308,237 research outputs found

    Incorporating temporal-bounded CBR techniques in real-time agents

    Full text link
    Nowadays, MAS paradigm tries to move Computation to a new level of abstraction: Computation as interaction, where large complex systems are seen in terms of the services they offer, and consequently in terms of the entities or agents providing or consuming services. However, MAS technology is found to be lacking in some critical environments as real-time environments. An interaction-based vision of a real-time system involves the purchase of a responsibility by any entity or agent for the accomplishment of a required service under possibly hard or soft temporal conditions. This vision notably increases the complexity of these kinds of systems. The main problem in the architecture development of agents in real-time environments is with the deliberation process where it is difficult to integrate complex bounded deliberative processes for decision-making in a simple and efficient way. According to this, this work presents a temporal-bounded deliberative case-based behaviour as an anytime solution. More specifically, the work proposes a new temporal-bounded CBR algorithm which facilitates deliberative processes for agents in real-time environments, which need both real-time and deliberative capabilities. The paper presents too an application example for the automated management simulation of internal and external mail in a department plant. This example has allowed to evaluate the proposal investigating the performance of the system and the temporal-bounded deliberative case-based behaviour. 2010 Elsevier Ltd. All rights reserved.This work is supported by TIN2006-14630-C03-01 projects of the Spanish government, GVPRE/2008/070 project, FEDER funds and CONSOLIDER-INGENIO 2010 under Grant CSD2007-00022.Navarro Llácer, M.; Heras Barberá, SM.; Julian Inglada, VJ.; Botti Navarro, VJ. (2011). Incorporating temporal-bounded CBR techniques in real-time agents. Expert Systems with Applications. 38(3):2783-2796. https://doi.org/10.1016/j.eswa.2010.08.070S2783279638

    Towards Real-Time Crowd Simulation Under Uncertainty Using an Agent-Based Model and an Unscented Kalman Filter

    Get PDF
    Agent-based modelling (ABM) is ideally suited to simulating crowds of people as it captures the complex behaviours and interactions between individuals that lead to the emergence of crowding. Currently, it is not possible to use ABM for real-time simulation due to the absence of established mechanisms for dynamically incorporating real-time data. This means that, although models are able to perform useful offline crowd simulations, they are unable to simulate the behaviours of crowds in real time. This paper begins to address this drawback by demonstrating how a data assimilation algorithm, the Unscented Kalman Filter (UKF), can be used to incorporate pseudo-real data into an agent-based model at run time. Experiments are conducted to test how well the algorithm works when a proportion of agents are tracked directly under varying levels of uncertainty. Notably, the experiments show that the behaviour of unobserved agents can be inferred from the behaviours of those that are observed. This has implications for modelling real crowds where full knowledge of all individuals will never be known. In presenting a new approach for creating real-time simulations of crowds, this paper has important implications for the management of various environments in global cities, from single buildings to larger structures such as transportation hubs, sports stadiums, through to entire city regions

    VR Toolkit for Identifying Group Characteristics

    Get PDF
    Visualising crowds is a key pedestrian dynamics topic, with significant research efforts aiming to improve the current state-of-the-art. Sophisticated visualisation methods are a standard for modern commercial models, and can improve crowd management techniques and sociological theory development. These models often define standard metrics, including density and speed. However, modern visualisation techniques typically use desktop screens. This can limit the capability of a user to investigate and identify key features, especially in real time scenarios such as control centres. Virtual reality (VR) provides the opportunity to represent scenarios in a fully immersive environment, granting the user the ability to quickly assess situations. Furthermore, these visualisations are often limited to the simulation model that has generated the dataset, rather than being source-agnostic. In this paper we implement an immersive, interactive toolkit for crowd behaviour analysis. This toolkit was built specifically for use within VR environments and was developed in conjunction with commercial users and researchers. It allows the user to identify locations of interest, as well as individual agents, showing characteristics such as group density, individual (Voronoi) density and speed. Furthermore, it was used as a data-extraction tool, building individual fundamental diagrams for all scenario agents, and predicting group status as a function of local agent geometry. Finally, this paper presents an evaluation of the toolkit made by crowd behaviour experts

    Simulating Crowds in Real Time with Agent-Based Modelling and a Particle Filter

    Get PDF
    Agent-based modelling is a valuable approach for modelling systems whose behaviour is driven by the interactions between distinct entities, such as crowds of people. However, it faces a fundamental difficulty: there are no established mechanisms for dynamically incorporating real-time data into models. This limits simulations that are inherently dynamic, such as those of pedestrian movements, to scenario testing on historic patterns rather than real-time simulation of the present. This paper demonstrates how a particle filter could be used to incorporate data into an agent-based model of pedestrian movements at run time. The experiments show that although it is possible to use a particle filter to perform online (real time) model optimisation, the number of individual particles required (and hence the computational complexity) increases exponentially with the number of agents. Furthermore, the paper assumes a one-to-one mapping between observations and individual agents, which would not be the case in reality. Therefore this paper lays some of the fundamental groundwork and highlights the key challenges that need to be addressed for the real-time simulation of crowd movements to become a reality. Such success could have implications for the management of complex environments both nationally and internationally such as transportation hubs, hospitals, shopping centres, etc

    Green power grids: How energy from renewable sources affects networks and markets

    Get PDF
    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-dayahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data

    A conceptual framework for interactive virtual storytelling

    Get PDF
    This paper presents a framework of an interactive storytelling system. It can integrate five components: management centre, evaluation centre, intelligent virtual agent, intelligent virtual environment, and users, making possible interactive solutions where the communication among these components is conducted in a rational and intelligent way. Environment plays an important role in providing heuristic information for agents through communicating with the management centre. The main idea is based on the principle of heuristic guiding of the behaviour of intelligent agents for guaranteeing the unexpectedness and consistent themes

    Towards the Development of a Simulator for Investigating the Impact of People Management Practices on Retail Performance

    Get PDF
    Often models for understanding the impact of management practices on retail performance are developed under the assumption of stability, equilibrium and linearity, whereas retail operations are considered in reality to be dynamic, non-linear and complex. Alternatively, discrete event and agent-based modelling are approaches that allow the development of simulation models of heterogeneous non-equilibrium systems for testing out different scenarios. When developing simulation models one has to abstract and simplify from the real world, which means that one has to try and capture the 'essence' of the system required for developing a representation of the mechanisms that drive the progression in the real system. Simulation models can be developed at different levels of abstraction. To know the appropriate level of abstraction for a specific application is often more of an art than a science. We have developed a retail branch simulation model to investigate which level of model accuracy is required for such a model to obtain meaningful results for practitioners.Comment: 24 pages, 7 figures, 6 tables, Journal of Simulation 201
    • …
    corecore