
1

Holistic Resource Management for Sustainable and Reliable

Cloud Computing: An Innovative Solution to Global Challenge

Sukhpal Singh Gill1,2, Peter Garraghan1, Vlado Stankovski3, Giuliano Casale4, Ruppa K. Thulasiram5, Soumya K.

Ghosh6, Kotagiri Ramamohanarao2 and Rajkumar Buyya2

1School of Computing and Communications, Lancaster University, UK

2Cloud Computing and Distributed Systems (CLOUDS) Laboratory,

School of Computing and Information Systems, The University of Melbourne, Australia
3Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia

4Department of Computing, Imperial College London, London, UK
5Department of Computer Science, University of Manitoba, Canada

6Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India

s.s.gill1@lancaster.ac.uk, p.garraghan@lancaster.ac.uk, vlado.stankovski@fgg.uni-lj.si, g.casale@imperial.ac.uk, tulsi@cs.umanitoba.ca,
skg@cse.iitkgp.ac.in, kotagiri@unimelb.edu.au, rbuyya@unimelb.edu.au

Abstract

Minimizing the energy consumption of servers within cloud computing systems is of upmost importance to cloud

providers towards reducing operational costs and enhancing service sustainability by consolidating services onto fewer

active servers. Moreover, providers must also provision high levels of availability and reliability, hence cloud services

are frequently replicated across servers that subsequently increases server energy consumption and resource overhead.

These two objectives can present a potential conflict within cloud resource management decision making that must

balance between service consolidation and replication to minimize energy consumption whilst maximizing server

availability and reliability, respectively. In this paper, we propose a cuckoo optimization-based energy-reliability

aware resource scheduling technique (CRUZE) for holistic management of cloud computing resources including

servers, networks, storage, and cooling systems. CRUZE clusters and executes heterogeneous workloads on

provisioned cloud resources and enhances the energy-efficiency and reduces the carbon footprint in datacenters

without adversely affecting cloud service reliability. We evaluate the effectiveness of CRUZE against existing state-

of-the-art solutions using the CloudSim toolkit. Results indicate that our proposed technique is capable of reducing

energy consumption by 20.1% whilst improving reliability and CPU utilization by 17.1% and 15.7% respectively

without affecting other Quality of Service parameters.

Keywords: Cloud Computing, Energy Consumption, Sustainability, Reliability, Holistic Management, Cloud

Datacenters

1. Introduction

Commercial cloud providers such as Microsoft, Google, and Amazon heavily depend on datacenters to support the

ever-increasing demand for computational requirements of their services. Such demand has subsequently increased

operational costs of running large infrastructures, as well as producing substantial carbon emissions that negatively

impact the environmental sustainability of cloud services [1]. Existing efforts to tackle this problem primarily focus

on minimizing the energy consumption of servers via service consolidation to reduce the number of active servers and

increase datacenter resource utilization [1] [2] [3]. However, such approaches typically do not consider other core

datacenter components, including the network, storage, and cooling systems, which constitute significant amount

(32% approximately) of total Cloud DataCentres (CDC) power consumption [41]. Server consolidation unaware of

the cooling system may increase the number of hot spots in the datacenter which subsequently increases the

requirement of cooling capacity and reduces cooling efficiency [43]. Hotspot mitigation is performed via load

balancing. However, load balancing can widely spread communicating Virtual Machines (VMs) across multiple hosts

without considering their pairwise network traffic, increasing network cost and energy consumption [50]. Thus, to

create cloud platforms that are energy efficient, a resource management approach capable of managing all these

resources (network, storage, servers, memory and cooling components) in a holistic manner is required [2].

While energy efficiency is critical, cloud providers must also provide highly available and reliable cloud services [2].

However, with the growing adoption of cloud, CDCs are rapidly expanding in terms of scale and system complexity,

which has subsequently increased the frequency and diversity of failures [42]. These failures range across Service

Level Agreement (SLA) violation, data corruption, loss/premature execution termination, degrading cloud service

mailto:s.s.gill1@lancaster.ac.uk
mailto:p.garraghan@lancaster.ac.uk
mailto:vlado.stankovski@fgg.uni-lj.si
mailto:g.casale@imperial.ac.uk
mailto:tulsi@cs.umanitoba.ca
mailto:skg@cse.iitkgp.ac.in
mailto:kotagiri@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au

2

performance and availability [3]. In order to address this problem, one of the most common practices is to replicate

cloud services frequently to minimize the risk of simultaneous failure [46]. However, replicas require additional

resource usage from servers within the CDC leading to extra resource usage which increases their respective power

consumption [42]. It has been reported that a huge quantity of base-load energy is consumed even when actual cloud

resource usage is very low or even idle [4] [5]. This results in a potential conflict in resource management decision

making within the CDC to balance between energy consumption and reliability [57] [58]. In order to minimize server

power usage, it would be preferable to consolidate servers and power down idle machines [59]. On the other hand, in

order to maximize cloud service availability and reliability, replicas across additional machines are required [44].

Therefore, a holistic resource management is not only required for managing all aforementioned components, but

must also consider replication and coordination of services to enable reliable delivery of cloud services in a cost-

efficient manner.

Heuristic methods such as evolutionary algorithm are a suitable candidate to tackle the complexity of this problem. Li

et al. [6] suggested that scheduling algorithms equipped with a Cuckoo Optimization (CO) algorithm can be used in

this regard because CO algorithm performs better than Particle Swarm Optimization (PSO) and Ant Colony

Optimization (ACO) in terms of accuracy, speed and convergence [29] for solving batch process and job scheduling

problems [28] [29].The main motivation of this research work is to extend a conceptual model proposed in [2] [44] to

develop a Cuckoo optimization based efficient Resource UtiliZation techniquE called CRUZE for holistic

management of all resources (servers, network, storage, cooling systems) to improve the energy efficiency and reduce

carbon footprint while minimizing service failure within hardware, service, and software to maintain required cloud

service reliability. Our approach clusters the workloads based on their Quality of Service (QoS) parameters for

provisioning of cloud resources and schedules the provisioned resources for workload execution using a Cuckoo

optimization-based scheduling algorithm.

The rest of the article is structured as follows. Section 2 presents the related work of existing holistic resource

management approaches. Section 3 presents the system model and design model of CRUZE. Section 4 proposes the

resource provisioning and scheduling strategy. Section 5 describes the experimental setup and presents the results and

analysis. Section 6 summarizes the paper and offers future research directions.

2. Related Work

Holistic management of cloud resources is a challenging task due to dynamic requirements of cloud users [53]. The

majority of existing works study the energy management of servers alone without omitting other components, which

consume substantial energy [9] [55]. This section describes the existing resource management techniques and their

comparison with our proposed approach.

2.1 Energy-aware Cloud Resource Scheduling

Li et al. [6] proposed an Energy-Aware Resource Scheduling (EARS) technique to execute workloads within virtual

cloud environments. EARS technique models the power and failure profiles for CDC and implements them using

event-based cloud simulator, and is an effective in reducing energy cost of cloud data center and improving task

completion rate, however only considers homogeneous workloads. Similarly, Li et al. [8] proposed a VM Scheduling

(VMS) technique to reduce energy consumption of servers and identifies the effect of energy consumption on SLA

violation rate to improve user satisfaction. Balis et al. [7] proposed a Holistic Approach (HA) for management of IT

infrastructure to reduce execution cost and energy consumption. Perez et al. [10] proposed a Holistic Workload Scaling

(HWS) technique to enable scaling of resources vertically as well as horizontally simultaneously and aids to reduce

latency using multi-scaling approach without considering energy consumption of cloud resources. Luo et al. [11]

formulates energy consumption as a task-core assignment and scheduling problem and proposed a Holistic Energy

Optimization Framework (HEOF) to reduce thermal effect as well as cooling cost simultaneously and HEOF

framework focuses on powerful computation capability. Liu et al. [12] proposed a Server-based Cloud-enabled

Architecture (SCA) to improve the energy-efficiency of different hardware components such as memory, storage and

processors. Furthermore, the performance of SCA is evaluated using a case study of video tracking application and

experimental results show that SCA performs better in terms of memory utilization. Guzek et al. [13] proposed a

Holistic Model for Resource Management (HMRM) in virtualization based cloud datacenter to reduce the energy

consumption of different resources such as memory, storage and networking. Ferrer et al. [14] proposed a Holistic

Approach for Cloud Service Provisioning (HACSP) to meet predicted and unforeseen changes in resource

requirements dynamically and optimizes energy cost. Feller et al. [15] proposed a Holistic approach for Energy

3

Management (HEM) technique for effective management of virtual cloud resources using dynamic web workloads

and saves the substantial amount of energy. Dinkar et al. [60] proposed Energy Efficient Data Center Management

(EEDCM) technique under availability constraints and outlines the importance of availability and designs a hill

climbing algorithm to prevent failure zone. The experimental result shows that EEDCM technique reduces the energy

consumption by the datacenter, but the trade-off between energy consumption and other important QoS parameters

such as reliability, cost and execution time are omitted.

2.2 Reliability-aware Cloud Resource Scheduling

Zhou et al. [16] presented a Cloud Service Reliability Enhancement (CSRE) approach to utilization of network and

storage resources. This approach stores the state of VM using service checkpointing, which is in executing state.

Further, node failure predicator is designed to optimize the use of network resources. Li et al. [17] developed a

convergent dispersal based multi-cloud storage (CDStore) solution to offer reliable, secure and cost-efficient cloud

service. The proposed solution offers deterministic-based deduplication approach to save network bandwidth and

storage space. Moreover, CDStore uses two-stage deduplication to protect the system from malicious attacks.

Azimzadeh et al. [18] proposed a Multi-Objective Resource Scheduling (MORS) approach to increase the reliability

of cloud service and optimize the execution time. Further, authors identify a trade-off between reliability and execution

time for efficient execution of HPC (High Performance Computing) workloads. Poola et al. [19] proposed an Adaptive

and Just-In-Time (AJIT) scheduling approach using spot and on-demand instances to provide fault management

mechanism. This approach uses resource consolidation to optimize execution time and cost and experimental results

indicates that AJIT is efficient for execution of deadline-oriented workloads. Qu et al. [20] proposed a Heterogeneous

Spot Instances-based Auto-scaling (HSIA) approach to execute web applications in a reliable manager. Further, HSIA

approach designed a fault tolerant system to improve the availability and reduce the execution cost and response time

of cloud service. Liu et al. [21] proposed a replication-based state management (E-Storm) approach actively maintains

multiple state backups on different VMs during the execution of real-world and synthetic streaming applications. The

performance of E-Storm is evaluated against checkpointing method and experimental results indicates that E-Storm

achieves effective results in terms of latency and throughput. Abdulhamid et al. [22] proposed a Dynamic Clustering

League Championship Approach (DCLCA) to minimize fault reduction in task failure during resource scheduling for

workload execution. Liang et al. [61] proposed a Resource Optimization method for Cloud Data Center (ROCDC),

which designs a conceptual model to optimize the performance parameters reliability and energy while scheduling

resources. However, this approach was not validated via simulation or experimentation.

2.3 Cuckoo Optimization based Energy-aware Cloud Resource Scheduling

Shahdi-Pashaki et al. [23] proposed a Group Technology-based model and Cuckoo Optimization (GTCO) algorithm

to allocate resources for effective mapping of VMs to cloud workloads. GTCO reduces energy cost during execution

of VMs and performs better than round robin based resource scheduling. Sundarrajan and Vasudevan [24] proposed

a Cuckoo Optimization based Task Scheduling (COTC) algorithm to schedule the tasks in cloud processing and

improves the energy utilization for the execution of homogeneous workloads. Abbasi and Mohri [25] proposed a

Cuckoo Optimization based Resource Management (CORM) mechanism for task scheduling, which improves load

balancing to reduce energy cost. CORM improves energy-efficiency during execution of cloud resources and performs

better than round robin based resource scheduling. Navimipour and Milani [26] proposed a Cuckoo Search Algorithm

based Task Scheduling (CSATS) technique for effective utilization of cloud resources. Authors just measured the

fitness value (execution time) of CSATS with different values of probability to find the cloud resource for execution

of workloads. Madni et al. [27] proposed a Cuckoo Search Meta-Heuristic (CSMH) algorithm, which optimizes

energy consumption of cloud workloads. The performance of COTC [24] and CSMH [27] have been evaluated using

CloudSim [30] and both reduces energy cost of servers without focusing on other components of the cloud datacenter.

2.4 Comparison of CRUZE with Existing Resource Scheduling Techniques

Table 1 compares our proposed technique (CRUZE) with existing resource scheduling approaches discussed above.

We identified that existing approaches for holistic resource management only consider one or two components

simultaneously. The majority of existing work schedule resources for the execution of homogeneous workloads while

others like EARS [6], HEOF [11] and AJIT [19] schedule resources for the execution of heterogeneous workloads as

well. None of the existing works considers clustering of workloads for resource provisioning. Provisioning based

resource scheduling is only considered in CSRE [16]. Cuckoo Optimization (CO) based scheduling is performed in

4

GTCO [23], COTC [24], CORM [25], CSATS [26] and CSMH [27], but scheduled resources only for homogenous

cloud workload without any provisioning of resources. GTCO [23] optimizes energy cost and latency but COTC [24],

CORM [25], CSATS [26] and CSMH [27] only optimizes energy cost and execution time. This is the first research

paper which focuses on holistic management of core CDC components towards providing reliable and sustainable

cloud services. The proposed technique (CRUZE) schedules the provisioned resources for the execution of clustered

and heterogeneous workloads to enable reliable and sustainable cloud services.

Table 1: Comparison of CRUZE with existing holistic resource management techniques

Technique

Components of Holistic Resource Management for Cloud Computing

1 2 3 4
Sustainability-aware and Reliability-aware Holistic Management

5 6 7 8 9 10 11 12 13

EARS [6] ✔ ✔ ✔

HA [7] ✔ ✔

VMS [8] ✔ ✔

HWS [10] ✔

HEOF [11] ✔ ✔ ✔ ✔ ✔ ✔

SCA [12] ✔

HMRM [13] ✔ ✔

HACSP [14] ✔

HEM [15] ✔ ✔

CSRE [16] ✔ ✔ ✔

CDStore [17] ✔ ✔

MORS [18] ✔ ✔

AJIT [19] ✔ ✔ ✔

HSIA [20] ✔ ✔

E-storm [21] ✔ ✔

DCLCA [22] ✔ ✔

GTCO [23] ✔ ✔ ✔

COTC [24] ✔ ✔

CORM [25] ✔ ✔ ✔

CSATS [26] ✔ ✔

CSMH [27] ✔ ✔

EEDCM [60] ✔

ROCDC [61] ✔ ✔

CRUZE (proposed) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Abbreviations: 1 – Heterogeneous Workloads, 2 - Workload Clustering, 3 - Provisioning based Scheduling, 4 - Cuckoo Optimization Scheduling,

5 – Failures, 6 - Application QoS, 7 - Capacity Planning, 8 - Energy Management, 9 – Thermal-aware Scheduling, 10 – Cooling, 11 - Virtualization,

12 - Renewable Energy and 13 - Waste Heat Utilization.

3. System Model

As our proposed approach operates within a holistic CDC [2], we present and describe all core components within the

system as shown in Figure 1.Our approach considers components within all levels of cloud service provisioning.

1. Software as a Service (SaaS): This layer handles the incoming user workloads (batch style or interactive) and

forward those workloads (requests or user sessions) to workload manager as discussed in Section 4.1. Based on

their QoS requirements such as deadlines and budget constraints, workload manager maintains the queue of

workloads in a specific order based on their priorities.

2. Platform as a Service (PaaS): This layer deploys a controller to handle the different functions of the system.

Controller schedules the provisioned cloud resources efficiently with three main objectives: 1) maximize resource

utilization, 2) minimize energy consumption and 3) improve the reliability and sustainability of cloud datacenters.

Further, a controller (middleware) has five sub modules: cooling manager, energy manager, fault manager,

VM/resource manager and workload manager and roles of sub modules is described below:

5

a) Workload manager maintains the queue of arriving user workloads from the application manager and

recognizes their QoS constraints and forwards the QoS information to the next module i.e. VM/resource

manager for provisioning and scheduling of resources.

b) VM/resource manager schedules the provisioned resources for their execution using virtual or physical

machines based on QoS requirements of workload.

c) Fault manager performs fault detection and correction with the minimal performance degradation. We have

considered three types of faults for this research work: VM creation failures, host failures (Processing

Elements failure and memory failure) and high-level failures like cloudlets failures (which are caused by

any networking problem) [44]. FIM-SIM [45] is integrated with CloudSim toolkit [30] to simulate failures

as discussed in Section 5.

d) Data Center (DC) Manager acts as a broker to handle other modules such as cooling manager and energy

manager for cooling and energy management respectively.

The working of controller (CRUZE) is discussed in Section 4 in detail.

Figure 1: System Model

3. Infrastructure as a Service (IaaS): IaaS layer comprises of information related to cloud infrastructure such as

VMs and CDCs. Furthermore, the virtualization layer enables workload balancing via VM migration. The

variations of the temperature of different VMs running at different cores is measured, monitored and controlled

by proactive temperature-aware scheduler. Power Management Unit (PMU) is deployed to provide and control

the power for different components of cloud data centers. Check-pointing mechanism is provided by Dynamic

Random-Access Memory (DRAM) by storing the current states of VMs [46]. Thermal sensors monitor the value

6

of temperature and forward to the Thermal profiling and monitoring module to analyze the temperature variations

of cloud datacenters. When system generates thermal alert then heat controller takes a required action to control

the temperature if it is higher than its threshold value and maintains the performance of datacenter. Uninterruptible

Power Supply (UPS) is deployed to continue the power in case of power failure from main sources. For cooling

management, the district heating management uses water economizer, outside air economizer and chiller plant to

control the temperature of CDC. Energy manager manages the energy produced from renewable and non-

renewable sources. Sustainable CDCs focuses more on renewable energy sources (solar and wind) [2] [52]. To

provide reliable services, CDC can prefer grid energy for the execution of deadline-aware workloads. Automatic

Transfer Switch (ATS) manages the electricity producing from renewable as well as non-renewable sources.

Moreover, Power Distribution Unit (PDU) transfers the energy to all the devices of cloud datacenters and cooling

components.

3.1. Design Models

We have used following design models for holistic management of cloud resources:

a) Energy Model: The energy model is developed on the basis that resource utilization has a linear

relationship with energy consumption [6] [7] [39] [46] [67] [68]. Energy Consumption (𝐸) of a CDC can be

expressed as [Eq. 1]:

𝐸 = 𝐸𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 + 𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒 + 𝐸𝑀𝑒𝑚𝑜𝑟𝑦 + 𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘+ 𝐸𝐶𝑜𝑜𝑙𝑖𝑛𝑔 + 𝐸𝐸𝑥𝑡𝑟𝑎 (1)

𝐸𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 represents the processor’s energy consumption, which is calculated using [Eq. 2]:

𝐸𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 = ∑ (𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝐸𝑆𝐶 + 𝐸𝐿𝑒𝑎𝑘𝑎𝑔𝑒 + 𝐸𝑖𝑑𝑙𝑒)

𝑟=𝑐𝑜𝑟𝑒𝑠

𝑟=1

 (2)

where 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 represents dynamic energy consumption and calculated using [Eq. 3], 𝐸𝑆𝐶 represents short-

circuit energy consumption, 𝐸𝐿𝑒𝑎𝑘𝑎𝑔𝑒 represents power loss due to transistor leakage current and 𝐸𝑖𝑑𝑙𝑒

represents the energy consumption when processor component is idle.

𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝑉2 𝑓 (3)

where C is capacitance, f is frequency, and V is voltage.

𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒 represents the energy consumption of storage device, which performs data read and write oper ations

and it is calculated using [Eq. 4]:

𝐸𝑆𝑡𝑜𝑟𝑎𝑔𝑒 = 𝐸𝑅𝑒𝑎𝑑𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑊𝑟𝑖𝑡𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑖𝑑𝑙𝑒 (4)

where 𝐸𝑖𝑑𝑙𝑒 represents the energy consumption when storage component is idle.

 𝐸𝑀𝑒𝑚𝑜𝑟𝑦 represents the energy consumption of the main memory (RAM/DRAM) and cache memory (SRAM),

which is calculated using [Eq. 5]:

𝐸𝑀𝑒𝑚𝑜𝑟𝑦 = 𝐸𝑆𝑅𝐴𝑀 + 𝐸𝐷𝑅𝐴𝑀 (5)

𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘 represents the energy consumption of networking equipment such as routers, switches and gateways,

LAN cards, which is calculated using [Eq. 6]:

𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘 = 𝐸𝑅𝑜𝑢𝑡𝑒𝑟 + 𝐸𝐺𝑎𝑡𝑒𝑤𝑎𝑦 + 𝐸𝐿𝐴𝑁𝑐𝑎𝑟𝑑 + 𝐸𝑆𝑤𝑖𝑡𝑐ℎ (6)

𝐸𝐶𝑜𝑜𝑙𝑖𝑛𝑔 represents the energy is consumed by cooling devices (air conditioners, compressors and fans) to

maintain the temperature of cloud datacenter [6], which is calculated using [Eq. 7]:.

 𝐸𝐶𝑜𝑜𝑙𝑖𝑛𝑔 = 𝐸𝐴𝐶 + 𝐸𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 + 𝐸𝐹𝑎𝑛 (7)

𝐸𝐸𝑥𝑡𝑟𝑎 represents the energy consumption of other parts, including the current conversion loss and others,

which is calculated using [Eq. 8]:

𝐸𝐸𝑥𝑡𝑟𝑎 = 𝐸𝑀𝑜𝑡ℎ𝑒𝑟𝑏𝑜𝑎𝑟𝑑 + ∑ 𝐸𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟,𝑓

𝐹

𝑓=0

 (8)

7

where 𝐸𝑀𝑜𝑡ℎ𝑒𝑟𝑏𝑜𝑎𝑟𝑑 is energy consumed by motherboard (s) and ∑ 𝐸𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟,𝑓
𝐹

𝑓=0
 is energy consumed by a

connector (port) running at the frequency f.

For a resource 𝑟𝑘 at given time 𝑡, the resource utilization 𝑅𝐸𝑆𝑈𝑡,𝑘 is defined as [Eq. 9]:

𝑅𝐸𝑆𝑈𝑡,𝑘 = ∑ 𝑟𝑢𝑡,𝑘,𝑖

𝑚

𝑖=1

 (9)

where m is the number of cloud workloads running at time t, 𝑟𝑢𝑡,𝑘,𝑖 is the resource (VMs) usage of workload 𝑤𝑖 on

resource 𝑟𝑘 at given time 𝑡. The actual energy consumption (𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) is 𝐸𝐶𝑂𝑁𝑡,𝑘 of a resource 𝑟𝑘 at given time t

is defined as [Eq. 10]:
𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝐸𝐶𝑂𝑁𝑡,𝑘 = (𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) × 𝑅𝐸𝑆𝑈𝑡,𝑘 + 𝐸𝑚𝑖𝑛 (10)

where 𝐸𝑚𝑎𝑥 is the energy consumption at the peak load (or 100% utilization) and 𝐸𝑚𝑖𝑛 is the minimum

consumption of energy in the idle/active mode (or as low as 1% utilization), which can be calculated using

[Eq. 1] through profiling.

b) Reliability Model: Reliability of cloud services is the ability to provision correct service [44] [46], and is calculated

as [Eq. 11]:

𝑅𝑠𝑒𝑟𝑣𝑖𝑐𝑒 = 𝑒−λt (11)

where t is time for the resource to deal with its request for any workload execution and λ is the failure rate of the

resource at the given time, which is calculated using [Eq. 13].

The list of available SLAs = <𝑚1,𝑚2……………..𝑚𝑛 >, where n is the total number of SLAs.

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 (𝑚) = {
1, 𝑚 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

0, 𝑚 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑,
 (12)

Failure rate (λ) is computed as a ratio of the summation of all the SLA violated to the total number of SLAs [46].

λ = ∑ (
Failure (𝑚𝑖)

𝑛
) (13)

𝑛

𝑖=1

c) Capacity Planning Model: The capacity model is defined in terms of memory utilization, disk utilization

and network utilization at given time 𝑡 [33]. The formula for calculating memory utilization (𝑀𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) in

percentage is as follows [Eq. 14]:

𝑀𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
Total Physical Memory − (Memory Free + Memory Buffers + Cache Memory)

Total Physical Memory
 × 100 (14)

The formula for calculating disk utilization (𝐷𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) in percentage is as follows [Eq. 16]:

𝐷𝑈𝑠𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑈𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐻𝐷 𝑠𝑖𝑧𝑒
 × 100 (15)

𝐷𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑖𝑡𝑠 × 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑈𝑠𝑒𝑑

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑈𝑛𝑖𝑡𝑠 × 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑆𝑖𝑧𝑒
 × 100 (16)

The formula for calculating network utilization (𝑁𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) in percentage is as follows [Eq. 17]:

𝑁𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑑𝑎𝑡𝑎 𝑏𝑖𝑡𝑠

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ × 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 × 100 (17)

d) Temperature Model: We used Computer Room Air Conditioning (CRAC) model and RC (where R and C

are thermal resistance (k/w) and heat capacity (j/k) of the host respectively) thermal model [34] [64] [65] [66]

to design temperature model for calculation of datacenter temperature (𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑇𝑒𝑚𝑝). The following

formula is used to calculate the temperature of datacenter [Eq. 18].

8

𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑇𝑒𝑚𝑝 = 𝑇𝑒𝑚𝑝𝑖𝑛𝑙𝑒𝑡 + ∑ (
𝑇𝑒𝑚𝑝𝐶𝑃𝑈𝑖

𝑛
) + 𝑇initial ×𝑒−RC (18)

𝑛

𝑖=1

where CRAC model is used to calculate inlet temperature (𝑇𝑒𝑚𝑝𝑖𝑛𝑙𝑒𝑡) and RC model is used to calculate CPU

temperature (𝑇𝑒𝑚𝑝𝐶𝑃𝑈). 𝑇initial is the initial temperature of the CPU. 1 ≤ i ≤ n, n is the number of CPUs.

e) Renewable Energy Model: A renewable energy model [35] is used in terms of Energy Reuse Effectiveness

(ERE) and [Eq. 19] is used to calculate its value.

ERE =
𝐸−𝐸𝑛𝑒𝑟𝑔𝑦𝑅𝑒𝑢𝑠𝑒𝑑

𝐸
 (19)

The value of 𝐸 is calculated using [Eq. 1]. 𝐸𝑛𝑒𝑟𝑔𝑦𝑅𝑒𝑢𝑠𝑒𝑑 is amount of energy reused by different IT equipment.

f) Waste Heat Utilization Model: The district heating management based waste heat utilization model [36]

is used in terms of recirculation ratio (𝑅𝑅) and it is defined as the following [Eq. 20]:

𝑅𝑅 =
𝑊𝑚

𝑊𝑠

 (20)

where 𝑊𝑚 = mass flow rate of the water entering the circulation system, kilograms per second (kg/s) and 𝑊𝑠

= mass flow rate of the steam generated in the circulation system, kg/s. Resource manager utilizes the waste

heat to generate renewable energy to reduce electricity costs and carbon emissions, which further improves

the sustainability of CDC in an efficient manner.

g) Cooling Management Model: A Water based Cooling Management Model [38] is used in terms of

Datacenter Cooling System (DCS) Efficiency or cooling effectiveness and it is defined as the following [Eq.

21]:

DCS Efficiency = 𝛼
𝐻𝑒𝑎𝑡𝑅𝑒𝑚𝑜𝑣𝑒𝑑 (𝑡)

 𝐸𝑁𝐶𝑁𝐶𝑜𝑜𝑙𝑖𝑛𝑔
 (21)

𝛼 = 𝑇𝑒𝑚𝑝ExhaustingAir − 𝑇𝑒𝑚𝑝OutsideAir (22)

𝐻𝑒𝑎𝑡𝑅𝑒𝑚𝑜𝑣𝑒𝑑 (𝑡) is calculated as the heat absorbed by the heat pump per unit time t and 𝐸𝑁𝐶𝑁𝐶𝑜𝑜𝑙𝑖𝑛𝑔 is work done

by the cooling devices (compressor, air conditioner and fan) of the heat pump to transfer the thermal energy. Where

𝛼 is weight to prioritize components of the DCS Efficiency and it is the temperature difference between outside air

temperature and the temperature of the (hot) exhausting air of CRAC model [34] as specified in [Eq. 22]. Outside air

temperature is the temperature of data center room [64] [65] [66]. The exhausting air is exhausted from server rack,

which contains server fans, air conditioners and compressors for smooth functioning of CDC [38]. Different from the

outside air cooling, the chiller cooling effectiveness does not change much with temperature and the variation over

different IT load is much smaller than that under outside air cooling.

4 Resource Provisioning and Scheduling

It is very challenging to schedule provisioned resources for workload execution and maintain reliability and

sustainability of cloud service simultaneously [6] [52]. Cloud resource scheduling is a tedious task due to the problem

of finding the best match of resource-workload pair based on the user QoS requirements [31] [39] [46]. The problem

can be expressed as: mapping a set of independent cloud workloads {𝑤1,𝑤2,𝑤3, . . . ,𝑤𝑚} to a set of heterogeneous

and dynamic resources {𝑟1,𝑟2,𝑟3, . . . ,𝑟𝑛} has been taken. For continuous problem, R = {𝑟𝑘 | 1 ≤ k ≤ n} is the collection

of resources and n is the total number of resources. W = {𝑤𝑖|1 ≤ i ≤ m} is the collection of cloud workloads and m is

the total number of cloud workloads. Figure 2 shows the resource provisioning and scheduling mechanism for

execution of user workloads, which determines the most suited resources for a given workload. CRUZE operates by

performing the following steps: 1) analyzes workload characteristics with respective QoS requirements, 2) categorizes

workload based on their common QoS requirements, 3) provisions cloud resources for categorized workloads and 4)

schedule the provisioned resources for workload execution.

9

Figure 2: Architecture of Resource Management in CRUZE

4.1 Clustering of Workloads

Table 2 lists the various types of workload and their QoS requirements [39] [46], which are considered for this research

work.

Table 2: Cloud Workloads and their Key QoS Requirements

Workload Name QoS Requirements

Technological Computing Computing capacity

Websites High availability, High network bandwidth and Reliable storage

E-Commerce Customizability and Variable computing load

Graphics Oriented Visibility, Data backup, Latency and Network bandwidth

Backup and Storage Services Persistence and Reliability

Endeavour Software Correctness, High availability and Security

Productivity Applications Security, Data backup, Latency and Network bandwidth

Critical Internet Applications Usability, Serviceability and High availability

Mobile Computing Services Portability, Reliability and High availability
Software/Project Development and Testing Testing time, Flexibility and User self-service rate

Central Financial Services Integrity, Changeability, High availability and Security

Online Transaction Processing Usability, Internet accessibility, High availability and Security

Performance Testing SLA Violation Rate, Resource Utilization, Energy, Cost and Time

Further, k-means based clustering algorithm is used for clustering the workloads for execution on different set of

resources because k-means clustering has been demonstrating to be an effective means for cloud workload

categorization [49]. The process of workload clustering using k-means clustering algorithm has been described in

previous research work in detail [48]. Final set of workloads are shown in Table 3.

Table 3: K-Means based Clustering of Workloads

Cluster Cluster Name Workloads

C4 Administration Graphics Oriented, Software/Project Development and Testing, Productivity Applications,

Central Financial Services, Online Transaction Processing and Endeavour Software

C3 Communication Mobile Computing Services, Critical Internet Applications and Websites

C2 Storage Backup and Storage Services and E-commerce

C1 Compute Performance Testing and Technical Computing

4.2 Resource Provisioning

The resources are provisioned for clustered workload using a resource provisioning technique i.e. Q-aware [31] based

on the requirement of workloads of different clusters as described in Table 3. After the provisioning of resources,

CRUZE

Resource Provisioner

Resource

Info
Resource

Scheduler

Reference

Action

Cuckoo

Optimization

Based

Workload

Workload Analyzer

QoS Info

QoS based Categorization

Q-aware
Resource Pool

Services Data

10

workloads are submitted to resource scheduler. Then, the resource scheduler will ask to submit the workload for

resources provisioned. After this, the resource scheduler returns results to the corresponding cloud user, which

contains the resource information [31].

4.3 Cuckoo Optimization based Resource Scheduling Algorithm

Our proposed scheduling algorithm attempts to minimize overall cloud energy consumption whilst maximizing system

reliability. Attaining these two objectives together is typically considered a trade-off; consolidating VMs onto fewer

active servers minimizes system energy consumption, server failure can affect multiple VMs and reduce system

reliability. In contrast, increasing the number of VM replicas maximizes system reliability, however also incurs

additional energy costs due to greater computation requirements and active servers. To overcome this impact, a trade-

off between energy consumption and reliability is required to provide cost-efficient cloud services. Specifically, whilst

Dynamic Voltage and Frequency Scaling (DVFS) based energy management techniques can reduce energy

consumption, response time and service delay are increased due to the switching of resources between high scaling

and low scaling modes. Furthermore, reliability of the system component is also affected by excessive turning on/off

servers. Power modulation decreases the reliability of server components such as storage devices, memory etc.

Therefore, there is a need of new energy-aware resource management techniques to reduce power consumption whilst

incurring minimal impact upon cloud service reliability [5].

Cuckoo Optimization (CO) algorithm is a based resource scheduling technique is designed for execution of user

workload considering both energy consumption and reliability. The goal of an objective function is to minimize system

energy consumption and maximize server reliability simultaneously for finishing all n workloads. We define fitness

function (𝐹) in terms of energy consumption and reliability as specified in [Eq. 23].

 𝐹 = 𝜃 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 + 𝛿 𝑅𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (23)

where 0 ≤ θ < 1 and 0 ≤ δ < 1 are weights to prioritize components of the fitness function. Energy consumption

(𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) and Reliability (𝑅𝑠𝑒𝑟𝑣𝑖𝑐𝑒) is calculated using [Eq. 10] and [Eq. 11] respectively. This objective function

successfully captures the compromise among QoS parameters as specified in [Eq. 23]. Cuckoo Optimization (CO)

algorithm is motivated by the life of the cuckoo bird [28] as it adapts the features of a cuckoo and process of laying

eggs. CO algorithm has both local and global search abilities and the performance of the CO algorithm has been

demonstrated to be more effective in comparison to PSO and ACO in terms of accuracy, speed and convergence [51]

for solving optimization problems such as batch process scheduling and job scheduling [28] [29]. The mapping and

execution of the workloads on suitable cloud resources is recognized to be an NP-complete problem and there is a

need for novel algorithm for resource scheduling with maximum reliability and sustainability of cloud services [6].

We have selected CO algorithm for scheduling of provisioned resources due to following reasons: a) capability to

schedule resources for workload execution automatically, b) relatively straight forward integration with traditional

optimization techniques, and c) easy modification in a dynamic cloud environment. Resource Utilization is a ratio of

execution time of a workload executed by a particular resource to total uptime of that resource and it is specified in

[Eq. 24]. The total uptime of resource is the amount of time that a resource from a resource set is available for execution

of workloads.

𝑅𝑈 = ∑ (
𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑜𝑛 𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑢𝑝𝑡𝑖𝑚𝑒 𝑜𝑓 𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒
)

𝑛

𝑖=1

 (24)

where n is the no. of resources. A resource set consist of number of instances. [Eq. 25] shows 𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (R𝑖)

contains instances (I):

 R𝑖 = [𝐼𝑖1, 𝐼𝑖2, … … … . . 𝐼𝑖𝑋], where 𝐼𝑖1, 𝐼𝑖2, … … … . . 𝐼𝑖𝑋 are instances of 𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 and x ≤ 50. (25)

The value of resource utilization depends on the number of instances of that resource are using to execute the workload.

Resource utilization for 𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 (R𝑖) is shown in [Eq. 26].

𝑅𝑈𝑖 =
∑ (𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 𝑜𝑛 𝑎𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒)

𝑥

𝑎=1

∑ (𝑡𝑜𝑡𝑎𝑙 𝑢𝑝𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒)
𝑥

𝑎=1

 (26)

11

where x is the number of instances and we have assumed the value of x ≤ 50 for this research work. Figure 3 shows

the flowchart of CO algorithm based resource scheduling.

 Yes

 No

 No

 Yes

 Yes

 No

 No

 Yes

Figure 3: The Working of CO based Resource Scheduling Algorithm

Similar to the other evolutionary algorithms, this algorithm starts with an initial population. In this research work, we

have modified the CO algorithm based on the requirements of cloud resource scheduling. We have considered as

Mature cuckoos (existing provisioned resources) and their Eggs (new instances). Based on different values of resource

Start

Stop

 No

 Yes

Add New

Instance(s)

Initialize Resource Set

Initialize Instance Set of Resource

Create Instance(s)

Declared

Current

Instance is

Unstable

All Workloads

Executed?

Execute Workloads

Select another Resource

with Maximum Value of

Resource Utilization

Instances Required<

Instances Provided

Generate New Instances

of Resource inside their

Corresponding ELR

Evaluate the Profit

Value of Instances

Remove Unstable

Instances

 (𝑬𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 <

 𝑇𝑉𝐸)

𝑹𝑺𝒆𝒓𝒗𝒊𝒄𝒆 < 𝑇𝑉𝑅

Choose Instance which

has High Profit Value

Determine Profit

Calculate ELR

Instance Selection

12

utilization (𝑅𝑈), initial population is considered as a resource set and different resources are sorted in decreasing order

(𝑅𝑈1
≥ 𝑅𝑈2

≥ ⋯ ≥ 𝑅𝑈𝑛
). There are new instances of those resources to be added to a specific resource for future

execution of workloads and these instances will become part of resource after producing required performance

(Econsumpton < 𝑇𝑉𝐸 && RService > 𝑇𝑉𝑅), where 𝑇𝑉𝐸 is a threshold value for energy and 𝑇𝑉𝑅 is a threshold value

for reliability (which are decided based on the historic data of past execution of workloads [31] [46]). The more

number of instances are adding to a resource pool, the more profit is gained (in terms of resource utilization).

Therefore, the improvement in resource utilization will be the definition that CO algorithm intends to optimize.

The main objective of CO the algorithm in this research work is to increase utilization of resources by selecting best

resource based on their fitness value. Cuckoo search finds the most suitable resource to create more instances in order

to maximize their resource utilization. After new instances performing as required, they come together to make new

resources. Each instance has its resource to execute workloads. The best instance among all the instances will be the

destination for the workloads for their execution. Then they move toward this best resource. They will inhabit near

the best resource. Considering the number of instances each resource has and the resource’s distance to the goal point

(best resource), some range of resource (in terms of Egg Laying Radius (ELR)) is dedicated to it, and is calculated

using [Eq. 33]. There is no obvious metric on the space of resource sets, as opposed to n-dimensional space. The next

step is that a resource begins to create instances in a stochastic manner inside the resource range, defined by the value

of ELR. This process lasts until the best resource with extreme value of profit (in terms of resource utilization) is

obtained and most of the instances of resource are gathered around the same position.

The following are important functions of CO based resource scheduling algorithm:

a) Initialize Resource Set: Cuckoo Habitat as a resource set (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑡) is considered in CO based resource

scheduling algorithm. The resource set is an array of 1× 𝑞𝑣𝑎𝑟 in 𝑞𝑣𝑎𝑟-dimensional optimization problem, the

resource set is demonstrated as follows [Eq. 26]. Resource set contains different number of resources.

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑡 = [𝑅1, 𝑅2, … … … . . 𝑅 𝑞𝑣𝑎𝑟

], where 𝑅1, 𝑅2, … … … . . 𝑅 𝑞𝑣𝑎𝑟
 are resources (27)

b) Initialize Instance Set of Resource: Furthermore, every resource contains instances (I) as shown in [Eq. 28].

 R 𝑞𝑣𝑎𝑟
= [𝐼 𝑞𝑣𝑎𝑟1, 𝐼 𝑞𝑣𝑎𝑟2, … … … . . 𝐼 𝑞𝑣𝑎𝑟𝑋], where 𝐼 𝑞𝑣𝑎𝑟1, 𝐼 𝑞𝑣𝑎𝑟2, … … … . . 𝐼 𝑞𝑣𝑎𝑟𝑋 are instances and x ≤ 50. (28)

where x is the number of instances and we have assumed the value of x ≤ 50 for this research work. 𝐼 𝑞𝑣𝑎𝑟𝑖 ∈ {0,

1}, where 1 ≤ i ≤ 50. The value 1 state that the particular instance is initialized and 0 represent the elimination of

that instance from the final set.

c) Determine Profit: The profit of a resource set is obtained by evaluation of profit function at a resource set

(𝑅1, 𝑅2, … … … . . 𝑅𝑚). So, profit function is shown in [Eq. 29]:

Profit = 𝑅𝑈 (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑡) = 𝑅𝑈 (𝑅1, 𝑅2, … … … . . 𝑅 𝑞𝑣𝑎𝑟
) (29)

Profit = 𝑅𝑈((𝐼11, 𝐼12, … … … . . 𝐼1𝑋), (𝐼21, 𝐼22, … … … . . 𝐼2𝑋),……………. (𝐼 𝑞𝑣𝑎𝑟1, 𝐼 𝑞𝑣𝑎𝑟2, … … … . . 𝐼 𝑞𝑣𝑎𝑟𝑋)) (30)

Maximize the profit in terms of cost (− 𝑐𝑡) for cost optimization of resource scheduling. To apply the CO

algorithm to solve the minimization problems, it is sufficient to multiply the minus sign by cost function. A

negative sign means that an improvement in the respective resource utilization results in a reduced cost. If the

resource utilization reduces, then it results in an increased cost (because negative times negative results in a

positive). The magnitude of the change is given by the value of the cost. The sign gives the direction of the change.

Profit = −𝐶𝑜𝑠𝑡 (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑆𝑒𝑡) = − 𝑐𝑡(𝑅1, 𝑅2, … … … . . 𝑅 𝑞𝑣𝑎𝑟
) (31)

Profit = − 𝑐𝑡((𝐼11, 𝐼12, … … … . . 𝐼1𝑋), (𝐼21, 𝐼22, … … … . . 𝐼2𝑋),……………. (𝐼 𝑞𝑣𝑎𝑟1, 𝐼 𝑞𝑣𝑎𝑟2, … … … . . 𝐼 𝑞𝑣𝑎𝑟𝑋)) (32)

To begin the optimization algorithm, a candidate 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑡 matrix of size 𝑞𝑝𝑜𝑝 × 𝑞𝑣𝑎𝑟 is created, where

 𝑞𝑝𝑜𝑝 is the value of an initial population considered in a resource set. Then some randomly produced number of

instances is supposed for each of these initial resource sets.

13

d) Create Instance(s): In this research work, each resource creates 1 to 50 instances. These values are used as the

upper and lower limits of instance creation to each resource set at different iterations. In CO algorithm, instances

are creating within a maximum distance from their resource set and this maximum range is known as Egg Laying

Radius (ELR). Based on the ELR value, every resource generates instances as shown in Figure 4. In a resource,

there are two types of instances: stable and unstable. Stable instances are those which have maximum value in

terms of resource utilization and fitness value [Eq. 23]. Further, stable instance has also a capability to execute at

least certain number of workloads. Otherwise, it is called as unstable instance.

Figure 4: Resource creating their Instances within the Region defined by ELR

e) Calculate ELR: ELR is defined as the ratio of number of instances of a current resource are executing a particular

workload to the total number of active instances of that resource and it is described in Eq. [33].

ELR = µ × (
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔 𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑖𝑡ℎ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒
) × (𝑣𝑎𝑟𝑈 − 𝑣𝑎𝑟𝐿) (33)

In an optimization problem with upper limit of varU and lower limit of varL for variables, each resource set has

an ELR, which is proportional to the total number of instances of a resource set and also variable (var) limits of

 varU and varL. µ is an integer, supposed to handle maximum value of ELR.

f) Instance Selection: CO based resource scheduling algorithm i) finds the number of unstable instances, ii) selects

the resource with minimum value of unstable instances, and iii) create instances of selected resource to execute

set of workloads. Instance is selected based on its Fitness Value (F), calculated using [Eq. 33] and start execution

of workloads.

g) Monitor Performance: The performance of workload execution is monitored continuously and checks the instance

requirement (whether the provided instances are sufficient for execution of current set of cloud workloads). The

more number of instances are provided to continue execution if provided instances are less than required

instances. It calculates the value of energy consumption and reliability. The value of energy consumption

(Econsumption) associated with it should be less than Threshold Value (𝑇𝑉𝐸) and the value of reliability (RService)

associated with it should be more than Threshold Value (𝑇𝑉𝑅) for successful execution of workloads. Otherwise,

it declares the current instance as an unstable, eliminates unstable instance and add new instance using following

 𝑅1

 𝐼1

Resource

 𝐼2

 𝐼3

 𝐼𝑥

ELR

………….

14

steps: a) select another resource with maximum value of resource utilization, b) generate new instances of

resource inside their corresponding ELR, c) evaluate the profit value of instances and d) choose instance which

has higher profit value. The performance is monitored continuously until all the workloads are not executed.

The main steps of CO based resource scheduling algorithm are presented as a pseudo-code in [ALGORITHM 1].

Initially, provisioned resources as an input for scheduling of resources to execute cloud workloads, and both workload

and resource set contains integer values for our technique. Firstly, CO based resource scheduling algorithm initializes

the resources. Further, it evaluates the resource utilization of all the resources using [Eq. 24] to determine the profit

and sorts the resources in decreasing order (𝑅𝑈1
≥ 𝑅𝑈2

≥ ⋯ ≥ 𝑅𝑈𝑛
) based on their value of resource utilization.

Then, it selects the best resource based on the maximum value of resource utilization (RU). Further, it creates some

number of instances [𝐼1, 𝐼2, … … … . . 𝐼𝑋] for every resource and evaluates the value of the ELR for each resource using

[Eq. 33]. Moreover, each resource generates instances inside their corresponding ELR and evaluate the Fitness Value

(F) for all instances using Eq. [23] and determine the best individual with the best fitness value (which has maximum

value of 𝑅𝑈 and the value of energy consumption associated with it is less than a threshold value and the value of

reliability is more than its threshold value).Further, CO based resource scheduling algorithm starts execution of

workloads and it checks the execution status of workloads. If all the workloads are executed successfully then

execution stops otherwise it continues execution of workloads. The performance is monitored continuously during

execution of cloud workloads. It checks the instance requirement (whether the provided instances are sufficient for

execution of current set of cloud workloads). The more number of instances are provided to continue execution if

provided instances are less than required instances. It calculates the value of energy consumption and reliability. The

value of energy consumption (Econsumption) associated with it should be less than Threshold Value (𝑇𝑉𝐸) and the

value of reliability (RService) associated with it should be more than Threshold Value (𝑇𝑉𝑅) for successful execution

of workloads. Otherwise, it declares the current instance as an unstable, eliminates unstable instance and add new

ALGORITHM 1: Cuckoo Optimization based Resource Scheduling Algorithm

 Input: Set of Provisioned Resources
 Set of Workloads
Output: Execute Workloads

1. Start
2. Initialize Resource Set [𝑅1, 𝑅2, … … … . . 𝑅 𝑞𝑣𝑎𝑟

]

3. Evaluate Resource Utilization (𝑹𝑼) using [Eq. 24] for every resource to
determine its Profit

4. Rank the Resources (𝑅𝑈1
≥ 𝑅𝑈2

≥ ⋯ ≥ 𝑅𝑈𝑛
) based on 𝑹𝑼

5. Select Best Resource with maximum 𝑹𝑼
6. Create instances of that resource R 𝑞𝑣𝑎𝑟

= [𝐼1, 𝐼2, … … … . . 𝐼𝑋]

7. Evaluate ELR for each resource using Eq. [33]
8. Each resource generates instances inside their corresponding ELR
9. Evaluate the Fitness Value (𝑭) for all instances using Eq. [23]
10. Choose instance which has high 𝑭
11. Execute Workloads using selected instance of resource
12. if (All Workloads Executed Successfully == FALSE) then
13. While do
14. Continue Execution
15. Monitor Performance
16. if (Instances Required ≥ Instances Provided) then
17. While do
18. Add New Stable Instance
19. Calculate Econsumption and RSrtvice

20. if (Econsumption < 𝑇𝑉𝐸) then

21. if (RService > 𝑇𝑉𝑅) then
22. break
23. else
24. Declare Current Instance is Unstable
25. Remove Unstable Instance
26. continue
27. else
28. continue
29. else
30. continue
31. else Stop

15

instance using following steps: 1) select another resource with maximum value of resource utilization, 2) generate

new instances of resource inside their corresponding ELR, 3) evaluate the profit value of instances and 4) choose

instance which has higher profit value. The performance is monitored continuously until all the workloads are not

executed.

5. Performance Evaluation

We modelled and simulated a cloud environment using CloudSim [30], a prominent cloud computing simulation

framework. Figure 5 shows the interaction of different entities for simulation. Table 4 presents the resource

configuration of the simulation as we used in our previous research work [39] [46]. We used three Physical Machines

(PMs) with different number of virtual nodes (6, 4 and 2) and virtual nodes are further divided into instances called

Execution Components (ECs).

Software as a Service Platform as a Service Infrastructure as a Service

Figure 5: Interaction of various Entities in the Simulated Cloud Environment

Every EC contains their own cost of execution and it is measured with unit (C$/EC time unit (Sec)). EC measures cost

per time unit in Cloud dollars (C$).

Table 4: Configuration Details

Resource_Id Configuration Specifications Core Operating

System

Number of

Virtual Nodes

Number

of ECs

Price

(C$/EC

time unit)

R1 Intel Core 2
Duo - 2.4 GHz

6 GB RAM and
320 GB HDD

2 Windows 6 (1 GB and
50 GB)

18 2

R2 Intel Core i5-

2310- 2.9GHz

4 GB RAM and

160 GB HDD

2 Linux 4 (1 GB and

40 GB)

12 3

R3 Intel XEON E
52407-2.2 GHz

2 GB RAM and
160 GB HDD

2 Linux 2 (1 GB and
60GB)

6 4

We have integrated temperature and cooling management model [34], renewable energy model [35], waste heat

management model [36], security manager [47] and Fault Injection Module (FIM-SIM) [45] to the CloudSim toolkit

for simulation as shown in Figure 6. We have integrated FIM-SIM [45] for fault management in CloudSim toolkit to

simulate failures (VM creation failures and host failures) as discussed in Case-1 of Section 5.3. The detailed

description about experimental setup is given in previous research work [39] [46].

For the execution of workloads in our experiments, we have chosen varied computational settings on top of

heterogeneous resources. The variety comes in the number of cores at the CPU-level, the page levels of the main

memory, switches at the network level and disk space at the storage level [30] [69] [70]. Cores is the number of

Processing Element’s (PE) required by the Cloudlet. Table 5 shows the simulation parameters utilized in the various

experiments undertaken by this research work, also as identified from the existing empirical studies and literature such

as fault management [6] [39] [46], application’s QoS [39] [44] [47] [46] [67], capacity planning [33] [65], energy

management [6] [7] [44] [67], waste heat utilization [36] [65], renewable energy [35] [38], virtualization [6] [7] [67],

Resource

Information

Resource Provisioner

Workload Resource

Matchmaker

CO-based Resource

Scheduler

Workload

Analyzer

Resource

Provider

Workload

Clustering

Cloud Resource Pool

Workload

Information
Q-aware

16

thermal-aware scheduling [34] [66] [68] and cooling management [38] [65] [66] [68]. Experimental setup incorporated

CloudSim to produce and retrieve simulation results.

Figure 6: Design Description using Class Diagram

5.1 Workload

For performance evaluation, we have selected four different types of cloud workload from every cluster of workloads

as given in Table 3. Table 6 shows the different cloud workloads, which are considered to evaluate the performance

of CRUZE. To find the experiment statistics, 500-3000 different workloads are executed. CRUZE processes different

workloads using the different number of resources to evaluate its performance with different resource configuration.

We selected the Poisson Distribution [31] for workload submission in this research work due to following reasons: 1)

evaluating the performance of workload execution for specific interval of time and 2) every workload is independent

of all other workloads (number of workloads are arriving in first hour is independent of the number of workloads

arriving in any other hour).

Table 5: Simulation Parameters and their Values

Parameter Value

Number of VMs (n) 36

Number of Cloudlets (Workloads) 3000

Bandwidth 1000 - 3000 B/S

CPU MIPS 2000

Size of Cloud Workload 10000+ (10%–30%) MB

Number of PEs per machine 1

PE ratings 100-4000 MIPS

Cost per Cloud Workload 3 C$–5 C$

Memory Size 2048-12576 MB

File size 300 + (15%–40%) MB

Cloud Workload output size 300 + (15%–50%) MB

CPU Temperature 10-27 °C

EnergyManager

CloudSim

VMAllocationPolicy VMScheduler DataCenterCharacteristics CloudletScheduler

Q-aware CObasedScheduler WorkloadScheduler

Datacenter Network

CloudCoordinator

QoSManager

SecurityManager

FaultManager

CapacityPlanning ThermalManager

NonRenewable

Renewable

WasteHeatManager CoolingManager

VMManager

SimEvent

SimEntity FIM-SIM

FaultInjector

FaultEvent

FaultGenerator

FaultHandlerDatacenter

FaultInjectionModule

17

Inlet Temperature 15-40 °C

𝑊𝑚 = mass flow rate of the water entering the circulation system 0.08-0.024 kg/s

𝑊𝑠 = mass flow rate of the steam generated in the circulation system 0.03-0.134 kg/s

Power (KW) 108-273 KW

Latency 20-90 Seconds

𝐻𝑒𝑎𝑡𝑅𝑒𝑚𝑜𝑣𝑒𝑑 100-1,000 Joules/Second

Cache Memory Size 4 MB – 16 MB

Energy Reused 40 – 85%

Power Consumption by Processor 130W – 240W

Power Consumption by Cooling Devices 400 W – 900W

Power Consumption by RAM 10W – 30W

Power Consumption by Storage 35W – 110W

Power Consumption by Network 70W-180W

Power Consumption by Extra Components 2W-25W

Equipment cost (𝐸𝑖) 4-30 C$

Support contract cost (S𝑖) 5-15 C$

Administrative costs (A𝑖) 15-50 C$

Power cost per month (P𝑖) 12-30 C$

Rack cost per month (R𝑖) 3-12 C$

Communication cost (C𝑖) 2-17 C$

CRUZE also maintains the details of every executed workload and stores into workload database, which can be used

to test the efficiency of CRUZE in future. For experimental results, we executed four different workloads [(i) Storage

and Backup Data, (ii) Websites, (iii) Performance Testing and (iv) Software Development and Testing] with the same

experimental setup.
Table 6: Details of Cloud Workloads

Workload Cluster Description

Performance Testing Compute (C1) CRUZE processes and converts an image file (713 MB) to PNG format from JPG format.
The change of a one JPG file into PNG is taken as a workload (in the form of Cloudlet).

Storage and Backup

Data

Storage (C2) Store a huge chunk of data (5 TB) and generates a backup of data is considered as a

workload.

Websites Communication (C3) A large number of users are accessing a website of university during Admission Period is

considered as a workload.

Software Development

and Testing

Administration (C4) Development and testing of an Agri-Info Software to find out the productivity of a crop is

considered as a workload [32].

5.2 Baseline Resource Scheduling Approaches

In order to evaluate our approach, we have selected three state-of-the-art resource scheduling approaches from the

literature (as discussed in Section 2). We have selected most relevant and recent similar work such as HMRM [13],

CSRE [16] and CSMH [27] to evaluate the performance of our proposed approach. The other reasons of selection of

these existing scheduling approaches are: HMRM [13] manages cloud resources holistically by focusing on the energy

consumption and CSRE [16] executes workloads by improving the reliability of cloud service, while CSMH [27]

schedule resources in an energy-efficient manner using Cuckoo search meta-heuristic algorithm.

1) HMRM [13]: Holistic Model for Resource Management (HMRM) approach is designed for virtual cloud

environment to reduce energy consumption of different components of cloud datacenters such as storage and

network without focusing on memory, processors, cooling systems. HMRM executes only homogeneous cloud

workloads.

2) CSRE [16]: Cloud Service Reliability Enhancement (CSRE) approach is developed to improve the storage and

network resource utilization during execution of workloads. CSRE uses service checkpoint to store the state of

all the VMs, which are currently processing user workloads. Further, a node failure predicator is developed to

reduce the network resource consumption. CSRE executes only homogeneous workloads and considers only two

types of resources such as storage and network without focusing on memory, processors, cooling systems.

3) CSMH [27]: Cuckoo Search Meta-Heuristic (CSMH) algorithm based resource scheduling approach is designed

to optimize the energy consumption of cloud resources (processors only) for execution of homogeneous

workloads without focusing on other resources such as networks, memory, storage, cooling systems.

18

Our proposed approach (CRUZE) focuses on holistic management of all resources (including servers, networks,

memory, storage, cooling systems) to provide reliable as well as sustainable cloud services simultaneously, which

schedules the provisioned resources using evolutionary algorithm (Cuckoo Optimization) for the execution of

clustered and heterogeneous workloads within their specified deadline, budget and other important QoS parameters.

5.3 Experimental Results

All the experiments utilized four different workloads described in Table 6. The various parameters are used to evaluate

the performance of proposed approach for holistic resource management, which comprises of different categories such

as fault management, application’s QoS, capacity planning, energy management, waste heat utilization, renewable

energy, virtualization, thermal-aware scheduling and cooling management. The temporal evaluations are conducted

in a time period of 12 hours with 3000 workloads submitted. The performance of CRUZE is evaluated using following

different test cases:

Case 1 - Fault Management: We have evaluated the performance of CRUZE in terms of reliability and fault detection

rate for fault tolerance and used [Eq. 11] to measure the value of reliability. Fault detection rate is defined as the ratio

of number of faults/failures (hardware, software, network) detected to the total number of faults/failures in the system

[46]. Fault Detection Rate (FDR) is calculated using [Eq. 34].

FDR =
Number of Faults Detected

Total number of Faults
 (34)

Faults can be a network, software or hardware, which is detected based on the violation of SLA. The Software

faults/failures can be occurred due to following reasons: 1) lesser storage space, 2) resource unavailability, 3)

deadlocks and 4) unhandled exceptions. The reasons of hardware faults/failures can be problems in hardware parts

such as hard disk, primary memory and processor. Network error can be breakage of network, scalability or physical

damage.

FIM-SIM: We have integrated Fault Injection Module (FIM-SIM) [45] [46] to inject faults automatically to test the

reliability of CRUZE as shown in Figure 6. FIM-SIM is working based on event-driven models and injects faults into

the CloudSim [30] using different statistical distributions at runtime. A Weibull Distribution is used in order to model

failures characteristics when injecting faults [46]. We injected three types of faults: VM creation failures, host failures

(Processing Elements failure and memory failure) and high-level failures like cloudlets failures (which are caused by

any networking problem that CloudSim [30] cannot handle). The entities in CloudSim [30] communicate through

messages. Since host and VM are static entities, each change in their state should be realized by the datacenter. The

broker, based on the simulation configuration (number of cloudlets and their specification) will request the VM

creation, cloudlet scheduling and it will wait to be informed by the datacenter when the cloudlets completion is

realized. We have simulated VM creation failures, host failures (hardware failure) and cloudlets failures (network

failure) by creating fault injector thread, which sends the failure event based on the following command:

sendNow(dataCenter.getId(), FaultEventTags.HOST_FAILURE, host); and it generates the events based on statistical

distribution using Weibull Distribution [46]. The Fault Tolerance Module is extending the CloudSim core functions

(see Figure 6) with three entities (FaultInjector, FaultEvent and FaultHandlerDatacenter) as described in Table 7.

Table 7: Entitles of FIM-SIM and their functionalities

FaultInjector FaultEvent FaultHandlerDatacenter

 Extends the SimEntity class

 starts at simulation startup along with

the other entities from the system

 Responsible for inserting fault events at

random moments of time

 The random generation of moments of

time is based on a statistical distribution

(We used Weibull Distribution [46] for
this research work.)

 Extends the SimEvent class

 Describes a fault event: source,

destination, time and type; – tag type:

HOST FAILURE, CLOUDLET

FAILURE, CREATE VM FAILURE

 Created in the Fault Injection Module.

 extends the Datacenter class

 processes fault events sent by the

FaultGenerator

 It updates the cloudlet execution/status

according to the fault event type

 handles VM migration; – since host and

VM are static entities, all its state

modification should be processed by the
datacenter.

19

CRUZE uses the concept of Carburizer [37] [46] to perform process of hardware hardening, which reduces the

frequency of faults/failures. CRUZE replaces the new driver (harden driver) with original in case of fault and update

the database regarding new faults to avoid future faults, which improves the fault detection rate in CRUZE as

compared to HMRM, CSRE and CSMH. Figure 7 (a) shows the variation of fault detection rate for CRUZE, HMRM,

CSRE and CSMH. Fault detection rate is decreasing as number of workloads increases for CRUZE, HMRM, CSRE

and CSMH, but CRUZE performs better than HMRM, CSRE and CSMH. The average value of fault detection rate in

CRUZE is 19.99%, 21.14% and 22.45% more than HMRM, CSRE and CSMH respectively. Dynamic Random-Access

Memory (DRAM) provides the Check-pointing mechanism to store the current states of VMs in case of failure [46].

Figure 7 (b) shows the variation of reliability for CRUZE, HMRM, CSRE and CSMH with different number of

workloads (500-3000). The average value of reliability in CRUZE is 19.07%, 19.75% and 20.98% more than HMRM,

CSRE and CSMH respectively.

Case 2 - Application QoS: We have considered three performance parameters for application’s QoS: execution cost,

time and security [37]. Execution cost is defined as the total money that can be spent in one hour to execute the

application successfully and execution cost is measured in Cloud Dollars (C$) [2]. We have used following formula

to calculate Execution Cost (C) [Eq. 35].
𝐶 = 𝐸𝑡 × 𝑃𝑟𝑖𝑐𝑒 (35)

where “price” of a resource is calculated using Table 4 and the value of 𝐸𝑡 is calculated using [Eq. 36]. Figure 7 (c)

shows the comparison of CRUZE, HMRM, CSRE and CSMH in terms of execution cost and cost is increasing with

increase in number of workloads for CRUZE, HMRM, CSRE and CSMH, but CRUZE consumes less cost as

compared to HMRM, CSRE and CSMH. The average value of cost in CRUZE is 14.41%, 14.91% and 15.46% less

than HMRM, CSRE and CSMH respectively.

In resource scheduler, CRUZE considers the impact of other workloads on current workload during execution.

CRUZE schedules provisioned resources using Q-aware [37], which clusters the workloads and execute within

their specified deadline and budget. Execution time is the amount of time required to execute application

successfully and execution time is measured in Seconds [2]. [Eq. 36] is used to calculate Execution Time (𝐸𝑡).

𝐸𝑡 = ∑ (
𝑊𝐶𝑖 − 𝑊𝑆𝑖

𝑚
)

𝑚

𝑖=1

+ 𝛥𝑡𝑖 (36)

Where 𝑊𝐶𝑖 is workload completion time and 𝑊𝑆𝑖 is workload submission time, 𝛥𝑡𝑖 is time to restart the node

and m is the number of workloads. Figure 7 (d) shows the variation of an execution time with different number

of workloads and time is increasing with increase in number of workloads for both CRUZE, HMRM, CSRE

and CSMH. The average value of execution time in CRUZE is 9.96%, 10.35% and 12.11% less than HMRM,

CSRE and CSMH respectively because CRUZE tracks the resource states automatically for effective

decisions. Security is an ability of the computing system to protect the system from malicious at tacks and

measured in terms of Intrusion Detection Rate (IDR) [47]. IDR is described in [Eq. 37], which is the ratio of

total number of true positives to the total number of intrusions.

𝐼𝐷𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑠
 (37)

IDR considers the number of detected and blocked attacks. CRUZE deploys security agents on different

computing systems, which trace unknown attacks (using an anomaly-based detector) and known attacks (using

a signature-based detector). It captures new anomalies based on existing data stored in the central database

(SNORT DB). CRUZE captures and detects anomalies using the Intrusion Detection System and labels it as

anomalous or normal traffic data by comparing its signatures with the signatures of known attacks [47]. A

State Vector Machine-based security agent detects the new anomalies and stores the information into the

database to maintain a log about attacks. CRUZE protects from security attacks: DDoS (HTTP Flood and

Zero-Day Attack), Probing (NMAP and Ports sweep), U2R (Buffer Overflow and Rootkits), R2L (IMAP,

Guess password and SPY) and DoS (Teardrop, SYN Flood, LAND and Smurf) as discussed in previous

research work [47]. Figure 7 (e) shows the comparison of CRUZE, HMRM, CSRE and CSMH in terms of

intrusion detection rate with different number of workloads. The value of intrusion detection rate is increasing

20

with increase in number of workloads, but CRUZE performs better than HMRM, CSRE and CSMH. The value

of intrusion detection rate in CRUZE is 19.20%, 21.45% and 20.86% more than HMRM, CSRE and CSMH

respectively, because CRUZE uses an anomaly detector component i.e. SNORT [47]. It is a signature based

system to detect known attacks automatically and stores the signature of attack into dat abase if attack is

unknown.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 7: Comparison of algorithms: (a) Fault Detection Rate, (b) Reliability, (c) Execution Cost, (d) Execution Time, (e) Intrusion Detection Rate,

(f) Network Bandwidth, (g) SLA Violation Rate, (h) Availability, (i) Resource Contention. Note: We have considered 36 resources for these results.

We have measured other important QoS parameters such as network bandwidth, SLA violation rate,

availability, resource contention to test the performance of CRUZE with different number of workloads and

formulas to calculate the value of these QoS parameters is described in previous research work [31] [37] [46].

Figure 7 (f) shows the value of network bandwidth in CRUZE is 14.44%, 16.31% and 18.73% less than

HMRM, CSRE and CSMH respectively. This is because, CRUZE identifies the network faults automatically

and it also prevents system from security attacks as discussed above, which improves the network bandwidth

of CRUZE as compared to HMRM, CSRE and CSMH. Figure 7 (g) shows the value of SLA violation rate in

CRUZE is 23.68%, 24.42% and 27.45% less than HMRM, CSRE and CSMH respectively. This is because,

CRUZE uses admission control and reserve resources for execution of workloads in advance based on their

QoS requirements specified in the SLA document. Further, CRUZE outperforms as it regulates the resources

at runtime based on the user's new QoS requirements during its execution to avoid SLA violation. Figure 7

(h) shows the value of availability in CRUZE is 12.45%, 13.91% and 15.34% more than HMRM, CSRE and

CSMH respectively. This is expected as the recovering faulty task manages the faults efficiently in CRUZE,

which further improves the availability of cloud services. Figure 7 (i) shows the value of resource contention

in CRUZE is 17.56%, 18.79% and 19.42% less than HMRM, CSRE and CSMH respectively. This is expected

as the workload execution is done using CRUZE, which is based on QoS parameters based resource

provisioning policy (Q-aware). Based on deadline and priority of workload, clustering of workloads is

performed, and resources are provisioned for effective scheduling. This is also because of the low variation

in execution time across various resources as the resource list that is obtained from the resource provisioning

unit is already filtered using Q-aware [31].

0

20

40

60

80

100

500 1000 1500 2000 2500 3000F
au

lt
 D

et
ec

ti
o

n
 R

at
e

(%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH
0

20

40

60

80

100

120

500 1000 1500 2000 2500 3000

R
el

ia
b
il

it
y
 (

%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH
0

100

200

300

400

500

500 1000 1500 2000 2500 3000

E
x
ec

u
ti

o
n
 C

o
st

 (
C

$
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH

0

200

400

600

800

1000

1200

1400

500 1000 1500 2000 2500 3000

E
x
ec

u
ti

o
n
 T

im
e

(S
ec

o
n
d
s)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

20

40

60

80

100

500 1000 1500 2000 2500 3000

In
tr

u
si

o
n
 D

et
ec

ti
o

n
 R

at
e

(%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

500

1000

1500

2000

2500

500 1000 1500 2000 2500 3000

N
et

w
o

rk
 B

an
d
w

id
th

(B
it

s/
S

ec
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH

0
5

10
15
20
25
30
35
40

500 1000 1500 2000 2500 3000S
L

A
 V

io
la

ti
o

n
 R

at
e

(%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

20

40

60

80

100

500 1000 1500 2000 2500 3000

A
v
ai

la
b
il

it
y
 (

%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500 3000R
es

o
u
rc

e
C

o
n
te

n
ti

o
n
 (

%
)

Number of Worklods

CRUZE

HMRM

CSRE

CSMH

21

Case 3 - Capacity Planning: We have considered memory, disk and network utilization as a performance

parameter for capacity planning and it is measured in percentage (%) using [Eq. 14], [Eq. 16] and [Eq. 17]

respectively. Figure 8 (a) shows the memory utilization during workload execution for CRUZE, HMRM,

CSRE and CSMH and CRUZE executes the same number of workloads with better memory utilization. The

value of memory utilization in CRUZE is 24.78%, 25.45% and 25.91% more than HMRM, CSRE and CSMH

respectively. Figure 8 (b) shows the disk utilization during workload execution for CRUZE, HMRM, CSRE

and CSMH and CRUZE executes the same number of workloads with better disk utilization. The value of disk

utilization in CRUZE is 18%, 18.5% and 19.18% more than HMRM, CSRE and CSMH respectively. CRUZE

gives higher memory and disk utilization as the algorithm consumes resources dynamically based on the

requirement of current workloads and unused resources are scaled back to the resource pool. CRUZE keeps

only the required number of resources active, thus increasing its utilization efficiency. Figure 8 (c) shows the

network utilization during workload execution for CRUZE, HMRM, CSRE and CSMH and CRUZE executes

the same number of workloads with better network utilization. The value of network utilization in CRUZE is

12.77%, 11.68% and 12.25% more than HMRM, CSRE and CSMH respectively because CRUZE performs

data transmission with the least packet loss when network utilization reaches at its higher value. CRUZE has

FIM-SIM based fault manager (as discussed in Case-1) to detect faults at runtime, which further reduces the

occurrence of same network faults in future and it improves network utilization.

(a)

(b)

(c)

Figure 8: Comparison of algorithms: (a) Memory Utilization, (b) Disk Utilization, (c) Network Utilization. Note: We have considered 36 resources

for these results.

Case 4 - Energy Management: We have evaluated the performance of CRUZE in terms of energy

consumption for energy management and used [Eq. 10] to measure the value of energy consumption, which

is measured in kilo Watt hour (kWh). Figure 9 (a) shows the variation of energy consumption with different

number of workloads and the average value of energy consumption in CRUZE is 17.35%, 18.71% and 20.10%

less than HMRM, CSRE and CSMH respectively. This is because CRUZE executes clustered workloads

instead of individual workloads, which minimizes the network traffic and number of switches and further

reduces energy consumption.

Case 5 - Virtualization: We have evaluated the performance of CRUZE in terms of CPU utilization and VM

Co-Location Cost for virtualization. Figure 9 (b) shows the variation of CPU utilization with different number

of workloads for CRUZE, HMRM, CSRE and CSMH. The experimental result show that the average value of

CPU utilization in CRUZE is 11.12%, 14.45% and 15.69% more than HMRM, CSRE and CSMH respectively

because best resources are identified using resource provisioning technique for scheduling. Provisioning based

scheduling of resources consumes slightly more time initially and then it avoids underutilization and

overutilization of resources during scheduling. VM Co-Location Cost is the total cost of VM migration from

one cloud datacenter to another [40] [54] and it is calculated using [Eq. 38].

𝑉𝑀 𝐶𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = ∑(𝐸𝑖 + S𝑖 + A𝑖 + P𝑖 + R𝑖 + C𝑖) (38)

𝑛

𝑖=1

Where 𝐸𝑖 is Equipment cost (installation cost), S𝑖 is Support contract cost (maintenance cost per month), A𝑖 is

Administrative costs (includes server, storage, network cost per month), P𝑖 is Power cost per month (to run

CDC), R𝑖 is Rack cost per month, C𝑖 is communication cost and n is the number of VMs. Figure 9 (c) shows

the comparison of VM Co-Location Cost for CRUZE, HMRM, CSRE and CSMH to execute different number

workloads. The average value of VM Co-Location Cost in CRUZE is 6.25%, 6.91% and 7.15% less than

HMRM, CSRE and CSMH respectively because CRUZE identifies the nearest CDC, which consumes more

0

20

40

60

80

100

500 1000 1500 2000 2500 3000M
em

o
ry

 U
ti

li
za

ti
o

n
 (

%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

20

40

60

80

100

500 1000 1500 2000 2500 3000

D
is

k
 U

ti
li
za

ti
o

n
 (

%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

20

40

60

80

100

500 1000 1500 2000 2500 3000N
et

w
o

rk
 U

ti
li
z
at

io
n
 (

%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH

22

renewable energy as compared to other CDCs. The migration of VM to nearest CDC also reduces the

communication cost, which further optimize the value of VM Co-Location Cost.

Case 6 - Renewable Energy: We have evaluated the performance of CRUZE in terms of Energy Reuse

Effectiveness for renewable energy. Energy Reuse Effectiveness is the ratio of energy (reused) consumed by

Cooling, Lighting and IT devices to the total energy consumed by IT devices [35] and described in [Eq. 19].

Figure 9 (d) shows the amount of renewable energy reused during the execution of different number of

workloads. The value of energy reuse effectiveness in CRUZE is 17.56%, 19.45% and 20.99% greater than

HMRM, CSRE and CSMH respectively because CRUZE mainly selects the CDC which are utilizing more

renewable energy as compared to grid energy. CRUZE manages the energy produced from renewable and non -

renewable sources and sustainable CDCs focuses more on renewable energy sources (solar and wind). To

provide reliable services, CDC can prefer grid energy for the execution of deadline-aware workloads.

Case 7 - Thermal-aware Scheduling: We used Computer Room Air Conditioning (CRAC) model based

temperature model [34] to test the performance of CRUZE in terms of datacenter temperature for thermal-

aware scheduling. Datacenter Temperature is the operating temperature of CDC and it is measured in degree

Celsius (°C) as described in [Eq. 20]. The variations of the temperature of different hosts (PMs) is measured,

monitored and controlled by proactive temperature-aware scheduler. We used an analytical model [64] [65]

[66] for the CRAC to measure the temperature of different PMs. Figure 9 (e) shows the comparison of

datacenter (CDC) temperature with different number of workloads. The average value of temperature in

CRUZE is 13.76%, 14.91% and 15.30% less than HMRM, CSRE and CSMH respectively. This is because

CRUZE optimizes the resource utilization, avoids underloading and overloading of resources and uses

minimum energy consumption by reducing the number of components such as number of switches, adapters

etc. The other reasons of optimized temperature are effective CRAC-based cooling management [34] and

dynamic capacity planning for workload execution. CRUZE automatically switched-off the idle resources in

CDC, which also reduces the heat and temperature.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9: Performance of different scheduling algorithms: (a) Energy Consumption, (b) CPU Utilization, (c) VM Co-Location Cost, (d) Energy

Reuse Effectiveness, (e) Datacenter Temperature, (f) Recirculation Ratio. Note: We have considered 36 resources for these results.

Case 8 - Waste Heat Utilization: We have evaluated the performance of CRUZE in terms of Recirculation

Ratio. Recirculation Ratio is the amount of waste-water that flows through the advanced pretreatment

component divided by the amount of waste-water that is sent to the final treatment and dispersal component

[36] and it is described in [Eq. 20]. Figure 9 (f) shows the value of recirculation ratio for CRUZE, HMRM,

CSRE and CSMH during the execution of workloads and the average value of recirculation ratio in CRUZE

is 3.42%%, 4.77% and 4.97% more than HMRM, CSRE and CSMH respectively. CRUZE performs effective

than HMRM, CSRE and CSMH because CRUZE has capability to reuse waste heat in district heating, which

further reduces the cost of utilization of waste heat.

0

20

40

60

80

100

120

140

500 1000 1500 2000 2500 3000

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

k
W

h
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH 0

20

40

60

80

100

500 1000 1500 2000 2500 3000

C
P

U
 U

ti
li
za

ti
o

n
 (

%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH
0

50

100

150

200

500 1000 1500 2000 2500 3000V
M

 C
o

-L
o

ca
ti

o
n
 C

o
st

(C
$
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

E
n
er

g
y
 R

eu
se

E
ff

ec
ti

v
e
n
e
ss

 (
%

)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH
0

10

20

30

40

500 1000 1500 2000 2500 3000D
at

ac
en

te
r

T
em

p
er

at
u
re

(°
C

)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH
0

20

40

60

80

100

500 1000 1500 2000 2500 3000R
ec

ir
cu

la
ti

o
n
 R

at
io

 (
%

)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH

23

Case 9 - Cooling Management: We have evaluated the performance of CRUZE in terms of Datacenter

Cooling System (DCS) Efficiency. DCS Efficiency is the amount of cooling capacity to remove heat per unit

of energy it consumes to maintain the cooling of CDC [38] and is described in [Eq. 21]. For cooling

management, the district heating management uses water economizer, outside air economizer and chiller plant

to control the temperature of CDC. Figure 10 shows the variation of DCS Efficiency with execution of

different number of workloads for CRUZE, HMRM, CSRE and CSMH. The average value of DCS Efficiency

in CRUZE is 9.98%, 10.23% and 11.56% more than HMRM, CSRE and CSMH respectively because CRUZE

uses district heating management module for effective management of cooling. Figure 11 shows the variation

of cooling energy [Eq. 7] with the execution of different number of workloads for CRUZE, HMRM, CSRE

and CSMH. The average value of cooling energy in CRUZE is 15.66%, 18.31% and 22.65% less than HMRM,

CSRE and CSMH respectively because CRUZE dynamically switched-on/off the cooling components for

different workload intensity, which further reduces the cooling power. Note: We have considered 36 resources

for these results.

Figure 10: DCS Efficiency vs. Number of Workloads.

Figure 11: Cooling Energy vs. Number of Workloads.

5.3.1 Comparison of algorithms for different time intervals: We have compared the performance of proposed

algorithm with existing algorithms for different time intervals. Figure 12 (a) demonstrates that memory utilization

during execution of workloads for CRUZE, HMRM, CSRE and CSMH and the value of memory utilization in CRUZE

is 27.77%, 28.11% and 29.12% more than HMRM, CSRE and CSMH respectively for different time period. Figure

12 (b) shows the variation of energy consumption with different time interval and the average value of energy

consumption in CRUZE is 14.46%, 15.35% and 18.86% less than HMRM, CSRE and CSMH respectively. Figure 12

(c) demonstrates the variation of CPU utilization with different number of workloads for different scheduling

techniques. The experimental result show that the average value of CPU utilization in CRUZE is 12.55%, 13.91% and

14.04% more than HMRM, CSRE and CSMH respectively. This is expected as the workload execution is performed

based on QoS-aware resource provisioning policy (Q-aware). Based on deadline of workload, clustering of workloads

is performed, and resources are provisioned for effective scheduling. This is also because of the low variation in

execution time across various resources as the resource list that is obtained from the resource provisioning unit is

already filtered using Q-aware [31]. Based on QoS requirements of a specific workload, resource provisioning

consumes little more time to find out the best resources [31], but later it increases the overall performance of CRUZE.

Therefore, underutilization and overutilization of CPU will be assuaged or avoided, which reduces the further queuing

time. Figure 12 (d) presents the comparison of datacenter (CDC) temperature for different time intervals. The average

value of temperature in CRUZE is 8.46%, 10.45% and 13.33% less than HMRM, CSRE and CSMH respectively.

Figure 12 (e) shows the variation of DCS Efficiency for different resource scheduling approaches with different time

interval. The average value of DCS Efficiency in CRUZE is 11.46%, 12.75% and 13.01% more than HMRM, CSRE

and CSMH respectively. Figure 12 (f) shows the variation of reliability for different algorithms with different value

of time interval. The average value of reliability in CRUZE is 9.21%, 9.99% and 10.21% more than HMRM, CSRE

and CSMH respectively. Figure 12 (g) presents the comparison of execution time for different time intervals. The

average value of execution time in CRUZE is 17.65%, 18.95% and 19.63% less than HMRM, CSRE and CSMH

respectively. Figure 12 (h) shows the variation of execution cost for resource management approaches with different

time interval. The average value of execution cost in CRUZE is 15.89%, 17.72% and 19.81% less than HMRM, CSRE

and CSMH respectively. Figure 12 (i) shows the variation of SLA violation rate for different resource scheduling

algorithms with different time interval. The average value of SLA violation rate in CRUZE is 24.35%, 27.29% and

31.42% less than HMRM, CSRE and CSMH respectively. Note: We have considered 36 resources and 3000 workloads

for these results.

0

10

20

30

40

50

60

70

80

90

100

500 1000 1500 2000 2500 3000

D
C

S
 E

ff
ic

ie
n
c
y
 (

%
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH
0

10

20

30

40

50

60

500 1000 1500 2000 2500 3000

C
o

o
li
n
g
 E

n
er

g
y
 (

k
W

h
)

Number of Workloads

CRUZE

HMRM

CSRE

CSMH

24

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 12: Comparison of algorithms for different time intervals: (a) Memory Utilization, (b) Energy Consumption, (c) CPU Utilization,

(d) Datacenter Temperature, (e) DCS Efficiency, (f) Reliability, (g) Execution Time, (h) Execution Cost, (i) SLA Violation Rate

5.3.2 Trade-off among different Performance Parameters: Figure 13 shows the trade-off among energy

consumption, reliability and CPU utilization for execution of workloads using CRUZE. With increasing energy

consumption, the value of CPU utilization and reliability is decreasing while reliability of cloud service is increasing

with increase in CPU utilization. It is clearly shown that energy consumption is inversely proportional to reliability

and CPU utilization, while reliability is proportional to CPU utilization. Note: We have considered 36 resources and

3000 workloads for these results.

Figure 13: Trade-off among Energy Consumption, Reliability and CPU Utilization

0

20

40

60

80

100

2 4 6 8 10 12M
em

o
ry

 U
ti

li
za

ti
o

n
 (

G
B

)

Time (Hours)

CRUZE

HMRM

CSRE

CSMH 0

20

40

60

80

100

120

2 4 6 8 10 12

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

k
W

h
)

Time (Hours)

CRUZE

HMRM

CSRE

CSMH

0

20

40

60

80

100

2 4 6 8 10 12

C
P

U
 U

ti
li
za

ti
o

n
 (

%
)

Time (Hours)

CRUZE

HMRM

CSRE

CSMH

0

10

20

30

40

2 4 6 8 10 12D
at

ac
en

te
r

T
em

p
er

at
u
re

(°
C

)

Time (Hours)

CRUZE

HMRM

CSRE

CSMH

0

20

40

60

80

100

2 4 6 8 10 12
D

C
S

 E
ff

ic
ie

n
c
y
 (

%
)

Time (Hours)

CRUZE

HMRM

CSRE

CSMH
0

20

40

60

80

100

2 4 6 8 10 12

R
el

ia
b
il

it
y
 (

%
)

Time (Hours)

CRUZE

HMRM

CSRE

CSMH

0

200

400

600

800

2 4 6 8 10 12

E
x
ec

u
ti

o
n
 T

im
e

($
)

Time (Hours)

CRUZE

HMRM

CSRE

CSMH
0

100

200

300

400

500

2 4 6 8 10 12

E
x
ec

u
ti

o
n
 C

o
st

 (
C

$
)

Time (Hours)

CRUZE

HMRM

CSRE

CSMH
0

10

20

30

40

50

2 4 6 8 10 12S
L

A
 V

io
la

ti
o

n
 R

at
e

(%
)

Time (Hours)

CRUZE

HMRM

CSRE

CSMH

80

85

90

95

75

80

85

90

95

70
75

80
85

90
95

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
k

W
h

)

CPU Utilization (%)

75-80 80-85 85-90 90-95

25

Figure 14 (a) shows the variation of intrusion detection rate for CRUZE, HMRM, CSRE and CSMH. The value of

reliability is increasing as Intrusion detection rate increases for all the approaches, but CRUZE performs better than

HMRM, CSRE and CSMH. The average value of Intrusion detection rate in CRUZE is 70%.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 14: Trade-off between different Performance Parameters: (a) Intrusion Detection Rate vs. Reliability, (b) SLA Violation Rate

vs. Latency, (c) Fault Detection Rate vs. Latency, (d) Network Bandwidth vs. Reliability, (e) Datacenter Temperature vs. Reliabil ity,

(f) Energy Consumption vs. Intrusion Detection Rate, (g) Energy Consumption vs. Reliability, (h) Energy Consumption vs. Execu tion
Time, (i) Energy Consumption vs. Execution Cost, (j) Energy Consumption vs. Latency, (k) Energy Consumption vs. SLA Violation

Rate, (l) Energy Consumption vs. Network Bandwidth

Latency (L) is defined as a difference between expected execution time and actual execution time. We have

used following formula to calculate Latency [Eq. 39]:

L = ∑(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑖) (39)

𝑛

𝑖=1

Where n is number of workloads. The value of [Number of workloads × number on resources] for every workload on

resources is calculated from Expectable Time to Compute (ETC) matrix [46]. Columns of ETC matrix demonstrate

the estimated execution time for a specific workload while rows on ETC matrix demonstrate the execution time of a

workload on every resource. In this research work, the ETC benchmark simulation model is used, which has been

0

20

40

60

80

100

70 75 80 85 90 95

In
tr

u
si

o
n
 D

et
ec

ti
o

n
 R

at
e

(%
)

Reliability (%)

CRUZE

HMRM

CSRE

CSMH
0

20

40

60

80

100

30 40 50 60 70 80S
L

A
 V

io
la

ti
o

n
 R

at
e

(%
)

Latency (Seconds)

CRUZE

HMRM

CSRE

CSMH
0

20

40

60

80

100

95 90 85 80 75 70

L
at

en
cy

 (
S

ec
o

n
d
s)

Fault Detection Rate (%)

CRUZE

HMRM

CSRE

CSMH

0

500

1000

1500

2000

2500

70 75 80 85 90 95

N
et

w
o

rk
 B

an
d

w
id

th

(B
it

s/
S

ec
)

Reliability (%)

CRUZE

HMRM

CSRE

CSMH
0

10

20

30

40

95 90 85 80 75 70D
at

ac
en

te
r

T
em

p
er

at
u
re

(°
C

)

Reliability (%)

CRUZE

HMRM

CSRE

CSMH
0

20

40

60

80

100

120

140

65 70 75 80 85 90

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

k
W

h
)

Intrusion Detection Rate (%)

CRUZE

HMRM

CSRE

CSMH

0

20

40

60

80

100

120

140

65 70 75 80 85 90

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

k
W

h
)

Reliability (%)

CRUZE

HMRM

CSRE

CSMH
0

20

40

60

80

100

120

140

120 150 180 210 240 270

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

k
W

h
)

Execution Time (Seconds)

CRUZE

HMRM

CSRE

CSMH
0

20

40

60

80

100

120

190 200 210 220 230 240

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

k
W

h
)

Execution Cost (C$)

CRUZE

HMRM

CSRE

CSMH

0
10
20
30
40
50
60
70
80

30 40 50 60 70 80

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

k
W

h
)

Latency (Seconds)

CRUZE

HMRM

CSRE

CSMH 0

20

40

60

80

100

5 10 15 20 25 30

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n

(k
W

h
)

SLA Violation Rate (%)

CRUZE

HMRM

CSRE

CSMH
0

50

100

150

1000 1200 1400 1600 1800 2000

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n

(k
W

h
)

Network Bandwidth (B/Sec)

CRUZE

HMRM

CSRE

CSMH

26

introduced in [62] to address the problem of resource scheduling. The expected execution time of the workloads can

be derived from workload task length or historical trace data [46]. A high variation in execution time of the same

workload is generated using the gamma distribution method. In the gamma distribution method, a mean workload

execution time and coefficient of variation are used to generate ETC matrix [63]. Table 8 shows a 10 × 6 subset of

the ETC matrix and results provided in this research work used the matrix of size 90 x 36. These are then used to find

out the best resource to execute workload with minimum time.

Table 8: A 10 × 6 Subset of the ETC Matrix

Workloads 𝒓𝟏 𝒓𝟐 𝒓𝟑 𝒓𝟒 𝒓𝟓 𝒓𝟔

𝒘𝟏 212.14 341.44 336.65 109.66 150.46 185.58

𝒘𝟐 152.61 178.26 149.78 114.26 198.92 148.69

𝒘𝟑 147.23 190.23 180.26 121.65 141.65 152.69

𝒘𝟒 103.62 159.63 192.85 107.69 139.89 139.36

𝒘𝟓 178.65 171.35 201.05 127.65 169.36 201.66

𝒘𝟔 193.62 142.65 205.36 132.26 188.33 207.72

𝒘𝟕 187.24 138.23 217.58 147.69 112.39 210.98

𝒘𝟖 124.13 110.65 212.39 141.26 135.88 169.35

𝒘𝟗 138.56 123.65 170.26 181.65 116.61 142.87

Figure 14 (b) shows the variation of SLA violation rate for CRUZE, HMRM, CSRE and CSMH with different

values of latency. The value of SLA violation rate is increasing as latency increases for all the algorithms, but

CRUZE performs better than other algorithms. The average value of SLA violation rate is 67%, which is quite

less than HMRM, CSRE and CSMH. Figure 14 (c) shows the variation of latency for CRUZE, HMRM, CSRE

and CSMH with different value of fault detection rate. Latency is increasing as the value of fault detection

rate decreases for all resource scheduling techniques, but CRUZE performs better than other techniques. The

average value of latency in CRUZE is 8.32%, 8.49% and 9.31% less than HMRM, CSRE and CSMH

respectively. The reduction in failure rate, latency and improvement in fault detection rate increases the

reliability in CRUZE.

Figure 14 (d) shows the impact of network bandwidth (bits/seconds) on reliability. The value of reliability is

increasing as network bandwidth increases for all the approaches, but the average value of network bandwidth

in CRUZE is 9.26%, 10.55% and 11.62% less than HMRM, CSRE and CSMH respectively . Figure 14 (e)

shows the impact of datacenter temperature (°C) on reliability. The value of reliability is increasing as

datacenter temperature decreases for CRUZE, HMRM, CSRE and CSMH, but CRUZE gives better results as

compared to other algorithms. The value of datacenter temperature is 13°C in CRUZE at 95% reliability and

the average value of temperature is 21°C in CRUZE. Figure 14 (f) shows the variation of energy consumption

for different scheduling techniques with different value of intrusion detection rate. The value of energy

consumption is increasing as the value of intrusion detection rate decreases for CRUZE, HMRM, CSRE and

CSMH, but CRUZE gives better results and the average value of energy consumption in CRUZE is 79.5 kWh .

Figure 14 (g) shows the trade-off between energy consumption and reliability for all the algorithms and the

value of energy consumption is increasing as the value of reliability increases, but CRUZE has better outcome

as compared to existing algorithms. The average value of energy consumption in CRUZE is 7.47%, 9.42%

and 10.95% less than HMRM, CSRE and CSMH respectively. Figure 14 (h) shows the impact of execution

time on energy consumption for different scheduling algorithms and the value of energy consumption is

decreasing as the value of execution time increases for all approaches, but CRUZE consumes less energy as

compared to existing techniques. Figure 14 (i) shows the variation of energy consumption for CRUZE,

HMRM, CSRE and CSMH with different value of execution cost. The value of execution cost is increasing as

the value of energy consumption increases and the average value of energy consumption in CRUZE is 64 kWh

approximately. Overall CRUZE performs better than other techniques. The variation of energy consumption

with different value of latency is shown in Figure 14 (j) and it measures the impact of latency on energy

consumption and the consumption of energy is increasing as the value of latency decreases for all the resource

scheduling approaches, but CRUZE performs better than others. Figure 14 (k) shows the trade-off between

energy consumption and SLA violation rate and the value of energy consumption is increasing as the value of

SLA violation rate decreases for all the approaches, but CRUZE performs better than HMRM, CSRE and

27

CSMH. The impact of network bandwidth on energy consumption is measured in Figure 14 (l) and the value

of energy consumption is increasing as the value of network bandwidth increases. The value of network

bandwidth in CRUZE is 16.68%, 17.35% and 17.99% less than HMRM, CSRE and CSMH respectively.

5.3.3 Straggler Analysis: Due to the increased complexity of modern large-CDCs, certain emerging

phenomena, which can directly affect the performance of these systems occur [56]. This is also known as the

Long Tail Problem, or the scenario where a small number of task stragglers, negatively affect the time of the

workload completion. Task stragglers can occur within any highly parallelized system, which processes

workloads consisting of multiple tasks. We have analyzed the performance the effect of various parameters

on probability of stragglers. Note: We have considered 36 resources and 3000 workloads for these results.

Figure 15 (a) shows the probability of stragglers for different percentage of SLA Violation Rate (SVR). The

probability of stragglers is increasing as the value of SVR increases for CRUZE, HMRM, CSRE and CSMH,

but CRUZE performs better than other resource scheduling techniques. Figure 15 (b) shows the probability of

stragglers for different value of energy consumption. The probability of str agglers is increasing as the value

of energy consumption increases for all the algorithms, but the value of straggler probability in CRUZE is

5.45%, 5.95% and 6.36% less than HMRM, CSRE and CSMH respectively.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 15: Analysis of the effect of various performance parameters on Probability of Stragglers (P(s)): a) SLA Violation Rate, b) Energy

Consumption, c) CPU Utilization, d) Memory Utilization, e) Reliability, f) Latency, g) Network Bandwidth, h) Fault Detection Rate, and i) Intrusion

Detection Rate

Figure 15 (c) shows the probability of stragglers for different percentage of CPU utilization and its average value in

CRUZE is 0.24 and it shows the probability of stragglers is increasing as the value of CPU utilization increases for all

the resource scheduling techniques, but CRUZE performs better than others. The probability of stragglers is measured

for different value of memory utilization as shown in Figure 15 (d) and probability of stragglers is decreasing as the

value of memory utilization increases for different scheduling techniques, but CRUZE performs better than other

techniques. Figure 15 (e) shows the probability of stragglers for different value of reliability and it is increasing as the

value of reliability increases for CRUZE, HMRM, CSRE and CSMH, but CRUZE gives better results than others.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15 20 25 30

P
(s

)

SLA Violation Rate (%)

CRUZE

HMRM

CSRE

CSMH 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

20 40 60 80 100 120

P
(s

)

Energy Consumption (kWh)

CRUZE

HMRM

CSRE

CSMH 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

50 60 70 80 90 100

P
(s

)

CPU Utilization (%)

CRUZE

HMRM

CSRE

CSMH

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

70 75 80 85 90 95

P
(s

)

Memory Utilization (%)

CRUZE

HMRM

CSRE

CSMH 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

75 80 85 90 95 100

P
(s

)

Reliability (%)

CRUZE

HMRM

CSRE

CSMH 0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

P
(s

)

. Latency (Seconds)

CRUZE

HMRM

CSRE

CSMH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1250 1500 1750 2000 2250 2500

P
(s

)

Network Bandwidth (Bits/Sec)

CRUZE

HMRM

CSRE

CSMH 0

0.2

0.4

0.6

0.8

1

70 75 80 85 90 95

P
(s

)

Fault Detection Rate (%)

CRUZE

HMRM

CSRE

CSMH 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

65 60 75 80 85 90

P
(s

)

Intrusion Detection Rate (%)

CRUZE

HMRM

CSRE

CSMH

28

The probability of stragglers for different value of latency is measured in Figure 15 (f) and it shows the probability of

stragglers is increasing as the value of latency increases for CRUZE, HMRM, CSRE and CSMH, but CRUZE performs

better than other scheduling techniques. The average value of probability of stragglers in CRUZE is 0.41. Figure 15

(g) shows the probability of stragglers for different percentage of network bandwidth and CRUZE gives better results

than other techniques but the probability of stragglers is increasing as the value of network bandwidth increases for

all the scheduling techniques. Figure 15 (h) shows the probability of stragglers for different percentage of fault

detection rate. The probability of stragglers is decreasing as the value of fault detection rate increases for CRUZE,

HMRM, CSRE and CSMH, but CRUZE performs better than others. Figure 15 (i) shows the probability of stragglers

for different percentage of intrusion detection rate. The average value of probability of stragglers in CRUZE is 0.17

and the probability of stragglers is decreasing as the value of intrusion detection rate increases for every approach, but

CRUZE performs better than others. The average value of straggler probability in CRUZE is 11.22%, 14.01% and

15.77% less than HMRM, CSRE and CSMH respectively.

5.3.4 Energy Consumption Analysis: Figure 16 shows the consumption of energy by different components of CDC

such as processor, storage, memory, network, cooling and extra using CRUZE as per [Eq. 1]. The processor is most

power hungry component of CDC followed by cooling component. The remaining components (storage, memory,

network and extra) consumes energy between 2-7% of total energy consumption by CDC. Note: We have considered

36 resources and 3000 workloads for these results.

Figure 16: Energy Consumption of different Components of CDC in CRUZE

5.3.5 Convergence of CO Algorithm: Figure 17 plots the convergence of total energy consumed by CO algorithm

over the number of iterations for different value of Reliability: 95%, 90% and 85% by executing different number of

workloads. Initially the workloads are randomly initialized. Therefore, the total initial energy consumption is very

high at 0th iteration. As the algorithm progresses, the convergence is drastic and achieves global minima very quickly.

The number of iterations required for the convergence is seen to be 30-45, for our simulated cloud environment. Note:

We have considered 36 resources and 3000 workloads for these results.

Figure 17: The trend of convergence of CO with the number of iterations for different value of Reliability

55%

7%

6%

5%

25%

2%

Processor

Storage

Memory

Network

Cooling

Extra

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

E
n

e
r
g
y
 C

o
n

su
m

p
ti

o
n

 (
k

W
h

)

Number of Iterations

Reliability = 85%

Reliability = 90%

Reliability = 95%

29

Table 9 describes summary of experiment statistics and percentage of overall improvement of different performance

parameters.

Table 9: Summary of Experimental Statistics and Overall Improvement

Type of Experiment Performance Parameter Overall Improvement (%) Average

Improvement (%) HMRM CSRE CSMH

(Number of

Workloads)

Fault Detection Rate 19.99 21.14 22.45 21.2

Reliability 19.07 19.75 20.98 19.9

Execution Cost 14.41 14.91 15.46 14.9

Execution Time 9.96 10.35 12.11 10.8

Intrusion Detection Rate 19.20 21.45 20.86 20.5

Network Bandwidth 14.44 16.31 18.73 16.49

SLA Violation Rate 23.68 24.42 27.45 25.18

Availability 12.45 13.91 15.34 13.9

Resource Contention 17.56 18.79 19.42 18.59

Memory Utilization 24.78 25.45 25.91 25.38

Disk Utilization 18 18.5 19.18 18.56

Network Utilization 12.77 11.68 12.25 12.23

CPU Utilization 11.12 14.45 15.69 13.75

Energy Consumption 17.35 18.71 20.10 18.8

VM co-Location Cost 6.25 6.91 7.15 6.8

Datacenter Temperature 13.76 14.91 15.30 14.7

Energy Reuse Effectiveness 17.46 19.45 20.99 19.3

Recirculation Ratio 3.42 4.77 4.97 4.4

DCS Efficiency 9.98 10.23 11.56 10.6

(Time in Hours)

Memory Utilization 27.77 28.11 29.12 28.3

Energy Consumption 14.46 15.35 18.86 16.2

CPU Utilization 12.55 13.91 14.04 13.5

Datacenter Temperature 8.46 10.45 13.33 10.8

DCS Efficiency 11.46 12.75 13.01 12.4

Reliability 9.21 9.99 10.21 9.8

Execution Time 17.65 18.95 19.63 18.74

Execution Cost 15.89 17.72 19.81 17.8

SLA violation rate 24.35 27.29 31.42 27.68

5.4.6 Statistical Analysis: Statistical significance of the results has been analyzed by Coefficient of Variation

(𝐶𝑜𝑓𝑓. 𝑜𝑓 𝑉𝑎𝑟.), a statistical method. Coff. of Var. is used to compare to different means and furthermore offer an

overall analysis of performance of the framework used for creating the statistics. It states the deviation of the data as

a proportion of its average value, and is calculated as follows [Eq. 40]:

𝐶𝑜𝑓𝑓. 𝑜𝑓 𝑉𝑎𝑟. =
𝑆𝐷

M
 × 100 (40)

Where 𝑆𝐷 is a standard deviation and 𝑀 is a mean. 𝐶𝑜𝑓𝑓. 𝑜𝑓 𝑉𝑎𝑟. of waiting time of CRUZE, HMRM, CSRE and

CSMH is shown in Figure 18 (a). Range of 𝐶𝑜𝑓𝑓. 𝑜𝑓 𝑉𝑎𝑟. (0.48% - 1.03%) for energy consumption approves the

stability of CRUZE.

Figure 18: Coefficient of Variation for algorithms (a) energy consumption, (b) reliability

0

2

4

6

8

10

12

14

16

500 1000 1500 2000 2500 3000

C
o

ef
fi

c
ie

n
t

o
f

V
ar

ia
n
ce

 (
%

)

Number of Workloads

CSMH

CSRE

HMRM

CRUZE

0

5

10

15

20

25

500 1000 1500 2000 2500 3000

C
o

ef
fi

c
ie

n
t

o
f

V
ar

ia
n
ce

 (
%

)

Number of Workloads

CSMH

CSRE

HMRM

CRUZE

30

𝐶𝑜𝑓𝑓. 𝑜𝑓 𝑉𝑎𝑟. of reliability of CRUZE, HMRM, CSRE and CSMH is shown in Figure 18 (b). Range of

𝐶𝑜𝑓𝑓. 𝑜𝑓 𝑉𝑎𝑟. (0.63% - 1.33%) for reliability approves the stability of CRUZE. Value of 𝐶𝑜𝑓𝑓. 𝑜𝑓 𝑉𝑎𝑟. increases

as the number of workloads is increasing. Small value of 𝐶𝑜𝑓𝑓. 𝑜𝑓 𝑉𝑎𝑟. signifies CRUZE is more efficient and stable

in resource management in the situations where the number of cloud workloads are changing. CRUZE attained the

better results in the cloud for energy consumption and reliability has been studied with respect to number of workloads.

This research work is a practical implementation of the conceptual models that we proposed in our previous research

work [2] [44].

6. Summary and Conclusions

We proposed a Cuckoo Optimization (CO) algorithm based resource scheduling approach called CRUZE, for holistic

management of all resources (spanning servers, networks, storage, cooling systems) to improve the energy efficiency

and reduce carbon footprints in cloud datacenters and whilst maintaining cloud service reliability by managing the

failures (hardware, service, software or resource) dynamically. Furthermore, CRUZE schedules provisioned resources

for heterogeneous workload execution and it adjusts the resources at runtime according to the QoS requirements of

workloads, which can avoid or assuage under-utilization and over-utilization of resources. Experimental results

demonstrate that CRUZE improves the fault detection rate by 15.42%, reliability by 17.11%, intrusion detection rate

by 20.46%, CPU utilization by 15.69%, memory utilization by 25.91%, disk utilization by 19.18%, network utilization

by 12.25%, energy reuse effectiveness by 20.56%, recirculation ratio by 4.97% and DCS Efficiency by 11.56% and it

reduces the latency by 8.32%, execution cost by15.46%, execution time by 12.11%, energy consumption by 20.10%,

VM Co-Location Cost by 7.15% and datacenter temperature by 15.30% as compared to existing resource management

approaches. Finally, the trade-off among energy consumption, reliability and resource utilization for execution of

workloads is described.

6.1 Future Research Directions and Open Challenges

In the future, we shall explore the applicability of the present model and any potentially needed extensions in the

following main directions.

First, the modelling components for workflows analysis and QoS based characterization shall be extended with

knowledge of the external context that may inform our holistic management approach. This may require to use

additional modeling constructs that help capture the non-functional requirements of each particular application. This

is similar to the common technique of prioritization of jobs, for example, depending on the usage context the same

workflow can be launched with different priorities.

Second, we shall study possible extensions of the model to include exchange of information and actual hardware,

networking, software, storage, heat, and other resources with any other resources from the environment [2]. For

example, micro-data centers may be placed in blocks of flats, and the actual heating, ventilation, and air

conditioning HVAC (Heating, Ventilation and Air Conditioning) systems [1] may actually use the thermal energy

generated by the micro-data center. Moreover, jobs scheduling could happen during periods that inhabitants usually

spend at home, which in turn may define the hourly rate for hosting computations [3]. An economy of resources like

these may be facilitated by recent development in the area of Blockchain and Smart Contracts, but, it is still necessary

to study the theoretical foundations which may potentially lead to energy efficient management of highly distributed

Fog computing environments.

Third, many new applications rely on the Internet of Things (IoT) and have particular focus on Big Data management.

There is the necessity to implement Big Data pipelines starting from the IoT via Fog and Cloud nodes up to High-

Performance Data Centers [6] [7]. This requires the streaming of significant amounts of data over the network, which

in turn represents various management challenges, involving energy efficiency, time-critical operations, and similar

[50]. Some of these aspects were tackled by the present study, nevertheless, more in-depth simulations are necessary

to study the various arrangements of system components that lead to quasi-optimal states.

Finally, relationship between theory and practice is very important. Benchmarking is an important starting point,

which may try to relate the holistic aspects studied in our simulation in real-world practice. For example, various

workflow-based applications performing similar calculations, could be related among each other by analyzing the

entire hardware and software stack, including virtualization. This may lead to additional improvements of the

theoretical basis.

31

Acknowledgements

This research work is supported by the Engineering and Physical Sciences Research Council (EPSRC) - (EP/P031617/1),

Melbourne-Chindia Cloud Computing (MC3) Research Network and Australian Research Council (DP160102414). We would like

to thank the editor, area editor and anonymous reviewers for their valuable comments and suggestions to help and improve our

research paper. We would like to thank Dr. Yogesh Simmhan (IISc Bangalore, India), Dr. Adel Nadjaran Toosi (Monash University,

Australia), Mr. Shreshth Tuli (IIT Delhi, India), Mr. Amanpreet Singh (Thapar Institute of Engineering and Technology, India),

Mr. Manmeet Singh (Scientist at Indian Institute of Tropical Meteorology, India) and Mr. Damian Borowiec (Lancaster University,

UK) for their valuable comments, useful suggestions and discussion to improve the quality of the paper.

References

[1] Rajkumar Buyya and Sukhpal Singh Gill. "Sustainable Cloud Computing: Foundations and Future Directions." Business Technology &

Digital Transformation Strategies, Cutter Consortium, Vol. 21, no. 6, Pages 1-10, 2018.
[2] Sukhpal Singh Gill and Rajkumar Buyya. "A Taxonomy and Future Directions for Sustainable Cloud Computing: 360 Degree View, ACM

Computing Surveys, Vol 51, No. 5, Article No. 104, Pages: 1-33, 2019

[3] Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona Brandic, Jean-Marc Pierson, and Athanasios V. Vasilakos. "Cloud computing: Survey
on energy efficiency." ACM Computing Surveys, vol. 47, no. 2 (2015): 33.

[4] Junaid Shuja, Abdullah Gani, Shahaboddin Shamshirband, Raja Wasim Ahmad, and Kashif Bilal. "Sustainable cloud datacenters: a survey of

enabling techniques and technologies." Renewable and Sustainable Energy Reviews 62 (2016): 195-214.
[5] Yogesh Sharma, Bahman Javadi, Weisheng Si, and Daniel Sun. “Reliability and energy efficiency in cloud computing systems: Survey and

taxonomy.” Journal of Network and Computer Applications, vol. 74, pp. 66-85, 2016.

[6] Li, Xiang, Xiaohong Jiang, Peter Garraghan, and Zhaohui Wu. "Holistic energy and failure aware workload scheduling in Cloud datacenters."
Future Generation Computer Systems 78 (2018): 887-900.

[7] Balis, Bartosz, Robert Brzoza-Woch, Marian Bubak, Marek Kasztelnik, Bartosz Kwolek, Piotr Nawrocki, Piotr Nowakowski, Tomasz Szydlo,

and Krzysztof Zielinski. "Holistic approach to management of IT infrastructure for environmental monitoring and decision support systems
with urgent computing capabilities." Future Generation Computer Systems 79 (2018): 128-143.

[8] Li, Xiang, Peter Garraghan, Xiaohong Jiang, Zhaohui Wu, and Jie Xu. "Holistic virtual machine scheduling in cloud datacenters towards

minimizing total energy." IEEE Transactions on Parallel and Distributed Systems (2017).
[9] Natu, Maitreya, Ratan K. Ghosh, Rudrapatna K. Shyamsundar, and Rajiv Ranjan. "Holistic performance monitoring of hybrid clouds:

Complexities and future directions." IEEE Cloud Computing 3, no. 1 (2016): 72-81.

[10] Pérez, Juan F., Lydia Y. Chen, Massimo Villari, and Rajiv Ranjan. "Holistic Workload Scaling: A New Approach to Compute Acceleration
in the Cloud." IEEE Cloud Computing 5, no. 1 (2018): 20-30.

[11] Luo, Changqing, Laurence T. Yang, Pan Li, Xia Xie, and Han-Chieh Chao. "A holistic energy optimization framework for cloud-assisted

mobile computing." IEEE Wireless Communications 22, no. 3 (2015): 118-123.
[12] Liu, Bingwei, Yu Chen, Erik Blasch, Khanh Pham, Dan Shen, and Genshe Chen. "A holistic cloud-enabled robotics system for real-time

video tracking application." In Future Information Technology, pp. 455-468. Springer, Berlin, Heidelberg, 2014.

[13] Guzek, Mateusz, Dzmitry Kliazovich, and Pascal Bouvry. "A holistic model for resource representation in virtualized cloud computing data

centers." In Cloud Computing Technology and Science (CloudCom), 2013 IEEE 5th International Conference on, vol. 1, pp. 590-598. IEEE,

2013.
[14] Ferrer, Ana Juan, Francisco HernáNdez, Johan Tordsson, Erik Elmroth, Ahmed Ali-Eldin, Csilla Zsigri, RaüL Sirvent et al. "OPTIMIS: A

holistic approach to cloud service provisioning." Future Generation Computer Systems 28, no. 1 (2012): 66-77.

[15] Feller, Eugen, Cyril Rohr, David Margery, and Christine Morin. "Energy management in IaaS clouds: a holistic approach." In Cloud
Computing (CLOUD), 2012 IEEE 5th International Conference on, pp. 204-212. IEEE, 2012.

[16] Ao Zhou, Shangguang Wang, Zibin Zheng, Ching-Hsien Hsu, Michael R. Lyu and Fangchun Yang. "On cloud service reliability enhancement

with optimal resource usage." IEEE Transactions on Cloud Computing 4, no. 4, 452-466, 2016.
[17] Mingqiang Li, Chuan Qin, Jingwei Li and Patrick PC Lee. "CDStore: Toward reliable, secure, and cost-efficient cloud storage via convergent

dispersal." IEEE Internet Computing 20, no. 3, 45-53, 2016.

[18] Fatemeh Azimzadeh and Fatemeh Biabani. "Multi-objective job scheduling algorithm in cloud computing based on reliability and time." In
Web Research (ICWR), 2017 3th International Conference on, pp. 96-101. IEEE, 2017.

[19] Deepak Poola, Kotagiri Ramamohanarao, and Rajkumar Buyya, Enhancing Reliability of Workflow Execution Using Task Replication and

Spot Instances, ACM Transactions on Autonomous and Adaptive Systems (TAAS), Volume 10, Number 4, Article No. 30, Pages: 1-21,
ISSN:1556-4665, ACM Press, New York, USA, February 2016.

[20] Chenhao Qu, Rodrigo N. Calheiros and Rajkumar Buyya, A Reliable and Cost-Efficient Auto-Scaling System for Web Applications Using

Heterogeneous Spot Instances, Journal of Network and Computer Applications (JNCA), Volume 65, Pages: 167-180, ISSN: 1084-8045,
Elsevier, Amsterdam, The Netherlands, April 2016.

[21] Xunyun Liu, Aaron Harwood, Shanika Karunasekera, Benjamin Rubinstein and Rajkumar Buyya, E-Storm: Replication-based State

Management in Distributed Stream Processing Systems, Proceedings of the 46th International Conference on Parallel Processing (ICPP 2017,
IEEE CS Press, USA), Bristol, UK, August 14-17, 2017.

[22] Latiff, Muhammad Shafie Abd, Syed Hamid Hussain Madni, and Mohammed Abdullahi. "Fault tolerance aware scheduling technique for

cloud computing environment using dynamic clustering algorithm." Neural Computing and Applications 29, no. 1 (2018): 279-293.
[23] S. Shahdi-Pashaki, Ehsan Teymourian, Vahid Kayvanfar, GH M. Komaki and A. Sajadi. "Group technology-based model and cuckoo

optimization algorithm for resource allocation in cloud computing." IFAC-PapersOnLine 48, no. 3 (2015): 1140-1145.

[24] R. Sundarrajan, and V. Vasudevan. "An Optimization Algorithm for Task Scheduling in Cloud Computing Based on Multi-Purpose Cuckoo
Seek Algorithm." In International Conference on Theoretical Computer Science and Discrete Mathematics, pp. 415-424. Springer, Cham,

2016.

[25] Mohammad Javad Abbasi and Mehrdad Mohri "Scheduling Tasks in the Cloud Computing Environment with the Effect of Cuckoo
Optimization Algorithm", SSRG International Journal of Computer Science and Engineering (SSRG - IJCSE), V3 (8), 1-9 August 2016

32

[26] Nima Jafari Navimipour and Farnaz Sharifi Milani. "Task scheduling in the cloud computing based on the cuckoo search algorithm."

International Journal of Modeling and Optimization 5, no. 1 (2015): 44.

[27] Syed Hamid Hussain Madni, Muhammad Shafie Abd Latiff and Shafi Muhammad Abdulhamid. "Optimal Resource Scheduling for IaaS

Cloud Computing using Cuckoo Search Algorithm." Sains Humanika 9, no. 1-3 (2017).

[28] Ramin Rajabioun, “Cuckoo optimization algorithm”, Applied Soft Computing 11(8) (2011): 5508-5518.

[29] Xin-She Yang. "Swarm intelligence based algorithms: a critical analysis." Evolutionary intelligence 7, no. 1 (2014): 17-28.

[30] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose and Rajkumar Buyya. "CloudSim: a toolkit for modeling and

simulation of cloud computing environments and evaluation of resource provisioning algorithms." Software: Practice and experience 41, no.
1 (2011): 23-50.

[31] Singh, Sukhpal, and Inderveer Chana. "Q-aware: Quality of service based cloud resource provisioning." Computers & Electrical Engineering

47 (2015): 138-160.
[32] Gill, Sukhpal Singh, Inderveer Chana, and Rajkumar Buyya. "IoT Based Agriculture as a Cloud and Big Data Service: The Beginning of

Digital India." Journal of Organizational and End User Computing (JOEUC) 29, no. 4 (2017): 1-23.

[33] Kouki, Yousri, and Thomas Ledoux. "Sla-driven capacity planning for cloud applications." In Cloud Computing Technology and Science
(CloudCom), 2012 IEEE 4th International Conference on, pp. 135-140. IEEE, 2012.

[34] Moore, Justin D., Jeffrey S. Chase, Parthasarathy Ranganathan, and Ratnesh K. Sharma. "Making Scheduling" Cool": Temperature-Aware

Workload Placement in Data Centers." In USENIX annual technical conference, General Track, pp. 61-75. 2005.

[35] Tschudi, B. I. L. L., O. T. T. O. Vangeet, J. Cooley, and D. Azevedo. "ERE: A metric for measuring the benefit of reuse energy from a data

center." White Paper 29 (2010).

[36] Karellas, Sotirios, and Konstantinos Braimakis. "Energy–exergy analysis and economic investigation of a cogeneration and trigeneration

ORC–VCC hybrid system utilizing biomass fuel and solar power." Energy conversion and management 107 (2016): 103-113.

[37] Gill, Sukhpal Singh, Inderveer Chana, Maninder Singh, and Rajkumar Buyya. "CHOPPER: an intelligent QoS-aware autonomic resource

management approach for cloud computing." Cluster Computing (2017): 1-39.
[38] Liu, Zhenhua, Yuan Chen, Cullen Bash, Adam Wierman, Daniel Gmach, Zhikui Wang, Manish Marwah, and Chris Hyser. "Renewable and

cooling aware workload management for sustainable data centers." In ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 1,

pp. 175-186. ACM, 2012.
[39] Gill, Sukhpal Singh, and Rajkumar Buyya. "Resource Provisioning Based Scheduling Framework for Execution of Heterogeneous and

Clustered Workloads in Clouds: from Fundamental to Autonomic Offering." Journal of Grid Computing (2018): 1-33.

[40] Oxley, Mark A., Eric Jonardi, Sudeep Pasricha, Anthony A. Maciejewski, Howard Jay Siegel, Patrick J. Burns, and Gregory A. Koenig.
"Rate-based thermal, power, and co-location aware resource management for heterogeneous data centers." Journal of Parallel and Distributed

Computing 112 (2018): 126-139.

[41] L.A. Barroso, J.Clidaras, U. Hoelze, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, Synthesis
Lectures on Computer Architecture, July 2013.

[42] P.Garraghan. I. Solis Moreno, P. Townend, J. Xu, An Analysis of Failure-related Energy Waste in a Large-scale Cloud Environment, IEEE

Transactions on Emerging Topics in Computing, pp. 166-180, 2014.
[43] Li, Xiang, Xiaohong Jiang, and Yanzhang He. "Virtual Machine Scheduling Considering Both Computing and Cooling Energy." In High

Performance Computing and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on

Embedded Software and Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf on, pp. 244-247. IEEE, 2014.
[44] Sukhpal Singh Gill and Rajkumar Buyya, "Failure Management for Reliable Cloud Computing: A Taxonomy, Model and Future Directions",

Computing in Science and Engineering, IEEE, 2018. DOI: 10.1109/MCSE.2018.2873866

[45] Nita, Mihaela-Catalina, Florin Pop, Mariana Mocanu, and Valentin Cristea. "FIM-SIM: Fault injection module for CloudSim based on
statistical distributions."Journal of telecommunications and information technology 4 (2014): 14.

[46] Sukhpal Singh Gill, Inderveer Chana, Maninder Singh and Rajkumar Buyya, RADAR: Self-Configuring and Self-Healing in Resource

Management for Enhancing Quality of Cloud Services, Concurrency and Computation: Practice and Experience (CCPE), Volume 31, No. 1,
Pages: 1-29, 2019

[47] Gill, Sukhpal Singh, and Rajkumar Buyya. "SECURE: Self-Protection Approach in Cloud Resource Management." IEEE Cloud Computing

5, no. 1 (2018): 60-72.
[48] Singh, Sukhpal, and Inderveer Chana. "QRSF: QoS-aware resource scheduling framework in cloud computing." The Journal of

Supercomputing 71, no. 1 (2015): 241-292.

[49] Moreno, Ismael Solis, Peter Garraghan, Paul Townend, and Jie Xu. "Analysis, modeling and simulation of workload patterns in a large-scale
utility cloud." IEEE Transactions on Cloud Computing 2, no. 2 (2014): 208-221.

[50] Kaur, Amanpreet, V. P. Singh, and Sukhpal Singh Gill. "The Future of Cloud Computing: Opportunities, Challenges and Research Trends."

In 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), pp. 213-219. IEEE, 2018.

[51] Deb, Kalyanmoy. "Constrained Multi-objective Evolutionary Algorithm." In Evolutionary and Swarm Intelligence Algorithms, pp. 85-118.

Springer, Cham, 2019.
[52] Guitart, Jordi. "Toward sustainable data centers: a comprehensive energy management strategy." Computing 99, no. 6 (2017): 597-615.

[53] Singh, Sukhpal, and Inderveer Chana. "A survey on resource scheduling in cloud computing: Issues and challenges." Journal of grid

computing 14, no. 2 (2016): 217-264.

[54] Youn, Chan-Hyun, Min Chen, and Patrizio Dazzi. Cloud Broker and Cloudlet for Workflow Scheduling. Springer Singapore, 2017.

[55] Gill, Sukhpal Singh, Peter Garraghan, and Rajkumar Buyya. "ROUTER: Fog Enabled Cloud based Intelligent Resource Management

Approach for Smart Home IoT Devices."" Journal of Parallel and Distributed Computing 154 (2019): 125-138.

[56] Garraghan, Peter, Xue Ouyang, Renyu Yang, David McKee, and Jie Xu. "Straggler root-cause and impact analysis for massive-scale

virtualized cloud datacenters." IEEE Transactions on Services Computing (2016).

[57] Chang, Che-Wei, Chun-Yi Liu, and Chuan-Yue Yang. "Energy-efficient heterogeneous resource management for wireless monitoring
systems." Journal of Systems and Software 131 (2017): 168-180.

[58] Taherizadeh, Salman, Andrew C. Jones, Ian Taylor, Zhiming Zhao, and Vlado Stankovski. "Monitoring self-adaptive applications within edge

computing frameworks: A state-of-the-art review." Journal of Systems and Software 136 (2018): 19-38.

[59] Singh, Sukhpal, and Inderveer Chana. "Consistency verification and quality assurance (CVQA) traceability framework for SaaS." In 2013

3rd IEEE International Advance Computing Conference (IACC), pp. 1-6. IEEE, 2013..

33

[60] D. Sitaram, H. L. Phalachandra, G. S, S. H V and S. TP, "Energy efficient data center management under availability constraints," 2015

Annual IEEE Systems Conference (SysCon) Proceedings, Vancouver, BC, 2015, pp. 377-381.

[61] L. Luo, H. Li, X. Qiu and Y. Tang, "A Resource Optimization Algorithm of Cloud Data Center Based on Correlated Model of Reliability,

Performance and Energy," 2016 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Vienna,
2016, pp. 416-417.

[62] Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau L. Bölöni, Muthucumaru Maheswaran, Albert I. Reuther, James P. Robertson et

al. "A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems."
Journal of Parallel and Distributed computing 61, no. 6 (2001): 810-837.

[63] Shoukat Ali, Howard Jay Siegel, Muthucumaru Maheswaran, Debra Hensgen and Sahra Ali. "Representing task and machine heterogeneities

for heterogeneous computing systems." Tamkang J Sci Eng, 3, no. 3 (2000): 195-207.
[64] Zhang S, Chatha K S. Approximation Algorithm for the Temperature Aware Scheduling Problem. Proceedings of International Conference

on Computer-Aided Design. 2007:281–288.

[65] Tang Qinghui, Gupta Sandeep Kumar S, Varsamopoulos Georgios. Energy-efficient thermal-aware task scheduling for homogeneous
highperformance computing data centers: A cyber-physical approach. IEEE Transactions on Parallel and Distributed Systems.

2008;19(11):1458–1472

[66] Lazic, Nevena, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, M. K. Ryu, and Greg Imwalle. "Data center cooling using model-predictive
control." In Advances in Neural Information Processing Systems, pp. 3814-3823. 2018.

[67] Singh, Sukhpal, and Inderveer Chana. "EARTH: Energy-aware autonomic resource scheduling in cloud computing." Journal of Intelligent &

Fuzzy Systems 30, no. 3 (2016): 1581-1600.
[68] Möbius, Christoph, Waltenegus Dargie, and Alexander Schill. "Power consumption estimation models for processors, virtual machines, and

servers." IEEE Transactions on Parallel and Distributed Systems 25, no. 6 (2014): 1600-1614.

[69] Grozev, Nikolay, and Rajkumar Buyya. "Performance modelling and simulation of three-tier applications in cloud and multi-cloud
environments." The Computer Journal 58, no. 1 (2013): 1-22.

[70] Lebre, Adrien, Arnaud Legrand, Frédéric Suter, and Pierre Veyre. "Adding storage simulation capacities to the simgrid toolkit: Concepts,

models, and api." In 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 251-260. IEEE, 2015.

Author’s Biography

Dr. Sukhpal Singh Gill is currently working as a Research Associate at School of Computing and Communications, Lancaster University,

UK. Dr. Gill was a Postdoctoral Research Fellow at Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of
Computing and Information Systems, The University of Melbourne, Australia. He was a recipient of several awards, including the

Distinguished Reviewer Award from Software: Practice and Experience (Wiley), 2018, and served as the PC member for venues such as

UCC, SE-CLOUD, ICCCN, ICDICT and SCES. His one review paper has been nominated and selected for the ACM 21st annual Best of
Computing Notable Books and Articles as one of the notable items published in computing - 2016. He has published more than 45 papers

as a first author. Dr. Gill also worked in Computer Science and Engineering Department of Thapar Institute of Engineering and Technology

(TIET), Patiala, India, as a Lecturer. He obtained the Degree of Master of Engineering in Software Engineering (Gold Medalist), as well
as a Doctoral Degree specialization in Autonomic Cloud Computing from TIET. He was a DST (Department of Science & Technology)

Inspire Fellow during Doctorate and worked as a SRF-Professional on DST Project, Government of India. His research interests include

Cloud Computing, Software Engineering, Internet of Things, Big Data and Fog Computing. For further information on Dr. Gill, please
visit: www.ssgill.in

Dr. Peter Garraghan is a Lecturer (Assistant Professor) in the School of Computing & Communications, Lancaster University. He
received his PhD in Computer Science from the University of Leeds, UK. He has industrial experience building large-scale systems and

his research interests include distributed systems, Cloud datacenters, dependability, and energy-efficient computing, where he has

published over 35+ refereed papers.

Dr. Vlado Stankovski a Professor (at College) in Computer and Information Science and Informatics in Commerce at University of
Ljubljana. Vlado Stankovski was awarded his Eng.Comp.Sc., M.Sc. and Ph.D. degrees in computer science from the University of

Ljubljana in 1995, 2000 and 2009, respectively. He began his career in 1995 as consultant and later as project manager with the Fujitsu-

ICL Corporation in Prague. From 1998-2002 he worked as researcher at the University Medical Centre in Ljubljana. From 2003 on, he is
with the Department of Construction Informatics at the University of Ljubljana. He lectures in undergraduate computer science subjects.

Vlado Stankovski’s research interests are in semantic and distributed-computing technologis. He has been the technical manager of the

FP6 DataMiningGrid project and financial manager of the FP6 InteliGrid project. He also participates in Slovene national grid-related
projects, such as: GridForum.si, AgentGrid and SiGNet. His past experience is in applications of machine learning techniques to

engineering and medical problems.

http://www.ssgill.in/

34

Dr. Giuliano Casale received the Ph.D. degree in computer engineering from Politecnico di Milano, Italy, in 2006. He joined the

Department of Computing, Imperial College London, U.K., in 2010, where he is currently a Senior Lecturer in modeling and simulation.

He was a Scientist with SAP Research, U.K. and as a Consultant in the capacity planning industry. He teaches and does research in

performance engineering, cloud computing, and Big data, topics on which he has published over 120 refereed papers. He has served on
the technical program committee of over 80 conferences and workshops and as the co-chair for conferences in the area of performance

engineering such as ACM SIGMETRICS/Performance. He is a member of the IFIP WG 7.3 group on Computer Performance Analysis

and since 2015 he has been serving in the ACM SIGMETRICS Board of Directors. He was a recipient of several awards, including the
Best Paper Award at ACM SIGMETRICS 2017, and served as the Program Chair for venues such as ACM SIGMETRICS/Performance,

MASCOTS, ICAC, ICPE, and QEST.

Dr. Ruppa K. Thulasiram (Tulsi) (M’00–SM’09) received the Ph.D. degree from the Indian Institute of Science, Bangalore, India. He
is a Professor and the Director of the Computational Finance Laboratory, Department of Computer Science, University of Manitoba,

Winnipeg, MB, Canada. He spent years with Concordia University, Montreal, QC, Canada; Georgia Institute of Technology, Atlanta, GA,

USA; and the University of Delaware, Newark, DE, USA, as a Postdoctoral Researcher, Research Staff, and Research Faculty before
taking up a position with the University of Manitoba. He has graduated many students with M.Sc. and Ph.D. degrees. He has developed a

curriculum for the cross-disciplinary computational finance course at the University of Manitoba for both graduate and senior

undergraduate levels. He has authored or co-authored many papers in the areas of high-temperature physics, gas dynamics, combustion,
computational finance, and grid/cloud computing. His current research interest includes grid/cloud computing, computational finance,

cloud resources management, computational intelligence, ad hoc networks, and scientific computing. His research has been funded by the

Natural Sciences and Engineering Research Council (NSERC) of Canada.Dr. Thulasiram has been an Associate Editor for the IEEE
Transactions on Cloud Computing, and International Journal of Aerospace Innovations (MultiSceince Publishing). He is a member of the

Editorial Board of many journals including the International Journal of Computational Science and Engineering. He has been a guest

editor of many journals such as Parallel Computing, Concurrency and Computation Practice and Experience, the International Journal of
Parallel, Embedded and Distributed Systems, and the Journal of Supercomputing for special issues. He was the recipient of many Best

Paper Awards.

Dr. Soumya K. Ghosh is a Professor in the Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur

(IIT Kharagpur), India. Soumya K. Ghosh (M’05) received the M. Tech. and Ph.D. degrees from the Department of Computer Science

and Engineering, IIT Kharagpur, Kharagpur, India, in 1996 and 2002, respectively. He was with the Indian Space Research Organization,
Bengaluru, India. He has authored or coauthored more than 200 research papers in reputed journals and conference proceedings. His

current research interests include spatial data science, spatial web services, and cloud computing.

Dr. Ramamohanarao (Rao) Kotagiri received his PhD from Monash University. He was awarded the Alexander von Humboldt
Fellowship in 1983. He has been at the University Melbourne since 1980 and was appointed as a professor in computer science in 1989.

Rao held several senior positions including Head of Computer Science and Software Engineering, Head of the School of Electrical

Engineering and Computer Science at the University of Melbourne and Research Director for the Cooperative Research Center for
Intelligent Decision Systems. He served or serving on the Editorial Boards of the Computer Journal, Universal Computer Science, IEEE

TKDE, VLDB Journal and International Journal on Data Privacy. Rao is a Fellow of the Institute of Engineers Australia, a Fellow of

Australian Academy Technological Sciences and Engineering and a Fellow of Australian Academy of Science.

Dr. Rajkumar Buyya is a Redmond Barry Distinguished Professor and Director of the Cloud Computing and Distributed Systems

(CLOUDS) Laboratory at the University of Melbourne, Australia. He is also serving as the founding CEO of Manjrasoft, a spin-off
company of the University, commercializing its innovations in Cloud Computing. He served as a Future Fellow of the Australian Research

Council during 2012-2016. He has authored over 625 publications and seven text books including “Mastering Cloud Computing"

published by McGraw Hill, China Machine Press, and Morgan Kaufmann for Indian, Chinese and international markets respectively. He
also edited several books including "Cloud Computing: Principles and Paradigms" (Wiley Press, USA, Feb 2011). He is one of the highly

cited authors in computer science and software engineering worldwide (h-index=124+, g-index=281, 80000+ citations). Microsoft

Academic Search Index ranked Dr. Buyya as #1 author in the world (2005-2016) for both field rating and citations evaluations in the area
of Distributed and Parallel Computing. "A Scientometric Analysis of Cloud Computing Literature" by German scientists ranked Dr. Buyya

as the World's Top-Cited (#1) Author and the World's Most-Productive (#1) Author in Cloud Computing. Recently, Dr. Buyya is

recognized as a "Web of Science Highly Cited Researcher" in both 2016 and 2017 by Thomson Reuters, a Fellow of IEEE, and Scopus
Researcher of the Year 2017 with Excellence in Innovative Research Award by Elsevier for his outstanding contributions to Cloud

computing. He served as the founding Editor-in-Chief of the IEEE Transactions on Cloud Computing. He is currently serving as Editor-

in-Chief of Journal of Software: Practice and Experience, which was established over 45 years ago. For further information on Dr. Buyya,

please visit his cyberhome: www.buyya.com

