Heat Utilization Model:  The district heating management based waste heat utilization model [36] 

is used in terms of recirculation ratio (𝑅𝑅) and it is defined as the following [Eq. 20]:  

 

𝑅𝑅 =  
𝑊𝑚

𝑊𝑠

               (20) 

 

where 𝑊𝑚 = mass flow rate of the water entering the circulation system, kilograms per second (kg/s) and 𝑊𝑠 

= mass flow rate of the steam generated in the circulation system, kg/s. Resource manager utilizes the waste 

heat to generate renewable energy to reduce electricity costs and carbon emissions, which further improves 

the sustainability of CDC in an efficient manner.  

 

g) Cooling Management Model: A Water based Cooling Management Model [38] is used in terms of 

Datacenter Cooling System (DCS) Efficiency or cooling effectiveness and it is  defined as the following [Eq. 

21]: 

 

DCS Efficiency = 𝛼 
𝐻𝑒𝑎𝑡𝑅𝑒𝑚𝑜𝑣𝑒𝑑 (𝑡)

 𝐸𝑁𝐶𝑁𝐶𝑜𝑜𝑙𝑖𝑛𝑔
                (21) 

 

𝛼 =  𝑇𝑒𝑚𝑝ExhaustingAir −  𝑇𝑒𝑚𝑝OutsideAir       (22)  

 

𝐻𝑒𝑎𝑡𝑅𝑒𝑚𝑜𝑣𝑒𝑑  (𝑡) is calculated as the heat absorbed by the heat pump per unit time t and  𝐸𝑁𝐶𝑁𝐶𝑜𝑜𝑙𝑖𝑛𝑔 is work done 

by the cooling devices (compressor, air conditioner and fan) of the heat pump to transfer the thermal energy. Where 

𝛼 is weight to prioritize components of the DCS Efficiency and it is the temperature difference between outside air 

temperature and the temperature of the (hot) exhausting air of CRAC model [34] as specified in [Eq. 22]. Outside air 

temperature is the temperature of data center room [64] [65] [66]. The exhausting air is exhausted from server rack, 

which contains server fans, air conditioners and compressors for smooth functioning of CDC [38]. Different from the 

outside air cooling, the chiller cooling effectiveness does not change much with temperature and the variation over 

different IT load is much smaller than that under outside air cooling. 

4 Resource Provisioning and Scheduling  

It is very challenging to schedule provisioned resources for workload execution and maintain reliability and 

sustainability of cloud service simultaneously [6] [52]. Cloud resource scheduling is a tedious task due to the problem 

of finding the best match of resource-workload pair based on the user QoS requirements [31] [39] [46]. The problem 

can be expressed as: mapping a set of independent cloud workloads {𝑤1,𝑤2,𝑤3, . . . ,𝑤𝑚} to a set of heterogeneous 

and dynamic resources {𝑟1,𝑟2,𝑟3, . . . ,𝑟𝑛} has been taken. For continuous problem, R = {𝑟𝑘 | 1 ≤ k ≤ n} is the collection 

of resources and n is the total number of resources. W = {𝑤𝑖|1 ≤ i ≤ m} is the collection of cloud workloads and m is 

the total number of cloud workloads. Figure 2 shows the resource provisioning and scheduling mechanism for 

execution of user workloads, which determines the most suited resources for a given workload. CRUZE operates by 

performing the following steps: 1) analyzes workload characteristics with respective QoS requirements, 2) categorizes 

workload based on their common QoS requirements, 3) provisions cloud resources for categorized workloads and 4) 

schedule the provisioned resources for workload execution.  
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Figure 2: Architecture of Resource Management in CRUZE 

4.1 Clustering of Workloads 

Table 2 lists the various types of workload and their QoS requirements [39] [46], which are considered for this research 

work.  

Table 2: Cloud Workloads and their Key QoS Requirements 

 

Workload Name QoS Requirements 

Technological Computing Computing capacity 

Websites High availability, High network bandwidth and Reliable storage 

E-Commerce Customizability and Variable computing load 

Graphics Oriented Visibility, Data backup, Latency and Network bandwidth 

Backup and Storage Services Persistence and Reliability 

Endeavour Software Correctness, High availability and Security 

Productivity Applications Security, Data backup, Latency and Network bandwidth 

Critical Internet Applications Usability, Serviceability and High availability 

Mobile Computing Services Portability, Reliability and High availability 
Software/Project Development and Testing Testing time, Flexibility and User self-service rate 

Central Financial Services Integrity, Changeability, High availability and Security 

Online Transaction Processing Usability, Internet accessibility, High availability and Security 

Performance Testing SLA Violation Rate, Resource Utilization, Energy, Cost and Time 

Further, k-means based clustering algorithm is used for clustering the workloads for execution on different set of 

resources because k-means clustering has been demonstrating to be an effective means for cloud workload 

categorization [49]. The process of workload clustering using k-means clustering algorithm has been described in 

previous research work in detail [48]. Final set of workloads are shown in Table 3.  

Table 3: K-Means based Clustering of Workloads 

Cluster  Cluster Name Workloads 

C4 Administration Graphics Oriented, Software/Project Development and Testing, Productivity Applications, 

Central Financial Services, Online Transaction Processing and Endeavour Software 

C3 Communication Mobile Computing Services, Critical Internet Applications and Websites 

C2 Storage Backup and Storage Services and E-commerce  

C1 Compute Performance Testing and Technical Computing 

 

4.2 Resource Provisioning 

The resources are provisioned for clustered workload using a resource provisioning technique i.e. Q-aware [31] based 

on the requirement of workloads of different clusters as described in Table 3. After the provisioning of resources, 

CRUZE 

Resource Provisioner 

Resource 

Info 
Resource 

Scheduler 

Reference           

 

Action      

Cuckoo 

Optimization 

Based 

Workload 

Workload Analyzer 

 

 

QoS Info 

QoS based Categorization  

Q-aware 
Resource Pool 

Services Data        
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workloads are submitted to resource scheduler. Then, the resource scheduler will ask to submit the workload for 

resources provisioned. After this, the resource scheduler returns results to the corresponding cloud user, which 

contains the resource information [31]. 

4.3 Cuckoo Optimization based Resource Scheduling Algorithm  

Our proposed scheduling algorithm attempts to minimize overall cloud energy consumption whilst maximizing system 

reliability. Attaining these two objectives together is typically considered a trade-off; consolidating VMs onto fewer 

active servers minimizes system energy consumption, server failure can affect multiple VMs and reduce system 

reliability. In contrast, increasing the number of VM replicas maximizes system reliability, however also incurs 

additional energy costs due to greater computation requirements and active servers. To overcome this impact, a trade-

off between energy consumption and reliability is required to provide cost-efficient cloud services. Specifically, whilst 

Dynamic Voltage and Frequency Scaling (DVFS) based energy management techniques can reduce energy 

consumption, response time and service delay are increased due to the switching of resources between high scaling 

and low scaling modes. Furthermore, reliability of the system component is also affected by excessive turning on/off 

servers. Power modulation decreases the reliability of server components such as storage devices, memory etc. 

Therefore, there is a need of new energy-aware resource management techniques to reduce power consumption whilst 

incurring minimal impact upon cloud service reliability [5].  

Cuckoo Optimization (CO) algorithm is a based resource scheduling technique is designed for execution of user 

workload considering both energy consumption and reliability. The goal of an objective function is to minimize system 

energy consumption and maximize server reliability simultaneously for finishing all n workloads. We define fitness 

function (𝐹) in terms of energy consumption and reliability as specified in [Eq. 23].  

           𝐹 =  𝜃 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛   +  𝛿 𝑅𝑠𝑒𝑟𝑣𝑖𝑐𝑒                  (23) 

where 0 ≤ θ < 1 and 0 ≤ δ < 1 are weights to prioritize components of the fitness function. Energy consumption 

(𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) and Reliability (𝑅𝑠𝑒𝑟𝑣𝑖𝑐𝑒) is calculated using [Eq. 10] and [Eq. 11] respectively. This objective function 

successfully captures the compromise among QoS parameters as specified in [Eq. 23]. Cuckoo Optimization (CO) 

algorithm is motivated by the life of the cuckoo bird [28] as it adapts the features of a cuckoo and process of laying 

eggs. CO algorithm has both local and global search abilities and the performance of the CO algorithm has been 

demonstrated to be more effective in comparison to PSO and ACO in terms of accuracy, speed and convergence [51] 

for solving optimization problems such as batch process scheduling and job scheduling [28] [29]. The mapping and 

execution of the workloads on suitable cloud resources is recognized to be an NP-complete problem and there is a 

need for novel algorithm for resource scheduling with maximum reliability and sustainability of cloud services [6]. 

We have selected CO algorithm for scheduling of provisioned resources due to following reasons: a) capability to 

schedule resources for workload execution automatically, b) relatively straight forward integration with traditional 

optimization techniques, and c) easy modification in a dynamic cloud environment. Resource Utilization is a ratio of 

execution time of a workload executed by a particular resource to total uptime of that resource and it is specified in 

[Eq. 24]. The total uptime of resource is the amount of time that a resource from a resource set is available for execution 

of workloads.  

𝑅𝑈 = ∑ (
𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑜𝑛  𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 

𝑡𝑜𝑡𝑎𝑙 𝑢𝑝𝑡𝑖𝑚𝑒 𝑜𝑓  𝑖𝑡ℎ  𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒
)

𝑛

𝑖=1

     (24) 

where n is the no. of resources. A resource set consist of number of instances. [Eq. 25] shows  𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 ( R𝑖) 

contains instances (I):  

 R𝑖 =   [𝐼𝑖1,  𝐼𝑖2, … … … . .  𝐼𝑖𝑋 ], where 𝐼𝑖1,  𝐼𝑖2, … … … . .  𝐼𝑖𝑋 are instances of   𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 and x ≤ 50.    (25) 

The value of resource utilization depends on the number of instances of that resource are using to execute the workload. 

Resource utilization for   𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (R𝑖) is shown in [Eq. 26].  

𝑅𝑈𝑖 = 
∑ (𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑜𝑛  𝑎𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒)

𝑥

𝑎=1

∑ (𝑡𝑜𝑡𝑎𝑙 𝑢𝑝𝑡𝑖𝑚𝑒 𝑜𝑓  𝑎𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒)
𝑥

𝑎=1

                 (26)  
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where x is the number of instances and we have assumed the value of x ≤ 50 for this research work. Figure 3 shows 

the flowchart of CO algorithm based resource scheduling. 
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Figure 3: The Working of CO based Resource Scheduling Algorithm  

Similar to the other evolutionary algorithms, this algorithm starts with an initial population. In this research work, we 

have modified the CO algorithm based on the requirements of cloud resource scheduling. We have considered as 
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utilization (𝑅𝑈), initial population is considered as a resource set and different resources are sorted in decreasing order 

( 𝑅𝑈1
≥  𝑅𝑈2

≥ ⋯ ≥  𝑅𝑈𝑛
). There are new instances of those resources to be added to a specific resource for future 

execution of workloads and these instances will become part of resource after producing required performance 

(Econsumpton  <  𝑇𝑉𝐸  &&  RService  >  𝑇𝑉𝑅), where  𝑇𝑉𝐸  is a threshold value for energy and  𝑇𝑉𝑅  is a threshold value 

for reliability (which are decided based on the historic data of past execution of workloads [31] [46]). The more 

number of instances are adding to a resource pool, the more profit is gained (in terms of resource utilization). 

Therefore, the improvement in resource utilization will be the definition that CO algorithm intends to optimize.  

The main objective of CO the algorithm in this research work is to increase utilization of resources by selecting best 

resource based on their fitness value. Cuckoo search finds the most suitable resource to create more instances in order 

to maximize their resource utilization. After new instances performing as required, they come together to make new 

resources. Each instance has its resource to execute workloads. The best instance among all the instances will be the 

destination for the workloads for their execution. Then they move toward this best resource. They will inhabit near 

the best resource. Considering the number of instances each resource has and the resource’s distance to the goal point 

(best resource), some range of resource (in terms of Egg Laying Radius (ELR)) is dedicated to it, and is calculated 

using [Eq. 33]. There is no obvious metric on the space of resource sets, as opposed to n-dimensional space. The next 

step is that a resource begins to create instances in a stochastic manner inside the resource range, defined by the value 

of ELR. This process lasts until the best resource with extreme value of profit (in terms of resource utilization) is 

obtained and most of the instances of resource are gathered around the same position.  

The following are important functions of CO based resource scheduling algorithm:  

a) Initialize Resource Set: Cuckoo Habitat as a resource set ( 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑡) is considered in CO based resource 

scheduling algorithm. The resource set is an array of 1×  𝑞𝑣𝑎𝑟 in  𝑞𝑣𝑎𝑟-dimensional optimization problem, the 

resource set is demonstrated as follows [Eq. 26]. Resource set contains different number of resources.  

 
 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑡 =  [𝑅1,  𝑅2, … … … . .  𝑅 𝑞𝑣𝑎𝑟

 ], where  𝑅1,  𝑅2, … … … . .  𝑅 𝑞𝑣𝑎𝑟
 are resources           (27) 

 

b) Initialize Instance Set of Resource: Furthermore, every resource contains instances (I) as shown in [Eq. 28].  

 

 R  𝑞𝑣𝑎𝑟
=   [𝐼 𝑞𝑣𝑎𝑟1,  𝐼 𝑞𝑣𝑎𝑟2, … … … . .  𝐼 𝑞𝑣𝑎𝑟𝑋 ], where 𝐼 𝑞𝑣𝑎𝑟1,  𝐼 𝑞𝑣𝑎𝑟2, … … … . .  𝐼 𝑞𝑣𝑎𝑟𝑋  are instances and x ≤ 50.    (28) 

 

where x is the number of instances and we have assumed the value of x ≤ 50 for this research work.  𝐼 𝑞𝑣𝑎𝑟𝑖 ∈ {0, 

1}, where 1 ≤ i ≤ 50. The value 1 state that the particular instance is initialized and 0 represent the elimination of 

that instance from the final set. 

 

c) Determine Profit: The profit of a resource set is obtained by evaluation of profit function at a resource set 

(𝑅1,  𝑅2, … … … . .  𝑅𝑚). So, profit function is shown in [Eq. 29]:   

Profit = 𝑅𝑈 ( 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑡) = 𝑅𝑈 (𝑅1,  𝑅2, … … … . .  𝑅 𝑞𝑣𝑎𝑟
)                (29) 

 

Profit = 𝑅𝑈(( 𝐼11,  𝐼12, … … … . .  𝐼1𝑋),  (𝐼21,  𝐼22, … … … . .  𝐼2𝑋),…………….  (𝐼 𝑞𝑣𝑎𝑟1,  𝐼 𝑞𝑣𝑎𝑟2, … … … . .  𝐼 𝑞𝑣𝑎𝑟𝑋))    (30) 

 

Maximize the profit in terms of cost (− 𝑐𝑡) for cost optimization of resource scheduling. To apply the CO 

algorithm to solve the minimization problems, it is sufficient to multiply the minus sign by cost function. A 

negative sign means that an improvement in the respective resource utilization results in a reduced cost. If the 

resource utilization reduces, then it results in an increased cost (because negative times negative results in a 

positive). The magnitude of the change is given by the value of the cost. The sign gives the direction of the change. 

Profit =  −𝐶𝑜𝑠𝑡 (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑡) = − 𝑐𝑡(𝑅1,  𝑅2, … … … . .  𝑅 𝑞𝑣𝑎𝑟
)               (31) 

 

Profit = − 𝑐𝑡(( 𝐼11,  𝐼12, … … … . .  𝐼1𝑋),  (𝐼21,  𝐼22, … … … . .  𝐼2𝑋),…………….  (𝐼 𝑞𝑣𝑎𝑟1,  𝐼 𝑞𝑣𝑎𝑟2, … … … . .  𝐼 𝑞𝑣𝑎𝑟𝑋))     (32) 

 

To begin the optimization algorithm, a candidate  𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑡  matrix of size  𝑞𝑝𝑜𝑝 ×  𝑞𝑣𝑎𝑟  is created, where 

 𝑞𝑝𝑜𝑝 is the value of an initial population considered in a resource set. Then some randomly produced number of 

instances is supposed for each of these initial resource sets.  
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d) Create Instance(s): In this research work, each resource creates 1 to 50 instances. These values are used as the 

upper and lower limits of instance creation to each resource set at different iterations. In CO algorithm, instances 

are creating within a maximum distance from their resource set and this maximum range is known as Egg Laying 

Radius (ELR). Based on the ELR value, every resource generates instances as shown in Figure 4. In a resource, 

there are two types of instances: stable and unstable. Stable instances are those which have maximum value in 

terms of resource utilization and fitness value [Eq. 23]. Further, stable instance has also a capability to execute at 

least certain number of workloads. Otherwise, it is called as unstable instance.   

 

Figure 4: Resource creating their Instances within the Region defined by ELR 

e) Calculate ELR: ELR is defined as the ratio of number of instances of a current resource are executing a particular 

workload to the total number of active instances of that resource and it is described in Eq. [33].   

 

ELR = µ × (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒
) × ( 𝑣𝑎𝑟𝑈 −  𝑣𝑎𝑟𝐿)             (33) 

In an optimization problem with upper limit of  varU and lower limit of  varL for variables, each resource set has 

an ELR, which is proportional to the total number of instances of a resource set and also variable (var) limits of 

 varU and  varL. µ is an integer, supposed to handle maximum value of ELR. 

f) Instance Selection: CO based resource scheduling algorithm i) finds the number of unstable instances, ii) selects 

the resource with minimum value of unstable instances, and iii) create instances of selected resource to execute 

set of workloads. Instance is selected based on its Fitness Value (F), calculated using [Eq. 33] and start execution 

of workloads.  

 

g) Monitor Performance: The performance of workload execution is monitored continuously and checks the instance 

requirement (whether the provided instances are sufficient for execution of current set of cloud workloads). The 

more number of instances are provided to continue execution if provided instances are less than required 

instances. It calculates the value of energy consumption and reliability. The value of energy consumption 

(Econsumption) associated with it should be less than Threshold Value ( 𝑇𝑉𝐸) and the value of reliability (RService) 

associated with it should be more than Threshold Value ( 𝑇𝑉𝑅) for successful execution of workloads. Otherwise, 

it declares the current instance as an unstable, eliminates unstable instance and add new instance using following 

 𝑅1 

 𝐼1 

 

Resource  

 𝐼2 

 

 𝐼3 

 

 𝐼𝑥 

 

ELR 

…………. 
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steps: a) select another resource with maximum value of resource utilization, b) generate new instances of 

resource inside their corresponding ELR, c) evaluate the profit value of instances and d) choose instance which 

has higher profit value.  The performance is monitored continuously until all the workloads are not executed.    

The main steps of CO based resource scheduling algorithm are presented as a pseudo-code in [ALGORITHM 1].   

 

 

Initially, provisioned resources as an input for scheduling of resources to execute cloud workloads, and both workload 

and resource set contains integer values for our technique. Firstly, CO based resource scheduling algorithm initializes 

the resources. Further, it evaluates the resource utilization of all the resources using [Eq. 24] to determine the profit 

and sorts the resources in decreasing order ( 𝑅𝑈1
≥  𝑅𝑈2

≥ ⋯ ≥  𝑅𝑈𝑛
) based on their value of resource utilization. 

Then, it selects the best resource based on the maximum value of resource utilization (RU). Further, it creates some 

number of instances [𝐼1,  𝐼2, … … … . .  𝐼𝑋] for every resource and evaluates the value of the ELR for each resource using 

[Eq. 33]. Moreover, each resource generates instances inside their corresponding ELR and evaluate the Fitness Value 

(F) for all instances using Eq. [23] and determine the best individual with the best fitness value (which has maximum 

value of  𝑅𝑈 and the value of energy consumption associated with it is less than a threshold value and the value of 

reliability is more than its threshold value).Further, CO based resource scheduling algorithm starts execution of 

workloads and it checks the execution status of workloads. If all the workloads are executed successfully then 

execution stops otherwise it continues execution of workloads. The performance is monitored continuously during 

execution of cloud workloads. It checks the instance requirement (whether the provided instances are sufficient for 

execution of current set of cloud workloads). The more number of instances are provided to continue execution if 

provided instances are less than required instances. It calculates the value of energy consumption and reliability. The 

value of energy consumption (Econsumption) associated with it should be less than Threshold Value ( 𝑇𝑉𝐸) and the 

value of reliability (RService) associated with it should be more than Threshold Value ( 𝑇𝑉𝑅) for successful execution 

of workloads. Otherwise, it declares the current instance as an unstable, eliminates unstable instance and add new 

ALGORITHM 1: Cuckoo Optimization based Resource Scheduling Algorithm  

 Input:        Set of Provisioned Resources 
                     Set of Workloads 
Output:      Execute Workloads 

1. Start 
2. Initialize Resource Set  [𝑅1,  𝑅2, … … … . .  𝑅 𝑞𝑣𝑎𝑟

 ] 

3. Evaluate Resource Utilization (𝑹𝑼)  using [Eq. 24] for every resource to 
determine its Profit 

4. Rank the Resources (𝑅𝑈1
≥  𝑅𝑈2

≥ ⋯ ≥  𝑅𝑈𝑛
) based on 𝑹𝑼 

5. Select Best Resource with maximum 𝑹𝑼 
6. Create instances of that resource R  𝑞𝑣𝑎𝑟

=   [𝐼1,  𝐼2, … … … . .  𝐼𝑋] 

7. Evaluate ELR for each resource using Eq. [33] 
8. Each resource generates instances inside their corresponding ELR 
9. Evaluate the Fitness Value (𝑭) for all instances using Eq. [23]  
10. Choose instance which has high 𝑭  
11. Execute Workloads using selected instance of resource  
12. if (All Workloads Executed Successfully == FALSE) then 
13.      While do 
14.           Continue Execution  
15.           Monitor Performance 
16.           if (Instances Required ≥ Instances Provided) then  
17.               While do 
18.                    Add New Stable Instance   
19.                    Calculate Econsumption and RSrtvice  

20.                      if (Econsumption <  𝑇𝑉𝐸) then 

21.                           if (RService  >  𝑇𝑉𝑅) then 
22.                                break 
23.                           else 
24.                                Declare Current Instance is Unstable  
25.                                Remove Unstable Instance    
26.                                continue 
27.                      else  
28.                          continue 
29.           else 
30.                continue 
31. else Stop  
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instance using following steps: 1) select another resource with maximum value of resource utilization, 2) generate 

new instances of resource inside their corresponding ELR, 3) evaluate the profit value of instances and 4) choose 

instance which has higher profit value.  The performance is monitored continuously until all the workloads are not 

executed.    

5. Performance Evaluation 

We modelled and simulated a cloud environment using CloudSim [30], a prominent cloud computing simulation 

framework. Figure 5 shows the interaction of different entities for simulation. Table 4 presents the resource 

configuration of the simulation as we used in our previous research work [39] [46]. We used three Physical Machines 

(PMs) with different number of virtual nodes (6, 4 and 2) and virtual nodes are further divided into instances called 

Execution Components (ECs). 

Software as a Service                                                                    Platform as a Service                                                                                   Infrastructure as a Service 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Interaction of various Entities in the Simulated Cloud Environment 

Every EC contains their own cost of execution and it is measured with unit (C$/EC time unit (Sec)). EC measures cost 

per time unit in Cloud dollars (C$). 

Table 4: Configuration Details 

Resource_Id Configuration Specifications Core Operating 

System 

Number of 

Virtual Nodes 

Number 

of ECs 

Price 

(C$/EC 

time unit) 

R1 Intel Core 2 
Duo - 2.4 GHz 

6 GB RAM and 
320 GB HDD 

2 Windows 6 (1 GB and 
50 GB) 

18 2 

R2 Intel Core i5-

2310- 2.9GHz 

4 GB RAM and 

160 GB HDD 

2 Linux 4 (1 GB and 

40 GB) 

12 3 

R3  Intel XEON E 
52407-2.2 GHz 

2 GB RAM and 
160 GB HDD 

2 Linux 2 (1 GB and 
60GB) 

6 4 

We have integrated temperature and cooling management model [34], renewable energy model [35], waste heat 

management model [36], security manager [47] and Fault Injection Module (FIM-SIM) [45] to the CloudSim toolkit 

for simulation as shown in Figure 6. We have integrated FIM-SIM [45] for fault management in CloudSim toolkit to 

simulate failures (VM creation failures and host failures) as discussed in Case-1 of Section 5.3. The detailed 

description about experimental setup is given in previous research work [39] [46].  

For the execution of workloads in our experiments, we have chosen varied computational settings on top of 

heterogeneous resources. The variety comes in the number of cores at the CPU-level, the page levels of the main 

memory, switches at the network level and  disk space at the storage level [30] [69] [70]. Cores is the number of 

Processing Element’s (PE) required by the Cloudlet. Table 5 shows the simulation parameters utilized in the various 

experiments undertaken by this research work, also as identified from the existing empirical studies and literature such 

as fault management [6] [39] [46], application’s QoS [39] [44] [47] [46] [67], capacity planning [33] [65], energy 

management [6] [7] [44]  [67], waste heat utilization [36] [65], renewable energy [35] [38], virtualization [6] [7] [67], 
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thermal-aware scheduling [34] [66] [68] and cooling management [38] [65] [66] [68]. Experimental setup incorporated 

CloudSim to produce and retrieve simulation results.  
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Design Description using Class Diagram 

5.1 Workload 

For performance evaluation, we have selected four different types of cloud workload from every cluster of workloads 

as given in Table 3. Table 6 shows the different cloud workloads, which are considered to evaluate the performance 

of CRUZE. To find the experiment statistics, 500-3000 different workloads are executed. CRUZE processes different 

workloads using the different number of resources to evaluate its performance with different resource configuration.  

We selected the Poisson Distribution [31] for workload submission in this research work due to following reasons: 1) 

evaluating the performance of workload execution for specific interval of time and 2) every workload is independent 

of all other workloads (number of workloads are arriving in first hour is independent of the number of workloads 

arriving in any other hour).  

 
Table 5: Simulation Parameters and their Values 

Parameter  Value 

Number of VMs (n) 36 

Number of Cloudlets (Workloads) 3000 

Bandwidth 1000 - 3000 B/S 

CPU MIPS 2000 

Size of Cloud Workload 10000+ (10%–30%) MB 

Number of PEs per machine 1 

PE ratings 100-4000 MIPS 

Cost per Cloud Workload 3 C$–5 C$ 

Memory Size 2048-12576 MB 

File size 300 + (15%–40%) MB 

Cloud Workload output size 300 + (15%–50%) MB 

CPU Temperature  10-27 °C 

EnergyManager 

CloudSim 

VMAllocationPolicy VMScheduler DataCenterCharacteristics CloudletScheduler 

Q-aware CObasedScheduler WorkloadScheduler 

Datacenter Network 

CloudCoordinator 

QoSManager 

SecurityManager 

FaultManager 
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WasteHeatManager CoolingManager 

VMManager 

SimEvent 

SimEntity FIM-SIM 
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FaultEvent 

FaultGenerator 
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Inlet Temperature 15-40 °C 

𝑊𝑚 = mass flow rate of the water entering the circulation system  0.08-0.024 kg/s 

𝑊𝑠 = mass flow rate of the steam generated in the circulation system 0.03-0.134 kg/s 

Power (KW) 108-273 KW 

Latency  20-90 Seconds 

𝐻𝑒𝑎𝑡𝑅𝑒𝑚𝑜𝑣𝑒𝑑 100-1,000 Joules/Second 

Cache Memory Size  4 MB – 16 MB 

Energy Reused  40 – 85% 

Power Consumption by Processor  130W – 240W 

Power Consumption by Cooling Devices 400 W – 900W 

Power Consumption by RAM 10W – 30W 

Power Consumption by Storage 35W – 110W 

Power Consumption by Network 70W-180W 

Power Consumption by Extra Components  2W-25W 

Equipment cost (𝐸𝑖) 4-30 C$ 

Support contract cost (S𝑖) 5-15 C$ 

Administrative costs (A𝑖) 15-50 C$ 

Power cost per month (P𝑖) 12-30 C$ 

Rack cost per month (R𝑖) 3-12 C$ 

Communication cost (C𝑖) 2-17 C$ 

 

CRUZE also maintains the details of every executed workload and stores into workload database, which can be used 

to test the efficiency of CRUZE in future. For experimental results, we executed four different workloads [(i) Storage 

and Backup Data, (ii) Websites, (iii) Performance Testing and (iv) Software Development and Testing] with the same 

experimental setup. 
Table 6: Details of Cloud Workloads  

Workload Cluster Description 

Performance Testing Compute (C1) CRUZE processes and converts an image file (713 MB) to PNG format from JPG format. 
The change of a one JPG file into PNG is taken as a workload (in the form of Cloudlet). 

Storage and Backup 

Data 

Storage (C2) Store a huge chunk of data (5 TB) and generates a backup of data is considered as a 

workload.  

Websites Communication (C3) A large number of users are accessing a website of university during Admission Period is 

considered as a workload.  

Software Development 

and Testing 

Administration (C4) Development and testing of an Agri-Info Software to find out the productivity of a crop is 

considered as a workload [32].  

 

 

5.2 Baseline Resource Scheduling Approaches  

In order to evaluate our approach, we have selected three state-of-the-art resource scheduling approaches from the 

literature (as discussed in Section 2).  We have selected most relevant and recent similar work such as HMRM [13], 

CSRE [16] and CSMH [27] to evaluate the performance of our proposed approach. The other reasons of selection of 

these existing scheduling approaches are: HMRM [13] manages cloud resources holistically by focusing on the energy 

consumption and CSRE [16] executes workloads by improving the reliability of cloud service, while CSMH [27] 

schedule resources in an energy-efficient manner using Cuckoo search meta-heuristic algorithm.  

1) HMRM [13]: Holistic Model for Resource Management (HMRM) approach is designed for virtual cloud 

environment to reduce energy consumption of different components of cloud datacenters such as storage and 

network without focusing on memory, processors, cooling systems. HMRM executes only homogeneous cloud 

workloads.  
 

2) CSRE [16]: Cloud Service Reliability Enhancement (CSRE) approach is developed to improve the storage and 

network resource utilization during execution of workloads. CSRE uses service checkpoint to store the state of 

all the VMs, which are currently processing user workloads. Further, a node failure predicator is developed to 

reduce the network resource consumption. CSRE executes only homogeneous workloads and considers only two 

types of resources such as storage and network without focusing on memory, processors, cooling systems.  
 

3) CSMH [27]: Cuckoo Search Meta-Heuristic (CSMH) algorithm based resource scheduling approach is designed 

to optimize the energy consumption of cloud resources (processors only) for execution of homogeneous 

workloads without focusing on other resources such as networks, memory, storage, cooling systems.  
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Our proposed approach (CRUZE) focuses on holistic management of all resources (including servers, networks, 

memory, storage, cooling systems) to provide reliable as well as sustainable cloud services simultaneously, which 

schedules the provisioned resources using evolutionary algorithm (Cuckoo Optimization) for the execution of 

clustered and heterogeneous workloads within their specified deadline, budget and other important QoS parameters.   

5.3 Experimental Results  

All the experiments utilized four different workloads described in Table 6. The various parameters are used to evaluate 

the performance of proposed approach for holistic resource management, which comprises of different categories such 

as fault management, application’s QoS, capacity planning, energy management, waste heat utilization, renewable 

energy, virtualization, thermal-aware scheduling and cooling management. The temporal evaluations are conducted 

in a time period of 12 hours with 3000 workloads submitted. The performance of CRUZE is evaluated using following 

different test cases: 

Case 1 - Fault Management: We have evaluated the performance of CRUZE in terms of reliability and fault detection 

rate for fault tolerance and used [Eq. 11] to measure the value of reliability. Fault detection rate is defined as the ratio 

of number of faults/failures (hardware, software, network) detected to the total number of faults/failures in the system 

[46]. Fault Detection Rate (FDR) is calculated using [Eq. 34]. 

FDR =
Number of Faults Detected

Total number of Faults
            (34) 

Faults can be a network, software or hardware, which is detected based on the violation of SLA.  The Software 

faults/failures can be occurred due to following reasons: 1) lesser storage space, 2) resource unavailability, 3) 

deadlocks and 4) unhandled exceptions. The reasons of hardware faults/failures can be problems in hardware parts 

such as hard disk, primary memory and processor. Network error can be breakage of network, scalability or physical 

damage.  

FIM-SIM: We have integrated Fault Injection Module (FIM-SIM) [45] [46] to inject faults automatically to test the 

reliability of CRUZE as shown in Figure 6. FIM-SIM is working based on event-driven models and injects faults into 

the CloudSim [30] using different statistical distributions at runtime. A Weibull Distribution is used in order to model 

failures characteristics when injecting faults [46]. We injected three types of faults: VM creation failures, host failures 

(Processing Elements failure and memory failure) and high-level failures like cloudlets failures (which are caused by 

any networking problem that CloudSim [30] cannot handle). The entities in CloudSim [30] communicate through 

messages. Since host and VM are static entities, each change in their state should be realized by the datacenter. The 

broker, based on the simulation configuration (number of cloudlets and their specification) will request the VM 

creation, cloudlet scheduling and it will wait to be informed by the datacenter when the cloudlets completion is 

realized. We have simulated VM creation failures, host failures (hardware failure) and cloudlets failures (network 

failure) by creating fault injector thread, which sends the failure event based on the following command: 

sendNow(dataCenter.getId(), FaultEventTags.HOST_FAILURE, host); and  it generates the events based on statistical 

distribution using Weibull Distribution [46]. The Fault Tolerance Module is extending the CloudSim core functions 

(see Figure 6) with three entities (FaultInjector, FaultEvent and FaultHandlerDatacenter) as described in Table 7. 

Table 7: Entitles of FIM-SIM and their functionalities 

FaultInjector FaultEvent FaultHandlerDatacenter 

 Extends the SimEntity class  

 starts at simulation startup along with 

the other entities from the system 

 Responsible for inserting fault events at 

random moments of time 

 The random generation of moments of 

time is based on a statistical distribution 

(We used Weibull Distribution [46] for 
this research work.) 

 Extends the SimEvent class 

 Describes a fault event: source, 

destination, time and type; – tag type: 

HOST FAILURE, CLOUDLET 

FAILURE, CREATE VM FAILURE 

 Created in the Fault Injection Module. 

 extends the Datacenter class 

 processes fault events sent by the 

FaultGenerator 

 It updates the cloudlet execution/status 

according to the fault event type 

 handles VM migration; – since host and 

VM are static entities, all its state 

modification should be processed by the 
datacenter. 
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CRUZE uses the concept of Carburizer [37] [46] to perform process of hardware hardening, which reduces the 

frequency of faults/failures. CRUZE replaces the new driver (harden driver) with original in case of fault and update 

the database regarding new faults to avoid future faults, which improves the fault detection rate in CRUZE as 

compared to HMRM, CSRE and CSMH. Figure 7 (a) shows the variation of fault detection rate for CRUZE, HMRM, 

CSRE and CSMH. Fault detection rate is decreasing as number of workloads increases for CRUZE, HMRM, CSRE 

and CSMH, but CRUZE performs better than HMRM, CSRE and CSMH. The average value of fault detection rate in 

CRUZE is 19.99%, 21.14% and 22.45% more than HMRM, CSRE and CSMH respectively. Dynamic Random-Access 

Memory (DRAM) provides the Check-pointing mechanism to store the current states of VMs in case of failure [46]. 

Figure 7 (b) shows the variation of reliability for CRUZE, HMRM, CSRE and CSMH with different number of 

workloads (500-3000). The average value of reliability in CRUZE is 19.07%, 19.75% and 20.98% more than HMRM, 

CSRE and CSMH respectively.   

Case 2 - Application QoS: We have considered three performance parameters for application’s QoS: execution cost, 

time and security [37]. Execution cost is defined as the total money that can be spent in one hour to execute the 

application successfully and execution cost is measured in Cloud Dollars (C$) [2]. We have used following formula 

to calculate Execution Cost (C) [Eq. 35]. 
𝐶 =  𝐸𝑡  × 𝑃𝑟𝑖𝑐𝑒               (35)         

where “price” of a resource is calculated using Table 4 and the value of 𝐸𝑡 is calculated using [Eq. 36]. Figure 7 (c) 

shows the comparison of CRUZE, HMRM, CSRE and CSMH in terms of execution cost and cost is increasing with 

increase in number of workloads for CRUZE, HMRM, CSRE and CSMH, but CRUZE consumes less cost as 

compared to HMRM, CSRE and CSMH. The average value of cost in CRUZE is 14.41%, 14.91% and 15.46% less 

than HMRM, CSRE and CSMH respectively. 

In resource scheduler, CRUZE considers the impact of other workloads on current workload during execution. 

CRUZE schedules provisioned resources using Q-aware [37], which clusters the workloads and execute within 

their specified deadline and budget. Execution time is the amount of time required to execute application 

successfully and execution time is measured in Seconds [2]. [Eq. 36] is used to calculate Execution Time (𝐸𝑡). 

𝐸𝑡 = ∑ (
𝑊𝐶𝑖 − 𝑊𝑆𝑖

𝑚
)

𝑚

𝑖=1

+  𝛥𝑡𝑖               (36) 

Where 𝑊𝐶𝑖 is workload completion time and 𝑊𝑆𝑖 is workload submission time, 𝛥𝑡𝑖 is time to restart the node 

and m is the number of workloads. Figure 7 (d) shows the variation of an execution time with different number 

of workloads and time is increasing with increase in number of workloads for both CRUZE, HMRM, CSRE 

and CSMH. The average value of execution time in CRUZE is 9.96%, 10.35% and 12.11% less than HMRM, 

CSRE and CSMH respectively because CRUZE tracks the resource states automatically for effective 

decisions.  Security is an ability of the computing system to protect the system from malicious at tacks and 

measured in terms of Intrusion Detection Rate (IDR) [47]. IDR is described in [Eq. 37], which is the ratio of 

total number of true positives to the total number of intrusions.  

𝐼𝐷𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑠
                 (37) 

IDR considers the number of detected and blocked attacks. CRUZE deploys security agents on different 

computing systems, which trace unknown attacks (using an anomaly-based detector) and known attacks (using 

a signature-based detector). It captures new anomalies based on existing data stored in the central database 

(SNORT DB). CRUZE captures and detects anomalies using the Intrusion Detection System and labels it as 

anomalous or normal traffic data by comparing its signatures with the signatures of known attacks [47]. A 

State Vector Machine-based security agent detects the new anomalies and stores the information into the 

database to maintain a log about attacks. CRUZE protects from security attacks: DDoS (HTTP Flood and 

Zero-Day Attack), Probing (NMAP and Ports sweep), U2R (Buffer Overflow and Rootkits), R2L (IMAP, 

Guess password and SPY) and DoS (Teardrop, SYN Flood, LAND and Smurf) as discussed in previous 

research work [47]. Figure 7 (e) shows the comparison of CRUZE, HMRM, CSRE and CSMH in terms of 

intrusion detection rate with different number of workloads. The value of intrusion detection rate is increasing 
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with increase in number of workloads, but CRUZE performs better than HMRM, CSRE and CSMH. The value 

of intrusion detection rate in CRUZE is 19.20%, 21.45% and 20.86% more than HMRM, CSRE and CSMH 

respectively, because CRUZE uses an anomaly detector component i.e. SNORT [47]. It is a signature based 

system to detect known attacks automatically and stores the signature of attack into dat abase if attack is 

unknown.     

 
(a) 

 
(b)   

 
(c) 

 
(d) 
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(g)  
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(i) 

Figure 7: Comparison of algorithms: (a) Fault Detection Rate, (b) Reliability, (c) Execution Cost, (d) Execution Time, (e) Intrusion Detection Rate, 

(f) Network Bandwidth, (g) SLA Violation Rate, (h) Availability, (i) Resource Contention. Note: We have considered 36 resources for these results. 

We have measured other important QoS parameters such as network bandwidth, SLA violation rate, 

availability, resource contention to test the performance of CRUZE with different number of workloads and 

formulas to calculate the value of these QoS parameters is described in previous research work [31] [37] [46]. 

Figure 7 (f) shows the value of network bandwidth in CRUZE is 14.44%, 16.31% and 18.73% less than 

HMRM, CSRE and CSMH respectively. This is because, CRUZE identifies the network faults automatically 

and it also prevents system from security attacks as discussed above, which improves the network bandwidth 

of CRUZE as compared to HMRM, CSRE and CSMH. Figure 7 (g) shows the value of SLA violation rate in 

CRUZE is 23.68%, 24.42% and 27.45% less than HMRM, CSRE and CSMH respectively. This is because, 

CRUZE uses admission control and reserve resources for execution of workloads in advance based on their 

QoS requirements specified in the SLA document. Further, CRUZE outperforms as it regulates the resources 

at runtime based on the user's new QoS requirements during its execution to avoid SLA violation.  Figure 7 

(h) shows the value of availability in CRUZE is 12.45%, 13.91% and 15.34% more than HMRM, CSRE and 

CSMH respectively. This is expected as the recovering faulty task manages the faults efficiently in CRUZE, 

which further improves the availability of cloud services. Figure 7 (i) shows the value of resource contention 

in CRUZE is 17.56%, 18.79% and 19.42% less than HMRM, CSRE and CSMH respectively. This is expected 

as the workload execution is done using CRUZE, which is based on QoS parameters based resource 

provisioning policy (Q-aware). Based on deadline and priority of workload, clustering of workloads is 

performed, and resources are provisioned for effective scheduling. This is also because of the low variation 

in execution time across various resources as the resource list that is obtained from the resource provisioning 

unit is already filtered using Q-aware [31].  

0

20

40

60

80

100

500 1000 1500 2000 2500 3000F
au

lt
 D

et
ec

ti
o

n
 R

at
e 

(%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH
0

20

40

60

80

100

120

500 1000 1500 2000 2500 3000

R
el

ia
b
il

it
y
 (

%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH
0

100

200

300

400

500

500 1000 1500 2000 2500 3000

E
x
ec

u
ti

o
n
 C

o
st

 (
C

$
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH

0

200

400

600

800

1000

1200

1400

500 1000 1500 2000 2500 3000

E
x
ec

u
ti

o
n
 T

im
e 

(S
ec

o
n
d
s)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

20

40

60

80

100

500 1000 1500 2000 2500 3000

In
tr

u
si

o
n
 D

et
ec

ti
o

n
 R

at
e 

(%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

500

1000

1500

2000

2500

500 1000 1500 2000 2500 3000

N
et

w
o

rk
 B

an
d
w

id
th

 

(B
it

s/
S

ec
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH

0
5

10
15
20
25
30
35
40

500 1000 1500 2000 2500 3000S
L

A
 V

io
la

ti
o

n
 R

at
e 

(%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

20

40

60

80

100

500 1000 1500 2000 2500 3000

A
v
ai

la
b
il

it
y
 (

%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500 3000R
es

o
u
rc

e 
C

o
n
te

n
ti

o
n
 (

%
)

Number of Worklods

CRUZE

HMRM

CSRE

CSMH



21 

 

Case 3 - Capacity Planning: We have considered memory, disk and network utilization as a performance 

parameter for capacity planning and it is measured in percentage (%) using [Eq. 14], [Eq. 16] and [Eq. 17] 

respectively. Figure 8 (a) shows the memory utilization during workload execution for CRUZE, HMRM, 

CSRE and CSMH and CRUZE executes the same number of workloads with  better memory utilization. The 

value of memory utilization in CRUZE is 24.78%, 25.45% and 25.91% more  than HMRM, CSRE and CSMH 

respectively. Figure 8 (b) shows the disk utilization during workload execution for CRUZE, HMRM, CSRE 

and CSMH and CRUZE executes the same number of workloads with better disk utilization. The value of disk 

utilization in CRUZE is 18%, 18.5% and 19.18% more than HMRM, CSRE and CSMH respectively. CRUZE 

gives higher memory and disk utilization as the algorithm consumes resources dynamically based on the 

requirement of current workloads and unused resources are scaled back to the resource pool. CRUZE keeps 

only the required number of resources active, thus increasing its utilization efficiency. Figure 8 (c) shows the 

network utilization during workload execution for  CRUZE, HMRM, CSRE and CSMH and CRUZE executes 

the same number of workloads with better network utilization. The value of network utilization in CRUZE is 

12.77%, 11.68% and 12.25% more than HMRM, CSRE and CSMH respectively because CRUZE performs 

data transmission with the least packet loss when network utilization reaches at its higher value. CRUZE has 

FIM-SIM based fault manager (as discussed in Case-1) to detect faults at runtime, which further reduces the 

occurrence of same network faults in future and it improves network utilization. 

 
(a) 

 
(b) 

 
(c) 

   

Figure 8: Comparison of algorithms: (a) Memory Utilization, (b) Disk Utilization, (c) Network Utilization. Note: We have considered 36 resources 

for these results. 

Case 4 - Energy Management: We have evaluated the performance of CRUZE in terms of energy 

consumption for energy management and used [Eq. 10] to measure the value of energy consumption, which 

is measured in kilo Watt hour (kWh). Figure 9 (a) shows the variation of energy consumption with different 

number of workloads and the average value of energy consumption in CRUZE is 17.35%, 18.71% and 20.10% 

less than HMRM, CSRE and CSMH respectively. This is because CRUZE executes clustered workloads 

instead of individual workloads, which minimizes the network traffic and number of switches and further 

reduces energy consumption.   

 

Case 5 - Virtualization: We have evaluated the performance of CRUZE in terms of CPU utilization and VM 

Co-Location Cost for virtualization. Figure 9 (b) shows the variation of CPU utilization with different number 

of workloads for CRUZE, HMRM, CSRE and CSMH. The experimental result show that the average value of 

CPU utilization in CRUZE is 11.12%, 14.45% and 15.69% more than HMRM, CSRE and CSMH respectively 

because best resources are identified using resource provisioning technique for scheduling. Provisioning based 

scheduling of resources consumes slightly more time initially and then it avoids underutilization and 

overutilization of resources during scheduling. VM Co-Location Cost is the total cost of VM migration from 

one cloud datacenter to another [40] [54] and it is calculated using [Eq. 38].  

 

𝑉𝑀 𝐶𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = ∑(𝐸𝑖 + S𝑖 + A𝑖 + P𝑖 + R𝑖 + C𝑖)                           (38)

𝑛

𝑖=1

 

Where 𝐸𝑖  is Equipment cost (installation cost), S𝑖 is Support contract cost (maintenance cost per month), A𝑖 is 

Administrative costs (includes server, storage, network cost per month), P𝑖 is Power cost per month (to run 

CDC), R𝑖 is Rack cost per month, C𝑖 is communication cost and n is the number of VMs. Figure 9 (c) shows 

the comparison of VM Co-Location Cost for CRUZE, HMRM, CSRE and CSMH to execute different number 

workloads. The average value of VM Co-Location Cost in CRUZE is 6.25%, 6.91% and 7.15% less than 

HMRM, CSRE and CSMH respectively because CRUZE identifies the nearest CDC, which consumes more 
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renewable energy as compared to other CDCs. The migration of VM to nearest CDC also reduces the 

communication cost, which further optimize the value of VM Co-Location Cost.   

 

Case 6 - Renewable Energy: We have evaluated the performance of CRUZE in terms of  Energy Reuse 

Effectiveness for renewable energy.  Energy Reuse Effectiveness is the ratio of energy (reused) consumed by 

Cooling, Lighting and IT devices to the total energy consumed by IT devices [35] and described in [Eq. 19]. 

Figure 9 (d) shows the amount of renewable energy reused during the execution of different number of 

workloads. The value of energy reuse effectiveness in CRUZE is 17.56%, 19.45% and 20.99% greater than 

HMRM, CSRE and CSMH respectively because CRUZE mainly selects the CDC which are utilizing more 

renewable energy as compared to grid energy. CRUZE manages the energy produced from renewable and non -

renewable sources and sustainable CDCs focuses more on renewable energy sources (solar and wind). To 

provide reliable services, CDC can prefer grid energy for the execution of deadline-aware workloads.  

 

Case 7 - Thermal-aware Scheduling: We used Computer Room Air Conditioning (CRAC) model based 

temperature model [34] to test the performance of CRUZE in terms of datacenter temperature for thermal-

aware scheduling. Datacenter Temperature is the operating temperature of CDC and it is measured in degree 

Celsius (°C) as described in [Eq. 20]. The variations of the temperature of different hosts (PMs) is measured, 

monitored and controlled by proactive temperature-aware scheduler. We used an analytical model [64] [65] 

[66] for the CRAC to measure the temperature of different PMs. Figure 9 (e) shows the comparison of 

datacenter (CDC) temperature with different number of workloads. The average value of temperature in 

CRUZE is 13.76%, 14.91% and 15.30% less than HMRM, CSRE and CSMH respectively. This is because 

CRUZE optimizes the resource utilization, avoids underloading and overloading of resources and uses 

minimum energy consumption by reducing the number of components such as number of switches, adapters 

etc. The other reasons of optimized temperature are effective CRAC-based cooling management [34] and 

dynamic capacity planning for workload execution. CRUZE automatically switched-off the idle resources in 

CDC, which also reduces the heat and temperature.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 9: Performance of different scheduling algorithms: (a) Energy Consumption, (b) CPU Utilization, (c) VM Co-Location Cost, (d) Energy 

Reuse Effectiveness, (e) Datacenter Temperature, (f) Recirculation Ratio. Note: We have considered 36 resources for these results. 

Case 8 - Waste Heat Utilization: We have evaluated the performance of CRUZE in terms of Recirculation 

Ratio. Recirculation Ratio is the amount of waste-water that flows through the advanced pretreatment 

component divided by the amount of waste-water that is sent to the final treatment and dispersal component 

[36] and it is described in [Eq. 20]. Figure 9 (f) shows the value of recirculation ratio for CRUZE, HMRM, 

CSRE and CSMH during the execution of workloads and the average value of recirculation ratio  in CRUZE 

is 3.42%%, 4.77% and 4.97% more than HMRM, CSRE and CSMH respectively. CRUZE performs effective 

than HMRM, CSRE and CSMH because CRUZE has capability to reuse waste heat in district heating, which 

further reduces the cost of utilization of waste heat.    
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Case 9 - Cooling Management: We have evaluated the performance of CRUZE in terms of Datacenter 

Cooling System (DCS) Efficiency. DCS Efficiency is the amount of cooling capacity to remove heat per unit 

of energy it consumes to maintain the cooling of CDC [38] and is described in [Eq. 21]. For cooling 

management, the district heating management uses water economizer, outside air economizer and chiller plant 

to control the temperature of CDC. Figure 10 shows the variation of DCS Efficiency with execution of 

different number of workloads for CRUZE, HMRM, CSRE and CSMH. The average value of DCS Efficiency 

in CRUZE is 9.98%, 10.23% and 11.56% more than HMRM, CSRE and CSMH respectively  because CRUZE 

uses district heating management module for effective management of cooling.  Figure 11 shows the variation 

of cooling energy [Eq. 7] with the execution of different number of workloads for CRUZE, HMRM, CSRE 

and CSMH. The average value of cooling energy in CRUZE is 15.66%, 18.31% and 22.65% less than HMRM, 

CSRE and CSMH respectively because CRUZE dynamically switched-on/off the cooling components for 

different workload intensity, which further reduces the cooling power. Note: We have considered 36 resources 

for these results. 

 
Figure 10: DCS Efficiency vs. Number of Workloads.  

 
Figure 11: Cooling Energy vs. Number of Workloads. 

5.3.1 Comparison of algorithms for different time intervals: We have compared the performance of proposed 

algorithm with existing algorithms for different time intervals. Figure 12 (a) demonstrates that memory utilization 

during execution of workloads for CRUZE, HMRM, CSRE and CSMH and the value of memory utilization in CRUZE 

is 27.77%, 28.11% and 29.12% more than HMRM, CSRE and CSMH respectively for different time period. Figure 

12 (b) shows the variation of energy consumption with different time interval and the average value of energy 

consumption in CRUZE is 14.46%, 15.35% and 18.86% less than HMRM, CSRE and CSMH respectively. Figure 12 

(c) demonstrates the variation of CPU utilization with different number of workloads for different scheduling 

techniques. The experimental result show that the average value of CPU utilization in CRUZE is 12.55%, 13.91% and 

14.04% more than HMRM, CSRE and CSMH respectively. This is expected as the workload execution is performed    

based on QoS-aware resource provisioning policy (Q-aware). Based on deadline of workload, clustering of workloads 

is performed, and resources are provisioned for effective scheduling. This is also because of the low variation in 

execution time across various resources as the resource list that is obtained from the resource provisioning unit is 

already filtered using Q-aware [31]. Based on QoS requirements of a specific workload, resource provisioning 

consumes little more time to find out the best resources [31], but later it increases the overall performance of CRUZE. 

Therefore, underutilization and overutilization of CPU will be assuaged or avoided, which reduces the further queuing 

time. Figure 12 (d) presents the comparison of datacenter (CDC) temperature for different time intervals. The average 

value of temperature in CRUZE is 8.46%, 10.45% and 13.33% less than HMRM, CSRE and CSMH respectively. 

Figure 12 (e) shows the variation of DCS Efficiency for different resource scheduling approaches with different time 

interval. The average value of DCS Efficiency in CRUZE is 11.46%, 12.75% and 13.01% more than HMRM, CSRE 

and CSMH respectively. Figure 12 (f) shows the variation of reliability for different algorithms with different value 

of time interval. The average value of reliability in CRUZE is 9.21%, 9.99% and 10.21% more than HMRM, CSRE 

and CSMH respectively. Figure 12 (g) presents the comparison of execution time for different time intervals. The 

average value of execution time in CRUZE is 17.65%, 18.95% and 19.63% less than HMRM, CSRE and CSMH 

respectively. Figure 12 (h) shows the variation of execution cost for resource management approaches with different 

time interval. The average value of execution cost in CRUZE is 15.89%, 17.72% and 19.81% less than HMRM, CSRE 

and CSMH respectively. Figure 12 (i) shows the variation of SLA violation rate for different resource scheduling 

algorithms with different time interval. The average value of SLA violation rate in CRUZE is 24.35%, 27.29% and 

31.42% less than HMRM, CSRE and CSMH respectively. Note: We have considered 36 resources and 3000 workloads 

for these results. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 12: Comparison of algorithms for different time intervals: (a) Memory Utilization, (b) Energy Consumption, (c) CPU Utilization, 

(d) Datacenter Temperature, (e) DCS Efficiency, (f) Reliability, (g) Execution Time, (h) Execution Cost, (i) SLA Violation Rate  
 

5.3.2 Trade-off among different Performance Parameters: Figure 13 shows the trade-off among energy 

consumption, reliability and CPU utilization for execution of workloads using CRUZE. With increasing energy 

consumption, the value of CPU utilization and reliability is decreasing while reliability of cloud service is increasing 

with increase in CPU utilization. It is clearly shown that energy consumption is inversely proportional to reliability 

and CPU utilization, while reliability is proportional to CPU utilization. Note: We have considered 36 resources and 

3000 workloads for these results. 

 
Figure 13: Trade-off among Energy Consumption, Reliability and CPU Utilization  
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Figure 14 (a) shows the variation of intrusion detection rate for CRUZE, HMRM, CSRE and CSMH. The value of 

reliability is increasing as Intrusion detection rate increases for all the approaches, but CRUZE performs better than 

HMRM, CSRE and CSMH. The average value of Intrusion detection rate in CRUZE is 70%.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

 
Figure 14: Trade-off between different Performance Parameters: (a) Intrusion Detection Rate vs. Reliability, (b) SLA Violation Rate 

vs. Latency, (c) Fault Detection Rate vs. Latency, (d) Network Bandwidth vs. Reliability, (e) Datacenter Temperature vs. Reliabil ity, 

(f) Energy Consumption vs. Intrusion Detection Rate, (g) Energy Consumption vs. Reliability, (h) Energy Consumption vs. Execu tion 
Time, (i) Energy Consumption vs. Execution Cost, (j) Energy Consumption vs. Latency, (k) Energy Consumption vs. SLA Violation  

Rate, (l) Energy Consumption vs. Network Bandwidth    

 

Latency (L) is defined as a difference between expected execution time and actual execution time. We have 

used following formula to calculate Latency [Eq. 39]: 

L = ∑(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑖  − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑖)      (39)

𝑛

𝑖=1

 

Where n is number of workloads. The value of [Number of workloads × number on resources] for every workload on 

resources is calculated from Expectable Time to Compute (ETC) matrix [46]. Columns of ETC matrix demonstrate 

the estimated execution time for a specific workload while rows on ETC matrix demonstrate the execution time of a 

workload on every resource. In this research work, the ETC benchmark simulation model is used, which has been 
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introduced in [62] to address the problem of resource scheduling. The expected execution time of the workloads can 

be derived from workload task length or historical trace data [46]. A high variation in execution time of the same 

workload is generated using the gamma distribution method. In the gamma distribution method, a mean workload 

execution time and coefficient of variation are used to generate ETC matrix [63]. Table 8 shows a 10 ×  6 subset of 

the ETC matrix and results provided in this research work used the matrix of size 90 x 36. These are then used to find 

out the best resource to execute workload with minimum time.   

Table 8: A 10 ×  6 Subset of the ETC Matrix 

Workloads 𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒 𝒓𝟓 𝒓𝟔 

𝒘𝟏 212.14 341.44 336.65 109.66 150.46 185.58 

𝒘𝟐 152.61 178.26 149.78 114.26 198.92 148.69 

𝒘𝟑 147.23 190.23 180.26 121.65 141.65 152.69 

𝒘𝟒 103.62 159.63 192.85 107.69 139.89 139.36 

𝒘𝟓 178.65 171.35 201.05 127.65 169.36 201.66 

𝒘𝟔 193.62 142.65 205.36 132.26 188.33 207.72 

𝒘𝟕 187.24 138.23 217.58 147.69 112.39 210.98 

𝒘𝟖 124.13 110.65 212.39 141.26 135.88 169.35 

𝒘𝟗 138.56 123.65 170.26 181.65 116.61 142.87 

 

Figure 14 (b) shows the variation of SLA violation rate for CRUZE, HMRM, CSRE and CSMH with different 

values of latency. The value of SLA violation rate is increasing as latency increases for all the algorithms, but 

CRUZE performs better than other algorithms. The average value of SLA violation rate is 67%, which is quite 

less than HMRM, CSRE and CSMH.  Figure 14 (c) shows the variation of latency for CRUZE, HMRM, CSRE 

and CSMH with different value of fault detection rate. Latency is increasing as the value of fault detection 

rate decreases for all resource scheduling techniques, but CRUZE performs better than other techniques. The 

average value of latency in CRUZE is 8.32%, 8.49% and 9.31% less than HMRM, CSRE and CSMH 

respectively.  The reduction in failure rate, latency and improvement in fault detection rate increases the 

reliability in CRUZE. 

Figure 14 (d) shows the impact of network bandwidth (bits/seconds) on reliability. The value of reliability is 

increasing as network bandwidth increases for all the approaches, but the average value of network bandwidth 

in CRUZE is 9.26%, 10.55% and 11.62% less than HMRM, CSRE and CSMH respectively . Figure 14 (e) 

shows the impact of datacenter temperature (°C) on reliability. The value of reliability is increasing as 

datacenter temperature decreases for CRUZE, HMRM, CSRE and CSMH, but CRUZE gives better results as 

compared to other algorithms. The value of datacenter temperature is 13°C in CRUZE at 95% reliability and 

the average value of temperature is 21°C in CRUZE. Figure 14 (f) shows the variation of energy consumption 

for different scheduling techniques with different value of intrusion detection rate. The value of energy 

consumption is increasing as the value of intrusion detection rate decreases for CRUZE, HMRM, CSRE and 

CSMH, but CRUZE gives better results and the average value of energy consumption in CRUZE is 79.5 kWh .  

Figure 14 (g) shows the trade-off between energy consumption and reliability for all the algorithms and the 

value of energy consumption is increasing as the value of reliability increases, but CRUZE has better outcome 

as compared to existing algorithms. The average value of energy consumption in CRUZE is 7.47%, 9.42% 

and 10.95% less than HMRM, CSRE and CSMH respectively. Figure 14 (h) shows the impact of execution 

time on energy consumption for different scheduling algorithms and the value of energy consumption is 

decreasing as the value of execution time increases for all approaches, but CRUZE consumes less energy as 

compared to existing techniques. Figure 14 (i) shows the variation of energy consumption for CRUZE, 

HMRM, CSRE and CSMH with different value of execution cost. The value of execution cost is increasing as 

the value of energy consumption increases and the average value of energy consumption in CRUZE is 64 kWh 

approximately. Overall CRUZE performs better than other techniques. The variation of energy consumption 

with different value of latency is shown in Figure 14 (j) and it measures the impact of latency on energy 

consumption and the consumption of energy is increasing as the value of latency decreases for all the resource 

scheduling approaches, but CRUZE performs better than others. Figure 14 (k) shows the trade-off between 

energy consumption and SLA violation rate and the value of energy consumption is increasing as the value of 

SLA violation rate decreases for all the approaches, but CRUZE performs better than HMRM, CSRE and 
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CSMH. The impact of network bandwidth on energy consumption is measured in Figure 14 (l) and the value 

of energy consumption is increasing as the value of network bandwidth increases. The value of network 

bandwidth in CRUZE is 16.68%, 17.35% and 17.99% less than HMRM, CSRE and CSMH respectively.  
 

5.3.3 Straggler Analysis: Due to the increased complexity of modern large-CDCs, certain emerging 

phenomena, which can directly affect the performance of these systems occur  [56]. This is also known as the 

Long Tail Problem, or the scenario where a small number of task stragglers, negatively affect the time of the 

workload completion. Task stragglers can occur within any highly parallelized system, which processes 

workloads consisting of multiple tasks. We have analyzed the performance the effect of various parameters 

on probability of stragglers. Note: We have considered 36 resources and 3000 workloads for these results.   

Figure 15 (a) shows the probability of stragglers for different percentage of SLA Violation Rate (SVR). The 

probability of stragglers is increasing as the value of SVR increases for CRUZE, HMRM, CSRE and CSMH, 

but CRUZE performs better than other resource scheduling techniques. Figure 15 (b) shows the probability of 

stragglers for different value of energy consumption. The probability of str agglers is increasing as the value 

of energy consumption increases for all the algorithms, but the value of straggler probability in CRUZE is 

5.45%, 5.95% and 6.36% less than HMRM, CSRE and CSMH respectively.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

Figure 15: Analysis of the effect of various performance parameters on Probability of Stragglers (P(s)): a) SLA Violation Rate, b) Energy 

Consumption, c) CPU Utilization, d) Memory Utilization, e) Reliability, f) Latency, g) Network Bandwidth, h) Fault Detection Rate, and i) Intrusion 

Detection Rate 

Figure 15 (c) shows the probability of stragglers for different percentage of CPU utilization and its average value in 

CRUZE is 0.24 and it shows the probability of stragglers is increasing as the value of CPU utilization increases for all 

the resource scheduling techniques, but CRUZE performs better than others. The probability of stragglers is measured 

for different value of memory utilization as shown in Figure 15 (d) and probability of stragglers is decreasing as the 

value of memory utilization increases for different scheduling techniques, but CRUZE performs better than other 

techniques. Figure 15 (e) shows the probability of stragglers for different value of reliability and it is increasing as the 

value of reliability increases for CRUZE, HMRM, CSRE and CSMH, but CRUZE gives better results than others. 
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The probability of stragglers for different value of latency is measured in Figure 15 (f) and it shows the probability of 

stragglers is increasing as the value of latency increases for CRUZE, HMRM, CSRE and CSMH, but CRUZE performs 

better than other scheduling techniques. The average value of probability of stragglers in CRUZE is 0.41. Figure 15 

(g) shows the probability of stragglers for different percentage of network bandwidth and CRUZE gives better results 

than other techniques but the probability of stragglers is increasing as the value of network bandwidth increases for 

all the scheduling techniques. Figure 15 (h) shows the probability of stragglers for different percentage of fault 

detection rate. The probability of stragglers is decreasing as the value of fault detection rate increases for CRUZE, 

HMRM, CSRE and CSMH, but CRUZE performs better than others. Figure 15 (i) shows the probability of stragglers 

for different percentage of intrusion detection rate. The average value of probability of stragglers in CRUZE is 0.17 

and the probability of stragglers is decreasing as the value of intrusion detection rate increases for every approach, but 

CRUZE performs better than others. The average value of straggler probability in CRUZE is 11.22%, 14.01% and 

15.77% less than HMRM, CSRE and CSMH respectively. 

 

5.3.4 Energy Consumption Analysis: Figure 16 shows the consumption of energy by different components of CDC 

such as processor, storage, memory, network, cooling and extra using CRUZE as per [Eq. 1]. The processor is most 

power hungry component of CDC followed by cooling component. The remaining components (storage, memory, 

network and extra) consumes energy between 2-7% of total energy consumption by CDC. Note: We have considered 

36 resources and 3000 workloads for these results. 

 
Figure 16: Energy Consumption of different Components of CDC in CRUZE 

5.3.5 Convergence of CO Algorithm: Figure 17 plots the convergence of total energy consumed by CO algorithm 

over the number of iterations for different value of Reliability: 95%, 90% and 85% by executing different number of 

workloads. Initially the workloads are randomly initialized. Therefore, the total initial energy consumption is very 

high at 0th iteration. As the algorithm progresses, the convergence is drastic and achieves global minima very quickly. 

The number of iterations required for the convergence is seen to be 30-45, for our simulated cloud environment.  Note: 

We have considered 36 resources and 3000 workloads for these results. 

 

Figure 17: The trend of convergence of CO with the number of iterations for different value of Reliability 
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Table 9 describes summary of experiment statistics and percentage of overall improvement of different performance 

parameters.  

Table 9: Summary of Experimental Statistics and Overall Improvement 

Type of Experiment  Performance Parameter Overall Improvement (%) Average 

Improvement (%) HMRM CSRE CSMH 

 

 
 

 

 
 

  

(Number of 

Workloads) 

Fault Detection Rate 19.99 21.14 22.45 21.2 

Reliability  19.07 19.75 20.98 19.9 

Execution Cost 14.41 14.91 15.46 14.9 

Execution Time  9.96 10.35 12.11 10.8 

Intrusion Detection Rate 19.20 21.45 20.86 20.5 

Network Bandwidth 14.44  16.31 18.73 16.49 

SLA Violation Rate 23.68  24.42 27.45 25.18 

Availability 12.45  13.91 15.34 13.9 

Resource Contention 17.56  18.79   19.42 18.59 

Memory Utilization  24.78 25.45 25.91 25.38 

Disk Utilization 18 18.5 19.18 18.56 

Network Utilization 12.77 11.68 12.25 12.23 

CPU Utilization 11.12 14.45 15.69 13.75 

Energy Consumption  17.35 18.71 20.10 18.8 

VM co-Location Cost 6.25 6.91 7.15 6.8 

Datacenter Temperature  13.76 14.91 15.30 14.7 

Energy Reuse Effectiveness  17.46 19.45 20.99 19.3 

Recirculation Ratio 3.42 4.77 4.97 4.4 

DCS Efficiency  9.98 10.23 11.56 10.6 

 

  

 

 

(Time in Hours) 

Memory Utilization  27.77 28.11 29.12 28.3 

Energy Consumption 14.46 15.35 18.86 16.2 

CPU Utilization 12.55 13.91 14.04 13.5 

Datacenter Temperature 8.46 10.45 13.33 10.8 

DCS Efficiency 11.46 12.75 13.01 12.4 

Reliability  9.21 9.99 10.21 9.8 

Execution Time 17.65 18.95 19.63 18.74 

Execution Cost 15.89 17.72 19.81 17.8 

SLA violation rate 24.35 27.29 31.42 27.68 

 

5.4.6 Statistical Analysis: Statistical significance of the results has been analyzed by Coefficient of Variation 

(𝐶𝑜𝑓𝑓.  𝑜𝑓 𝑉𝑎𝑟.), a statistical method. Coff.  of Var. is used to compare to different means and furthermore offer an 

overall analysis of performance of the framework used for creating the statistics.  It states the deviation of the data as 

a proportion of its average value, and is calculated as follows [Eq. 40]: 

𝐶𝑜𝑓𝑓.  𝑜𝑓 𝑉𝑎𝑟.  =
𝑆𝐷

M
 × 100                    (40)    

Where 𝑆𝐷 is a standard deviation and 𝑀 is a mean. 𝐶𝑜𝑓𝑓.  𝑜𝑓 𝑉𝑎𝑟. of waiting time of CRUZE, HMRM, CSRE and 

CSMH is shown in Figure 18 (a). Range of 𝐶𝑜𝑓𝑓.  𝑜𝑓 𝑉𝑎𝑟.  (0.48% - 1.03%) for energy consumption approves the 

stability of CRUZE.     

 
 

 
 

Figure 18: Coefficient of Variation for algorithms (a) energy consumption, (b) reliability 
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𝐶𝑜𝑓𝑓.  𝑜𝑓 𝑉𝑎𝑟. of reliability of CRUZE, HMRM, CSRE and CSMH is shown in Figure 18 (b).  Range of 

𝐶𝑜𝑓𝑓.  𝑜𝑓 𝑉𝑎𝑟.  (0.63% - 1.33%) for reliability approves the stability of CRUZE. Value of 𝐶𝑜𝑓𝑓.  𝑜𝑓 𝑉𝑎𝑟. increases 

as the number of workloads is increasing. Small value of 𝐶𝑜𝑓𝑓.  𝑜𝑓 𝑉𝑎𝑟. signifies CRUZE is more efficient and stable 

in resource management in the situations where the number of cloud workloads are changing. CRUZE attained the 

better results in the cloud for energy consumption and reliability has been studied with respect to number of workloads.  

This research work is a practical implementation of the conceptual models that we proposed in our previous research 

work [2] [44]. 

6. Summary and Conclusions  

We proposed a Cuckoo Optimization (CO) algorithm based resource scheduling approach called CRUZE, for holistic 

management of all resources (spanning servers, networks, storage, cooling systems) to improve the energy efficiency 

and reduce carbon footprints in cloud datacenters and whilst maintaining cloud service reliability by managing the 

failures (hardware, service, software or resource) dynamically. Furthermore, CRUZE schedules provisioned resources 

for heterogeneous workload execution and it adjusts the resources at runtime according to the QoS requirements of 

workloads, which can avoid or assuage under-utilization and over-utilization of resources. Experimental results 

demonstrate that CRUZE improves the fault detection rate by 15.42%, reliability by 17.11%, intrusion detection rate 

by 20.46%, CPU utilization by 15.69%, memory utilization by 25.91%, disk utilization by 19.18%, network utilization 

by 12.25%, energy reuse effectiveness by 20.56%, recirculation ratio by 4.97% and DCS Efficiency by 11.56% and it 

reduces the latency by 8.32%, execution cost by15.46%, execution time by 12.11%, energy consumption by 20.10%, 

VM Co-Location Cost by 7.15% and datacenter temperature by 15.30% as compared to existing resource management 

approaches. Finally, the trade-off among energy consumption, reliability and resource utilization for execution of 

workloads is described.  

6.1 Future Research Directions and Open Challenges  

In the future, we shall explore the applicability of the present model and any potentially needed extensions in the 

following main directions.  

First, the modelling components for workflows analysis and QoS based characterization shall be extended with 

knowledge of the external context that may inform our holistic management approach. This may require to use 

additional modeling constructs that help capture the non-functional requirements of each particular application. This 

is similar to the common technique of prioritization of jobs, for example, depending on the usage context the same 

workflow can be launched with different priorities.  

Second, we shall study possible extensions of the model to include exchange of information and actual hardware, 

networking, software, storage, heat, and other resources with any other resources from the environment [2]. For 

example, micro-data centers may be placed in blocks of flats, and the actual heating, ventilation, and air 

conditioning HVAC (Heating, Ventilation and Air Conditioning) systems [1] may actually use the thermal energy 

generated by the micro-data center. Moreover, jobs scheduling could happen during periods that inhabitants usually 

spend at home, which in turn may define the hourly rate for hosting computations [3]. An economy of resources like 

these may be facilitated by recent development in the area of Blockchain and Smart Contracts, but, it is still necessary 

to study the theoretical foundations which may potentially lead to energy efficient management of highly distributed 

Fog computing environments.  

Third, many new applications rely on the Internet of Things (IoT) and have particular focus on Big Data management. 

There is the necessity to implement Big Data pipelines starting from the IoT via Fog and Cloud nodes up to High-

Performance Data Centers [6] [7]. This requires the streaming of significant amounts of data over the network, which 

in turn represents various management challenges, involving energy efficiency, time-critical operations, and similar 

[50]. Some of these aspects were tackled by the present study, nevertheless, more in-depth simulations are necessary 

to study the various arrangements of system components that lead to quasi-optimal states.   

Finally, relationship between theory and practice is very important. Benchmarking is an important starting point, 

which may try to relate the holistic aspects studied in our simulation in real-world practice. For example, various 

workflow-based applications performing similar calculations, could be related among each other by analyzing the 

entire hardware and software stack, including virtualization. This may lead to additional improvements of the 

theoretical basis.  
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